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Abstract: Numerical time series data are pervasive, originating from sources as diverse as wearable
devices, medical equipment, to sensors in industrial plants. In many cases, time series contain interesting
information in terms of subsequences that recur in approximate form, so-called motifs. Major open
challenges in this area include how one can formalize the interestingness of such motifs and how the most
interesting ones can be found. We introduce a novel approach that tackles these issues. We formalize the
notion of such subsequence patterns in an intuitive manner and present an information-theoretic approach
for quantifying their interestingness with respect to any prior expectation a user may have about the time
series. The resulting interestingness measure is thus a subjective measure, enabling a user to find motifs
that are truly interesting to them. Although finding the best motif appears computationally intractable,
we develop relaxations and a branch-and-bound approach implemented in a constraint programming
solver. As shown in experiments on synthetic data and two real-world datasets, this enables us to mine
interesting patterns in small or mid-sized time series.

Keywords: time series; motif detection; information theory; subjective interestingness; pattern mining;
exploratory data mining

1. Introduction

There exists a myriad of data mining methods for time series data, ranging from fully-automated
change detection, classification, and prediction methods, to exploratory techniques such as clustering
and motif detection. Change and motif detection are related in the sense that local patterns (motifs) and
longer-running changes in the profile of the time series need to be evaluated against a prior that specifies
what the expected profile is, typically in the form of a probability distribution.

Prior work on time series motif detection tended to evaluate a motif’s interestingness by assessing
its significance against some objectively-chosen prior distribution for the time series (either explicitly
or implicitly). The result is that the most “interesting” motifs found are often trivial, implied by the
user’s prior expectations. In contrast to this, we introduce an approach to identify recurring subsequence
patterns that are subjectively interesting, i.e., interesting when contrasted with the user’s prior expectations.
A recurring subsequence is a subsequence that is found at several positions within the time series with
some variation, and this will be called a motif.

To achieve this, we define subsequence patterns as local probabilistic models. The subjective
interestingness of a subsequence pattern is then defined in terms of the amount of information (in an
information-theoretic sense) contained in this local model, when contrasted with a background distribution
that represents the user’s expectations. Initially, the background distribution is computed as the
distribution of maximum entropy subject to any prior user expectations as constraints, such as constraints
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on the expected mean, variance, and co-variance between neighboring points in the time series. Upon
revealing the presence of a subsequence pattern, the background distribution is updated to account for
this new knowledge, such that it continues to represent the (now updated) expectations of the user as
subsequence patterns are revealed throughout an iterative analysis. The amount of information gained by
the time series can be computed by contrasting the prior distribution and the updated distribution.

To find the most informative motifs and outliers efficiently, we develop relaxations and propose an
effective search algorithm implemented in a constraint programming solver. Together with an additional
heuristic pruning technique, this enables one to mine subsequence patterns relatively efficiently.

Our specific contributions are:

– Novel definitions of motifs as probabilistic patterns (Section 3)
– A quantification of their Subjective Interestingness (SI), based on how much information a user gains

when observing this pattern (Section 4).
– A relaxation of the exact setting and an algorithm to efficiently mine the most interesting subsequence

patterns for a user (Section 5).
– Several speedup techniques that result in a computationally more efficient algorithm (Section 6).
– Empirical evaluation of this algorithm on one synthetic dataset and two real-world datasets,

to investigate its ability to encode the user’s prior beliefs and identify interesting subsequence
patterns (Section 7).

2. Related Work

Time series motifs usually hint at useful information about seasonal or temporal associations between
events, and detecting such patterns can be very useful in practice. A myriad of techniques for motif
discovery have been proposed. These can be categorized from different perspectives, starting with
the definition of the interestingness measure for a motif. In general, two main aspects for judging the
interestingness of a motif exist in the literature, namely the similarity among instances and the support
(i.e., the number of instances in a motif) [1]. More specifically, one prioritizes a motif whose instances
exhibit maximum similarity, or even more strictly, defining a motif as the most similar subsequence pair
(e.g., [2–4]); whereas the second prioritizes one with the highest support given a minimum similarity
between all instances of a motif (e.g., [5,6]).

For existing work adopting either similarity-based or support-based interestingness, the similarity
measure plays a key role in the motif discovery algorithms, and typical ones include Euclidean distance
and dynamic time warping. Regarding the massive computational cost, some efforts have been made
to represent time series in low dimensional space. Examples of such representations include Symbolic
Aggregate Approximation (SAX), DFT, and random projections. A review of motif discovery algorithms
based on their similarity measure and representation was provided by Mueen [1].

In addition to these aspects, there exist several challenging issues in this pattern discovery problem,
including scalability [3,7,8], the detection of motifs with various lengths [9,10], multi-dimensional time
series [11], coping with streaming data [12,13], and handling distortions [14]. For a more comprehensive
review of existing publications regarding these issues, we refer the interested readers to Torkamani and
Lohweg [15].

