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ABSTRACT

The statistical process control (SPC) chart is an effective tool for the analysis,

interpretation, and visualization of data from sequential processes. Commonly used

SPC charts such as the Shewhart, CUSUM and EWMA charts are widely imple-

mented in detecting distributional shifts in various processes. With recent scientific

and technological advancements, massive amounts of data continue to be generated by

production, medical, agricultural and many other industrial processes. Conventional

SPC charts have significant drawbacks in monitoring such processes, specifically when

the velocity of the data flow is greater than the run time of the monitoring procedure.

In the literature, dynamic sampling control charts [15] are becoming popular due to

their ability to adaptively control the next sampling time of the monitoring process. In

this thesis, we incorporate similar ideas to conventional SPC charts for the real-time

monitoring of big data processes.

Traditional SPC charts are designed to give a warning signal at a particular time

point if a process reading plots beyond its control limit(s). This approach does not

provide ample information of the likelihood of a potential shift in the process. We

implement existing methods of designing control charts with p-values, which gives

information about the performance of the current observations and potentially, of

observations in near future. The control chart gives a signal for a mean shift if the

p-value is less than some pre-specified significance level. We utilize the computed

p-values of the charting statistic in designing variable sampling schemes, specifically

the dynamic sampling schemes which are an increasing function of the p-value. The
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resulting control charts have variable sampling intervals, and hence skips several

observations. Thus, their computing times are much faster than traditional charts.

This thesis provides guidance on how to incorporate dynamic sampling schemes

for monitoring big data streams in other types of SPC charts. We perform extensive

simulation studies to compare the performance of the dynamic sampling control

charts with conventional control charts. Our results show that the dynamic sampling

versions of three commonly used SPC charts can monitor big data streams efficiently.
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CHAPTER 1

BACKGROUND

1.1 Introduction

Recent developments in science and technology have given birth to the big data

era in which large volumes of data are consistently being generated from several

sequential processes. From health care, manufacturing and production lines, network

systems, Internet services, E-commerce and so on, the proliferation of data from these

sequential processes has elicited the need to develop innovative methods capable of

monitoring these processes. In most cases, the observations from these processes are

obtained at individual time points, and they can be described as a random sample

from a parametric statistical distribution.

Furthermore, due to the high velocity of observations from these data streams, it

is very likely that the parameter value(s) of the statistical distribution which describes

the data changes from time to time. Thus, these observations can be partitioned in

such a way where different partitions of the data correspond to different parameter

values of the statistical distribution. Take for instance, in the advent of a particular

disease within a specific territory, as time goes on, the prevalence of such disease may

diminish and thus it becomes imperative to estimate the time point such change

in prevalence occurred. More commonly, it is customary procedure for industry

manufacturers to monitor the conformance and quality of products obtained from
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a production line. In this sense, certain quality characteristics of the product from

the routine processes are checked to ensure they meet some desired requirements.

Statistical Process Control (SPC) provides statistical tools which are employed to

visualize patterns, monitor, and detect shifts (changes in parameters and/or statistical

distribution) in a sequential process. The variation in a sequential process can be

attributed to two basic sources − common cause variation and the assignable (special)

cause variation. Common cause variation results from uncontrollable and unavoidable

random variation in a production process which can only be eliminated by changing

the entire process, while assignable cause variations are due to malfunction of certain

components of the sequential process. When the variation in the production process

is due to only common causes, we say that the process is in-control (IC), while if

the source of variation in the process results from any assignable cause, we say the

process is out-of-control (OC). The main idea behind SPC is to monitor the sequential

process and detect when such a system has shifted from being IC to OC.

In the SPC literature, the most efficient procedure for monitoring a sequential

process is the control chart. The control chart is a plot of successive points of certain

quality characteristics on a chart which is bounded by upper and/or lower control

limit(s). The control limit(s) is chosen in such a way where the time to detection

of a shift is reduced and false alarms are mitigated. Figure 1.1 shows a simple

control chart which has the red dashed lines as control limits. The control chart is

quite advantageous for the visualization of the performance of the sequential process,

checking for shifts in the distribution of the sequential process and also understanding

the effects of various interventions made in the process. A control chart gives an OC

signal when one or more points fall beyond certain control limit(s).
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Figure 1.1: A sample control chart with upper and lower control limits depicted by
the red dashed lines.

