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Non-volatile memories (NVM) offer greater capacity than DRAM but suffer from high latency and low write
endurance. Hybrid memories combine DRAM and NVM to form scalable memory systems with the promise
of high capacity, low energy consumption, and high endurance. Automatically managing hybrid NVM-DRAM
memories to achieve their promise without changing user applications or their programming models remains
an open question. This paper uses garbage collection in managed languages to exploit NVM capacity while
preventing NVM wear out in hybrid memories with no changes to the programming model.

We introduce profile-driven write-rationing garbage collection. Allocation sites that produce frequently
written objects are predicted based on previous program executions. Objects are initially allocated in a DRAM
nursery space. The collector copies surviving nursery objects from highly written sites to amature DRAM space
and read-mostly objects to a mature NVM space. Write-intensity prediction for 15 Java benchmarks accurately
places objects in the correct space, eliminating expensive object monitoring from prior write-rationing garbage
collectors. Furthermore, our technique exposes a Pareto tradeoff between DRAM usage and NVM lifetime,
unlike prior work. Experimental results on NUMA hardware that emulates hybrid NVM-DRAM memory
demonstrates that profile-driven write-rationing garbage collection reduces the number of writes to NVM
compared to prior work to extend its lifetime, maximizes the use of NVM for its capacity, and achieves good
performance.

CCS Concepts: • Information systems→ Phase change memory; • Computer systems organization
→ Architectures; • Hardware → Non-volatile memory; • Software and its engineering → Garbage
collection;
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1 INTRODUCTION
DRAM manufacturing complexity is increasing main memory cost. Recent semiconductor analyses
show that DRAM price per gigabit increased by 50% between 2017 and 2018, whereas the year-
over-year bit volume growth continued to decline [27, 33]. Main memory trends are especially
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worrisome as emerging applications have an insatiable desire for memory. Expecting further DRAM
supply shortages, Facebook is already experimenting with hybrid DRAM and non-volatile memory
(NVM) systems [23].

Production NVM uses phase-change memory (PCM). PCM offers high capacity, low idle power,
and non-volatility, while being byte addressable, unlike some NVM. It however suffers two major
drawbacks over DRAM: long latency and limited write endurance [16, 37, 38]. New materials may
eventually bridge the latency gap [30, 42]. However, endurance will remain a problem because
PCM writes change the material form [16]. Although prior hardware and software approaches
improve PCM lifetime, an endurance gap remains [3, 37, 38, 48].
Memory system analysts and others report that Intel’s Optane SSD, a commercially available

NVM with 375 GB of capacity, can sustain a write rate of up to 10 TB/day, i.e., 140 MB/s without
wearing out within the 3 year warranty period [23, 26]. Our experimental results (using an optimistic
PCM latency) show that 13 out of our 15 modern Java applications exceed this write rate when
using a PCM-only main memory. In practice, memory systems will therefore need hybrid DRAM
and PCM memories. Similar products with a smaller capacity (up to 32 GB) only support write rates
of up to 1.5 MB/s [26]. All of our Java applications exceed this write rate even using state-of-the-art
hybrid memory management.
Including PCM into the main memory system requires solutions to tolerate the limited write

endurance. Prior work uses hardware wear-leveling at the coarse-grain PCM write-granularity
(256 B) to spread writes out across the entire PCM capacity to mitigate wear-out [45, 46, 48].
OS approaches migrate frequently written pages (4 KB) from PCM to DRAM to increase PCM
lifetime [15, 49, 61]. Unfortunately, these approaches result in impractical lifetimes (one or two
years in some cases) for managed language Java workloads [3].
In this paper, we aim to manage hybrid memories for highly allocating managed applications,

without changes to the application, programming language or programming model, by exploiting
PCM’s capacity while improving its lifetime. Managed programming languages, such as Java, C#,
and Python, use garbage collection to automatically organize and reclaim objects. We harness the
garbage collector to re-organize objects efficiently into the DRAM and PCM memories based on
profiling the objects’ write behavior.
Prior work introduces write-rationing garbage collection for hybrid DRAM-PCM memory to

improve endurance by placing frequently written objects in DRAM spaces and read-mostly objects
in a PCM mature space [3]. Write-rationing garbage collectors, like other well-performing garbage
collectors, are generational, meaning that new objects are first allocated into a space called a nursery.
When the nursery fills, the collector identifies the live objects and promotes, or copies, them into a
mature space, thus reclaiming the nursery space for new allocation. Generational collectors are
efficient because for managed languages, most objects die young. Two write-rationing collectors
exist in prior literature: Kingsguard-Nursery (KG-N) and Kingsguard-Writers (KG-W) [3]. Both back
the nursery space by DRAM memory, because the nursery is highly written. For nursery survivors,
the KG-W collector introduces a DRAM observer space. The observer space dynamically monitors
object write behavior, and promotes read-mostly objects to a mature PCM space and highly written
objects to a mature DRAM space. Unfortunately, it suffers from three main drawbacks. (1) It incurs
high overhead from monitoring objects to dynamically discover frequently written objects. (2) It is
reactive; it monitors object writes in a limited time window and must wait until the next collection
to act on the information, leading to mispredictions and allocation of frequently written objects in
PCM, particularly large objects. (3) It consumes excessive DRAM capacity.
This paper introduces profile-driven write-rationing garbage collection for hybrid memories,

called Crystal Gazer (CGZ). We leverage the fact that modern mobile and server workloads execute
frequently, which makes profiling practical. Prior work shows that allocation site, or the code
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location where the object is allocated, is a good predictor of object lifetimes [7, 11, 14, 19, 32], and
we find it is also a good predictor of write-intensity. We first profile individual object writes and
their allocation sites, classifying a site as producing read-mostly or highly written objects in an
offline run. We show the predictor is highly accurate with true advice (different inputs for training
than classification) for 15 Java benchmarks from three suites (DaCapo, Pjbb and GraphChi).
CGZ uses the profile at runtime to guide object placement in mature DRAM-backed and PCM-

backed memory spaces. CGZ initially allocates all objects in the DRAM nursery. It uses the advice
to label objects at allocation time as coming from read-mostly or highly written allocation sites.
When it promotes a nursery survivor, it copies the object to the DRAM or PCM mature space
according to the predicted write-intensity label. If there is no advice at all, a production system
should fall back on KG-W for dynamic monitoring. Unprofiled allocation sites may default to PCM
or DRAM. CGZ promotes frequently written objects to DRAM, protecting PCM from writes. It
promotes read-mostly objects to PCM, exploiting PCM capacity. It places the majority of mature
objects in PCM, because only a small fraction of objects are frequently written.

Leveraging profile information overcomes the three major drawbacks of existing write-rationing
garbage collectors. (1) Profile-driven promotion to mature DRAM and PCM spaces eliminates the
overhead of dynamically monitoring objects. (2) CGZ is proactive in placing objects in DRAM or
PCM, which combined with the high accuracy of ahead-of-time profiling, reduces mispredictions,
particularly of large objects, and the need to copy objects between spaces, further extending PCM’s
lifetime. (3) Because writes are concentrated in a small fraction of objects and well predicted by
allocation site, it reduces the amount of DRAM capacity needed, leveraging PCM’s large capacity.

A key feature of CGZ is its ability to trade off PCM lifetime for DRAM capacity by using different
heuristics and thresholds to classify allocation sites, using only one profiling run. Our experimental
evaluation shows that CGZ provides a Pareto-optimal tradeoff between PCM lifetime and DRAM
capacity. In contrast, KG-W provides a single sub-optimal operating point. Our experimental
evaluation with 15 Java workloads uses an emulated hybrid memory system on multi-socket NUMA
hardware to explore CGZ’s effectiveness. We bind the application to one socket and emulate DRAM
as the local NUMA node memory and PCM as the remote NUMA node memory. Compared to
KG-W, the state-of-the-art in terms of improving PCM lifetime for hybrid memories, CGZ reduces
the execution time overhead by 8% on average and up to 30%. CGZ also eliminates 30% more PCM
writes on average than KG-W, when optimized for extending PCM’s lifetime. It consumes 68% less
DRAM capacity, when optimized for the smallest DRAM capacity.

Counter-intuitively perhaps, the static profile-driven CGZ solution outperforms KG-W’s dynamic
approach. The reason is twofold. (1) Allocation site is a good predictor for write-intensity, i.e., most
objects allocated from a single site are either frequently written or read-mostly — we refer to this
property as allocation site write homogeneity. (2) A small number of allocation sites captures the
bulk of writes to a small fraction of the entire mature space heap volume. The high prediction
accuracy for write-intensive objects allocated from a limited number of allocation sites makes CGZ
outperform KG-W, which needs to dynamically learn object write-intensity and may place highly
written objects in PCM, which it cannot move to DRAM until the next full-heap collection.

