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Abstract
Multiple tests arise frequently in epidemiologic research. However, the issue of multiplicity adjustment is surrounded by 
confusion and controversy, and there is no uniform agreement on whether or when adjustment is warranted. In this paper we 
compare frequentist and Bayesian frameworks for multiple testing. We argue that the frequentist framework leads to logical 
difficulties, and is unable to distinguish between relevant and irrelevant multiplicity adjustments. We further argue that these 
logical difficulties resolve within the Bayesian framework, and that the Bayesian framework makes a clear and coherent 
distinction between relevant and irrelevant adjustments. We use Directed Acyclic Graphs to illustrate the differences between 
the two frameworks, and to motivate our arguments.
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Introduction

Multiple tests (or comparisons) arise frequently in epidemio-
logic research. One common example is when a data set is 
stratified, and the exposure-outcome association is assessed 
separately within each stratum. Another example is when 
the exposure-outcome association is assessed for a range of 
different exposure variables. This happens, for instance, in 
genome-wide association scans (GWAS), in which there are 
often hundreds of exposure variables (e.g. SNPs). A third 
example is when a large set of competing models are fitted 
to the same data set, in search for the best model fit.

A well-known feature of multiple testing is that, as the 
number of tests increases, the number of ‘false findings’ 
tends to increase as well. For instance, if we stratify a data 
set finely, then the risk is large that we will obtain a signifi-
cant p value in at least one stratum, even if the exposure and 
the outcome are truly independent in all strata.

Even though this feature is widely recognized, there is no 
uniform agreement on whether it is a problem that must be 
‘handled’, or whether it is an innocent feature that may be 
ignored altogether when making inference. Kenneth Rothman, 

the founding editor of Epidemiology and one of the most 
influential and well-cited epidemiologists, took an extreme 
position when declaring that ‘No adjustments are needed 
for multiple comparisons’ [1]. A recent review article in the 
high impact journal Nature Biotechnology took the opposite 
extreme, by declaring that ‘in any experimental setting in 
which multiple tests are performed, p values must be adjusted 
appropriately [emphasis added]’ [2]. In our experience most 
researchers take a position somewhere in between these 
extremes, and the general notion seems to be that multiplicity 
adjustments are sometimes, if perhaps not always, warranted.

Nevertheless, multiplicity adjustments have not yet 
become part of epidemiological practice (except in GWAS 
studies, where they are commonplace). In an essay on mul-
tiple comparisons, Poole [3] recalled a situation where a 
group of (presumably experienced) statisticians was asked 
to suggest ways to contend with the problem of multiple 
testing. Poole writes ‘We responded by fidgeting slightly in 
our seats. When our disappointed leader asked if any of us 
had made any multiple-comparisons adjustments in the past 
five years or so, not a single hand went up. Someone finally 
broke the tension by joking about the distinction between 
theory and practice’. In our experience, this passage very 
accurately describes the current state of epidemiology; most 
epidemiological researchers approve of multiplicity adjust-
ments in theory, but few use them in practice.

The reason why epidemiologists so rarely adjust for mul-
tiplicity cannot be that methods are lacking, since there is, in 
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fact, an abundance of methods for multiplicity adjustments, 
of which many are implemented in standard software. Argu-
ably, the reason cannot be perceived technical barriers either. 
Even though sophisticated and complex methods do exist, 
there are also very simple and non-technical methods (e.g. 
Bonferroni correction).

In our view, the reason is most likely that people find it 
logically difficult to distinguish between relevant and irrel-
evant multiplicity adjustments, and thus to determine a rel-
evant collection of tests to adjust for. For instance, should 
a particular test be adjusted for all other tests in the same 
table, or for all tests in the same paper, or perhaps even for 
all tests that were made in the scientific process that eventu-
ally led up to the published paper? The literature gives no 
firm guidance; among all papers on multiplicity adjustments, 
the overwhelming majority deals with the technicalities of 
how to do statistically efficient adjustments, assuming that 
we have already agreed upon a relevant collection of tests 
to adjust for.

Berry and Hochberg [4] proposed a Bayesian framework 
for multiple testing. They showed that the logical difficulties 
of multiple testing resolve within their Bayesian framework, 
by assuming a joint a priori distribution on the (parameters 
of the) hypotheses being tested. Gelman et al. [5] made simi-
lar developments and conclusions. Despite its elegance, this 
Bayesian framework does not appear to be widely recog-
nized by epidemiologists. The paper by Berry and Hoch-
berg [4] has, according to Google scholar, fewer than 100 
citations, of which most are in methodological statistics 
journals and none is in any of the leading epidemiological 
journals, e.g. European Journal of Epidemiology, Epidemi-
ology, International Journal of Epidemiology or American 
Journal of Epidemiology.

The aim of our paper is to bring attention to the Bayesian 
framework by Berry and Hochberg [4], and to explain how 
it fundamentally differs from the frequentist framework. We 
start by giving a motivating example from a recently pub-
lished study by Bygren et al. [6], which in many aspects is 
‘typical’ for epidemiologic research. We use this example 
to illustrate how the frequentist framework leads to logi-
cal difficulties, in the context of multiple testing. We then 
review the Bayesian framework by Berry and Hochberg [4]. 
For pedagogical purposes we first restrict attention to tests 
on independent data sets; the case of dependent data sets 
is discussed in a separate section. We next show how the 
Bayesian framework makes a clear and coherent distinction, 
in principle, between relevant and irrelevant multiplicity 
adjustments.

An important case of multiple testing occurs when the 
researcher tests a large number of hypotheses and only 
reports those for which data happen to look ‘favorable’; this 
is often referred to as ‘data fishing’. We discuss data fish-
ing in a separate section, and we argue that data fishing, 

surprisingly, does not require any special multiplicity adjust-
ment within the Bayesian framework.