1.1.1 The Average Run Length

Given the varying underlying assumptions for the implementation of the different

control charts to be presented later, the performance of each control chart varies to

a significant extent. In order to evaluate the performance of the control charts, the

average run length (ARL) has been used extensively in the literature. The run length

of a chart can be defined as the number of process readings considered to be IC before

an OC reading is observed. Thus, the average run length is the expected number of

points plotted on the chart until an OC signal is obtained. An IC ARL, denoted

as ARL0, is the ARL associated with a zero-valued shift (an IC data set is being

analyzed). Since there should be no shift when an IC dataset is analyzed, ARL0

represents the number of observations until a false OC signal is given. In contrast, an

OC ARL, denoted as ARL1 is the ARL associated with a non-zero shift. It represents

the number of observations from the time point at which the shift occurred to the

time point at which the control chart gives a signal. Ideally, when the process is IC,

we want the run length of the process to be long (as large as possible), however, when

the process goes OC, the time to detection should be as short as possible. However,

this desideratum is quite difficult to achieve. This is analogous to the idea behind the
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Type-I and Type-II error probabilities in hypothesis testing. In the SPC literature,

we usually fix the ARL0 at a given level and try to make the ARL1 value as small as

possible. In other words, we fix the false-alarm rate and then minimize the chance of

missing an actual shift.

1.1.2 Phase-I and Phase-II monitoring

Generally speaking, the monitoring of process observations can be categorized into

two phases, the Phase I and Phase II monitoring. Each phase has a distinct objective.

For the Phase-I SPC, data from a sequential process are collected and analyzed in

a backward-looking fashion. This retrospective analysis of the process observations

aims at estimating the distribution of the sequential process and also getting the

control limits for the control charts to be used in subsequent analysis. This is usually

done by understanding the relationship between certain controllable input variables

and the quality characteristics of interest. The controllable input variables are then

set at optimal values and a set of process observations is collected and analyzed with

the trial control limits. If a fault is noticed while monitoring the observations, the OC

observations are investigated and discarded. Then, the input variables are re-adjusted

and a new set of observations is collected and analyzed. This process of fine-tuning

the controllable input variables and constructing control limits is done repeatedly

until all assignable causes of variation have been eliminated, thus making the process

stable, then clean data are obtained from the process.

The primary objective of the Phase-II SPC is to give a signal when there is an

evidence of distributional shifts during the online monitoring of the process. The

Phase-II process begins with the IC process observations and control limits which

were obtained from the Phase-I SPC, and are then used for online monitoring of
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subsequent observations obtained from the quality characteristic of interest. However,

adaptive charts recalculate the control limits as more observations are collected.

In addition, a distributional shift in the sequential process can either be transient

or persistent. If the shift is transient, the process goes OC but thereafter returns to

being IC without any intervention. For persistent shifts, when the process leaves the

IC state, it remains OC or even goes farther away from the IC state until a corrective

intervention is made.

1.2 Traditional SPC charts

The SPC framework has several control charts for detecting several kinds of

distributional shifts in a production process. In this section, we give a brief overview

of some commonly used charts. The control charts discussed here are primarily used

for the Phase-II SPC (in other chapters involving the corresponding charts, the case

for the Phase-I SPC is discussed). Also, we assume that the quality characteristic

of interest is univariate and numeric observations from this quality characteristic are

obtained at equally spaced time points.

Consider the following independent observations obtained from the Phase-II mon-

itoring of the sequential process


X1, X2, .....Xτ ∼ N(µ0, σ

2)

Xτ+1, Xτ+2, ... ∼ N(µ1, σ
2)

where τ is an unknown change point, µ0 and µ1 are the respective IC and OC means

of the process (µ0 6= µ1), and σ2 is the process variance. In order to describe the SPC

charts, we assume that a shift occurs only in the mean of the process. The charts
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to be presented can also be modified to give signals for shifts in the variance and

shifts in both mean and variances of the process. Also, the IC parameters, µ0 and σ2,

are usually unknown and should be estimated in the Phase-I SPC. With the process

defined above, we begin the discussion of the charts.

1.2.1 The Shewhart Control Chart

Developed by Walter A. Shewhart in 1931, the Shewhart chart is a control chart

based on the framework of hypothesis testing. The upper, center and lower control

limits of the Shewhart control chart are defined as

U = µ0 + Z1−α/2 σ; C = µ0; L = µ0 − Z1−α/2 σ (1.1)

where α is the significance level and Z1−α/2 is the (1 - α/2)th quantile of the standard

normal distribution. At time point n, the Shewhart control chart gives a signal for a

mean shift if

Xn < L or Xn > U (1.2)

Due to its simplicity, ease of implementation and interpretation of results, the She-

whart chart has gained a wide range of applications in industrial processes. The chart

has proven to be efficient in detecting large and transient shifts in the mean of the

process, this makes it appealing to the Phase-I SPC where such shifts are usually

encountered.

However, since it disregards historical data when evaluating the performance of the

process it performs poorly in detecting small and persistent shifts in the distribution

of the process. In Chapter 2, we propose ideas to overcome this limitation. Also,
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the Shewhart chart works under the assumption that the process observations are

normally distributed.

1.2.2 The Cumulative Sum Chart

In other to overcome the inability of the Shewhart chart to detect small and per-

sistent in a process, Page [20] proposed the CUSUM chart which uses historical data

to evaluate the performance of the sequential process at each time point. Historical

data may contain vital information about the IC and OC performance of the process.