Our work explores a new aspect, shedding light on the essence of the interestingness for a motif,
which we believe depends on a user’s prior knowledge. Previous measures that prioritized either the
similarity or support were all objective. However, for a user with prior information about the time
series (a common situation), the resulting motifs may be trivial. Hence, we propose a novel subjective
interestingness measure, which enables ones to identify motifs that contradict their prior expectations
and are truly interesting to them. Additionally, the information-theoretic view that we take immediately
provides a balance between the similarity and numerosity for a set of subsequences to form a motif.
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3. Motifs and Motif Templates

We denote a time series as x̂ , (x̂1, . . . , x̂n)′ ∈ Rn, i.e., an ordered collection of n real numbers x̂i ∈ R,
where i ∈ [n] = [1, . . . , n]. We write x̂i,l for x̂ for the subsequence of length l ≤ n − i + 1 starting from
position i. That is, x̂i,l , (x̂i, . . . , x̂i+l−1)

′ ∈ Rl . By sliding a window of size l along x̂ and extracting each
subsequence, we can obtain a set containing all the subsequences of length l. We denote this set as Sl ,
i.e., Sl = {x̂i,l |i = 1, 2, . . . , n − l + 1}. Note that hatted symbols represent empirical values, and their
non-hatted equivalents are used to denote the respective random variables.

3.1. Motif

A motif of length l denoted by Tl is a subset of Sl containing more than two non-overlapping
subsequences. That is, Tl ⊆ Sl , |Tl | ≥ 2, |i− j| ≥ l, ∀x̂i,l , x̂j,l ∈ T, and i 6= j.

Each subsequence in a motif is said to be an instance of the motif. As we focus on identifying motifs
of a fixed length (i.e., l), we write T for Tl in the rest of the paper for convenience. Not every motif is
equally interesting. The criterion by which we judge the quality of a motif is explained below.

The index set of a motif T is denoted as IT, i.e., IT = {i|x̂i,l ∈ T}.

3.2. Motif Template

Our general aim is to find subjectively interesting “motifs”. However, what one typically means is not
actually a set of subsequences that are similar, but a general subsequence pattern that is recurring in a time
series. To avoid working with a set of subsequences, one could use a single exemplar. Here, we introduce
a probabilistic local model as the target object, the motif template, instead.

Definition 1 (Motif template). A motif template is a probability distribution over the space of motif instances,
i.e., Rl .

More concretely, we propose a template where we capture the mean and variance statistics of instances
and call this a mean-variance motif template. We deem the roles played by these two statistics essential, as the
mean serves as a figure about the motif shape, and the variance tells the extent of the similarity among
these instances. A typical choice of model is a multivariate Gaussian distribution parameterized by the
mean and variance statistics.

It is in principle straightforward to also use covariance statistics, but such a model has O(l2)

parameters and is not interpretable. Thus, we define a mean-variance motif template as:

Definition 2 (Mean-variance motif template). A mean-variance motif template is a multivariate Gaussian
distribution N (µ, Σ) over the space of motif instances. Σ is the diagonal matrix with the values of standard
deviations as the main diagonal and zero elsewhere. Hence, this distribution can be essentially parameterized by a
tuple (µ, σ), where µ is a vector of means and σ is a vector of standard deviations, both of length l.

In this paper, we take µ, σ as the maximum likelihood parameters over the set of instances in a
motif. We denote the parameter tuple for the motif template learned from the motif T as (µT, σT). That is,
µT = 1

|T| ∑i∈IT x̂i,l , σT = 1
|T|−1 ∑i∈IT(x̂i,l − µT)

2. Examples are given in Figures 1–3.
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4. Formalizing the Subjective Interestingness

Previous motif discovery work tended to quantify the interestingness in an objective way
(see Section 2). For a data analyst with prior knowledge about the time series, which we believe is
common, the discovered patterns may be trivial to the end user and could be easily implied. To preempt
this, we propose to use a more flexible subjective measure of interestingness.

4.1. The Background Distribution

We follow the so-called FORSIED (an acronym for “Formalizing Subjective Interestingness in
Exploratory Data mining”) framework [16,17] to quantify the subjective interestingness of a motif.
The basic procedure is that a background distribution is defined over the space of all possible datasets,
which here would be all possible realizations of a time series x. Since x ∈ Rn, the background distribution
is defined by a probability density function p. The background distribution essentially encodes the beliefs
and expectations of the user about the data. More specifically, it assigns a probability density to each
possible data value according to how tenable the user thinks this value is. It was argued that a good choice
for the background distribution is the maximum entropy distribution subject to constraints that capture
the user’s prior expectations about the data.