Overall, this paper makes the following contributions:
• the design and implementation of profile-driven write-rationing garbage collection for hybrid
memories;
• offline profiling, advice generation, and a compilation framework that gathers, generates, and
uses allocation advice to trade off PCM lifetime and DRAM capacity;
• emulation results demonstrating reduced execution time overhead compared to state-of-the-art
write-rationing garbage collection while at the same time extending PCM lifetime and reducing
DRAM capacity needs.
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Fig. 1. Our assumed memory and storage hierarchy.

2 BACKGROUND
This section describes background on our assumed memory and storage hierarchy, Java Virtual
Machine (JVM), garbage collection, the specific Immix garbage collector on which we build, and
prior write-rationing collectors to which we compare.

Storage Hierarchy. PCM can be integrated in the storage hierarchy in different ways owing to
its byte-addressable and persistent features. In this paper, we assume PCM is part of the main
memory system and place it next to DRAM. The data in DRAM and PCM is backed by disk which
acts as the secondary storage. Figure 1 illustrates our assumed memory and storage hierarchy.
Using PCM as main memory increases the capacity of the main memory system in the face of
DRAM scaling challenges. In this work, we do not exploit the persistent nature of PCM. Others
have explored persistent heaps for the Java programming language assuming a storage hierarchy
similar to ours [57].

Java VirtualMachine. Weuse the open-source Jikes Research VM (RVM) as our platform because it
combines good performance with software engineering advances that make it easy to modify [4, 24].
Jikes RVM is a Java-in-Java VM with a baseline compiler (no interpreter), just-in-time optimizing
compiler of hot code, and a large number of state-of-the art garbage collectors [8, 8, 9, 13, 52]. It
also offers a wide range of easy-to-change barriers. In particular, we use write barriers, which call
a specially-defined method on all writes to do bookkeeping. Reference barriers are widely used in
garbage collectors to track pointer references between independently collected regions [58]. We
modify them to profile object writes. A clean interface between the compiler and collector [24]
defines object layout, references, interior references, and object metadata in a few places. In contrast,
changing barriers, object layout, or metadata in the widely-deployed Hotspot system [43, 44]
requires numerous wide-ranging changes in the compiler and garbage collection code.

Generational Garbage Collection. High-performance collectors exploit the generational hypothesis
that many objects die young by dividing the heap into a nursery for newly allocated objects and a
mature space for objects that survive a nursery collection [53]. The application (mutator) allocates
new objects contiguously into a nursery. The JVM keeps track of all pointers from the mature space
to nursery objects using a write barrier; Jikes RVM records the source object in a sequential store
buffer [58]. When allocation exhausts the nursery memory, a minor collection first identifies live
roots that point into the nursery, e.g., from global variables, the stack, registers, and the recorded
mature space objects. It identifies reachable objects by tracing references from these roots. It
promotes these objects to the mature space, copying reachable objects when it first encounters
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them to a mature space. It leaves a forwarding pointer in place of the object and updates all the
references to previously forwarded objects as it traces. When there are no reachable objects left, it
reclaims all nursery memory for subsequent new allocation.

Immix. We build on the best-performing collector in Jikes and in the literature, generational
Immix (GenImmix) [13, 52]. During nursery collection, it copies live objects to a mark-region
mature space and reclaims the entire nursery en-masse. The mark-region space is organized into a
hierarchy of coarse-grained blocks, which are multiples of the page size, and further partitioned into
fine-grained lines, which are multiples of the cache line size. Objects that survive nursery collection
are copied contiguously into free lines, first in partially occupied blocks, then in completely free
blocks. Full-heap collections mark live objects, lines, and blocks, and reclaim completely free blocks
and completely free lines. Immix uses unsynchronized per-thread allocators that obtain partially
full and completely empty blocks from a synchronized global allocator. It uses multiple garbage
collection threads with a global work queue. We use Immix’ default settings: lines are 256 Bytes,
blocks are 32 KB, and large objects (≥ 8KB) are allocated in a separate non-moving Large Object
Space (LOS). Managed heaps treat large objects specially to avoid high copying costs.

Kingsguard collectors. Our previous work proposed two write-rationing garbage collectors:
Kingsguard-nursery (KG-N) and Kingsguard-writers (KG-W) [3]. Both collectors allocate nursery
objects in DRAM because nursery objects are highly mutated, or written, for two reasons: (1) Java
requires zero-initialization [59], (2) applications allocate at high rates [62]. KG-N copies all objects
that survive a nursery collection to a PCM mature space to exploit PCM capacity. KG-N drastically
reduces the number of PCM writes compared to a system with both the nursery and mature space
in PCM. The heap organization in Figure 6 (a) (which is described more elaborately in Section 4.5)
is similar to the one used by KG-N.
KG-W reduces PCM writes further by dynamically monitoring writes to objects that survive

a nursery collection. It promotes nursery survivors into a DRAM observer space. KG-W uses a
write barrier that labels written observer space objects. During an observer space collection, KG-W
copies written objects to the DRAM mature space and the others to the PCM mature space. KG-W
continues to monitor objects in the mature spaces to correct any mispredictions at the next full-heap
collection. In addition to observing write behavior, the observer space also gives objects more time
to die before promotion to the DRAM or PCM mature space, thus limiting tenured garbage. The
heap organization in Figure 6 (b) is similar to the one used by KG-W.

KG-W includes two optimizations for large objects and metadata. The large object optimization
(LOO) is triggered if the allocation rate of large objects is higher than the nursery allocation rate.
LOO allocates large objects that take up less than half of the remaining nursery size in the nursery
and the others directly into LOS in PCM. However, if the LOS objects incur writes, the collector
promotes them to a DRAM LOS during the next full-heap collection. The metadata optimization
(MDO) stores metadata for objects stored in PCM memory in DRAM to eliminate PCM writes to
mark bits during full-heap collections.

KG-W improves PCM lifetime by 50% on average compared to KG-N, making it the most effective
write-rationing collector. However, KG-W suffers from some limitations. (1) KG-W uses a write-
barrier to continuously monitor object write behavior to determine whether to copy an object into
a DRAM or PCM space, which incurs non-negligible execution time overhead (up to 35% for some
applications). (2) KG-W is reactive and needs to dynamically learn an object’s write behavior in
a short time period (while it resides in the observer space) and then promotes objects during the
next collection. It occasionally makes mistakes, for example, because it directly allocates most large
objects in PCM. Correcting mistakes by copying objects, particularly large objects, between the
mature DRAM and PCM spaces is costly and occurs only during infrequent full heap collections.
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(3) KG-W uses a large amount of DRAM to protect PCM from writes. Its DRAM usage is partly
due to mispredictions for infrequently written objects that end up in DRAM. Unlike CGZ, KG-W
has no way to change the amount of DRAM it consumes, as it offers one fixed point in the DRAM
capacity versus PCM lifetime spectrum.

3 ALLOCATION SITE AS AWRITE PREDICTOR
This section examines how well allocation site predicts writes to objects and the distribution
of writes in heap memory. We use 15 Java workloads, including modern transaction and graph
processing workloads with huge memory footprints. Prior work establishes allocation site as an
accurate predictor of object lifetime [7, 11, 14, 19, 32]. Our prior work shows that nursery objects
incur many writes and thus, to avoid writes to NVM, should be put in DRAM [3]. We show here
that allocation site is also a good predictor of the write-intensity of old objects and that these writes
are concentrated in a small volume of objects.

Contributions over preliminary work. A preliminary workshop paper studied allocation site’s
prediction of writes on a subset of DaCapo benchmarks with similar results [1]. The workshop
paper also reported preliminary accuracy results, but for self advice (same inputs for training and
classification) on a subset of the DaCapo benchmarks. The paper explored the potential of predicting
write-intensity based on object size and type, but found that allocation site was the most accurate
and input-neutral. We distinguish the contributions of this paper from the workshop paper: (1) We
build and report on a novel real-world system that manages hybrid memories, including a garbage
collector that automatically acts upon allocation site advice stored on disk. (2) We evaluate Crystal
Gazer on a hardware emulation platform using commodity NUMA servers. We report PCM writes
and write rates, execution times, DRAM capacity, and insights about which allocation sites get a lot
of writes, all new results in this work. (3) The preliminary work did not include real system effects
such as CPU caches and an OS, did not include Java virtual machine modifications, emerging graph
analytics workloads, a bounded generational heap, allocation site advice, and most importantly, a
garbage collector running on top of hybrid memory hardware that places write-intensive objects
in DRAM.