The charting statistic of the CUSUM chart is based on the cumulative sum of the

observation at the current time point and previous time points. This is given as

Cn =
n∑
i=1

(Xi − µ0) = Cn−1 + (Xn − µ0) for n ≥ 1, (1.3)

where Cn = 0. In order to detect upward and downward shifts in the process, (1.3)

can be written as 
C+
n = max

(
0, C+

n−1 + (Xn − µ0)− k
)

C−
n = min

(
0, C−

n−1 + (Xn − µ0)− k
) (1.4)

The CUSUM control chart gives an OC signal for a mean shift in the process if

C+
n > h or C−

n < −h, for n ≥ 1, (1.5)

where k > 0 is a pre-specified reference parameter, and h > 0 is a control limit

chosen to achieve a desired ARL0 value. The C+
n (C−

n ) resets to 0 whenever there is

an evidence of a shift in the process. Also, the CUSUM chart performs well when
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the process observations are normally distributed. In Chapter 3, we provide more

discussion on the performance and implementation of the CUSUM control chart.

1.2.3 The Exponential Weighted Moving Average Chart

Another chart that circumvents the inability of the Shewhart chart to detect small

and persistent shifts is the EWMA chart. This control chart which was proposed by

Roberts [24] uses historical data to evaluate the performance of the process. The

charting statistic of the EWMA chart is based on the weighted average of observation

at the current time point and previous observations. This is given as

En = νXn + (1− ν)En−1 for n ≥ 1, (1.6)

where ν ∈ (0, 1] is a pre-specified weighting parameter, and E0 = µ0. And to detect

upward and downward shifts in the mean of the process, we write (1.6) as


E+
n = max

(
0, ν(Xn − µ0) + (1− ν)E+

n−1

)
E−
n = min

(
0, ν(Xn − µ0) + (1− ν)E−

n−1

) (1.7)

The chart gives an OC signal for a mean shift if

E+
n > ρU

√
ν

2− ν
or E−

n < ρL

√
ν

2− ν
, for n ≥ 1, (1.8)

where ρL, ρU > 0 is a parameter chosen to achieve a desired ARL0 value. Just like

the CUSUM chart, the EWMA chart performs well for detecting small and persistent

shifts in a process, this makes it suitable for the Phase-II SPC where such shifts are

usually encountered. However, it performs fairly well in most applications where the
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process observations are not normally distributed.

1.2.4 Other SPC Control Charts

From Section 1.1, we notice that for the SPC problem, the univariate process has a

common distribution before a shift occurs (IC distribution) and another distribution

(OC distribution) after the shift occurs at an unknown time point. Change point

detection (CPD) is a research area in the field of statistics that seeks to detect the

specific position at which the distribution of a sequence of random variables changes

from one to another. In the literature of CPD, the sample sizes are usually fixed

and the distributions follow a parametric nature. Since the number of observations

in the Phase-II SPC increases sequentially, change point detection cannot be directly

applied to the SPC problem. However, on going research ([9], [10]) in SPC have

modified CPD methods to handle the SPC problem and thus, CPD charts have been

developed for the detection of distributional shifts in a sequential process.

The measurements from a quality characteristic of interest could be continuous,

discrete or categorical. The charts presented in the previous sections focused on the

case when continuous numerical observations are available. In cases when the quality

characteristic is categorical or discrete but the number of different observations is

small, control charts for categorical quality characteristics exist for monitoring the

process. Examples of these charts include control charts for monitoring the proportion

of non-conforming products of a production process and control charts for monitoring

the number of defects in an inspection unit.

In addition, our description of the control charts in the preceding sections focused

on monitoring of individual observations from a univariate process. In practice,

multiple characteristics of a production unit may be needed to judge the quality
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of the product. Multivariate version of Shewhart, CUSUM, EWMA and CPD charts

exist for detecting shifts in the mean and covariance matrix of the distribution of a

multivariate production process.

Furthermore, for cases where the process observations are correlated, the CUSUM

and the EWMA chart can be modified to handle such scenarios. Also, for monitoring a

process when non-normal data are observed, several non-parametric charts have been

developed. These include rank based non-parametric control chart which is based on

ranking or ordering of information in the observed and non-parametric control chart

by categorical data analysis which is based on observation categorization.

1.3 SPC and Big Data Analysis

A data stream can be simply defined as a constant stream of data flowing from a

particular source. This includes data from a sensory machine, data from complex

industrial and agricultural machines, data from web services or data from social

media websites. In this case, each data is generally timestamped or geo-tagged.

Furthermore, we define a stream as a possibly unbounded sequence of data items

or records. These data items may be independent of each other or correlated with

each other. In this setting, each data item is treated as an individual event in a

synchronized sequence [14].