4.1.1. The Initial Background Distribution

We wish to define constraints and compute a maximal entropy distribution such that these constraints
are preserved in expectation. For the initial background distribution, we consider three kinds of constraints.
They respectively express the user’s prior knowledge about the mean and the variance of each data point,
as well as the first order difference in x. Notice that these expectation values can be anything; here,
we equate them to the empirical values. With these three constraints, the initial background distribution is
the solution to Problem 1 as stated as follows:

Problem 1.

max
p

∫
−p(x) log(p(x))dx, (1)

s.t.
∫

p(x)
1
n

n

∑
i=1

xidx = m̂1, (2)

∫
p(x)

1
n

n

∑
i=1

(xi − m̂)2dx = v̂1, (3)

∫
p(x)

1
n− 1

n−1

∑
i=1

(xi − xi+1)
2dx = d̂1, (4)

where: m̂ =
1
n

n

∑
i=1

x̂i, v̂ =
1
n

n

∑
i=1

(x̂i − m̂)2, d̂ =
1

n− 1

n−1

∑
i=1

(x̂i − x̂i+1)
2.

and 1 is an n-dimensional vector with all the entries as one.
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The solution to Problem 1 is a multivariate Gaussian distribution parameterized by an n-dimensional
mean vector m and an n× n covariance matrix V. The values of m and V can be derived by applying
the Lagrange multiplier method. We further improve the computation efficiency by using the property
that maximizing the entropy and maximizing the likelihood are the dual of each other in the class of
exponential form distributions [18]. The computation details are given in Appendix A.

4.1.2. Updating the Background Distribution

Once a motif template along with its instances is identified and shown to the user, the user’s belief
state changes, and the background distribution needs to be updated. The background distributions p for all
prior belief types discussed in this paper are essentially multivariate Gaussian distributions each of which
is parametrized by m and V. As mentioned, the motif template is also described by a multivariate Gaussian
distribution, N (µT, ΣT). To make the updated background distribution reflect the user’s newly-acquired
knowledge, we simply set the blocks of current m and V corresponding to the subsequence instances equal
to µT and ΣT and the off-diagonal elements of V corresponding to instances equal to zero. We denote the
background distribution having incorporated T as pT.

4.2. A Remark about No Independence Assumption

Remark 1. We do not assume independence between time points. While in the local motif model
(i.e., the mean-variance motif template), time points are indeed independently distributed (see Section 3.2), this is
not the case for the model of the whole time series x (indeed, the full covariance matrix is not necessarily diagonal).
Moreover, it is important to realize that the background distribution is a model for the user’s belief state; it is not a
model for the stochastic source of the data. In other words, if the background distribution does not exhibit a certain
dependency, this does not mean that the data may not come from a stochastic source that exhibits this dependency.
It only means that the user whose belief state is modeled by this background distribution is not yet aware of it. As the
covariance matrix is not diagonal, it is indeed the case that updating the expected value even for a single point in the
time series can ripple across the sequences and modify the expected values throughout.

4.3. The Subjective Interestingness Measure

Intuitively, a good motif is one whose instances are strongly similar to each other and together account
for a considerable portion on the whole time series. Consider such a good motif T. If all instances are
similar to each other, it directly follows that the values of µT are similar to those of each instance, and
the diagonal entries of ΣT are small. After revealing the motif to the user, the background distribution is
updated to be pT. Since the parameters of pT consist of µT and ΣT, the new background distribution pT
will thus be a more accurate model for the time series. More precisely, the probability of the data under pT
is larger. To quantify the amount of information gained by the motif, we can compare this probability to
the one under the previous background distribution p. The more strongly they differ, the more this motif
enhances with the user’s beliefs about the data.

Mathematically, we define the Information Content (IC) of a motif as the difference between the log
probability for the whole time series x̂ under pT and that under p:

IC(T) = log pT(x̂)− log p(x̂). (5)

The rationale is that minus the log probability of the data represents the number of bits of information
the data contain with respect to the probability distribution, so this difference corresponds to the amount
of information (in bits) the user has gained by seeing the motif.
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Note that the expected value of IC(T) with respect to pT(x̂) takes the same form as the
Kullback–Leibler divergence, but this does not mean that IC and KL-divergence are equivalent concepts.
The KL-divergence measures the difference between two probability distributions, but here, the pT(x̂) and
p(x̂) in the definition of IC(T) are probabilities rather than distributions.

4.4. Finding the Most Subjectively Interesting Motif Template

Now, we can formalize our goal of finding the most interesting motif in a time series as an optimization
problem with the following objective:

Objective 1: argmax
T

log pT(x̂)− log p(x̂).

Objective 1 accounts for the probability of the whole of the data. This probability depends on the
parameter updating of p (i.e., m and V ) from incorporating subsequences and can thus embody the quality
of the choice for template instances. Note that the key changes of m and V only take place on the part of
their entries that represent instances in T. That means, the rise in the probability of the whole of the data is
mostly related to the probability of those instances in T. Based on this observation, we propose a relaxed
version of Objective 1, which only depends on the probability of instances in T. This objective is similar to
Objective 1, but is more straightforward to optimize efficiently.

Objective 2: argmax
T

∑
i∈IT

log pT(x̂i,l)− ∑
i∈IT

log p(x̂i,l).

5. Method

In this work, we adopted a greedy search algorithm to identify the most interesting motif. The general
idea is to first seed T by finding a small set of k instances according to Objective 2 and then greedily grow
that set using Objective 1.

