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Abstract. Visible and near infrared (Vis-NIR) spectroscopy is a non-destructive 
analytical method that can be used to complement, enhance or potentially replace 
conventional methods of soil analysis. The aim of this research was to predict the 
particle size distribution (PSD) of soils using a Vis-NIR) spectrophotometry in one 
irrigate field having a vertisol clay texture in the Karacabey district of Bursa 
Province, Turkey. A total of 86 soil samples collected from the study area were 
subjected to optical scanning in the laboratory with a portable, fiber-type Vis–NIR 
spectrophotometer (AgroSpec, tec5 Technology for Spectroscopy, Germany). 
Before the partial least square regression (PLSR) analysis, the entire reflectance 
spectra were randomly split into calibration (80%) and validation (20%) sets. A 
leave-one-out cross-validation PLSR analysis was carried out using the calibration 
set with Unscrambler® software, whereas the model prediction ability was  
tested using the validation (prediction) set. Models developed were used to predict 
sand and clay content using on-line collected spectra from the field. Results  
showed an “excellent” laboratory prediction performance for both sand (R2 = 0.81, 
RMSEP = 3.84% and RPD = 2.32 in cross-validation; R2 = 0.90, RMSEP = 2.91% 
and RPD = 2.99 in the prediction set) and clay (R2 = 0.86, RMSEP = 3.4% and  
RPD = 2.66 in cross validation; R2 = 0.92, RMSEP = 2.67% and RPD = 3.14 in the 
prediction set). Modelling of silt did not result in any meaningful correlations. Less 
accurate on-line predictions were recorded compared to the laboratory results, 
although the on-line predictions were very good (RPD = 2.24-2.31). On-line 
predicted maps showed reasonable spatial similarity to corresponding laboratory 
measured maps. This study proved that soil sand and clay content can be 
successfully measured and mapped using Vis-NIR spectroscopy under both 
laboratory and on-line scanning conditions. 
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1. Introduction 

Soil is one of the most important natural resources on the earth, and it has numerous 

characteristics resulting from the effects of climate on parent material in a specific 

topography and from biotic activities over a certain period of time.  For sustainable land 

management, it is necessary to understand the characteristics of soils, their functions and 

spatial and temporal changes [1, 2]. It is possible to determine the physical, chemical and 

biological properties of the soil in order to reveal its potential as well as its limitations 

for agricultural and non-agricultural land use. 
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Soil texture, represented by the distribution of the size of mineral particles in the soil 

(particle size distribution - PSD) is one of the most basic static physical properties of 

soils. Soil texture can exhibit significant spatial variation within a land area. Simply 

defined, soil texture is the proportional distribution of sand, silt and clay particles in a 

soil mass. Many factors are affected by soil texture, including plant growth and yield, 

the infiltration of water into the soil and its storage, retention and transport, the 

availability and absorption of plant nutrients, living organisms in the soil, soil quality 

and productivity, soil temperature, structure and compaction levels, tillage, irrigation, 

and the effectiveness of fertilizers. Thus, the concept of soil texture has a much greater 

importance beyond its simple definition and plays a key role in agricultural production. 

Measuring the spatial variation in soil texture can be of great benefits to site specific land 

management. 

Many soil analysis laboratories generally use the traditional hydrometer and pipette 

methods to determine PSD. Some errors may result from the use of these methods in 

routine laboratory analysis. In their particle size analysis study, Klein et al. [3] observed 

that the highest numbers of particle size fraction classification errors were found in those 

made for silt and clay. In addition, it has been reported that the inconsistency of obtained 

clay fraction values was due to the difficulty involved in laboratory analysis of the 

dispersion of clay particles [4]. The traditional analysis methods for PSD used in soil 

laboratories are expensive, labour-intensive and require more preparation, especially 

when working with a large number of soil samples. Moreover, since the analysis process 

takes considerable time with these methods, they are not practical for application in 

precision agriculture, high resolution soil mapping or in soil surveys carried out over 

large areas. Therefore, alternative methods need to be developed for the determination 

of the proportions of soil mineral fractions. In recent years, various electromagnetic 

radiation techniques have been used in the prediction of a number of soil properties, and 

it has been reported that visible (Vis), near infrared (NIR) and mid infrared (MIR) 

spectrophotometry, nuclear magnetic resonance (NMR) and mass spectrophotometry 

(MS) could complement traditional laboratory soil analysis methods as alternative 

techniques [5]. The main components of the soil such as its clay content and mineralogy, 

the amounts of organic matter and iron oxides and soil moisture, texture and particle size 

directly affect the spectral behavior of the soil [6, 7]. Vis-NIR reflectance spectroscopy 

shows promise as an alternative method, making it possible to measure many soil 

properties at the same time. When compared to traditional laboratory analyses, Vis-NIR 

reflectance spectroscopy results have been successful to a degree in the determination of 

soil physical properties like bulk density, soil texture and structure [8, 9, 10], but more 

successful in the determination of soil content of total nitrogen different forms of carbon, 

cation exchange capacity (CEC) and soil chemical properties such as pH and P [11, 12, 