In the case where we have a sequential process that generates large volumes of

data at a high velocity, the traditional charts presented above may not give optimal

performance for monitoring such process. In this setting, the velocity of the data

influx could be greater than the monitoring time of the SPC chart. Since traditional

SPC charts monitor each and every observation in the process, they may not keep
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up with the pace at which process readings become available and therefore fail to

give a signal for a distributional shift as early as possible. Considering this scenario,

it becomes imperative to design and modify traditional control charts so that the

complexity of monitoring large volumes of data is minimized and the run time of the

monitoring process is reduced.

In order to improve the efficiency of SPC charts for monitoring big data processes,

we use some existing methods in the literature to modify SPC charts. Particularly,

we use p-values to design control charts and with the information obtained from the

p-values, we skip observations that are IC during the monitoring procedure. The

dynamic sampling scheme [15] will be used to determine how many observations are

to be skipped during the monitoring procedure. Despite the goal of reducing the run

time of the charts, we also intend to maintain the ability of the charts in quickly

detecting distributional shifts.

1.4 Overview of Thesis

In this thesis, we primarily focus on the monitoring of independent numeric obser-

vations obtained from a univariate process at consecutive time points. In Chapter 2,

we propose an adaptive Shewhart Chart for detecting small to moderate persistent

mean shifts. We begin the discussion of the dynamic sampling schemes in Chapter 3,

where the existing methodology is described and then implemented in the design

of dynamic sampling Shewhart charts. We propose the dynamic sampling EWMA

chart in Chapter 4. In Chapter 5, we restate the underlying assumptions for the

implementation of the proposed charts and we provide directions for future research

regarding design of SPC charts with dynamic sampling schemes.
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CHAPTER 2

AN ADAPTIVE R-OUT-OF-M CONTROL CHART FOR

DETECTING SMALL AND PERSISTENT PROCESS

MEAN SHIFTS

2.1 The r-out-of-m control chart

It well-known that the Shewhart chart does not perform well in detecting small and

persistent distributional shifts. This is because it does not utilize historical data which

may contain useful IC and OC information during when evaluating the performance of

a production process. In order to increase its sensitivity to small shifts, the Shewhart

chart is usually implemented alongside with several other supplementary criteria.

One notable case discussed extensively in the literature is the accompanying rules

earlier used in conjunction with the Shewhart chart by the Western Electric Company.

To this effect, the Western Electric Company [8] proposed a set of decision rules

for detecting nonrandom patterns on control charts. These decision rules increased

the sensitivity of the Shewhart chart to small shifts, however, Champ and Woodall

[5] studied the ARL performance of these rules and showed that they are usually

suboptimal, in the sense that there is an increase in the number of false alarms when

these rules are employed. For instance, the simultaneous use of the decision rules

yields an IC ARL of 91.75 which is significantly lower than 370.4 of the standard



13

Shewhart chart.

To overcome the problem of the increase in the false alarm rate of the sensitivity

rules, Klein [13] proposed two alternative schemes based on the standard runs rules.

In the first scheme called the two-of-two scheme, the control chart gives an OC signal

if two successive points plot above (below) an upper (lower) control limit. In the

second scheme, called the two-of-three scheme, the control chart gives an OC signal

if two of three successive points plot above (below) an upper (lower) control limit.

The control limits for these schemes are symmetric and were estimated in such a way

that the schemes have the same IC ARL as that of the standard Shewhart chart. His

study shows that both schemes have better ARL1 performance than the Shewhart

chart for process mean shifts up to 2.6σ and they can be easily implemented.

In another study, Khoo [12] noted that obtaining the control limits for the two-of-

three scheme proposed by Klein would be difficult for quality control engineers and

thus proposed a more user-friendly approach. Khoo expounded on Klein’s approach

by using a simulated study to evaluate the performance of various schemes. In this

setting, the analyst chooses a pre-specified ARL value for a zero-mean shift, and then

obtain the control limits from the simulated values using less tedious steps. Khoo

studied the 2-of-2, 2-of-3, 2-of-4, 3-of-3, and 3-of-4, amongst which he concluded that

the 3-of-4 had the best ARL performance for small to moderate process mean shifts.

Antzoulakos and Rakitzis [1] further improved the schemes discussed above and

proposed the modified r-out-of-m (M: r/m) scheme. The ARL performance of the

modified r/m scheme outperforms the standard Shewhart chart and both methods

presented by Klein [13] and Khoo [12] for process mean shifts up to 2.6σ. However,

the standard Shewhart chart performs better for process mean shifts above 2.6σ. In

this setting, for r < m, the control chart gives an OC signal if r points plot above
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(below) the upper (lower) control limit which are separated by at most (m−r) points

placed between the center line and the upper (lower) control limit. They suggested

that the M: r/5 scheme were more reliable for detecting small to moderate process

mean shifts.