The algorithm consists of three major steps:

1. Model the user’s prior belief by the initial background distribution;
2. Seed by finding a small set of instances that optimizes Objective 2;
3. Grow that set by adding an instance that optimizes Objective 1 and iterate.

Remark 2. Although the three basic steps are for finding a single motif (i.e., the most interesting one to the user),
our algorithm is not limited to that. A new search for another motif can be triggered by running Step 2 and Step 3
again based on an updated background distribution, the one that has already incorporated the user’s knowledge of the
previous motif.

How we compute the initial background distribution (i.e., Step 1) is described in the above
(see Section 4.1.1). In the following, we go into more details of Steps 2 and 3.

5.1. Step 2: Finding a Seed Motif T(0) with k Instances

The search starts by finding k non-overlapping optimal instances that constitute a seed set for T.
We denote such a seed set by T(0). The most subjectively interesting T(0) is identified by optimizing
Objective 2. This problem can be formulated as:
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Problem 2.

argmax
T(0)

∑
i∈I

T(0)

log pT(0)(x̂i,l)− ∑
i∈I

T(0)

log p(x̂i,l) ≡

argmax
T(0)

∑
i∈I

T(0)

logN
(
x̂i,l |µT(0) , ΣT(0)

)
− ∑

i∈I
T(0)

logN
(

x̂i,l |m(i:i+l−1), V(i:i+l−1,i:i+l−1)
)

, (6)

where µT(0) =
1
k ∑

i∈I
T(0)

x̂i,l , ΣT(0) = diag

 1
k− 1 ∑

i∈I
T(0)

(
x̂i,l − µT(0)

)2

 .

The superscript of a vector or matrix symbol is used to denote the corresponding entry. Using the
expression for the multivariate Gaussian distribution, we can write Equation (6) as:

∑
i∈I

T(0)

logN (x̂i,l |µT(0) , ΣT(0))− ∑
i∈I

T(0)

logN
(

x̂i,l |m(i:i+l−1), V(i:i+l−1,i:i+l−1)
)

=− kl
2

log(2π) +
kl
2
{log k + log(k− 1)}

− k
2 ∑

h∈[l]
log

 ∑
i,j∈I

T(0)
i<j

(x̂(h)i,l − x̂(h)j,l )
2

︸ ︷︷ ︸
I

−1
2
(k− 1)l

− ∑
i∈I

T(0)

logN
(

x̂i,l |m(i:i+l−1), V(i:i+l−1,i:i+l−1)
)

︸ ︷︷ ︸
I I

. (7)

Note that the parts related to the choice of instances in T(0) are underbraced and numbered
respectively as I and I I. By taking a closer look, we can see that part I I is essentially the sum of all
the individual negative log probabilities of x̂i,l under p, and the values for parameters m and V are not
subject to which instances to incorporate. This allows gaining some computational benefits by simply
pre-computing each log probability. Nevertheless, I expresses a mutual relationship among all the instances
in T(0), due to its being in the summation form for the logarithm of a summation. Pre-computation is
not trivial, which makes the search for optimal instances computationally demanding, reaching O(nkk2).
We thus adopted a strategy to mitigate a certain factor of this time complexity, as well as a heuristic to
prune the search space. A detailed description is provided in Section 6.

5.2. Step 3: Greedily Searching for a New Instance

The algorithm then continues to search for a new subsequence that optimizes Objective 1. The search
stops when no new subsequence exists such that incorporating it can increase the probability of the time
series under the background distribution, i.e., @i ∈ [n− l + 1] s.t. T ∪ {xi,l} is a motif and pT∪{xi,l}(x̂)−
pT(x̂) ≥ 0.

To gain some speedup, we pruned subsequences that posed little potential according to a heuristic
(see Section 6).
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6. Speedup Techniques

In this section, we describe some speedup techniques applied to Step 2 (Section 6.1) and Step 3
(Section 6.2).

6.1. Speeding Up Step 2

6.1.1. Strategy 1: Bounding Objective 2 and Finding the Submatrix with the Maximal Sum

Recall only terms I and I I in the objective of Problem 2 (i.e., Equation (7)) are affected by the chosen
instances for T(0), and the term I makes the search computationally expensive. To mitigate the time
complexity, we considered optimizing a relaxed objective of Problem 2 based on bounding the term I.
Via applying Jensen’s inequality [19], the term I can be upper bounded by a summation form taken from
all the instance pairs:

I :− k
2 ∑

h∈[l]
log

 ∑
i,j∈I

T(0)
i<j

(x̂(h)i,l − x̂(h)j,l )
2


≤ ∑

i,j∈I
T(0)

i<j

− 1
k− 1 ∑

h∈[l]
log
{
(x̂(h)i,l − x̂(h)j,l )

2
}

︸ ︷︷ ︸
I I I

− kl
2

log
{

k(k− 1)
2

}
. (8)

Substituting Equation (8) into Equation (7) yields:

∑
i∈I

T(0)

logN
(
x̂i,l |µT(0) , ΣT(0)

)
− ∑

i∈I
T(0)

logN
(

x̂i,l |m(i:i+l−1), V(i:i+l−1,i:i+l−1)
)

≤− kl
2

log(2π) +
kl
2
{log k + log(k− 1)}

+ ∑
i,j∈I

T(0)
i<j

− 1
k− 1 ∑

h∈[l]
log{(x̂(h)i,l − x̂(h)j,l )

2}


︸ ︷︷ ︸

I I I

− kl
2

log
{

k(k− 1)
2

}

− 1
2
(k− 1)l− ∑

i∈I
T(0)

logN
(

x̂i,l |m(i:i+l−1), V(i:i+l−1,i:i+l−1)
)

︸ ︷︷ ︸
I I

. (9)

Finding the maximal value for the objective (Equation (9)) is essentially the same as maximizing
term I I I+ term I I. Then, we constructed a matrix M̂, with rows and columns representing subsequence
candidates, the ith diagonal entry M̂i,i being the part of the term I I inside the summation (Equation (11)
below) and the entry at the ith row and jth column M̂i,j being the part of the term I I I inside the outer
summation (Equation (12) below).

Solving Problem 2 corresponds to finding the upper triangular matrix inside M̂ with the
maximum sum, as expressed in the following problem:
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Problem 3.

argmax
T(0)

∑
i∈I

T(0)

∑
j∈I

T(0)

M̂i,j, (10)

where M̂i,i = logN (x̂i,l |m(i:i+l−1), V(i:i+l−1,i:i+l−1)) for i ∈ IT(0) , (11)

M̂i,j = −
1

k− 1 ∑
h∈[l]

log{(x̂(h)i,l − x̂(h)j,l )
2} for i, j ∈ IT(0) , (12)

T(0) ⊆ PrunedSubsequenceSet, (13)

|i− j| ≥ l, ∀i, j ∈ IT(0) and i 6= j. (14)

The fourth set of constraints (Equation (14)) is to ensure instances in T(0) are non-overlapping with
each other. This speedup technique enables us to compute the matrix M̂ in advance and then do the search
using Constraint Programming (CP). The time complexity of a relaxed Problem 2 is O(nk), a factor of
k2 less than Problem 2. Clearly, it still appears intractable for real-world applications. To counter this,
we deliberately reduced the search space so that each element of T(0) was constrained to be in a pruned
range, denoted by PrunedSubsequenceSet (Equation (13)). The way we constructed PrunedSubsequenceSet
is described in the following.

6.1.2. Strategy 2: Pruning

The exhaustive search for a solution to the relaxed Problem 2 is still computationally demanding for
a large M̂. We thus adopted a heuristic strategy so that the search was in a considerably reduced space,
but the quality of the found motifs was guaranteed.

It appears that an off-diagonal entry at the ith row and jth column M̂i,j models a sort of similarity
between the subsequence x̂i,l and x̂j,l . As the transition property of the similarity suggests, if M̂i,v and
M̂j,v are large, then so is M̂i,j. We can deduce that all the entries in M̂ mapped from IT(0) should have a
relatively larger value. Hence, we can deliberately perform the search in a pruned range of subsequences
whose indices corresponding to largest entries in M̂. Specifically, we fixed the first instance to be a certain
subsequence and searched the others among subsequences corresponding to the largest 1% entries at a row
of M̂ corresponding to this instance (i.e., pruning factor = 99%). To find the globally optimal k instances
for T(0), we fixed the first instance to be each possible subsequence and solved the relaxed Problem 2
each time. The final solution should be the one that leads to the maximal objective value.

6.2. Speeding Up Step 3

In Step 3, the exhaustive search for a new optimal instance requires checking the result of Objective
1’s value for incorporating every possible subsequence, which is apparently time consuming for large x̂.
Clearly, incorporating subsequences that bear strong similarity with instances in T(0) can result in a high
value for Objective 1. As the off-diagonal entries in M̂ encode a similarity between subsequence pairs,
we applied a heuristic pruning strategy based on entries in M̂ to reduce the search space.

Assume we are in the stage of having incorporated all the k instances in T(0). Let us denote the
current M̂ as M̂k. The new optimal instance must be among those that can produce a relatively large value
of the objective for Problem 3, but based on M̂k+1, whose entry at the ith row and jth column (i 6= j) is
− 1

k ∑h∈[l] log{(x̂(h)i,l − x̂(h)j,l )
2} = k−1

k M̂k
i,j (recall that M̂k

i,j is computed by Equation (12)). The objective for

Problem 3 is in the form of summing some entries of M̂k+1 that correspond to instances in T(0) and the
new subsequence (e.g., x̂r,l). Thus, the potential of x̂r,l (i.e., Potential(x̂r,l)) can be captured by how much
the value of the objective for Problem 3 (Equation (10)) increases if incorporating x̂r,l :
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Potential(x̂r,l) = ∑
i∈I

T(0)

M̂k+1
r,i + M̂k+1

r,r .