The main purpose of our paper is to provide conceptual 
insight. However, our conclusions do have strong practical 
implications, which we discuss in a separate section of the 
paper. In this section we return to the motivating example by 
Bygren et al. [6], and discuss how the results from this study 
may be viewed in light of the Bayesian framework.

The problem of multiplicity is usually discussed within 
the hypothesis testing paradigm, and most solutions that have 
been proposed (e.g. Bonferroni correction) are designed for 
p values. In line with this tradition we frame our exposition 
within the hypothesis testing paradigm as well. However, we 
note that this paradigm is often rightly criticized for conflat-
ing the effect size with the precision of the effect estimate 
[7], and that the effect estimation paradigm may often be 
more relevant for substantive epidemiologic research ques-
tions. We discuss effect estimation in a separate section, 
and show how the Bayesian framework applies within that 
paradigm.

Throughout, we use Directed Acyclic Graphs (DAGs) to 
motivate our arguments, and we assume that the reader has 
some familiarity with these. We refer to Pearl [8] and Green-
land et al [9] for gentle introductions to DAGs.

The frequentist framework: a motivating 
example

Bygren et al. [6] aimed to study whether change in food sup-
ply during grandparents’ early life may influence cardiovas-
cular mortality in their grandchildren; a so-called ‘epigenetic 
effect’. Their sample consisted of 277 unrelated subjects 
from north of Sweden, and their grandparents. In their main 
analysis, the authors stratified the sample into eight groups, 
defined by each possible combination of grandparent (pater-
nal grandfather, paternal grandmother, maternal grandfather, 
or maternal grandmother) and sex of the grandchild (male 
or female). The association between grandparent’s change 
in food supply and grandchild’s cardiovascular mortality 
was analyzed separately in these eight strata, with Cox pro-
portional hazards regression. The results were presented as 
estimated hazard ratios, comparing the rate of cardiovascular 
mortality in exposed (to a change in food supply in the par-
ticular type of grandparent) and unexposed grandchildren, 
together with 95% confidence intervals; we have reproduced 
the results in Table 1. The authors did not report p values; 
however, we calculated these ‘post-hoc’ from the estimated 
hazard ratios and confidence intervals (see “Appendix 1” for 
details) and added them to Table 1.

Among the eight strata, only one finding was statistically 
significant (at 5% significance level); the hazard ratio in 
the stratum of paternal grandmother and female grandchild 
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(bold in Table 1). Bygren et al. [6] took this single signifi-
cant finding at face value, without making any multiplicity 
adjustment, and declared that ‘Change in paternal grand-
mothers early food supply influenced cardiovascular mor-
tality of the female grandchildren’ (the title of the paper).

The paper caused some debate in Sweden, and was in 
particular heavily criticized by a Swedish professor in math-
ematical statistics, Olle Häggström, who insisted that the 
authors should have adjusted for multiplicity, and that not 
doing so was ‘bad practice’ [10]. Häggström’s critique was 
based on the standard frequentist argument that, if you test 
many null hypotheses, then you are likely to obtain at least 
one statistically significant p value, even if all null hypoth-
eses are truly correct. Thus, the argument implies, in order 
not to be mislead by false positives one should adjust for the 
total number of tests.

The problem with this frequentist argument is not math-
ematical, but logical; how should we define the ‘total num-
ber of tests’? That is, what collection of tests should we 
consider when doing the multiplicity adjustment? All tests 
in the table? All tests in the published paper? All tests that 
were made in the scientific process that eventually led up 
to the published paper, even those that were not eventu-
ally included in the publication? All test in the issue of the 
journal? All tests ever published by that journal? And so 
forth... Even though our ‘gut feeling’ may point towards 
either of these alternatives, there is no way that we can use 
the frequentist argument to prove, or even indicate, why one 
alternative would be more relevant than another, since the 
argument can be applied equally well to any collection of 
hypothesis tests.

To further emphasize the logical problem, we note that 
Bygren et al. [6] actually carried out 16 more tests. In a sec-
ondary analysis, they additionally stratified the data by type 
of food supply pattern (poor to good or good to poor). They 
only observed a statistically significant result in the stratum 
of paternal grandmother, female grandchild and good to poor 
food supply. This type of secondary analysis is common in 
epidemiologic research; when an association is observed in a 
group of subjects one often proceeds by stratifying into finer 
subgroups, to investigate if the association is driven by any 
particular feature or covariate pattern.

To illustrate how the conclusions by Bygren et al. [6] are 
presumably flawed, Häggström [10] carried out a ‘post-hoc’ 

Bonferroni correction of their results. In this correction, he 
considered a total number of 8 + 16 = 24 tests, thus imply-
ing that the main analysis should be adjusted for the number 
of tests in the secondary analysis as well. However, follow-
ing this strategy the main analysis becomes increasingly 
more penalized as the number of secondary tests increases. 
A consequence is that, regardless how significant a result 
appears in a main analysis, one can always turn this result 
non-significant by simply carrying out a sufficiently large 
number of secondary tests, potentially unrelated to the test 
in the main analysis. Obviously, this does not seem reason-
able. On the other hand, the distinction between ‘main’ and 
‘secondary’ analyses is often a ‘thought-construction’, made 
up by the intention of the researcher. Thus, if we make a 
clear-cut between ‘main’ and ‘secondary’ analyses, and 
insist that tests within the former category should not be 
adjusted for tests within the latter category, then we allow 
for the intention of the researcher to affect the interpretation 
of the results. A consequence is that two researchers could 
claim different evidence with the same data, which seems 
unreasonable as well.

The problem of multiplicity adjustments is logically dif-
ficult, and we don’t claim that it can be solved in a purely 
algorithmic fashion by mathematical arguments. Regardless 
of what statistical framework one adheres to there is likely to 
be a gray zone, in which decisions have to be guided by sub-
ject matter knowledge and well founded opinion. However, 
what is deeply disturbing about the frequentist framework is 
that it seems unable to even indicate the underlying princi-
ples for these decisions. From the frequentist perspective all 
possible collections of tests seem equally valid to adjust for, 
and thus, any choice between these seems to be completely 
arbitrary.