Despite the good performance of these schemes in detecting small mean shifts,

they do not perform well in detecting persistent mean shifts because of their inability

to use sufficient history data during the monitoring procedure. In the case when the

sequential process is IC, and additional less severe and persistent assignable causes,

shift the process away from the IC mean in an intermittent but yet consistent manner,

the modified schemes are not capable of detecting such irregular shifts. For instance,

suppose we begin the Phase-II SPC monitoring with the M: 4/5 scheme, this scheme is

primed to detect small shifts of about 0.2σ. So in the sequel considerations presented,

we assume that the average shift size is not above 0.2σ. At time point t, the scheme

looks back through (t − 5) + 1 observations to check for observations that are OC

within this window. However, if there are less than 4 OC observations (either in the

upper or lower region) within any window, the scheme will fail to give an OC signal.

Consider Figure 2.1(a), at time point t = 5, notice that the chart will not give

an OC signal despite the fact that the observations at t = 2, 3, 4 are all OC. In this

case, the process keeps on running and the M: 4/5 scheme fails to give any OC signal

despite significant sequence of shifts around time points 2 to 4, 8 to 9, and 14 to 17.

Still consider the moving window of size 5, with intermittent shifts which occur

in a persistent fashion within the process. Consider the sequential process which is

visualized in Figure 2.1(b), it is easy to see that there is a consistent pattern at which

the process goes OC after every two time points. Again, the M: 4/5 scheme will not

give an OC signal if the process continues running in this fashion.
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Figure 2.1: Two Shewhart control charts (a) and (b) which illustrate the inability
of the M: 4/5 scheme to give signals for persistent shifts.

The illustration presented in Figure 2.1 can be generalized to other M: r/m

schemes. It may be argued that a simultaneous combination of several M: r/m

schemes can be used to detect such persistent shifts, even though this is plausible,

this approach would be hindered by the problem of an increase of false-alarms. Fur-

thermore, the M: r/m scheme will require prior knowledge of the shift size before any

specific scheme can be employed, this may also hinder its usage since the magnitude

of the shift size to be encountered in the process is usually unknown in most cases.

In this Chapter, we propose an adaptive r-out-of-m control chart, in which the

values of r and m are chosen adaptively. We show that the chart will detect small

to moderate persistent mean shifts and efficiently estimate the shift positions in the

sequential process.

We acknowledge that our approach will be more suitable for individual obser-

vations rather than group data. This is because, since we intend to detect mean

shifts for process observations where the quality characteristic of the product changes

slowly over time, samples taken consecutively or very close in time would be virtually

identical, apart from measurement or analytical error.
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2.2 Description of the adaptive r-out-of-m control chart

Suppose

Xi ∼


N(µ0, σ

2) if i ≤ τ

N(µ1, σ
2) if i > τ

where µ0 6= µ1, τ is an unknown shift position and Xi’s are independent observations.

In order to detect small to moderate persistent shifts in the mean of a production

process, we use an adaptive sampling procedure. In this sense, we adaptively select

r-out-of-m process observations that plot beyond certain control limits. Here, the

maximum value of m is set in advance and then, we use an adaptive procedure to

obtain the values of r {r ≤ m} at each time point. The Shewhart control chart

consists of three regions − the region above the upper control limit, the region below

the lower control limit and the region between the two control limits. In this case, we

separately consider points that plot in the region above the upper control limit and

the points that plot in the region below the lower control limit. We consider points

that plot within the control limits to be IC. At each time point t, when m {m ≤ t}

observations have been obtained, let us call the number of points that plot in the

region above the upper control limit r1, and the number of points that plot in the

region below the lower control limit r2.

Given a preset maximum value of m, we begin monitoring the process in a

retrospective fashion. Thus, at each time point t, for each unit increase from 1

to m, we obtain the values of r1(r2) that plot beyond the upper(lower) control limit.

Also, for each value of r1(r2) obtained at time point t, we compute the probability of

observing a more extreme value of r1(r2) given that the process is IC. By statistical

convention, this probability is the p-value.



17

Figure 2.2: A Shewhart control chart of individual data points collected at equally
spaced sampling intervals from time point t = 1, ..., 20. This chart is used to illustrate
the mechanism of the adaptive r-out-of-m scheme at t = 20.

Let us define the random variables X1 and X2 to be the number of points that

plot beyond the upper and lower control limits respectively. Following the assumption

that the process observations are independent, it is easy to see that we can model the

adaptive r-out-of-m scheme by a binomial probability distribution with parameters

m and probability of success α̃, where α̃ is the probability of observing a point beyond

the control limit given that the process is IC.

The adaptive r-out-of-m control chart will give an OC signal at time point t if

the minimum of the set of p-values for different m obtained for r1(r2) is less than a

threshold value γ. This threshold value γ is obtained in such a way where a pre-fixed

ARL0 value is achieved. For instance, consider the process which is visualized in

Figure 2.2. In order to illustrate the mechanism of the adaptive r-out-of-m scheme,

we present the details of the scheme when it gets to time point t = 20. Here, we

assume that α̃ = 0.1, and we set the maximum value of m to be 10. The simulated

series is displayed in Table 2.1. At time point t = 20, we begin checking for points

that plot beyond either control limits in a retrospective manner. For increasing values
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of m, the minimum p-values associated with the respective random variables X1 and

X2, indicate an extreme case.