Allocation site homogeneity. To assess the predictive power of allocation site for object write-
intensity, we measure the homogeneity of writes on the basis of allocation site. We use the
information-theoretic notion of entropy to capture write homogeneity. An entropy of 0 means
perfect homogeneity, i.e., 100% of objects are highly written or read-mostly. A homogeneity of 1
means no homogeneity, i.e., 50% of objects are highly written and 50% are read-mostly. To compute
entropy, we classify objects as highly written if they are written once after allocation in the mature
space, and read-mostly otherwise. Figure 2 shows average homogeneity curves for the DaCapo,
Pjbb and GraphChi benchmark suites. The percentage of heap volume is reported as a function of
allocation site homogeneity. The bottom and top horizontal axes report entropy and the fraction of
objects that are homogeneous in write-intensity, respectively. The homogeneity of allocation sites
is very high: 40% to 60% of the heap volume is perfectly homogeneous, and 80% to 90% is from sites
with very high (at least 90%) homogeneity.

The observation that allocation site is a good predictor of write-intensity motivates a profile-
driven approach, i.e., classifying allocation sites through profiling provides a prediction for object
write-intensity. However, allocation site write-homogeneity is not enough for a well-performing
write-rationing garbage collector. They also are most efficient if the heap volume of write-intensive
objects is small, so that we can allocate the least possible volume in DRAM to leverage PCM’s
capacity to the fullest.
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Fig. 2. Write homogeneity for allocation site. 40-60% of the heap volume is allocated from a perfectly ho-
mogeneous allocation site; 80-90% of the heap volume is allocated from allocation sites that are at least 90%
homogeneous.
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Fig. 3. Distribution of mature writes and heap volume by allocation site for Pjbb and Page Rank. A few sites
capture a majority of mature object writes and occupy a small fraction of the heap.

Write distribution. Figure 3 shows the cumulative distribution of writes to objects in the
mature space and its heap volume as a percentage of the total mature allocation on a per allocation
site basis for two representative benchmarks: Pjbb (most homogeneous) and GraphChi’s Page Rank
(least). We observe that a couple dozen sites out of a couple thousand capture the vast majority of
mature writes and constitute only a small fraction of the total heap volume. Similar results hold for
all other benchmarks. These two key observations reveal the opportunity that we exploit in Crystal
Gazer: profiling accurately identifies sites that allocate a small volume of highly written objects.

4 CRYSTAL GAZER
This section describes Crystal Gazer, profile-driven write-rationing garbage collection for hybrid
memories. CGZ uses offline profiling to analyze object write-intensity, from which we generate
advice to be used in a subsequent production run. CGZ eliminates the high cost of dynamic
monitoring and unnecessary copying compared to KG-W, the previous best write-rationing garbage
collector. CGZ achieves a combination of better performance, reduced DRAM usage, and fewer
writes to PCM than KG-W.
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Profile		
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b = new Object()

a = new Object()
…
b = new Object()

Run		
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Fig. 4. Overview of Crystal Gazer. Offline analysis identifies allocation sites of highly written objects (e.g.,
object b) which are annotated in the bytecode. During production, the collector will allocate an object in
DRAM if predicted highly written versus PCM if predicted read-mostly, upon a nursery collection.

Object		 Writes	 Bytes	 Method:Idx	

O1	 0	 4	 A():10	

O2	 0	 4	 A():10	

O3	 1	 4	 A():10	

O4	 1	 4	 A():10	

O5	 16	 16	 A():10	

O6	 1024	 4096	 B():4	

Heuristic	 θh	 θf	 θd	 DRAM	Sites	

FREQ	 5%	 1	 X	 A	&	B	

FREQ	 5%	 10	 X	 A	&	B	

FREQ	 5%	 100	 X	 B	

DENS	 5%	 X	 0.1	 A	&	B	

DENS	 5%	 X	 1	 A		

DENS	 5%	 X	 10	 None	

(a)	Example	write	intensity	trace	 (b)	Allocation	site	prediction	

Fig. 5. Example of a write-intensity trace with allocation sites in the last column (a) and prediction of
allocation sites using the FREQ and DENS heuristics (b).

4.1 Overview
Figure 4 shows the Crystal Gazer work flow. We first profile the application to collect a trace of
writes to each object and their allocation sites. We group objects by allocation site and use various
heuristics to label allocation sites as DRAM (i.e., objects allocated from this site are predicted
frequently written) or PCM (i.e., objects allocated from this site are predicted read-mostly). Advice
files record allocation sites labeled DRAM. All other sites are implicitly labeled as PCM. Thus,
an unprofiled site may be labeled either DRAM or PCM; we default to PCM in this work. For
expediency, we use bytecode rewriting to insert a new_dram bytecode based on the profile. The
standard portable mechanism is to annotate bytecodes [35], since Java compilers simply ignore
unsupported annotations. During a production run, our modified compiler generates a special
allocation sequence to process the new_dram bytecode that, in addition to reserving the space,
labels objects. Crystal Gazer then promotes objects from DRAM-labeled sites to a mature DRAM
space and other objects (expected to be read-mostly) to a mature PCM space.

4.2 Profiling
Our prior work shows that nursery objects plus a small fraction (2%) of all mature objects capture
90% of all application writes [3]. The KG-W write-rationing garbage collector incurs significant
overhead to discover the highly written 2% of mature objects. Our offline profiling eliminates this
overhead by identifying allocation sites that produce highly written objects in previous executions.
Profiling produces a write-intensity trace that records for each object: (1) a unique identifier, (2) the
number of writes, (3) its size in bytes, and (4) the allocation site. See Figure 5(a) for an example. The
last column lists the object’s allocation site as a <method-name:bytecode-index> pair. Because most
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objects die young, we only profile mature objects which also reduces the size of the write-intensity
trace.

To identify objects, we use mature space addresses. We configure the heap size to use the entire
32-bit virtual address space in Jikes RVM. This setting eliminates full-heap collections for DaCapo
benchmarks and SPECjbb. As a result, each object has a unique address in the trace. The GraphChi
benchmarks allocate more memory and thus require full-heap collections. In this case, we compute
the write-intensity trace per full-heap collection. We process individual traces and combine them
to gather allocation advice for the entire application. An alternative option would be to consolidate
object statistics on the fly upon full-heap collections.

We use the same nursery size during profiling as we use during a production run. If the production
nursery size is unknown, a small (thus conservative) nursery will capture a large fraction of mature
objects and their allocation sites in the write-intensity trace. Using small nurseries during profiling
produces write-intensity characteristics for more objects, but increases the size of the write-intensity
trace.
We use write barriers to count the number of writes to each object. Reference write barriers

are required for all generational collectors to collect the nursery independently, to record old to
young pointers. We also enable write barriers to primitives during profiling. Profiling ignores
zero-initializing writes. Write barriers capture all writes regardless of whether the object or any of
its fields are physically in a processor cache or main memory. Our profiling is thus architecture-
independent, as is the allocation advice we produce for Crystal Gazer.

During profiling, we label objects with their allocation site at allocation time. We associate each
allocation site with a unique identifier which the compiler creates when it first encounters each
new bytecode during profiling, following prior work [28]. The compiler generates an allocation
sequence that stores this identifier in the header of each object. At the end of program execution, we
record the allocation site along with each object’s address and other attributes in the write-intensity
trace. To correlate allocation sites between executions of an application, the trace records the class,
method, and bytecode index of the allocation site.
Collecting a write-intensity trace incurs a 2.4× slowdown over native execution on average

according to our measurements. The trace’s size ranges between 200 KB and 120MB after compres-
sion for our benchmarks. We did not optimize this overhead further since it is incurred infrequently
in non-production runs.

4.3 Allocation Site Classification
Next, we analyze the write-intensity trace to generate allocation advice, classifying allocation sites
as DRAM versus PCM. We use two criteria for classification [1]. (1) The fraction of total objects
allocated from a site that are write-intensive. (2) Thresholds that define write-intensive objects. For
the first criterion, we use a write homogeneity threshold. If the fraction of write-intensive objects
allocated from a site is above the write homogeneity threshold (θh ), we classify the site as DRAM.
Otherwise, we classify the site as PCM. A small homogeneity threshold works best to limit the
number of writes to PCM but puts more pressure on DRAM capacity. A high homogeneity threshold
reduces DRAM capacity usage at the expense of more PCM writes. For the second criterion that
classifies an object as write-intensive, we consider two heuristics.
Write-Frequency (FREQ) uses the frequency of writes to identify write-intensive objects. If an
object gets more than a write-frequency threshold θf of writes, the object is considered write-
intensive.
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Write-Density (DENS) uses the ratio of writes to object size (in bytes) to identify write-intensive
objects. Objects with a write-density above a write-density threshold θd are considered write-
intensive. DENS gives higher weight to small objects that collect a relatively large number of writes.
DENS prioritizes small objects for DRAM allocation and large objects for PCM allocation, thereby
better exploiting PCM’s capacity compared to FREQ.