The Bayesian framework for independent 
data

In this section we review the Bayesian framework by Berry 
and Hochberg [4]. We note that our formulation differs 
slightly from Berry and Hochberg [4], in that these authors 
focused on effect estimation whereas we are mainly con-
cerned with hypothesis testing.

Table 1  Estimated hazard ratios 
with 95% confidence intervals 
and p values, from Bygren et al. 
[6]

Male Female

ĤR 95% CI p ĤR 95% CI p

Paternal grandfather 0.87 0.46–1.64 0.67 0.91 0.43–1.96 0.81
Paternal grandmother 0.64 0.32–1.29 0.21 2.69 1.05–6.92 0.04
Maternal grandfather 1.26 0.68–2.34 0.46 1.32 0.58–3.04 0.51
Maternal grandmother 0.69 0.35–1.36 0.28 0.56 0.22–1.49 0.22
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To fix ideas we return to Table 1 and, for pedagogical 
purposes, only consider the strata with paternal grandmoth-
ers, i.e. the second row in Table 1. The two strata on this 
row consist of independent females and males. Let �f  and 
�m be parameters indicating whether epigenetic effects are 
present for the females and males, respectively; �j = 1 for 
‘effect present’ and �j = 0 for ‘effect absent’ in stratum j, 
for j = f ,m . Thus, �j indicates whether the null ( �j = 0 ) or 
alternative ( �j = 1 ) hypothesis holds within stratum j.

In the Bayesian framework, �f  and �m are considered ran-
dom, and the relevant information about these is captured 
by their posterior distribution. To formalize, let Xf  and Xm 
be the observed data for the females and males, respec-
tively. These could be the raw data, but could also be func-
tions of data, such as test statistics or p values. The DAG 
in Fig. 1 illustrates the relationship between �f  , �m , Xf  and 
Xm . The arrow from �j to Xj illustrates that the distribution 
of data in stratum j depends on whether the null or alterna-
tive hypothesis is true in stratum j, for j = f ,m . The dashed 
double-headed arrow between �f  and �m represents an a pri-
ori association between these parameter; we will see below 
that this association is a crucial component for multiplicity 
adjustment. The absence of a dashed double-headed arrow 
between Xf  and Xm is motivated by the fact that the two strata 
consist of independent data.

A Bayesian analysis of the Bygren et al. [6] data would 
start by specifying an a priori distribution p(�f , �m) , and a 
probability model p(Xf ,Xm|�f , �m) for how data are distrib-
uted under the null and alternative hypotheses, respectively. 
The a priori distribution p(�f , �m) may be specified explicitly, 
or may be derived from (the hyperparameters of) a hierarchi-
cal Bayesian model. Under the data generating mechanism 
in Fig. 1, p(Xf ,Xm|�f , �m) factorizes into p(Xf |�f )p(Xm|�m) . 
The a priori distribution p(�f , �m) does not factorize, unless 
we assume that �f  and �m are independent. Inference is based 
on the posterior distribution

(1)

p(�f , �m�Xf ,Xm) =
p(Xf ,Xm��f , �m)p(�f , �m)∑

�f ,�m=0,1
p(Xf ,Xm��f , �m)p(�f , �m)

=
p(Xf ��f )p(Xm��m)p(�f , �m)∑

�f ,�m=0,1
p(Xf ��f )p(Xm��m)p(�f , �m)

.

To carry out a Bayesian hypothesis test for the female stra-
tum we marginalize over �m and compute the posterior prob-
ability of the alternative hypothesis:

For instance, if the posterior probability is greater than 0.5, 
then the alternative hypothesis is more probable than the null 
hypothesis, so it would be rational to believe in the alterna-
tive, i.e. to estimate that �f  is equal to 1. This procedure 
generalizes easily to scenarios with more than two tests.

Now, note from (2) that the posterior distribution for �f  
generally depends on the data observed in the male stratum, 
Xm . This dependency comes from the a priori association 
between �f  and �m ; by observing the data Xm we learn some-
thing about �m , which in turn informs us about �f  . The a 
priori association between �f  and �m represents a belief that, 
if epigenetic effects are present/absent for males, then they 
are likely to be present/absent for females as well, and vice 
versa. This belief could for instance be motivated by bio-
logical arguments; since males and females have very simi-
lar physiology, we may consider it unlikely that epigenetic 
effects are only present/absent for one of the sexes.

By specifying an a priori association between �f  and �m , 
the posterior estimates of these parameters thus ‘shrink’ 
towards a common value; 0 or 1. If the data in the male 
stratum, Xm , provide evidence for the alternative hypothesis 
in the male stratum ( �m = 1 ), then it implicitly also provides 
evidence for the alternative hypothesis in the female stra-
tum ( �f = 1 ), through the posterior distribution for �f  . The 
strength of this ‘implicit’ evidence depends on the a priori 
association between �f  and �m ; the stronger the association, 
the stronger the evidence. Thus, the Bayesian test for �f  takes 
into account, not only the existence of second test (i.e. the 
test for �m ), but also the data available for that second test. 
When this has been taken into account, there is no rationale 
for making further multiplicity adjustment due to the exist-
ence of the second test, since all relevant information about 
�f  is captured by its posterior distribution.

The Bayesian framework for dependent data

When introducing the Bayesian framework in the previous 
section, we restricted attention to tests on independent data 
sets. In practice, data sets are often dependent. An extreme 
case occurs when the same group of subjects are analyzed 
multiple times, as in the study by Bygren et al. [6]. For each 
of the two columns in Table 1, the outcome (cardiovascular 
mortality) is analyzed in relation to four different ‘expo-
sures’ (type of grandparent), but these four analyses are 

(2)

p(�f = 1�Xf ,Xm) =

∑
�m=0,1

p(Xf ��f = 1)p(Xm��m)p(�f = 1, �m)
∑

�f ,�m=0,1
p(Xf ��f )p(Xm��m)p(�f , �m)

.