From Table 2.1, when m = 4, r1 = 3. The p-value at such instance is computed

as

P1 = P (X1 ≥ r1) = 1− P (X1 ≤ (r1 − 1)) = 1−
r1−1∑
k=0

(
m

k

)
α̃k(1− α̃)(m−k)

P (X1 ≥ 3) = 1−

{(
4

0

)
(0.1)0(1− 0.1)(4−0) +

(
4

1

)
(0.1)1(1− 0.1)(4−1)

+

(
4

2

)
(0.1)2(1− 0.1)(4−2)

}

= 1− {0.6561 + 0.2916 + 0.0486} = 0.004

From Table 2.1, it is easy to see that 3-out-of-4 and 3-out-of-10 OC observations

correspond to the minimum p-values in the upper and lower regions respectively.

Thus, the control chart will give an OC signal at this time point if either of the

minimum p -value is less that the pre-fixed threshold value γ.

This process is repeated at each time point and the scheme gives an OC signal when

the minimum p-value for either the upper or lower region is less than the pre-fixed

threshold value γ. In this illustration, the maximum value of m was chosen to be 10,

however, depending on the nature of the process and the extent to which persistent

shifts are to be determined, m can be chosen to be smaller or larger. When the

analyst aims to detect long-staying persistent shifts, m should be large because the

scheme will need sufficient history to detect such shifts. Otherwise, setting m = 10

should be sufficient for detecting persistent shifts. Either ways, the value of m will

influence the run time of the process.
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Table 2.1: r1, r2, and m alongside their corresponding p-values for the process
depicted in Figure 2.2. This illustrates the mechanism of the adaptive r-out-of-m
chart at time, t = 20.

m r1 P(X1 ≥ r1) r2 P(X2 ≥ r2)
1 1 0.100 0 1.000
2 2 0.010 0 1.000
3 2 0.028 0 1.000
4 3 0.004 0 1.000
5 3 0.009 0 1.000
6 3 0.016 0 1.000
7 3 0.026 0 1.000
8 3 0.038 1 0.570
9 3 0.053 2 0.225
10 3 0.070 3 0.070

In the subsequent sections, we provide pseudo codes when using the adaptive

r-out-of-m control chart, particularly for detecting OC signals, estimating the ARL0

values and obtaining the threshold value γ for some certain ARL0 values.

2.2.1 Pseudo Code for detecting an OC signal

Let α̃ be the pre-specified probability of observing a point beyond the control limit

given that the process is IC. Also, let γ be the pre-specified threshold value which is

chosen to achieve a given ARL0 value. Let n be the number of observations in the

sample and m the number of most recent observations we wish to consider. In the

i-th iteration, for m ≤ i ≤ n,

Step (1) • In the j-th iteration, for 1 ≤ j ≤ m, obtain the number of points, r1j,

that plot above the upper control limit, and the number of points,

r2j, that plot below the lower control limit.

• Compute the p-value for both r1j and r2j, which is given
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P1j = P (X1 ≥ r1j) = 1− P (X1 ≤ (r1j − 1))

= 1−
r1j−1∑
l=0

(
j

l

)
α̃l(1− α̃)(j−l)

P2j = P (X2 ≥ r2j) = 1− P (X2 ≤ (r2j − 1))

= 1−
r2j−1∑
l=0

(
j

l

)
α̃l(1− α̃)(j−l)

Step (2) If min(P1j, j = 1, 2, ...,m) < γ or min(P2j, j = 1, 2, ...,m) < γ, print out

the values of i together with the corresponding values of r and m, and stop

the algorithm. Otherwise, i = i+ 1, and return to step (1).

For the adaptive scheme, the control limits will be determined by the value of α̃.

For instance, α̃ = 0.0027 yields 3-sigma control limits. In the case of the standard

Shewhart chart, the value of α̃ determines the ARL0 value, where ARL0 = 1
α̃

. Here,

the run length of the process follows a geometric distribution with parameter, α̃.

However, since the proposed adaptive scheme follows some other criteria for giving

an OC signal, the ARL0 is computed differently. In the literature, the Markov chain

approach has been extensively used to obtain the ARL0 values for several runs rules.

However, considering the fact the scheme proposed in this study follows an adaptive

nature and the value of m may vary (it could be large), we resort to simulation

for estimating the ARL0 value. Certainly, computational complexities will arise if

we compute the ARL0 value using the conventional Markov chain approach. This

is because there will be too many transient states in the Markov chain, thus the

transient space may be totally large and out of computation ability.

In this study, Monte Carlo simulations are used to estimate the ARL0 value. We

notice that this procedure is more efficient and allows for numerical experimentation
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to understand several properties of the ARL. The algorithms given in Sections 2.2.2

and 2.2.3 closely follow the methods described by ([21], page 127 and 129). Sec-

tion 2.2.2 provides a stepwise process to compute the ARL0 value.