The algorithm ranks all possible subsequences in descending order according to their potential
values. Then, the search is implemented in a greatly reduced space (i.e., among those in the top 1%
of the rank). Let us denote the optimal subsequence that leads to the highest Objective 1 value by
Tk+1. We first check whether the probability of the time series increases under the new background
distribution. If so, we include Tk+1 in T. Nevertheless, for incorporating the next subsequence, a further
check is performed. First, we update the search domain, as well as the potential rank by deleting all the
subsequences overlapped with Tk+1. We do Step 3 to identify the new optimal one. If this subsequence is
still among the top three of the potential rank and incorporating it did not trigger the stop condition, we
make it the (k + 2)th instance of T. Otherwise, we recompute the potential and rank all the subsequences
again, according to M̂k+2, the one considering Tk+1 as an incorporated instance. Then, Step 3 is done again
among an updated search domain. However, there might occur a situation where the new optimal one
is still not ranked among the top three. In this case, if the stop condition is not reached, we make it an
instance of T anyway. By this lazy greedy strategy, the search space is significantly reduced, while a good
quality of the incorporated instance is ensured to a satisfiable extent.

7. Experiments

This section describes the evaluation of our proposed algorithm on a synthetic and two real-world
datasets. In the following, we first describe the datasets (Section 7.1). Second, we empirically analyze
how the pruning percentage in the initial set selection affects the quality of the result in terms of the
SI (Section 7.2). Then, we discuss the properties of the discovered motifs in each dataset to assess their
validity (Section 7.3).

All experiments were conducted on a PC with Ubuntu OS, Intel(R) Core(TM) i7-7700K 4.20-GHz
CPUs, and 32 GB of RAM. The main algorithm was implemented in MATLAB R2016b. The step of
identifying the initial motif template was coded in Python 3.5, in which the open source software OR-Tools
6.10 [20] developed by Google was used as the constraint programming solver. All the computer codes are
available at https://bitbucket.org/ghentdatascience/simit-public/src.

7.1. Data

• Synthetic time series: We synthesized a time series of length 15,000. This series included 2 sorts of
motif trends, and their prototypes were taken from 2 subsequence instances in the UCRTrace Data [21].
Both instances were of the same length as 275, but belonged to different classes. Subsequences for each
motif were generated by sampling from a Gaussian distribution with the mean as the corresponding
instance and a reasonably small variance as 0.01. There were in total 12 subsequences for each motif.
The remaining were standard Gaussian noises, and they constituted a major part of the whole series.
More details about the data synthesizing process are described in the pseudocode Procedure 1 in
Appendix B.

• MIT-BIHarrhythmia ECG recording: This dataset was Recording #205 in the MIT-BIH Arrhythmia
DataBase [22]. This recoding was created from digitizing the ECG signals at 360 samples per second.
We chose a part of 20 s (7200 samples) to experiment on that included normal heartbeats and
ventricular tachycardia beats.

• Belgium Power Load Data: This dataset was taken from Open Power System Data [23]. The primary
source of these data was ENTSO-EData Portal/Power Statistics [24]. Open Power System Data then
resampled and merged the original data in a large CSV file with hourly resolution. The part we

https://bitbucket.org/ghentdatascience/simit-public/src
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selected to experiment on recorded the total load in Belgium during the year 2007, for a total length
of 24× 365 = 8760.

7.2. Pruning and Scalability

For all the experiments, we first identified an initial motif T(0) with k = 4 instances. As mentioned
above, our algorithm searches among a space pruned in a particular heuristic way to gain some relative
amount of efficiency. The effects of pruning in the initial set identification were tested on the synthetic
time series, for which the correct answers were known. The results indicated that the optimal one was still
found even with the heaviest pruning (99.9%). Therefore, we used 99% pruning in the experiments on the
real-world datasets. The scalability of our algorithm, with respect to the length of the motif template and
to the length of the time series, was evaluated on the ECG recording. Table 1 shows that the length of the
motif template did not influence the computational cost that much, but the influence of the time series
length was more than quadratic.

Table 1. Run-time to search the initial motif set, with a pruning factor of 99%.

n l Time (s) n l Time (s) n l Time (s)

1800 100 9.96 3600 100 50.12 7200 100 369.92
7200 25 328.09 7200 50 350.65 7200 100 369.92

7.3. Results

7.3.1. Synthetic Data

In this experiment, we specified the length of the motif instance the same as the length of the
subsequence synthesized by sampling (i.e., l = 275). As expected, our algorithm identified two motifs
embedded in this synthetic time series, the result of which is shown in Figure 1. The whole time series
is plotted in Figure 1a, and subsequences incorporated into the first motif set are exactly those sampled
from the same Gaussian distribution (in red). Figure 1b illustrates the first motif template by plotting the
mean of all the instances incorporated into this motif, as well as the error bars indicating the variance
of each point. Our algorithm also correctly identified the second motif (marked in green in Figure 1a).
We modeled the user’s knowledge about the first motif by triggering the new search on a new original
background distribution, the one that took into account of all the instances for the first motif. The second
motif is displayed in Figure 1c.