Example. Figure 5(a) shows an example write-intensity trace consisting of 6 objects from two
allocation sites: from method A and B. We analyze the trace using the FREQ and DENS heuristics,
and identify which of the two sites are classified as DRAM in Figure 5(b). We assume a homogeneity
threshold of 5%. We increase θf from 1 to 100, and θd from 0.1 to 10 to observe their impact on site
classification. Setting θf to 1 classifies both A and B as DRAM. Raising θf to 100 excludes A from
DRAM classification because it does not have 5% of objects with more than 100 writes. However, B
will still be labeled as DRAM. If we want to preserve DRAM capacity by excluding B, we need even
larger values for θf . On the other hand, if we consider DENS, which uses less DRAM capacity, both
A and B are classified as DRAM with a θd of 0.1. When we increase θd to one, only A is classified
as DRAM. With this setting, objects allocated from B do not get sufficient writes per byte to be
classified as DRAM. Finally, when θd is set to 10, both A and B are excluded from DRAM labeling.
This example illustrates that large write-density thresholds favor exploiting PCM capacity.

4.4 Bytecode Generation
The previous step generates allocation site advice as a file of <site-string, advice> pairs. The advice
file only includes the allocation sites labeled DRAM. Unlabeled allocation sites default to PCM.
Future systems could consider labeling unprofiled sites as DRAM or dynamically profiling just
these objects. Since a minority of allocation sites are labeled DRAM, the size of the advice file is
minimized.
We use bytecode rewriting to communicate allocation site labels to the managed runtime. The

bytecode rewriter first identifies the allocation site, and then queries the advice file to check whether
the site is present. If it is not, the rewriter leaves the new bytecode unchanged. If it is, the rewriter
overwrites the new bytecode with the newly introduced new_dram bytecode. The runtime, when
interpreting or compiling the new bytecode, uses the default allocator, called ALLOC_DEFAULT.
The runtime will then copy all objects allocated by such sites to PCM if they survive a nursery
collection. For the new_dram bytecode, the runtime uses the newly added ALLOC_DRAM allocator.
This allocator sets a bit in the object header which notifies the garbage collector to copy these
objects to DRAM if they survive a nursery collection.

4.5 Heap Organization
This section describes our heap organizations and how Crystal Gazer copies and allocates highly
written objects in DRAM and read-mostly objects in PCM. We consider two heap organizations,
see Figure 6. They are patterned after Kingsguard heap configurations (for KG-N and KG-W,
respectively) to compare apples-to-apples with them. Crystal Gazer collectors follow Kingsguard by
always placing new objects in a DRAM nursery, because nursery objects are highly mutated. Some
large objects, discussed below, are allocated directly in the mature space. We partition the mature
and large object spaces into DRAM and PCM regions. We first describe our system using the heap
organization in Figure 6(a), and then motivate and describe the heap organization in Figure 6(b).
Fresh allocation is a two-step process: (1) reserving space and (2) initializing the object header,

called post-allocation. Objects less than 8 KB are always allocated in the nursery. For nursery objects,
post-allocation sets a bit in the object’s header if its allocation site is labeled DRAM, as shown in
Figure 6. We steal a bit not in use from the object header in Jikes RVM and call it the DRAM_BIT.
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(a) Crystal Gazer’s heap with no survivor space (CGZ)
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Fig. 6. Heap organizations without and with a survivor space. Objects are allocated in a DRAM nursery and
survivor spaces before being promoted to the mature spaces in DRAM and PCM depending on the object’s
predicted write behavior.

Objects with the DRAM_BIT set are predicted to be highly written. During a nursery collection,
the garbage collector checks the DRAM_BIT of each object. If the bit is set, it promotes the object
to the mature space in DRAM. Otherwise, it promotes the object, predicted to be read-mostly, to
the PCM mature space.

1 @Inline
2 public Address postAlloc(ObjectReference ref, int allocator) {
3 if (allocator == Gen.ALLOC_DRAM) {
4 byte old = readHeaderByte(ref);
5 writeHeaderByte(ref, (byte) (old | DRAM_BIT));
6 }
7 }

Figure 6. Our post allocation sequence sets a special bit in the header of objects that are predicted highly
written.

In the default GenImmix, objects larger than 8 KB are allocated directly into a Large Object Space
(LOS). For these objects, Crystal Gazer’s (1) ALLOC_DEFAULT allocates the object directly in the
LOS PCM space, and (2) ALLOC_DRAM places the object directly in the LOS DRAM space, as
depicted in Figure 5(a). Crystal Gazer by default uses both KG-W’s metadata optimization and large
object optimization (LOO) (see Section 2). With LOO, the allocator places large objects that are
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Fig. 7. Our platform for hybrid memory emulation. The workload runs on socket 0; local memory serves as
DRAM whereas remote memory on socket 1 emulates PCM.

less than half of the remaining nursery size in the nursery to give them a chance to die, because
surprisingly some do die quickly. In this case, the object’s DRAM_BIT is set based on the advice,
and then consulted during the next minor garbage collection to promote the object to the large
object space (LOS) in DRAM or PCM.
Copying nursery survivors directly to the mature space results in tenured garbage because

some die quickly in the mature space. Figure 6(b) shows an alternative heap organization with
an intermediate space called the survivor space between the nursery and the mature spaces. The
HotSpot generational collectors use an eden space for nursery survivors that serves a similar
purpose [20]. The KG-W collector differs because it uses its observer space to monitor writes to
these objects as well. In Crystal Gazer, the survivor space’s only purpose is to give objects longer
time to die and thus limit the amount of tenured garbage. In Crystal Gazer configurations with the
survivor space, which we call CGZ-S, nursery survivors are first copied to the survivor space and
objects predicted to be highly written carry their DRAM_BIT with them to this space. Next, upon a
survivor space collection, the garbage collector checks the DRAM_BIT and copies objects to the
mature spaces in DRAM and PCM, accordingly.

5 EXPERIMENTAL METHODOLOGY
This section discusses experimental methodology including the experimental platform, workloads,
and the different write-rationing garbage collector configurations that we evaluate.

Java Virtual Machine. We use Jikes RVM v3.1.2, a Java-in-Java VM with a baseline and a
just-in-time optimizing compiler (no interpreter) as discussed in Section 2. We use its memory
management tool kit (MMTk) to create new collectors by combining and extending existingmodules,
changing the calls to the C and OS allocators, and adding to its selection of write barriers [58]. We
modify Jikes to map DRAM and PCM virtual memory address ranges to the local and remote node
in our NUMA emulation platform, as we describe below.

Measurement Methodology. We use best practices from prior work for evaluating Java appli-
cations [25, 29], including replay compilation to eliminate non-determinism due to the optimizing
compiler. Replay compilation requires two iterations of a Java application in a single experi-
ment. During the first iteration, the VM compiles each method to a pre-determined optimization
level recorded in a prior profiling run. We also generate the appropriate allocation sequence (AL-
LOC_DEFAULT versus ALLOC_DRAM) depending on the site’s classification. The second iteration
does not recompile methods leading to steady-state behavior. We take our measurements during
the second iteration. This run is deterministic and primarily measures the application performance,
instead of the adaptive compiler or JVM start-up behavior. We perform each experiment four times
and report the arithmetic mean.
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Emulation platform. There exists no commercially available platform with a hybrid DRAM-
PCM memory system. Although simulation enables evaluating future systems, it is tedious, ex-
tremely time-consuming, which limits the software configurations that can be run, and precludes
our biggest workloads. Instead, we use emulation which has the advantage of being fast, accurate,
and sufficiently flexible. Figure 7 illustrates our multi-socket NUMA emulation platform. We run
the workload (application plus JVM threads) on socket 0 and disable the CPUs on socket 1. For
hybrid memory emulation, memory allocated from the local socket 0 is local DRAM and memory
allocated from the remote socket 1 emulates PCM. We modify Jikes’ MMTk to split the virtual
heap into DRAM (local socket 0) and PCM (remote socket 1) regions. Each heap region is managed
separately. We further modify the interface between Jikes and the OS to specify physical memory
allocation from DRAM (local) or PCM (remote). We use the standard NUMA library in Linux to
specify local or remote memory.
We use a two socket Intel Sandy Bridge E5-2650L processor. Each socket has 8 physical cores

and two hyperthreads per core. The platform features 132GB of main memory, evenly distributed
between the two sockets. We use all DRAM channels on both sockets. All cores share the 20MB
LLC on each processor. The maximum bandwidth to memory is 51.2 GB/s, more than the maximum
bandwidth consumed by any of our workloads. The two sockets are connected via a QPI link that
supports up to 8GT/s. We use Ubuntu 12.04.2 with a 3.16.0 kernel. We use Intel’s pcm-memory
utility from the Performance Counter Monitor framework for measuring write rates.
This emulation platform does not accurately represent end-to-end performance of a hybrid

memory system because the access latency to remote memory is much less than to PCM. It does,
however, accurately captures the execution time overhead of the Crystal Gazer modifications to the
Java managed runtime on real hardware. Most importantly for optimizing lifetime, it accurately
represents the number of PCM writes as measured by accesses to remote memory. Furthermore,
it accurately represents the use of DRAM capacity with local memory usage. Accessing remote
memory incurs a slight performance degradation compared to local memory, which we find to
affect performance by approximately 1% on average and up to 6% for Pjbb.1