Fig. 1  DAG for the Bygren et al. [6] study
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made on the same subjects (all males and all females in the 
sample, respectively).

To see how the Bayesian framework applies to depend-
ent data sets, consider the DAG in Fig. 2, in which the 
dashed double-headed arrow between Xf  and Xm represents 
a ‘residual’ association between Xf  and Xm , which is not due 
to the a priori association between �f  and �m . In the pres-
ence of this arrow, p(Xf ,Xm|�f , �m) no longer factorizes into 
p(Xf |�f )p(Xm|�m) as in (1). Thus, the posterior probability 
of �f = 1 may be written as

but does not simplify further as in (2).
In principle, this modification does not pose difficulties 

for the Bayesian framework. However, it has important, and 
somewhat counter-intuitive, implications for multiple test-
ing. Note that, under the DAG in Fig. 2, the conditional asso-
ciation between �f  and Xm , given Xf  , arises from two paths; 
�f ←→ �m → Xm and �f → Xf ← Xm . The path through �m is 
due to the a priori association between �f  and �m discussed 
in the previous section. The path through Xf  is due to the 
‘residual’ association between Xf  and Xm ; this path becomes 
open by conditioning on the ‘collider’ Xf  [11]. If the �f-to-Xf  
association and the ‘residual’ Xf -to-Xm association have the 
same direction (e.g. positive), then the open path through Xf  
would generally tend to make �f  and Xm negatively associ-
ated. To see this, note that when both associations are posi-
tive, a large value of Xf  can be ‘explained’ by either a large 
value of �f  or a large value of Xm , or both. If, in fact, we 
observe a small value of �f  , then this ‘explanation’ is ruled 
out, so that the other ‘explanation’—a large value of Xm

-becomes more likely. That is, conditional on (a large value 
of) Xf  , �f  and Xm are generally negatively associated. By 
symmetry we also have that, if the �f -to-Xf  association and 
the ‘residual’ Xf -to-Xm association have opposite directions, 
then the open path through Xf  would generally tend to make 
�f  and Xm positively associated.

p(�f = 1�Xf ,Xm) =

∑
�m=0,1

p(Xf ,Xm��f = 1, �m)p(�f = 1, �m)
∑

�f ,�m=0,1
p(Xf ,Xm��f , �m)p(�f , �m)

,

To see that this behavior may have counter-intuitive 
implications, suppose that Xf  and Xm are the p values in the 
female and male stratum, respectively, so that �f  and Xf  are 
negatively associated (the alternative hypothesis �f = 1 is 
associated with a small p value Xf  ). Suppose further that 
Xf  and Xm are positively associated, given ( �f , �m ). Suppose 
finally that �f  and �m are (assumed to be) positively asso-
ciated as well. A small p value Xm indicates that �m = 1 , 
which we would expect to indicate that �f = 1 . However, 
according to the argument above, the path through Xf  would 
tend to make �f  and Xm positively associated. Thus, if the 
path through Xf  is ‘stronger’ than the path through �m , then 
a small p value Xm would instead indicate that �f = 0 . In 
“Appendix 2”, we confirm this counter-intuitive behavior 
with a simulation.

In practice, the ‘net’ association between �f  and Xm 
depends on both the path through �m and the path through 
Xf  , which may pull the association between �f  and Xm in 
different directions. It is difficult to give any general criteria 
for when either of these paths is likely to be stronger than 
the other.

Relevant and irrelevant multiplicity 
adjustments

We have argued that people often find it logically difficult 
to distinguish between relevant and irrelevant multiplicity 
adjustments, and thus to determine a relevant collection of 
tests to adjust for. We have criticized the frequentist frame-
work for not giving any guidance in this matter. What, then, 
does the Bayesian framework suggest?

Let’s first establish that certain adjustments are com-
pletely irrelevant in the Bayesian framework. To simplify 
language we say that two tests are independent if both the 
hypotheses and the data sets of the tests are independent, e.g. 
if both dashed double-headed arrows in Fig. 2 are absent. 
Conversely, we say that two tests are associated if either the 
hypotheses, or the data sets, of the tests are associated, e.g. if 
either dashed double-headed arrow in Fig. 2 is present. If the 
tests of �f  and �m are independent, then p(�f , �m) factorizes 
into p(�f )p(�m) , so that the posterior probability of �f = 1 in 
(2) simplifies further to

p(�f = 1�Xf ,Xm) =

∑
�m=0,1

p(Xf ��f = 1)p(Xm��m)p(�f = 1)p(�m)
∑

�f ,�m=0,1
p(Xf ��f )p(Xm��m)p(�f )p(�m)

=
p(Xf ��f = 1)p(�f = 1)
∑

�f=0,1
p(Xf ��f )p(�f )

= p(�f = 1�Xf ).

Fig. 2  DAG for tests on dependent data sets
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This is the posterior probability of �f = 1 when the male stra-
tum is completely ignored. That is, if the two tests are inde-
pendent, then the male stratum is completely uninformative 
about the (hypotheses of the) female test. Thus, we arrive at 
the following important conclusion:

A: It is irrelevant to adjust one test for another test, if 
the two tests are independent.

This conclusion may be provocative, as it may seem to 
invite ‘data-fishing’, i.e. to test a large number of hypotheses 
and only report those for which data happen to look ‘favora-
ble’. We discuss this issue in the next section.

What adjustments are then relevant? Within the Bayesian 
framework it is relevant to ‘adjust’ for all information that 
influence the posterior probability of the hypothesis under 
consideration. In the previous sections we have shown that 
tests carry mutual information if the hypotheses and/or the 
data sets are associated. Thus, we conclude:

B: It is relevant to adjust one test for another test, if 
the two tests are dependent.