0 5000 10000 15000Time
-4

-2

0

2

4

6
(a) a synthetic time series

0 50 100 150 200 250
-4

-2

0

2
(b) Motif 1

0 50 100 150 200 250
-2

0

2
(c) Motif 2

Figure 1. The algorithm correctly retrieves the two patterns in the synthetic data.
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7.3.2. ECG Time-Series

We analyzed the ECG data by identifying motifs with length 100, corresponding to a duration of 0.28 s.
In this fairly short recording (see Figure 2a), our algorithm identified three motifs. The first two motifs
corresponded to normal heartbeats (highlighted with red and green; templates shown in Figure 2b,c).
We can see that their shapes mostly coincide, with a horizontal shift. Normal heart beats are deemed
to be similar to each other, but within each one, there may exist a particular subsection that bears more
similarity than other subsections. Since the motif length was set to be less than a period of a normal heart
beat, our algorithm was prone to regarding those subsections that bore the similarity to a different extent
to be in different motif sets. Another motif identified by the algorithm lied in the area of the ventricular
tachycardia (pink sections). The instances did not cover all the ventricular tachycardia heart beats, but the
small error bars in Figure 2d indicate that these instances were uncannily similar to each other, and the
reason why other ventricular tachycardia subsequences lost the membership for this motif set was their
smaller similarity.

0 1000 2000 3000 4000 5000 6000 7000
Time

600

800

1000

1200

1400

(a) a 20-second ECG recording
20 40 60 80 100

800

1000

1200

(b) Motif 1

0 20 40 60 80

900

1000

1100

1200

(c) Motif 2

0 50 100
600

800

1000

1200
(d) Motif 3

Figure 2. Three motif templates identified in the 20-second ECG recording.

7.3.3. Belgium Power Load Data

We analyzed these data searching for motifs of length 24 (one day). The first four motifs discovered
by our algorithm are displayed in Figure 3. The first motif covered many weekdays, except for Fridays,
during cold seasons (highlighted with red in Figure 3a). All these 24-h periods started at 15:00. Note that
not all the Mondays–Thursdays during these months were identified as the motif instance, for example
those blue sections both at the very beginning and the end of this whole series. The reason could be that
they corresponded to holidays rather than normal workdays. As for other workdays in winter excluding
Friday that did not belong to this motif, these are very interesting for energy analysts to analyze their
reason. After modeling the user’s knowledge about this motif, our algorithm then identified the second
motif, corresponding to Monday–Thursday as well, but during hot seasons (highlighted with green in
Figure 3a). Most days in July were not instances of this motif. This might be due to them being during
summer holiday time (a noticeable blue and pink section that divides the green section in Figure 3a).
Actually, part of these days (i.e., Monday–Thursday in the last two weeks of July) constituted the third
motif (pink sections in Figure 3a). The first 3 motifs were all related to normal workdays excluding Friday,
but in different temperature conditions. It seems that power consumption in hot seasons is less regular
than that during cold seasons, as the normal workday pattern relating to cold periods was identified
first (i.e., the first motif). This phenomenon could be very interesting for energy analysts to investigate.
By incorporating these 3 motifs into the user’s belief model, our algorithm identified the fourth motif,
corresponding to some Sundays from the middle of April to the beginning of October (black sections in
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Figure 3a). All the instances belonging to the same motif corresponded to daytime starting at exactly
the same hour, and they were strongly similar to each other, as reflected by the small error bars in the
illustration of each motif template (Figure 3b–d).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time

0.6

0.8

1

1.2

1.4

1.6 104

(a) Belgium Power Load in 2007

0 5 10 15 20 25
0.8

1

1.2

1.4 104(b) Motif 1

0 5 10 15 20 25
0.8

1

1.2 104 (c) Motif 2

0 5 10 15 20 25
0.6

0.8

1

1.2
(d) Motif 3

0 5 10 15 20 25
0.6

0.8

1

1.2
(e) Motif 4

Figure 3. Four motif templates identified in the Belgium power load data.

8. Conclusions

We proposed a new methodology for motif discovery called SIMIT (for Subjectively Interesting Motifs
in Time Series) and a concrete implementation for a specific type of motifs where the interestingness
score can incorporate prior beliefs, and hence are subjectively interesting. We developed a relaxation
of this interestingness score with bounds that can be optimized relatively efficiently using constraint
programming. An empirical evaluation demonstrates the potential of the proposed approach.