2.2.2 Pseudo Code to Compute an Estimate of the ARL0 Value

Let R be the number of replicated simulations. In order to obtain stable values,

this number should be a large positive integer. Specify the values of α̃ and γ. In the

g-th replicated simulation for 1 ≤ g ≤ R,

Step (1) Generate n observations from N(0, 1)

Step (2) Compute the run length RL(g) by the following loop; for m ≤ i ≤ n

• Compute the necessary values from Section 2.2.1.

• From step (ii) in Section 2.2.1, if min(P1j, j = 1, 2, ...,m) < γ or

min(P2j, j = 1, 2, ...,m) < γ, which indicates an OC signal, set

RL(g) = i and break out of the loop; otherwise, let i = i + 1 and

continue the loop.

Step (3) Proceed to g = g + 1, and return to step (1) until R is reached.

Step (4) The ARL0 is the average of R run length values. i.e ARL0 =
∑R
g=1RL(g)

R
.

In subsequent sections, we provide some interesting properties of the ARL0. Nonethe-

less, we see that the ARL0 value depends on the threshold value γ. Thus, it becomes

imperative to obtain the threshold value which will yield a certain ARL0 value. We

utilize the bisection method to search for the threshold value which reaches the

expected ARL0 to a certain accuracy. The algorithm presented in Section 2.2.3 below

describes the step-wise procedure for the search.
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2.2.3 Pseudo Code to Search for the Threshold Value

Let A0 be the pre-specified ARL0 value and let [γL, γU ] be the interval from

which the threshold value, γ is searched. Let ρ > 0 be a small number denoting the

estimation accuracy of the search. Set R to be the number of replications used in

obtaining the run length of the process. Set M to be the number of required iterations

for the search, and then for 1 ≤ j ≤M perform the following steps iteratively.

Step (1) Compute γ = (γL + γU)/2. Using γ

• For 1 ≤ g ≤ R, compute the run length, RL(g).

• Set ARL0 = mean(RL)

Step (2) If the ARL0 value obtained from step (1) lies in the interval [A0−ρ, A0+ρ],

stop the algorithm. Thus, the value of γ obtained from step (1) is the

searched value. Otherwise, set


γL = γL; γU = (γL + γU)/2 for ARL0 > A0

γL = (γL + γU)/2; γU = γU for ARL0 < A0

continue to j + 1, and return to step (1).

If the algorithm does not stop before or at M -th iteration, then the value of the ARL0

obtained still lies outside the interval [A0−ρ, A0 +ρ]. Thus, the estimation accuracy

specified by ρ cannot be reached.

In order to choose optimal starting values (γL and γU) for the search, we make sure

that the pre-specified value, A0, lies well in the interval of ARL0 values obtained when

γ = γL and γ = γU , respectively. Otherwise, the computation would be expensive.



23

The magnitude of the estimation accuracy ρ should be small, a number in the interval

[0, 1] is usually chosen.

2.3 Performance of the r-out-of-m scheme

Large values of α̃ and γ will detect small and transient shifts in the process. In

this setting, the control limits will be constricted and the scheme frequently yields

small combinations of r-out-of-m observations that plot beyond the control limits

such as 1-out-of-2, 2-out-of-2, 2-out-of-4, and 2-out-of-5. Since the resulting p-values

will be small and may be often less than the threshold value, the ARL performance

of the process will be poor, and thus there will be substantial false alarms. However,

the adaptive scheme is advantageous in the sense that we can reduce the threshold

value in order to detect persistent shifts and also reach some larger ARL values. In

a similar fashion, small values of α̃ are primed to detect large and transient shifts.

Also, the value of the threshold can be set to achieve certain ARL values and detect

long-staying shifts in the process.

Furthermore, from numerical experimentation shown in Table 2.2, we observe

that the maximum value of m chosen for the r-out-of-m scheme does not have a

substantial impact on the ARL performance. Given the values of α̃ and γ, we see

that the variation in the ARL0 values for increasing values of m is very minimal.

Table 2.2: ARL0 values obtained for several maximum values of m used in the
adaptive r-out-of-m scheme. In this case α̃ = 0.1 and γ = 0.01.

m 5 7 10 12 15 20 25 30
ARL0 800.9 798.6 738.2 741.0 739.6 742.0 732.0 743.3

To detect transient shifts in the process, it will be ideal to set m to be at most
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5 because such shifts will only require information around the current time point.

While for persistent shifts, m should be set to at least 10, because such shifts will

require sufficient history data.

Next, we investigate the ARL performance of a process whose distribution is N(0,

1). In this setting, we select α̃ = 0 and γ is chosen from the interval [0, 0.1]. The

obtained ARL0 values are displayed in Figure 2.3. From this process, we observe

that as γ increases, the ARL0 value decreases. Furthermore, notice the jumps in the

ARL0 values displayed in Figure 2.3, the gaps grow farther apart when the γ is small.