Conclusion B has far-reaching implications. Consider 
the rhetorical question that we phrased in the Introduction: 
‘should a considered test be adjusted for all other tests in 
the same table, or for all tests in the same paper, or perhaps 
even for all tests that were made in the scientific process that 
eventually led up to the published paper?’ Following con-
clusion B above, the answer is: ‘all of these adjustments are 
relevant! ... provided that all these tests are associated with 
the considered test.’ One may then play the devil’s advocate 
and ask ‘why draw the line at the published paper? Why not 
demand that adjustment is made for all tests in the world 
that are associated with the considered test?’ Indeed! From 
a Bayesian perspective all these adjustments are relevant, 
in the sense that all these tests are informative about (i.e. 
influence the posterior probability of the hypotheses of) the 
considered test.

We emphasize that this demand is, in principle, not at 
all unreasonable. It just means that any serious researcher 
should view his/her finding in light of others’ findings, as 
well as existing expert knowledge in the field. Of course, it 
is virtually impossible to adjust for ‘all associated tests in 
the world’ in a formal Bayesian analysis. We return to this 
issue in section ‘Practical implications’, where we propose 
a more informal approach.

Data fishing and the intention 
of the researcher

Consider the following, somewhat provocative, example. 
Suppose that we invent 20 rather dubious, but unrelated, 
hypotheses, e.g. ‘milk causes cancer’, ‘red clothes cause 
cancer’, ‘being born under a certain sign of the zodiac 
causes cancer’ etc. Suppose that we compute one posterior 

probability for each hypothesis, on independent data sets. 
Suppose further that only the posterior for the ‘milk causes 
cancer’ hypothesis is large, e.g. > 0.5 . According to conclu-
sion A in the previous section, it is then perfectly sound and 
rational to ignore the other 19 tests when interpreting this 
‘finding’, and declare milk as a likely cause of cancer.

What may be disturbing with this example is that we 
didn’t specify in advance what hypothesis to report evidence 
for. In our particular realization of data, the posterior for 
‘milk causes cancer’ turned out to be > 0.5 , so we chose to 
report that. However, if we were to repeat the 20 studies, 
then another (set of) posterior(s) may turn out to be > 0.5 , 
so that the ‘finding’ moves around over the 20 hypotheses. 
Thus, it may seem like our intention to selectively report 
evidence for the most favorable result invalidates the statisti-
cal inference, and people may accuse us for ‘data fishing’. A 
related example of how the intention of the researcher may 
play a role, is when the researcher collects data sequentially, 
with the intention to stop when data ‘look favorable’.

However, criticisms about data fishing have no bearing 
within the Bayesian framework. This is because the posterior 
probability of a particular hypothesis does not depend on 
whether we decided to report the evidence for this hypoth-
esis in advance, or because the observed evidence hap-
pened to look favorable in retrospect. To better understand 
why this is case, consider again the example from Section 
‘The Bayesian Framework for independent data’, where 
we tested two hypotheses indexed with parameters �f  and 
�m . Suppose that we have decided to pick cherries by only 
reporting the most ‘striking’ result, that is, we report the 
results for the female stratum if the posterior probability 
of �f = 1 is larger than the posterior probability of �m = 1 , 
and vice versa. Note that these posterior probabilities 
are functions of data. In the spirit of p values (and with 
a slight abuse of notation), we may thus say that Xf < Xm 
if p(𝜃f = 1|Xf ,Xm) > p(𝜃m = 1|Xf ,Xm) , and Xf > Xm if 
p(𝜃f = 1|Xf ,Xm) < p(𝜃m = 1|Xf ,Xm) . We define a ‘selec-
tion variable’ S, which indicates what stratum we report the 
results for, as

The DAG in Fig. 3 illustrates the scenario. To be as gen-
eral as possible, we have allowed for a ‘residual association’ 
between Xf  and Xm , as in Section ‘The Bayesian framework 
for dependent data’.

Suppose now that we observe that Xf < Xm , and 
accordingly choose to report the results for the 
female stratum. To acknowledge the selection pro-
cess we could condition on S = 1 , thus reporting 
p(�f = 1|Xf ,Xm, S = f ) . However, in Fig. 3 we observe that 
�f  is conditionally independent of S, given ( Xf ,Xm ), so that 

S =

{
f if Xf < Xm

m if Xf > Xm
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p(�f = 1|Xf ,Xm, S = f ) = p(�f = 1|Xf ,Xm) . Thus, the selec-
tion process is irrelevant within the Bayesian framework. 
The data Xm are not irrelevant though when reporting the 
evidence for �f  , since �f  and Xm are associated through the 
paths �f ←→ �m → Xm and �f → Xf ← Xm . If these paths 
were absent (i.e. if the hypotheses were a priori independent 
and tested on independent data sets), then it would be per-
fectly sound to ignore Xm as well, and report p(�f = 1|Xf ).

We thus conclude that, in the example above of 20 dubi-
ous but unrelated hypotheses above, it is perfectly sound to 
ignore the selection process when reporting the posterior 
for ‘milk causes cancer’. Furthermore, since we assumed 
that the 20 hypotheses were tested on independent data 
sets, it is also perfectly sound to ignore the data obtained 
for testing the other 19 hypotheses. Berger and Berry [12] 
made similar points, and argued more generally that, for 
Bayesian inference, the intention of the researcher is indeed 
irrelevant.

In contrast, the intention of the researcher does matter 
within the frequentist framework. To see this, let Xf  and 
Xm be the p values for the female and male stratum, respec-
tively. A pure frequentist would consider the distribution 
of the p value, and in particular require that the p value 
has a uniform distribution under the null hypothesis �f = 0 . 
In Fig. 3 it is not true that Xf  is conditionally independent 
of S, given �f  . Thus, while p(Xf |�f = 0) may be uniform, 
p(Xf |�f = 0, S = f ) is generally not.