Java Applications. We use 15 Java applications from three diverse sources: 11 fromDaCapo [10],
pseudojbb2005 (Pjbb) [12], and 3 applications from the GraphChi framework for processing
graphs [36]. The GraphChi applications include page rank (PR), connected components (CC)
and ALS matrix factorization (ALS). Compared to prior work [3], we drop jython as it does not
execute stably with our Jikes configuration. We use an updated version of lusearch, called lu.Fix,
that eliminates useless allocation [59]. To match our hardware platform, we run the multithreaded
DaCapo applications, Pjbb and GraphChi applications with four application threads. We use the
default data sets for profiling with the DaCapo benchmarks; we use 8 warehouses and 10 K transac-
tions for Pjbb; for GraphChi’s PR and CC, we process 1M edges using the LiveJournal online social
network [40], and for ALS, we process 1M ratings from the training set of the Netflix Challenge.
Our datasets for production runs differ from profiling runs. For production runs, we use the large
data set for DaCapo; 4 warehouses and 50 K transactions for Pjbb; and a different set of randomly
chosen 1M edges and ratings for GraphChi.

Workload Formation. Multiprogrammed workloads better reflect real-world server workloads
because: (1) a single application does not always scale with more cores, and (2) servers typically
execute multiple programs to amortize costs. Our multiprogrammed workloads consist of four
instances of the same application. To avoid non-determinism due to sharing in the OS caches in
1This overhead was measured by comparing the performance of Crystal Gazer with the entire heap in remote memory
versus local memory on our emulation platform.
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multiprogrammed workloads, we use independent copies of the same dataset for the different
instances. All four application instances in our multiprogrammed workloads synchronize at a
barrier and start the second iteration at the same time. We take the execution time of the longest
running instance as the total execution time to run the workload.

Nursery and Heap Sizes. Nursery size affects performance, response time, and space effi-
ciency [5, 8, 54, 62]. We use a nursery of 4MB for DaCapo and Pjbb. Because a 32MB nursery
improves performance over 4MB for the GraphChi applications, we use a 32MB nursery for them.
We use a modest heap size that is twice the minimum heap size, reflecting typical production heap
sizes and prior work [2, 13, 41, 50, 62]. For all the benchmarks, Table 1 lists the heap sizes, the total
allocation in MB, nursery and survivor space survival rates, and other statistics (discussed later).

Garbage Collectors and Configurations. We compare Crystal Gazer against the state-of-the-
art Kingsguard KG-N and KG-W collectors. Because KG-N is the most basic design and straightfor-
ward to implement for a hybrid memory system, we normalize to KG-N as our baseline. Prior work
demonstrated KG-N’s efficiency and huge write reductions compared to a PCM-only system [3].
Similar to prior work, we place the stack, and two smaller heap spaces, boot and meta-data, in
DRAM. We set the observer space in KG-W, and the survivor space in CGZ-S to twice the size
of the nursery. We use two garbage collection threads which is best for Immix [21]. We use a
homogeneity threshold of 1% as the default, which we find to be a good compromise between PCM
lifetime and DRAM capacity. We present four CGZ configurations: CGZ-F1, CGZ-S-F1, CGZ-D1,
and CGZ-S-D1 that vary the optimization goal and include/exclude the survivor space. The CGZ
configurations with ‘S’ include the survivor space, the others do not. We use θf = 1 for the FREQ
heuristic (denoted ‘F1’) which minimizes the number of PCM writes, and θd = 1 for the DENS
heuristic (denoted ‘D1’), which minimizes the amount of DRAM capacity.

6 RESULTS
We compare Crystal Gazer configurations to the state-of-the-art Kingsguard collectors along three
primary metrics: (1) writes to PCM, (2) DRAM capacity, and (3) performance.

6.1 PCMWrites
Figure 8 reports the number of PCM writes normalized to KG-N. This baseline reduces writes
compared to a PCM-only main memory system by 75% (not shown), which results in improved, but
still impractical PCM write rates (which are shown in Figure 15). KG-W reduces the number of PCM
writes compared to KG-N by 45% on average. Compared to previous work [3], this paper evaluates
KG-W for GraphChi applications for the first time. The GraphChi applications, on average, write
to PCM more often than other application groups, even with KG-W. This is because they allocate
more large objects directly in PCM than other application groups.

CGZ-S-F1 is the most effective configuration in reducing PCM writes. It eliminates 65% and 30%
more PCM writes compared to KG-N and KG-W, respectively. CGZ-D1 reduces the number of PCM
writes compared to KG-N for the DaCapo benchmarks (by 23%) and Pjbb (by 31%), but not the
GraphChi workloads because CGZ-D1 prioritizes small objects, while putting more large objects in
PCM. CGZ-F1 does slightly worse than KG-W on average, reducing the number of PCM writes by
35%. CGZ-F1 leads to an increase in PCM writes over KG-W for many DaCapo applications as a
result of the lack of a survivor space in front of the mature space as in KG-W. However, CGZ-F1
is more effective than KG-W at eliminating PCM writes for the GraphChi applications because it
leverages ahead-of-time information about the write behavior of large objects. Adding a survivor
space greatly reduces the number of PCM writes. CGZ-S-D1 reduces the number of PCM writes
by 54%. Finally, CGZ-S-F1 eliminates the largest number of PCM writes. Although both CGZ-S-F1
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Fig. 8. Number of PCM writes normalized to KG-N. CGZ reduces the number of PCM writes, especially with
a survivor space.
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Fig. 9. Fraction of heap allocated in DRAM. CGZ reduces DRAM capacity needs compared to KG-W, especially
without a survivor space.

and CGZ-S-D1 reduces PCM writes significantly compared to KG-N, CGZ-S-D1 saves more DRAM
capacity than CGZ-S-F1 at the expense of PCM writes.

We conclude that Crystal Gazer eliminates a large number of PCM writes compared to KG-N, on
par with or significantly surpassing KG-W. These large reductions are a result of ahead-of-time
profiling of application for write-intensive allocation sites.

6.2 DRAM Capacity
DRAM will likely be a scarce resource in hybrid DRAM-PCM systems, which motivates minimizing
the use of DRAM. Because KG-N stores only newly allocated nursery objects in DRAM, it consumes
the least amount of DRAM among the collectors: only 4 MB for DaCapo and Pjbb, and 32 MB
for GraphChi. All the other collectors trade reduced writes to PCM for DRAM capacity. Figure 9
shows the percentage of the heap that the CGZ and KG-W collectors allocate in DRAM. We take
a snapshot of the heap at every collection cycle and compute the average heap volume (in MB)
in DRAM and PCM. KG-W and CGZ-S-F1 allocate the largest fraction of the heap in DRAM: 35%
and 41%, respectively. CGZ-S-F1 pays this price to reduce the number of PCM writes the most, as
discussed in the previous section. CGZ-S-D1 reduces the use of DRAM, but incurs the space cost of
the DRAM survivor space, placing 28% of the heap in DRAM. Finally, CGZ-D1 consumes the least
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Fig. 10. Pareto-optimal configurations for CGZ-S compared to KG-W in terms of PCM writes versus DRAM
capacity. CGZ provides the flexibility of trading off PCM writes for DRAM capacity and vice versa.

amount of DRAM, 12% on average (a reduction of 23% compared to KG-W), but incurs more PCM
writes. In terms of MB of DRAM consumed, CGZ-D1 only requires 40 MB compared to 132 MB for
KG-W on average for our workloads, a reduction of 68%.

6.3 Trading Off PCMWrites and DRAM Capacity
Combining the results in Figure 8 and 9 illustrates how the different CGZ collector configurations
trade off fewer PCM writes (Figure 8, left to right decreases) for increases in DRAM usage (Figure 9,
left to right increases). The DENS heuristic reduces allocation in DRAM at the cost of an increased
number of PCM writes. The FREQ heuristic on the other hand, increases DRAM allocation while
reducing the number of PCM writes. Figure 10 visualizes this tradeoff by reporting normalized
PCM writes (to KG-N) versus DRAM capacity for a number of Pareto-optimal configurations for
CGZ-S by setting different thresholds for the different heuristics on a per-application basis. The
key take-away point from these results is that Crystal Gazer offers a set of Pareto-optimal tradeoffs
between PCM writes and DRAM capacity, and that KG-W is sub-optimal compared to CGZ-S, i.e.,
KG-W incurs more PCM writes for the same DRAM capacity and/or requires more DRAM capacity
for the same number of PCM writes. Furthermore, KG-W offers no tradeoffs in DRAM capacity
versus PCM writes, only offering a single operating point.