For future work, it would be useful to develop a motif template that incorporates a form of time
warping. Secondly, the length of the subsequences considered is currently a parameter and could be
optimized as well. To make this possible, further speedup techniques should be developed. In contrast to
motifs, outliers are subsequences that are unusual and nonrecurring in a time series. Identifying subjective
outliers can also be interesting. Moreover, the proposed motif templates are based on multivariate
Gaussian distributions. An extension to multivariate non-Gaussian distributions [25] with the use of
non-symmetrical entropy [26] seems promising. Finally, an extension towards multivariate time series
is useful.
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Appendix A. Solving Problem 1

The solution of Problem 1 follows directly from applying the method of Lagrange multipliers. Let us use
Lagrange multipliers λ1, λ2, λ3 for constraints (Equations (2)–(4)), respectively, λ for the vector containing
all Lagrange multipliers. The Lagrangian is formulated as:

L (λ, p(x)) =−
∫

p(x) log p(x)dx

+ λ1

(∫
p(x)

1
n

n

∑
i=1

xidx− m̂1

)
+ λ2

(∫
p(x)

1
n

n

∑
i=1

(xi − m̂)2dx− v̂1

)

+ λ3

(∫
p(x)

1
n− 1

n−1

∑
i=1

(xi − xi+1)
2dx− d̂1

)
. (A1)

Differentiating Equation (A1) w.r.t. p(x) and renormalizing by dropping the dx factor yields:

∂

∂p(x)dx
L (λ, p(x)) =− log p(x)− 1

+ λ1

(
1
n

n

∑
i=1

xi

)
+ λ2

(
1
n

n

∑
i=1

(xi − m̂)2

)

+ λ3

(
1

n− 1

n−1

∑
i=1

(xi − xi+1)
2

)
. (A2)

Equating Equation (A2) to zero and solving for p(x) gives:

p(x) =
1
Z

exp

{
λ1

(
1
n

n

∑
i=1

xi

)
+ λ2

(
1
n

n

∑
i=1

(xi − m̂)2

)
+ λ3

(
1

n− 1

n−1

∑
i=1

(xi − xi+1)
2

)}
. (A3)

where Z is the normalization variable, as the implicit normalization constraint
∫

p(x)dx = 1 can be
imposed constructively by setting Z to be:

Z =
∫

exp

{
λ1

(
1
n

n

∑
i=1

xi

)
+ λ2

(
1
n

n

∑
i=1

(xi − m̂)2

)
+ λ3

(
1

n− 1

n−1

∑
i=1

(xi − xi+1)
2

)}
dx.

By expanding quadratic terms in Equation (A3) and reorganizing, we obtain:

p(x) =
1
Z

exp

{
(λ2 + λ3)x2

1 +
n−1

∑
i=2

(λ2 + 2λ3)x2
i + (λ2 + λ3)x2

n

+ ∑
i=1

n(λ1 − 2λ2m̂)xi −
n−1

∑
i=1

2λ3xixi+1 + λ2nm̂2

}
.

After some algebra:

p(x) =
1
Z

exp
{

1
2
(x−m)TV−1(x−m)

}
. (A4)



Entropy 2019, 21, 566 15 of 17

where m = m̂1

V−1
1,1 = V−1

n,n = λ2 + λ3, V−1
i,i = λ2 + 2λ3 for i = 2, . . . , n− 1

V−1
i,j = −λ3 for |i− j| = 1, V−1

i,j = 0 for |i− j| > 2,

λ1 = 0.

As is clearly seen from Equation (A4), p(x) is essentially a multivariate Gaussian distribution with the
mean vector m and the covariance matrix V. Note that the inverse of the covariance matrix V−1, known as
the precision matrix, in our case is a tridiagonal matrix whose nonzero elements can be determined by
λ2 and λ3. As maximizing the entropy and maximizing the likelihood are the dual of each other in the
class of exponential families [18], the optimal values of the Lagrange multipliers λ2, λ3 can be found by
maximizing the likelihood over the observations L(x̂|λ). This problem can be formulated as:

Problem A1.
λ∗ = argmax

λ

L(x̂|λ)

Problem A1 is convex and can be solved by using standard techniques for convex optimization
(e.g., the interior point method [27]).

Appendix B. Pseudocode for Generating the Synthetic Data

Procedure 1: Synthetic time series generation.
input :Trace Instance 1, Trace Instance 2
output :A synthesized time series x̂

1 n← 15000 // The length of the synthesized time series ;
2 l ← 275// The length of each subsequence in a motif whose prototype is taken

from Trance Instance 1 or 2;
3 S← An n× n diagonal matrix with each diagonal entry as 0.001 ;
4 Qprototype1 ← The set containing the beginning indices for 12 subsequences for Prototype 1 ;
5 Qprototype2 ← The set containing the beginning indices for 12 subsequences for Prototype 2 ;
6 Qothers ← The set containing indices that are not covered by subsequences for Prototype 1 or 2 ;
7 // Generating subsequences for Prototype 1 by sampling
8 for i ∈ Qprototype1 do
9 x̂i,l ∼ N (Trace Instance 1, S);

10 // Generating subsequences for Prototype 2 by sampling
11 for i ∈ Qprototype2 do
12 x̂i,l ∼ N (Trace Instance 2, S);

13 // Making the remaining standard Gaussian noises
14 for i ∈ Qothers do
15 x̂i,1 ∼ N (0, 1)
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