13, 14, 15, 16, 17]. The Vis-NIR reflectance spectroscopy method is readily adaptable 

for both in-laboratory and in-situ measurements, and requires very little or no soil 

preparation using chemical reagents. It is a quick and inexpensive method that does not 

destroy the sample [11, 18, 19]. Laboratory and in situ applications are possible with the 

Vis-NIR spectroscopy for the analyses of soil. However, no study on on-line 

measurement of soil texture fractions can be found in the literature, although 

measurements under laboratory conditions were performed by many researchers using 

the Vis-NIR spectroscopy.   

The aim of this study was to determine the potential for use of Vis-NIR 

spectrophotometry in the prediction of the PSD (sand, silt and clay) of the soil under non-

mobile (laboratory) and on-line (mobile) measurement conditions. 
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2. Materials and Methods 

2.1. On-line soil sensor 

The on-line sensor system consists of a subsoiler with an optical probe mounted on the 

rear of a subsoiler, installed on a tractor-pulled framework [20]. The system was 

produced at Uludağ University in Bursa, Turkey, using the same design patented by 

Mouazen [20]. A mobile, fiber type, AgroSpec Vis-NIR spectrophotometer (tec5 

Technology for Spectroscopy, Germany) was used to measure soil spectra. A differential 

global positioning system (DGPS) (EZ-Guide 250 Trimble, USA) was used to record 

with submeter accuracy the on-line measured spectral positions. In the spectral 

measurement system, AgroSpec software (tec5 Technology for Spectroscopy, Germany) 

was employed for the simultaneous collection of the spectral and GPS data. 

2.2. Study area and on-line measurement 

This study was carried out on a 10.06-ha area of agricultural land in the district of 

Karacabey in Bursa Province, Turkey. A total of 86 soil samples were collected from the 

bottom of trench opened by the subsoiler in the study area during the on-line 

measurement. While the tractor was moving at a speed of approximately 3 km/h-1, the 

raw reflectance values were collected from the bottom of the trench opened along straight 

lines parallel to each other with 10 m interval.  For the purpose of validation, at 

approximately 20 m intervals along these lines, soil samples were collected from the 

bottom of the furrows, and then put in nylon packets and numbered for laboratory 

analysis. The locations of the points where the samples were taken were recorded via 

DGPS. The sampling lines and sampling points are given in Figure 1. 

 

  
(a) (b) (c) 

Figure 1. (a) Soil sampling points; (b) on-line soil measurement transects; (c) validation points (Ulusoy et 
al., 2016) 

Each of the 86 soil samples taken from the study area was divided into two parts. One 

part of the soil sample was used for the laboratory reference PSD measurement, while 

the second part was used for optical scanning in the laboratory.  The PSD was determined 

using the Bouyoucos hydrometer method [21]. According to the results of the PSD 

analysis, the texture classes of the soil were determined using the classification system 

of the United States Department of Agriculture (Table 1) [22]. 

Table 1. Particle size distribution (PSD) of study area soil 

Area  

(ha) 

Crop Texture class Sand (%) Silt (%) Clay (%) 

10 wheat Clay 26.6 30.4 43.0 
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2.3. Optical measurement in the laboratory 

The soil samples were scanned in the laboratory using the same Vis-NIR 

spectrophotometer (AgroSpec, tec5 Technology for Spectroscopy, Germany) employed 

during on-line measurements in the field. After collection, root residues, stubble and 

gravel were removed and each soil sample was then thoroughly mixed before being 

scanned with the Vis-NIR spectrophotometer. The soil sample was then distributed into 

three plastic cup, each having a depth of 2.5 cm and a diameter of 4.7 cm, and the soil 

was carefully levelled in order to ensure a smooth scanning surface for the soil in the 

containers [23]. Before beginning the soil sample scanning process, a 100% white 

reference was scanned by the spectrophotometer and this was repeated every 30 min. 

Each of the soil samples in the containers was scanned 10 times and the average of the 

readings was considered for further analyses. By taking the average of the three reflection 

values collected from the three containers, the final reflection value to be used in 

determining the properties of the soil sample was thus obtained. 

2.4. Modelling 

Before the partial least square regression (PLSR) analysis, the entire sample set (86 

samples) were randomly split into calibration (80%) and validation (20%) sets. A leave-

one-out cross-validation PLSR analysis was carried out using the calibration set with 

Unscrambler® software, whereas the model prediction ability was tested using the 

validation (prediction) set. The calibration and prediction sets of the sand and clay 

measured in the laboratory and on-line and the sample statistics are given in Table 2. 