We can further configure CGZ collector thresholds to control the PCM write and DRAM capacity
tradeoff. To minimize writes to PCM (the right-most points in Figure 10), we set θh to 1% and θf
to 1 for FREQ. For minimum DRAM usage (the left-most points in Figure 10), we set θh to 1%
for DaCapo and 25% for Pjbb and GraphChi, and use DENS with θd set to 1 for all applications.
We observe that setting θf between 5K and 50K also results in Pareto-optimal configurations. In
general, increasing θh and θf minimizes DRAM usage but increases PCM writes. The best θd ranges
between 0.1 and 1.

6.4 Allocation Site Analysis
To better understand write-intensive objects, we classify them with the F1 heuristic into four
categories based on the location of the allocation site: (1) gnu libraries, (2) Java class libraries,
(3) Jikes RVM class files, and (4) application-specific code. Figure 11 shows that application code
allocates 58% of write-intensive objects; the Java class libraries allocate 28% of them; Jikes class
files 12%, and gnu libraries only 2%. We observe a similar breakdown for D1. Since application-
specific code allocates most write-intensive objects, this further motivates profiling applications
for write-intensive objects.
Next, we show the reduction in PCM writes by selectively labeling certain allocation sites as

DRAM for Pjbb. The goal is to understand which allocation sites result in the largest reductions
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Fig. 11. Breaking down the DRAM-labeled allocation sites into four categories: gnu libraries, Java libraries,
Jikes RVM class files, and application code. The application-specific class files allocate the majority of write-
intensive objects.
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Fig. 12. Understanding the reduction in PCM writes on a per allocation site basis for Pjbb. Keeping the
objects allocated from sites in the application-specific class files, Order and Warehouse, leads to the greatest
reduction in PCM writes.

in PCM writes. Figure 12 breaks down the contributions of various allocation sites to PCM write
reductions. We report the reduction in PCM writes with CGZ-S-F1 compared to a baseline that
uses no advice, i.e., no allocation site is labeled as DRAM. We observe that allocation sites in
the application-specific class files are the greatest source of PCM writes, and labeling them as
DRAM saves the most writes to PCM. Specifically, gnu libraries, Java class libraries, and Jikes
class files, together reduce writes to PCM by up to a maximum of 5%. On the other hand, the two
application-specific class files, Order and Warehouse, each reduce 13% of writes to PCM relative to
using no advice at all with CGZ-S-F1.

The results for Pjbb in this section, showing that application-specific class files are the greatest
source of PCM writes, are also representative of other benchmarks we evaluate in this work.

6.5 Performance
All hybrid memory systems will incur overhead due to the higher latencies to PCM versus DRAM,
which our emulation infrastructure does not accurately capture, but was explored in simulation
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Fig. 13. Execution time normalized to KG-N. CGZ incurs negligible execution time overhead compared to
KG-N.

previously [3]. This section quantifies the performance overheads in Crystal Gazer compared to
previously proposed Kingsguard write-rationing garbage collectors.
Figure 13 reports execution time normalized to KG-N. KG-W incurs an average execution time

overhead of 9% over KG-N (and up to 35%). The main reason for this overhead is the extra code
KG-W executes in the write barrier to monitor object writes, whereas KG-N has no monitoring.
KG-N simply promotes all objects to PCM.

CGZ eliminates all of the overhead of KG-W for most applications. The best CGZ configurations
(CGZ-F1 and CGZ-D1) improve performance over KG-W by 8% on average. hsqldb is notably better
than KG-W with 20% reduction in execution time for CGZ-F1. CGZ also reduces the execution time
of eclipse compared to KG-N by 3%. However, some applications do incur a slight performance
degradation as shown in Figure 13. The reasons include: (1) setting the DRAM_BIT for objects pre-
dicted as highly written, and (2) checking whether the DRAM_BIT is set during nursery collection.
This degradation is particularly prominent for two of the GraphChi applications: PR and CC. We
observe only slight performance differences between the F1 and D1 configurations which are the
result of a different number of objects being placed in DRAM versus PCM.
CGZ-S also eliminates the monitoring overheads in KG-W, but has higher overhead for some

applications (e.g., hsqldb) than CGZ because of the additional survivor space collections. On the
other hand, CGZ-S places more objects in DRAM than CGZ. The overhead is limited to less than
2% on average compared to CGZ, putting CGZ-S on par with KG-N. One benchmark, namely
bloat, performs better with a survivor space compared to CGZ. Survivors space collections when
running bloat preclude full-heap collections by giving objects more time to die in the survivor space.
This reduces the total garbage collection time in bloat which translates to an overall performance
improvement. Overall, profile-driven garbage collection brings down the high execution time
overhead of KG-W to a level similar to KG-N.

6.6 Sensitivity Analyses
Figures 14 (a) and (b) show PCM writes and DRAM capacity as we vary θf from 1 to 50K. PCM
writes normalized to KG-N increase as we increase θf . We observe an increase in PCM writes up
to a θf of 5K for all three application groups. From 5K to 50K, PCM writes stabilize. Conversely,
the percentage of heap in DRAM shows a decrease up to 5K. Beyond that, increasing θf does not
impact DRAM capacity much.
Figures 14 (c) and (d) show PCM writes and DRAM capacity as we vary θd from 0.1 to 10.

Increasing θd beyond 1 has limited impact on PCM writes normalized to KG-N on average for
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Fig. 14. Showing the impact on PCM writes and DRAM capacity from changing the write-frequency
threshold (a and b) and write-density threshold (c and d). Increasing the write-frequency and write-density
thresholds increases PCM writes but reduces DRAM space usage.

DaCapo and GraphChi applications. Individual applications from the two suites sometimes show
different trends. Conversely for Pjbb, PCM writes increase linearly as we increase θd from 0.1 to 10.
The impact on the percentage of heap in DRAM is less prominent for Pjbb. This is because a small
percentage of objects are responsible for most writes to the mature heap.

6.7 Memory and Demographic Analysis
Table 1 reports object demographics and shows the average and maximum DRAM usage in MB
for KG-W and different CGZ-S configurations for all of the benchmarks considered in this study.
The total allocation of our applications varies, between 56 MB and 14 GB of memory (column 1).
The GraphChi applications in particular allocate more than DaCapo and Pjbb. The average nursery
survival rate of our applications is 17% and a maximum of 66% (column 3). We show the survival
rate of objects in the survivor space in CGZ-S in column 4. A number of applications, such as xalan
and bloat, benefit greatly from a survivor space, as it gives many objects a chance to die in DRAM.
For instance, only 8% of objects in xalan are promoted to the mature space; which means an even
smaller percentage of objects are written to PCM.
The remaining columns show the average and maximum DRAM space occupancy in MB for

KG-W (column 5 and 6) and six CGZ-S configurations (column 7 through 18). Specifically, we show
the DRAM space occupancy for different θf and θd . We also show the percentage of heap in DRAM
across the three benchmark suites and overall for all applications. To calculate the percentage heap
in DRAM, we first measure the average DRAM and PCM space occupancy in MB. The sum of the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 9. Publication date: March 2019.



9:20 S. Akram et al.