We end this section by noting that, even if data fishing 
strategies do not require any multiplicity adjustments within 
the Bayesian framework, they are problematic for another 
reason. When researchers tend to under-report ‘non-find-
ings’ the accumulated evidence in the field becomes skewed, 
which is often referred to as ‘publication bias’. We empha-
size though, that this problem is unrelated to the issue of 
multiplicity, and that the publication bias due to those results 
that are not reported does not become less severe if we adjust 
the reported results for multiplicity.

Practical implications

In previous sections we have compared frequentist and 
Bayesian frameworks for multiple testing. We have criticized 
the frequentist framework for leading to logical difficulties, 
and for being unable to distinguish between relevant and 
irrelevant multiplicity adjustments. We have argued that the 
Bayesian framework provides a clear and coherent distinc-
tion; within this framework it is only relevant to adjust for 
those tests that are associated with the test under considera-
tion. Furthermore, the Bayesian framework provides a clear 
principle for how to adjust for multiplicity; by accounting 
for the multiple tests in the posterior probability. Finally we 
have argued that, in contrast to the frequentist framework, 
data fishing does not require any special adjustment within 
the Bayesian framework.

Despite these strong conceptual advantages, the Bayes-
ian framework has important practical limitations. A formal 
implementation requires a quantitative specification of the a 
priori association between hypotheses. In practice it may be 
hard, even for subject matter experts, to put an exact num-
ber to this. Thus, a formal implementation of the Bayesian 
framework for multiple testing may, in our view, give a false 
sense of objectivity. We note though that this problem is 
not unique for multiple testing, but present in all types of 
Bayesian analyses.

A more severe problem is that the set of relevant adjust-
ments may be extremely large. We concluded in Section 
‘Relevant and irrelevant multiplicity adjustments’ that when 
considering a particular test it is, in principle, relevant to 
adjust for ‘all other tests in the world’ that are associated 
with the considered test. Clearly, it would be impossible to 
do this with a formal Bayesian analysis.

That said, we do feel that the Bayesian framework is 
appropriate for reasoning about multiplicity, as it ‘links 
together’ different tests in a natural way, without leading to 
any obvious logical difficulties. Thus, we propose a compro-
mise, where the formal statistical analyses is done within the 
standard frequentist framework (e.g. by computing p values), 
and the adjustment for multiplicity is done informally, by 
reasoning qualitatively about the association of hypotheses.

To be concrete, let’s return to the study by Bygren et al. 
[6]. Table 1 presents one significant (< 0.05) and seven non-
significant p values. When interpreting the single significant 
p value we should, according to the Bayesian framework, 
consider the ‘big picture’ and think about the a priori associ-
ation between the hypotheses being tested in the eight strata 
of Table 1. Specifically, we should ask ourselves: ‘how likely 
is it that epigenetic effects are truly present in one stratum 
but absent in all other strata?’ The less likely we consider 
this scenario, the more ‘informal weight’ should be given to 
the seven non-significant p values when interpreting the one 

Fig. 3  DAG for data fishing selection mechanism
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significant p value. We are not epigeneticists ourselves, and 
thus not in a position to speculate about a priori associations 
between hypotheses in this context. However, we note that 
the single significant p value was just below the traditional 
5% significance level. A very modest association between 
hypotheses may suffice to throw this p value above the sig-
nificance level, if properly corrected for the other p values 
through Bayes theorem. Thus, if we consider the 5% signifi-
cance level as a relevant threshold for evidence (which can 
certainly be debated), then it seems unjustified to conclude 
that ‘change in paternal grandmothers’ early food supply 
influenced cardiovascular mortality of the female grandchil-
dren’. However, if Bygren et al. [6] could argue convincingly 
that the hypotheses in Table 1 are truly independent, then 
their conclusion may indeed be reasonable, and not a result 
of ‘bad practice’, as claimed by Häggström [10].

In a similar fashion, a researcher may informally ‘adjust’ 
his/her results for evidence published in other papers (e.g. 
‘all other tests in the world’). In practice, this means that 
the researcher may survey the field and identify those stud-
ies that have similar research questions and hypotheses as 
the researcher’s own study. If the results from these stud-
ies are coherent with the researcher’s own result, then the 
evidence is strengthened. If not, then the evidence is weak-
ened. This informal procedure of accumulating evidence is 
already common practice, and often an important part of the 
‘Discussion’/‘Conclusion’ section in applied epidemiologi-
cal papers. Thus, the Bayesian framework provides a formal 
underpinning for common practice.

The Bayesian framework has important implications for 
how we should think about ‘data fishing’ and, more gener-
ally, about the intention of the researcher. In epidemiological 
studies, researchers typically focus on a limited number of 
hypotheses. Often, a distinction is made between ‘primary’ 
and ‘secondary’ hypotheses, where the emphasis if typically 
put on the former. If a large number of additional analy-
ses have been done, then these are often described as more 
speculative (e.g. ‘exploratory’ or ‘hypothesis generating’). 
Arguably, a strong reason for this habit is that researchers 
want to avoid being accused for data fishing. In clinical tri-
als, this is avoided by specifying the hypotheses and analysis 
plan in advance; notably, this has recently been advocated 
for observational studies as well [13, 14]. However, an 
important message of our paper is that, within the Bayesian 
framework, the intention of the researcher does not matter. 
Thus, if one adheres to the informal Bayesian adjustment for 
multiplicity outlined above, then accusations of data fishing 
have no bearing.

We note though that there could be other good reasons 
for limiting the number hypotheses within a given study, 
or distinguishing between ‘primary’ and ‘secondary’, such 
as improving transparency when presenting the results. We 
also note that the Bayesian framework does not give carte 

blance to test a large number of hypotheses, and selec-
tively report the hypothesis with, say, the smallest p value, 
without showing the other p values as well. Showing all p 
values in Table 1 makes it possible for the reader to evalu-
ate the one significant p value in light of the seven non-
significant p values, by reasoning quantitatively about the 
association of hypotheses as outlined above. If only the one 
significant p value is presented, then relevant information 
is hidden from the reader. The important exception is when 
the tests are independent, as defined in Section ‘Relevant 
and irrelevant multiplicity adjustments’. In this case, no 
information is shared across tests, and it is fine to report 
the smallest p value alone. We note though that this would 
rarely be the case in real epidemiological studies, since 
the hypotheses being tested within a particular study are 
typically related.