Calibration models were developed for the three texture fractions, namely, sand, silt and 

clay. Calibration models were validated using the spectra of the validation set, scanned 

in the laboratory under stationary conditions and in the field under mobile on-line 

conditions. These calibration models were used to predict sand and clay content using 

on-line collected spectra from the field. Since no correlation for silt content was possible 

with the PLSR cross-validation, no model was established and on-line prediction of silt 

was excluded.  

The evaluation of model performance was made by examining R2 value, the root 

mean square error of prediction (RMSEP) and the residual prediction deviation (RPD). 

Table 2. Sample statistics for calibration and prediction sets of laboratory and on-line measured sand and clay 

  Sample 

number 

Min (%) Max (%) Mean (%) SD (%) 

All samples 
Sand 86 12.4 55.8 24.57 9.03 

Clay 86 23.3 62.3 45.85 9.08 

Cross-
validation set 

Sand 68 12.4 55.8 24.20 8.95 

Clay 68 23.3 62.3 46.08 9.06 

Laboratory 
prediction set 

Sand 18 13.93 49.9 25.96 9.45 

Clay 18 24.3 60.3 44.99 9.37 

On-line 
prediction set 

Sand 18 8.88 49.7 26.10 9.78 

Clay 18 24.67 59.9 44.29 9.42 
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2.5. Development of sand and clay maps 

Five categories of sand and clay maps were developed. These included: (1) a laboratory 

analysis map based on the laboratory measurements of 86 points, (2) a map of the 

laboratory prediction set (18 points), (3) an on-line prediction map based on 18 

verification points, (4) a map of laboratory reference values for 18 points and (5) an on-

line Vis-NIR map based on all 8486 predicted measurement points. The kriging method 

after semi-variogram analysis was employed to draw the on-line map showing all the 

predicted points, while for the other maps, the inverse distance weighing (IDW) 

interpolation method was used. All maps were generated via ArcGIS 10 (ESRI, USA) 

software [24]. 

3. Results and Discussion 

3.1. Calibration and prediction model performance 

The performance of the PLSR model in cross-validation and the laboratory and on-line 

predictions for the sand and clay content of the study field is shown in Table 3. According 

to the classification of RPD values suggested by Viscarra-Rossel et al. [11], the 

performance of the sand model in the cross-validation is classified as “very good” (R2 = 

0.81, RMSEP = 3.84 and RPD = 2.32). 

Table 3. Sand and clay model performance in cross-validation, laboratory and on-line predictions 

  R2 RMSEP (%) RPD Intercept Slope 

Cross-
validation set 

Sand 0.81 12.4 2.32 4.27 0.73 

Clay 0.85 23.3 2.66 6.55 0.92 

Laboratory 
prediction 

Sand 0.90 12.4 2.99 3.04 0.87 

Clay 0.91 23.3 3.14 6.48 0.85 

Cross-
validation 

Sand 0.80 8.88 2.24 7.17 0.73 

Clay 0.82 24.67 2.31 11.4 0.72 

RMSEP: Root mean square error of prediction 
RPD: Residual prediction deviation 

 

The performance of Vis-NIR prediction set model for sand content under on-line 

measurement conditions are not as good as those under laboratory measurement 

conditions. According to the classification of RPD values suggested by Viscarra-Rossel 

et al. [11], the on-line prediction model, with RPD of 2.24, is classified as “very good” 

(RPD 2.0 – 2.5), while the laboratory prediction model, with RPD of 2.99, is classified 

as “excellent” (RPD > 2.5). Scatter plots of the cross-validation set, laboratory and on-

line validation results of sand content are given in Figure 2. 

The performance of Vis-NIR prediction set model of for sand content under on-line 

measurement conditions are not as good as those under laboratory measurement 

conditions. According to the classification of RPD values suggested by Viscarra-Rossel 

et al. [11], the on-line prediction model, with RPD of 2.24, is classified as “very good” 

(RPD 2.0 – 2.5), while the laboratory prediction model, with RPD of 2.99, is classified 

as “excellent” (RPD > 2.5). Scatter plots of the cross-validation set, laboratory and on-

line validation results of sand content are given in Figure 2. 
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Figure 2. Scatter plot of predicted versus laboratory-measured sand of (a) the cross-validation set, (b) the 
prediction set for 18 laboratory-scanned samples, and (c) the prediction set for 18 on-line-scanned samples  

 

Just like with the sand, the performance of Vis-NIR models for the prediction of 

clay content under on-line measurement conditions are not as good as those under 

laboratory measurement conditions (Table 3). According to the RPD classification 

system of Viscarra-Rossel et al. [11], the on-line model, with an RPD of 2.31, is 

classified as “very good”, while the prediction model based on measurements made in 

the laboratory, with an RPD of 3.14, is classified as “excellent” (RPD value > 2.5). 