Table 1. Total allocation, the heap sizes of our applications, the survival rates of nursery and survivor spaces
in CGZ-S, and the average and maximum DRAM usage in MB for KG-W and six CGZ-S configurations.
The homogeneity threshold is fixed to 1%. Three write-frequency thresholds of 1, 5 K, and 50 K, and three
density-thresholds of 0.1, 1, and 10, are used to show the DRAM space occupancy of CGZ-S.

allocation	 Heap	

CGZ-S		
nursery	
survival	

CGZ-S	
survivor	
survival	

DRAM		
KG-W	

DRAM		
θf	=	1	

θh	=	1%	

DRAM		
θf	=	5K	
θh	=	1%	

DRAM		
θf	=	50K	
θh	=	1%	

DRAM		
θd	=	0.1	
θh	=	1%	

DRAM		
θd	=	1	

	θh	=	1%	

DRAM		
θd	=	10	
θh	=	1%	

MB	
(1)	

MB	
(2)		

%	
(3)	

%	
(4)	

avg	
(5)	

max	
(6)	

avg	
(7)	

max	
(8)	

avg	
(9)	

max	
(10)	

avg	
(11)	

max	
(12)	

avg	
(13)	

max	
(14)	

avg	
(15)	

max	
(16)	

avg	
(17)	

max	
(18)	

Lusearch	 4294	 68	 4%	 29%	 8	 11	 8	 10	 7	 10	 7	 10	 7	 10	 7	 10	 8	 10	
Lu.Fix	 848	 68	 2%	 25%	 11	 15	 9	 14	 9	 14	 9	 14	 9	 14	 9	 14	 9	 14	
Avrora	 64	 98	 15%	 0%	 12	 16	 10	 14	 10	 14	 10	 14	 10	 14	 10	 14	 10	 14	
Luindex	 37	 44	 22%	 0%	 12	 14	 12	 14	 11	 13	 11	 13	 12	 14	 9	 11	 9	 12	
Hsqldb	 165	 254	 60%	 88%	 16	 22	 27	 37	 15	 21	 15	 21	 27	 37	 14	 21	 14	 20	
Xalan	 980	 108	 14%	 9%	 14	 19	 29	 58	 16	 27	 11	 17	 20	 37	 11	 17	 11	 17	
Sunflow	 1920	 108	 2%	 13%	 12	 16	 10	 17	 9	 14	 9	 15	 10	 17	 9	 14	 9	 14	
Pmd	 364	 98	 23%	 68%	 19	 27	 22	 32	 15	 24	 16	 24	 16	 23	 15	 22	 16	 25	
Pmd.S	 202	 98	 27%	 47%	 14	 19	 16	 25	 13	 20	 13	 21	 13	 21	 12	 19	 13	 21	
Fop	 56	 80	 20%	 82%	 12	 16	 11	 15	 12	 15	 12	 16	 11	 15	 12	 15	 11	 15	
Antlr	 246	 48	 15%	 0.16%	 9	 14	 11	 16	 11	 16	 12	 17	 12	 17	 9	 14	 9	 14	
Eclipse	 3082	 160	 14%	 37%	 19	 25	 29	 51	 18	 26	 17	 24	 22	 34	 15	 22	 15	 21	
Bloat	 1246	 66	 4%	 19%	 12	 16	 11	 16	 11	 16	 11	 16	 11	 16	 12	 17	 11	 16	
Avg	DaCapo	 1040	 100	 17%	 32%	 13	 18	 16	 25	 12	 18	 12	 79	 14	 21	 11	 16	 11	 16	
Heap	%	 30%	 35%	 30%	 30%	 33%	 28%	 28%	
Pjbb	 2314	 400	 20%	 84%	 32	 46	 40	 61	 23	 31	 23	 52	 28	 37	 28	 37	 21	 31	
Heap	%	 12%	 16%	 9%	 9%	 11%	 11%	 9%	
PR	 6946	 512	 36%	 99%	 97	 225	 140	 321	 88	 174	 90	 177	 96	 202	 73	 136	 72	 138	
CC	 5507	 512	 24%	 97%	 99	 225	 134	 347	 93	 180	 92	 169	 91	 185	 72	 135	 72	 129	
ALS		 14245	 512	 10%	 63%	 66	 113	 191	 260	 182	 241	 180	 242	 187	 249	 65	 108	 65	 110	
Avg	GraphChi	 9000	 512	 23%	 86%	 87	 188	 155	 309	 121	 198	 121	 196	 125	 212	 70	 126	 70	 126	
Heap	%	 35%	 63%	 49%	 48%	 50%	 28%	 29%	
Avg	All		 2900	 206	 17%	 46%	 27	 49	 42	 77	 32	 50	 32	 37	 34	 55	 22	 37	 22	 37	
Heap	%	 30%	 46%	 34%	 34%	 37%	 24%	 24%	

two spaces (MB) is the total heap used by the application. The percentage of total heap in DRAM is
shown in Table 1 as Heap %.

We observe that CGZ-S-D10 maximizes the use of PCM for many applications. Conversely, CGZ-
S-F1 maximizes the use of DRAM to eliminate the largest number of writes to PCM. In particular
for GraphChi applications, CGZ-S-F1 places more than 200 MB per application instance in DRAM.
Thus, by prioritizing small objects, the density heuristic minimizes DRAM usage for modern graph
analytic workloads, with large heaps and high allocation rates.

6.8 PCM Lifetime and Write Rates
This section analyzes the PCMwrite rate results and their implications for PCM lifetime. Eliminating
PCM writes improves PCM lifetime. PCM lifetime in years depends on its write rate and cell
endurance. Prototype PCM has a cell endurance between 10 M and 100 M writes per cell [6, 37]. All
of our results assume hardware wear-leveling is enabled. As writes to PCM reduce, so does the write
rate, but the write rate is also inversely proportional to execution time. Optimizing only for write
rate would thus lead to incorrect conclusions. As an example, turning off compiler optimizations to
make the program execute slower would decrease write rate. Because execution time depends on a
number of factors including on-chip cache sizes, number of threads, cores, and garbage collection
algorithm, it is not meaningful to directly compare normalized write rates.

Figure 15 shows the absolute PCMwrite rates in MB/s that we observe on our emulation platform.
Since PCM hardware is still evolving, the write rates on future PCM hardware may differ from our
measurements. Recent work uses a real PCM prototype to evaluate hybrid memory at Facebook [23].
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Fig. 15. PCM write rates in MB/s for all of our benchmarks using various write-rationing garbage collectors.
Profile-driven write-rationing garbage collection makes PCM a practical DRAM replacement by significantly
reducing its write rates.

Their work shows that hardware vendors limit the number of times the entire PCM memory (or
drive) can be written per day. The specific metric is called drive writes per day (DWPD). The
most recently reported DWPD for a 375 GB NVM drive is 30 [23, 26]. This DWPD results in a
recommended write rate of 140 MB/s (blue horizontal line in Figure 15). We observe in Figure 15
that all write-rationing collectors significantly reduce the write rates and many are brought below
the recommended rate to make PCM practical as main memory. In particular, CGZ-S-F1 limits
the PCM write rates of all but 3 workloads to below the recommended rate, while improving the
performance over KG-W at the same time.

We observe that many workloads write at a rate that is still not practical for PCM. For instance,
two of the graph applications have write rates above 140 MB/s, even with CGZ-S-F1. Furthermore,
future servers with more cores will likely run many more applications in parallel, which will result
in even higher write rates. This necessitates more research in software approaches to bring write
rates down even further. Some reduction will come from innovations at the device and architecture
level, or from using hybrid memories where some writes could be guided to DRAM. Due to the
nature of PCM material, software has a greater role to play in making PCM practical as (part of)
main memory.

6.9 Threats to Validity and Future Work
PCM technology trends. Non-volatile memory technologies are still evolving, and therefore,

their write endurance levels may improve. Nevertheless, there is considerable evidence from
material physics and industrial products that PCM cell endurance will not reach DRAM levels.
However, other promising memories in advanced stages of production, such as various resistive
memories, have a higher write endurance. In particular, memristor-based resistive memories can
endure up to a trillion writes per cell [39].

The work on write-rationing garbage collection is also relevant for resistive and other promising
memory technologies. Write operations have drawbacks other than limiting memory lifetime: they
are slower and consume a lot of energy. There also exists a tradeoff between write latency and
energy [60]. Faster write operations consume more power because the switching speed depends on
temperature. Slower writes stall the processor pipeline and hurt the performance of applications.
Therefore, software approaches to minimize writes to non-volatile memories such as Crystal Gazer
are interesting avenues of optimization for upcoming non-volatile memory technologies.
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PCM latency and emulation. This work targets PCM write endurance. Another disadvantage
of the PCM technology is its high access latency. In this work, we are concerned with the reduction
in PCM writes and overheads of Crystal Gazer, and also improving upon Kingsguard. Therefore,
PCM access latency does not affect the conclusions of this work. Regardless, we made an effort
to accurately model PCM access latency on our emulation platform. Our solution to introduce
interference in the remote socket to slow down remote (PCM) memory accesses lead to non-
determinism in the execution time results, and thus we removed it for the final experiments. Instead
of using a simulator to model PCM latency, we believe emulation is a more valuable way to do
the evaluation of hybrid memories. Emulation includes real system effects (advanced caching,
prefetching, memory bandwidth resource contention, etc.) that no simulator can accurately model
and lets us explore many more software configurations and bigger workloads in the same resource
budget.

Crystal Gazer could be extended to better tolerate PCM’s high access latencies. One future work
could be to not only guide highly written objects away from PCM, but also to find highly accessed
objects and place them in DRAM to reduce their access latency. In this way, we could use garbage
collection to fight both of the drawbacks of PCM, resulting in a high-performance hybrid memory
system with a long lifetime.