We end this section by emphasizing that, in order for 
two tests to be associated, it is enough that the data sets 
are dependent. Thus, when data for (some of) the tests are 
dependent, as in Table 1, our proposal to reason qualita-
tively about the association of hypotheses only goes half-
way. Furthermore, as we showed in Section ‘The Bayesian 
framework for dependent data’ it may not be obvious how 
evidence is propagated across tests. We acknowledge this as 
an important aspect of the Bayesian framework, and we hope 
that future research may give guidance on how to handle this 
problem in practice.

Effect estimation

In line with most of the literature, we have framed our dis-
cussion on multiplicity within the hypothesis testing para-
digm. However, the problem of multiplicity arises within the 
effect estimation paradigm as well. For instance, the prob-
ability of finding at least one estimate with a large magnitude 
increases with the number of estimated effects, even if all 
effects are truly small. The Bayesian framework can easily 
be used for effect estimation; indeed, the paper by Berry 
and Hochberg [4] focused on effect estimation rather than 
hypothesis testing.

As an illustration, consider again the example from 
Section ‘The Bayesian Framework for independent data’. 
To modify this example for effect estimation we would 
simply redefine the parameters �f  and �m as the effects 
of interests, e.g. the hazard ratios in the female and male 
stratum, respectively. We would then, as before, specify 
an a priori distribution p(�f , �m) , and a probability model 
p(Xf ,Xm|�f , �m) = p(Xf |�f )p(Xm|�m) for how data are dis-
tributed under the true parameter values. In line with the 
analysis by Bygren et al. [6], we may use Cox proportional 
hazards models for p(Xf |�f ) and p(Xm|�m) , but other (semi)
parametric models are possible as well. Inference is based 
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on the posterior distribution in (1). For instance, to estimate 
the hazard ratio in the female stratum we would use the pos-
terior distribution in (2); a natural estimate would be the 
mode or mean in this distribution. As for hypothesis testing, 
the posterior distribution for �f  generally depends on the 
data observed in the male stratum, Xm , through the a priori 
association between �f  and �m . Thus, the posterior estimates 
of �f  and �m are ‘shrunk’ towards each other. In this sense, 
the a priori distribution p(�f , �m) accounts for multiplicity 
within the effect estimation paradigm, by giving appropriate 
weight to the data Xm when estimating �f  , and vice versa.

Discussion

The problem of multiple testing is prevailing in epidemio-
logic research. We foresee that this problem will become 
even more acute in the near future, with the increasing avail-
ability of rich and complex data sets. In this paper we have 
argued that the Bayesian framework resolves the logical dif-
ficulties of multiple testing, and that this framework provides 
a clear and coherent distinction between relevant and irrel-
evant multiplicity adjustments. We have further argued that, 
although the Bayesian framework provides strong concep-
tual clarity, a formal implementation may not be desirable. 
Thus, we have advocated a compromise, where the formal 
statistical analyses is done within the standard frequentist 
framework (e.g. by computing p values), and the adjustment 
for multiplicity is done informally, by reasoning qualitatively 
about the association of hypotheses. We note though that 
the Bayesian framework can be formally implemented with 
standard software. We provide an example with simulated 
data in “Appendix 3”.
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Appendix 1:  Reconstruction of p values 
in Table 1

To reconstruct the p values in Table 1 we used the relation 
between a Wald confidence interval and a Wald test. The 
lower limit of a 95% Wald confidence interval for log(HR) 
is given by

from which we have that

The p value for a Wald test of the null hypothesis 
log(HR) = 0 is given by

where Φ(⋅) is the standard normal distribution function. 
Plugging reported values of log(ĤR and CIlower into (3) gave 
the p values in Table 1. Using the upper limit of the Wald 
confidence interval instead gave very similar p values.

Appendix 2:  Simulation with dependent 
data

To simulate hypotheses that are correlated across tests we 
generated two ‘latent’ parameters �∗

f
 and �∗

m
 from

For j ∈ (f ,m) we generated the binary parameter 
𝜃j = I(𝜃∗

j
> 0) , so that �j = 0 and �j = 1 correspond to the 

null and alternative hypothesis, respectively, for test j. The 
parameter �H is thus the tetrachoric correlation between �f  
and �m . For j ∈ (f ,m) we generated population means as 
�j = 0 if �j = 0 , and �j ∼ N(0, 1) if �j = 1 . Finally, we gener-
ated n = 100 paired observations (Yfi, Ymi) , i = 1… n , from

The parameter �Y is the conditional correlation between Yfi 
and Ymi , given (�f , �m) , and thus determines the degree of 
dependence between the two observations in the pair.

For fixed values of �H and �Y we generated 300 sam-
ples from the model above. For each sample we stored the 
value of �j and computed the sample mean Ȳj =

∑n

i=1
Yij∕n , 

for j ∈ (f ,m) . We used Ȳj to test the null hypothesis �j = 0 , 
by computing the usual p value Xj = 2{1 − Φ(Ȳj

√
n)} , for 

j ∈ (f ,m) , where Φ is the standard normal distribution func-
tion. Using the 300 values of Xf  and Xm we estimated the 

CIlower = log(ĤR) − 1.96 × s.e.

s.e. =
log(ĤR) − CIlower

1.96
.

(3)

p =2

{
1 − Φ

(|||||

log(ĤR)

s.e.

|||||

)}

= 2

{
1 − Φ

(|||||

1.96 × log(ĤR)

log(ĤR) − CIlower

|||||

)}
,

(
�∗
f

�∗
m

)
∼N

{(
0

0

)
,

(
1 �H

�H 1

)}
.