The clay content measured in the laboratory versus the predicted clay content in the 

prediction sets of soil reflection spectra scanned in the laboratory and scanned on-line, 

and in the cross-validation set can be seen in the scatter plots in Figure 3. 

 

Figure 3. Scatter plot of predicted versus laboratory-measured clay of (a) the cross-validation set, (b) the 
prediction set for 18  laboratory-scanned samples and (c) the prediction set for 18 on-line-scanned samples 

3.2. Mapping 

3.2.1. Comparison of laboratory and Vis-NIR maps of soil sand and clay content 

The maps of the laboratory-measured, laboratory Vis NIR-predicted and on-line Vis-

NIR-predicted data for sand content using the prediction set of 18 soil samples show 

acceptable spatial similarity when compared. In addition, the low and high sand areas of 

the field can be clearly distinguished (Figure 4). 
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Figure 4. Comparison of (a) laboratory measured (86 points), (b) laboratory visible and near infrared (Vis-
NIR) predicted and (c) on-line Vis-NIR predicted maps of sand content (based on the 18 samples of the 
prediction set) 

 

With minor differences, in general, all the maps show the central-southern part of the 

study area as having a lower sand content than other parts (Figure 4). The similarity 

between the laboratory reference (18 samples) and the whole-point (8486 points) sand 

content maps can be seen in Figure 5. Compared to other parts, the central-southern part 

of the field on these two maps also exhibits a spatial distribution similar to that seen on 

the three maps in Figure 4, indicating that it has a lower sand content. 

 

 
Figure 5. Comparison between (a) the 18 laboratory reference point and (b) the full-point on-line visible and 
near infrared (Vis-NIR) predicted maps for sand content. 

 

In contrast to the spatial distribution maps of the sand content in the study site (Figure 

4), the maps prepared for the clay content using the prediction set of 18 soil samples, 

based on the laboratory-measured, laboratory Vis-NIR-predicted and on-line Vis-NIR-

predicted data, showed very close spatial similarity when compared, and the low, 

medium and high clay content zones can also be clearly distinguished (Figure 6). 

 

Z. Tümsavaş et al. / Prediction of Soil Sand and Clay Contents via Vis-NIR Spectroscopy 35



  

Figure 6. Comparison of (a) laboratory-measured, (b) laboratory visible and near infrared (Vis-NIR) predicted 
and (c) on-line Vis-NIR-predicted maps of clay content (based on the 18 samples of the prediction set) 

 

As in the spatial distribution maps of the sand content (Figure 4), there are also minor 

differences seen in all the spatial distribution maps of the of clay content. These maps 

indicated that the central-southern part of the field has a higher clay content than the 

other parts (Figure 6). The similarity between the laboratory reference (18 samples) and 

the whole-point (8486 points) maps of clay content can be seen in Figure 7. These two 

maps show a very close spatial distribution similarity to the three maps in Figure 6, 

indicating that the central-southern parts of the field has a higher clay content than the 

other parts. The opposite spatial distribution of clay compared to that of sand indicates 

the good model performance in predictions of clay and sand content. 

 

  

Figure 7. Comparison between (a) the laboratory reference and (b) the full-point on-line visible and near 
infrared (Vis-NIR) predicted maps for clay content 

 

The high sampling resolution map obtained via the on-site measuring soil sensor has 

provided detailed information on the spatial distribution of the sand and clay content of 

the soil. This information is very useful for sustainable and precision agricultural 

applications and for land, soil and plant management. In addition, it can give direction 

to agronomists on the economic use of resources and contribute to the planning of plant 

production strategies. 
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4. Conclusions 

This study evaluated the potential of visible and near infrared (Vis-NIR) 

spectrophotometry in the determination of the sand and clay content in clay-textured field 

soil under the semi-humid climate conditions in Turkey. The following conclusions have 

been determined according to the results obtained under laboratory and in-situ (on-line) 

field measurement conditions: 

 

1. Vis-NIR spectrophotometry can be used successfully to determine and map the sand 

and clay in clay-textured soils in a semi-humid climate region. 

 

2. Vis-NIR scanning under laboratory conditions as opposed to on-line Vis-NIR 

measurement conditions can be expected to provide better measurement accuracy. 

 

3. Vis-NIR-predicted sand and clay maps and the equivalent laboratory-measured maps 

showed significant similarities. However, when the map developed using a limited 

number of points (18 samples) as compared with the full-point map, the full-point map 

showed more detail and displayed slightly different spatial distribution patterns.  

 

As future work, Vis-NIR spectrophotometry application could be extended to provide 

on-line measurement sand and clay content in soils, to work that will link crop yield with 

plant characteristics. 
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Z. Tümsavaş et al. / Prediction of Soil Sand and Clay Contents via Vis-NIR Spectroscopy38