Profilingweaknesses. Our profiling in this work is architecture independent, i.e., in the profiling
step we do not track whether the write operation hits or misses in the cache. Therefore, our
classification of allocation sites as DRAM is conservative. A DRAM-labeled site that allocates
objects which have high cache locality needlessly wastes DRAM space as writes to these objects
hit in the cache. Unfortunately, current hardware precludes correlating allocation sites to cache
misses, making it difficult to incorporate cache effects in the profiling step. Nevertheless, our PCM
writes and execution time results with Crystal Gazer increase our confidence in the accuracy of
our current profiling approach.

In our evaluation, we use different input datasets for training and production experiments. The
benchmarks from the DaCapo suite have default and large input datasets. For Pjbb and GraphChi,
we experiment with a range of newly created datasets for production runs. We show results with
one dataset. Nevertheless, the results depend on the specific dataset and application, and whether
profiling correctly predicts the allocation sites’ write-intensity.
Our Crystal Gazer collectors by default promote objects that outlive a nursery or a survivor

collection to PCM. If advice is not available, or highly written objects are promoted to PCM due
to misclassification of allocation sites, our Crystal Gazer collectors lack a dynamic approach to
move objects away from PCM. When advice is not available, KG-W is the best approach. Future
work should also consider dynamic call site write-prediction, similar to dynamic call site lifetime-
prediction [32]. Production systems will require some dynamic monitoring of PCM objects or
memory, perhaps by the OS, to recover from changes in behavior, bad predictions, and malicious
write attacks.

Optimizing CGZ-S. Our CGZ-S collector performs two copies of long-lived objects, from the
nursery to the survivor space, and from the survivor space to either DRAM or PCM. This extra
copying has two disadvantages: (1) it hurts performance, and (2) copying necessitates updating
PCM object references to copied objects leading to PCM writes. Prior work proposes allocation
site based prediction of object lifetimes for Java workloads [11, 14]. Object lifetime prediction used
with pretenuring can eliminate the extra copying of long-lived objects. Specifically, the mutator can
directly allocate objects from allocation sites that are classified as long-lived in the mature DRAM
or PCM. The resulting system is likely to use the DRAM and PCM spaces more efficiently. Another
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promising avenue to eliminate the extra copying in CGZ-S is to explore non-moving variants of
Immix [13].

7 RELATEDWORK
This section discusses related work on managing hybrid memories and profile-based optimizations
for Java workloads.

Hardware and OS support for hybrid memory. On the hardware and OS side, the two main
approaches to mitigate PCM wear-out are hardware wear-leveling [46, 47, 51] and OS write limit-
ing [49, 61]. Wear-leveling spreads writes out across the entire PCM capacity to mitigate wear-out at
the granularity of writes (256 B) within a page and pages (4 KB). Unfortunately, recent work reports
that Java applications will wear out a PCM-only system in less than 5 years [3]. OS techniques
face several limitations: (1) they react to writes, thus delaying page migrations after PCM writes;
(2) page migrations cause TLB shootdowns which degrade performance; and (3) they operate at a
coarse-grain granularity, whereas write-intensity varies at the byte and object granularity.
Hardware and software both have a role to play in mitigating PCM wear-out. Hardware wear-

leveling is effective in making writes uniform and its implementation cost is low [46]. For native C
and C++ applications, the OS can help migrate highly written pages to DRAM. Write-rationing
garbage collectors complement hardware and OS techniques by significantly reducing wear-out for
managed workloads [3].

Hybrid memory management and garbage collection. Write-rationing garbage collectors
have a large advantage over OS and hardware only approaches, because they operate on individual
objects[3]. The best write-rationing garbage collector (KG-W) requires dynamic monitoring of
object writes. This approach faces three major drawbacks: (1) continuously monitoring the write
behavior of objects using write barriers incurs significant execution time overhead; (2) its reactivity,
monitoring objects for a short time and expecting that to predict the future, leads to mispredictions
and allocation of highly written objects in PCM, limiting PCM lifetime; and (3) it consumes excessive
DRAM capacity. To overcome these shortcomings, CGZ collectors statically classify allocation sites
as DRAM versus PCM. The garbage collector then allocates and promotes objects to DRAM or PCM
based on the object’s allocation site. Crystal Gazer has low overhead, is proactive, and can offer
tradeoffs between DRAM capacity and PCM lifetime based on different heuristics.
Wang et al. [55] tackle increased PCM read latency but neglect wear-out. They use offline

profiling to classify hot and cold methods by their execution frequency. Their approach allocates
objects from hot methods in DRAM to improve performance, and allocates the remaining objects
in PCM. In contrast, CGZ collectors improve PCM lifetimes.

Wei et al. [56] explore read and write predictability for allocation sites in native C applications.
C semantics limit the applicability of their approach, and their applications allocate a majority
of the heap from a small number of (up to 4) sites. Our work considers popular Java applications
with tens of thousands of allocation sites. This prior work migrates coarse-grained pages between
DRAM and NVM which is inefficient and degrades performance.

Profile-driven DRAMmemory management. Prior works use allocation sites to optimize the
performance and energy of DRAM-based memory systems. Jantz et al. [31] use offline profiling to
divide allocation sites into hot and cold sites. The heap is partitioned into hot and cold regions,
and the OS maps virtual to physical pages with the goal to reduce DRAM energy consumption
without hurting performance. In contrast, we focus on memory lifetimes in hybrid DRAM-PCM
memories. Our work is the first to show allocation site homogeneity of writes, and a garbage
collector that acts upon allocation site advice to place highly written objects in DRAM. Recent
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work also exploits allocation sites to place program data in upcoming memory systems with high-
bandwidth DRAM placed next to traditional DRAM [22]. Their work is limited by C++ semantics.
In contrast to our work, they do not use a real-world hardware prototype to evaluate their data
placement strategies and hence, among other limitations, are unable to report the total execution
time of their applications.

Profile-driven pretenuring. Prior work uses allocation sites to predict object lifetimes and
allocate long-lived objects directly in a mature space (pretenuring), eliminating nursery promotion
costs. We follow the same approach of ahead-of-time profiling and then applying advice in produc-
tion runs as in Blackburn et al. [11, 14], but based on writes instead of lifetime. Dynamic lifetime
profiling has the advantages that it does not require a profile and can react to program phases, but
the disadvantage of dynamic monitoring costs and warm up time [32]. In our work, advice predicts
write-intensity and the collector allocates objects in DRAM or PCM, both at allocation (large objects)
and promotion (small objects) time. We find allocation site better predicts write-intensity than
lifetime and believe combining both predictions, and some dynamic monitoring, are interesting
avenues for future work.

Other profile-driven optimizations. Krintz et al. [35] profile Java applications offline to dis-
cover compiler optimizations that speed up a method’s execution. They annotate the bytecode
to communicate these optimizations to the compiler which reduces compilation overhead dur-
ing run-time. In subsequent work, Krintz [34] combines offline and online profiling to reduce
compilation overhead even further. Profiling has been used to improve memory management
in Java workloads. Buytaert et al. [17] collect information offline about when to trigger garbage
collection to maximize collection yield. They also use offline analysis to decide, during run-time,
between triggering nursery or full-heap collections. Chen et al. [18] leverage profile information to
proactively reorganize the heap to improve data locality.

8 CONCLUSIONS
This paper demonstrates that profile-driven write-rationing garbage collection can improve PCM’s
lifetime in hybrid memories while limiting consumption of DRAM capacity. Crystal Gazer over-
comes the shortcomings of the prior state-of-the-art write-rationing garbage collector, KG-W,
which dynamically monitors writes to nursery survivors to decide whether to promote to mature
DRAM or mature PCM. Crystal Gazer improves accuracy and reduces the cost of write-rationing
garbage collection by predicting object write-intensity based on offline allocation site profiling. It
copies nursery survivors to mature DRAM if predicted highly written or to mature PCM if predicted
read-mostly. Using a survivor space in-between the nursery and mature space further reduces the
number of writes to PCM at the cost of increasing DRAM capacity consumption. Because allocation
site prediction of write-intensity is highly accurate, our static technique out-performs the dynamic
techniques used by the Kingsguard KG-W collector. We demonstrate that Crystal Gazer provides
Pareto-optimal operating points in terms of PCM lifetime and DRAM capacity by changing the
heuristics and thresholds to classify allocation sites. Our experimental results use emulation on
real hardware and show that Crystal Gazer significantly improves performance compared to the
state-of-the-art, KG-W, while reducing the number of PCMwrites when optimized for PCM lifetime,
and requiring less DRAM capacity when optimized for the smallest DRAM capacity. Profile-driven
write-rationing garbage collection makes PCM a practical DRAM replacement by aggressively
reducing writes to it in a hybrid memory setting. It requires minimal OS support and enables the
use of PCM for commodity applications without changes to the programming language or model.
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