(
Yfi
Ymi

)
∼N

{(
�f

�m

)
,

(
1 �Y

�Y 1

)}
.
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correlation between Xf  and Xm . We also regressed �f  on Xf  
and Xm with the logistic model

In this model, the parameter �m measures the conditional 
association between �f  and Xm , given Xf  . We remind the 
reader that �f = 1 is the alternative hypothesis. Thus, nega-
tive values of �f  and �m means that large p values are associ-
ated with the null hypothesis and small p values are associ-
ated with the alternative hypothesis, as we would expect. We 
repeated the whole procedure to obtain 1000 estimates of 
cor(Xf ,Xm) and (�0, �1, �2) , which we subsequently averaged.

logit{p(�f = 1|Xf ,Xm)} = �0 + �f Xf + �mXm.

The simulation described above was repated over a grid 
of values for (�H , �Y ) . The contour plot in Fig. 4 shows the 
average estimate of cor(Xf ,Xm) as a function of (�H , �Y ) . 
As expected, cor(Xf ,Xm) increases with both �H and �Y  . 
Figure 5 shows the average estimate of �m as a function of 
(�H , �Y ) . When �H = �Y = 0 , �m is equal to 0 as well. We 
observe that �m decreases as �H increases. This is expected; 
the stronger correlation between �f  and �m , the stronger evi-
dence does a small p value Xm provide for �m = 1 , and thus 
indirectly also for �f = 1 . However, in Fig. 5 we observe that 
�m increases as �Y increases, and becomes positive when �Y 
is large and �H is small. This counter-intuitive feature is due 
to conditioning on the collider Xf  , as discussed in Section 
‘The Bayesian framework for dependent data’.

Appendix 3:  An example of a formal 
implementation of the Bayesian framework

Consider a pre-post-test study where an outcome is meas-
ured on a group of subjects during an unexposed period, and 
then again on the same subjects during an exposed period. 
The aim is to assess the exposure-outcome association 
within J strata defined by levels of a categorical variable. 
For simplicity we assume that all strata contain an equal 
number of n subjects. Let Y be the difference in the pre-
post outcomes for a given subject, and let Z be the categori-
cal variable that we wish to stratify on. Thus, the research 
question concerns the population means �j = E(Y|Z = j) for 
j = 1,… , J . Under the null hypothesis of no exposure effect 
in stratum j, �j = 0.

Below we illustrate a Bayesian analysis of such data, and 
contrast with a standard frequentist analysis. The R code 
below requires the packages forestplot and bayesm. We load 
these as usual, by typing 

To ensure that the results are reproducible we set the seed: 

We simulate data under the ‘global’ null hypothesis 
�1 = ⋯ = �J = 0 assuming that Y|Z ∼ N(0, 1) , for n = 10 
and J = 20 , with the code 

ρH
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Let Yij be the value of Y for subject i in stratum Z = j . A 
standard frequentist analysis would estimate �j as 
𝛽j =

∑n

i=1
Yij∕n together with the 95% confidence interval 

𝛽j ± t0.975,n−1sej , where t0.975,n−1 is the 0.975-quantile in the 
t-distribution with n − 1 degrees of freedom, and 

sej =

�∑n

i=1
(Yij−𝛽j)

2

(n−1)n
 . We compute these estimates and confi-

dence intervals as 

 and create a forest plot for the results: 

Figure 6 shows the forest plot. We observe that, out of the 
20 estimates, one is significantly different from 0 (i.e. the 
95% confidence interval excludes 0) as expected.

Define � = (�1,… , �J) . To carry out a Bayesian analysis 
we use the runireg function from the bayesm package. This 
function uses MCMC sampling to generate random draws 
from the posterior distribution of � , under the model

By default, E(�) = � is set to 0. The model allows for a 
correlation between the elements of � , by specifying a non-
diagonal matrix A−1 . We refer to the manual for runireg for 
details.

We define the design matrix X, which specifies what stra-
tum each subject belongs to, as 

We first consider the extreme case where the elements of 
� are considered a priori independent; cor(�j, �k) = 0 . We 
thus specify A−1 as 

We fit the Bayesian model as 

The function runireg returns a list, which, among other 
things, contains 10,000 draws from the posterior distribution 
of � in a matrix named betadraw. We compute the posterior 
estimates (medians) and 95% credible intervals as 

and create a forest plot for the results: 

Figure 7 shows the forest plot. We observe that the results 
are very similar to the results from the frequentist analysis, 
for all strata. In particular, the significant estimate in the fre-
quentist analysis remains ‘significant’ (i.e. the 95% credible 
interval excludes 0) in the Bayesian analysis.

We next consider the case where the elements of � are 
considered a priori strongly dependent; cor(�j, �k) = 0.95 . 
We thus run the code 

Y ∼N(�X, �2)

� ∼N(�, �2A−1)

�
2 ∼(� × ssq)∕�2

�

−1.5 −1 −0.5 0 0.5 1 1.5

Fig. 6  Frequentist estimates and 95% confidence intervals
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Figure 8 shows the forest plot. We observe a striking dif-
ference between Figs. 7 and 8; the estimates are much closer 
to each other in Fig. 8, which is a result of the ‘shrinkage’ 
due to the assumed correlation between parameters. The sig-
nificant estimate in the frequentist analysis is no longer ‘sig-
nificant’ in the Bayesian analysis, since it has been ‘pulled 
towards 0’ by the other 19 estimates.

To further illustrate how the a priori correlation between 
parameters ‘shrinks’ the estimates toward each other, we 
re-ran the Bayesian analyses above for a range of a priori 
correlations between 0 and 0.95. For each value of the cor-
relation we computed the sample variance of the estimates 
(𝛽1,… , 𝛽J) as 

∑J

j=1
(𝛽j − m)2∕(J − 1) , where m =

∑J

j=1
𝛽j∕J . 

Figure 9 shows the results. We observe that the sample 
variance of (𝛽1,… , 𝛽J) decreases dramatically as cor(�j, �k) 
increases.
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