In this setting, we discovered that certain ARL0 values will not be achieved when

the adaptive scheme is employed. This is one limitation of the adaptive r-out-of-m

scheme, in subsequent sections, we provide a detailed discussion of this limitation and

a potential approach to overcome it.

In addition, we present the threshold values obtained for some commonly used

ARL0 values in Table 2.3. For this illustration, the maximum value of m is set to be

10, and we assume that the process is N(0, 1). Notice that for some slight change

in γ, especially when this value is small, there seems to be significant jumps in the

resulting ARL0 values.

2.4 Limitations of the Adaptive r-out-of-m Scheme

From the description of the adaptive r-out-of-m chart provided earlier, we indi-

cated that at each time point t, the minimum of a set of p-values is compared to

a pre-fixed threshold value γ. That is, if min(Pt1j, j = 1, ..,m) or min(Pt2j, j =

1, ..,m) < γ, then the control chart gives a signal. Once r and the maximum m are

fixed, possible p-values at each time point are discrete. For instance, suppose at time
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Figure 2.3: ARL0 values obtained for a process whose IC distribution is N(0, 1),
the threshold value γ ranges from 0 to 0.1 and α̃ = 0.1

point t, we obtained 3-out-of-5, and 3-out-of-6 when m = 5 and 6 respectively. There

will be a jump in the resulting p-values for both cases because of the discrete nature

of r and m. So, when the maximum value of m is fixed, we can only attain certain

p-values for different combinations of r and m. Since we are checking if the minimum

of these p-values is less than γ, there will be substantial impact of the discreteness of

the charting statistic on the performance of the chart, i.e. the ARL0. This limitation

is presented in the graph displayed in Figure 2.3. This explains why we may not be

able to obtain specific ARL0.

Since specific ARL0 values may be desired by practitioners using SPC charts, this

limitation may pose a challenge to its usability and acceptance. If the threshold value

required to reach some specific ARL0 values cannot be computed, such monitoring

process cannot be evaluated effectively. One possible way to avoid this issue is to use

some kind of randomized comparison between the minimum p-values and γ. In this

sense, we use the threshold γ ± ε, where ε follows some statistical distribution with

zero-mean. Thus, rather than comparing the minimum p-value with a fixed number
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Table 2.3: Computed threshold values, γ of the adaptive r-out-of-m scheme de-
scribed in Section 2.2 for some commonly used ARL0 and α̃ values. * denotes that γ
could not be obtained for such combination of ARL0 and α̃

α̃
ARL0 0.1 0.05 0.01 0.0027

50 0.1 * * *
100 0.0486 * 0.8999 *
200 0.0141 0.03277 * *
370 * 0.01054 * 0.1125
500 * 0.00724 * *
750 0.01 * * *
1000 0.00856 0.000110 0.00307 0.0027

γ, we compare it with a random number γ ± ε. Indeed, more research is needed in

this area to address the issue of the discreteness in the model which prevents certain

ARL0 values from being achieved.
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CHAPTER 3

DYNAMIC SAMPLING SCHEMES

3.1 Introduction

In Section 1.2, we introduced some commonly used SPC charts. The traditional

versions of these charts are designed to monitor each and every observation during

the monitoring procedure.

Suppose we aim to know whether our process is likely to yield a distributional shift

in the near future. Then, a numerical measure that takes the state of the process

at the current and previous time points into account would be ideal for determining

the possibility of such shift. Even though the charting statistics of traditional charts

provide information about the performance of the process at the current time point

and at previous time points, they do not provide necessary information about the

performance of the process in the near future. Furthermore, visual representations

of the charting statistics may not be an ideal indicator of a possible shift in the

distribution of the process, because in many cases the charting statistics rests on the

assumption that the process observations are independent. Li et al. [16] proposed

using p-values to design SPC charts. In this regard, at each time point during

the Phase-II SPC, the p-value of the observed charting statistic is computed under

the assumption that the process is IC. The control chart gives an OC signal if the

computed p-value is less than a pre-specified level of significance, α. The p-values
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provide information about the potential of a distributional shift in the process. In

this sense, the information obtained from the p-value at each time point can be used

to adjust the sampling scheme of the monitoring process. That is, the sampling time

and the sampling size of the next sample will be dependent on the magnitude of the

p-value of the charting statistic at the current time point. This approach enables

the practitioner to make informed decisions when handling future observations. For

instance, if the p-value is much larger than α, this provides sufficient evidence that

the process is likely to be stable at such time point.

In this context, since subsequent sampling decisions will be dependent on this

numerical measure, variable sampling rates (VSR) rather than conventional fixed

sampling rates (FSR) − which depends on fixed time intervals or sample sizes −

will be incorporated in the design of traditional SPC charts. The VSR is somewhat

analogous to the adaptive SPC control chart, a control chart in which either the

sampling interval or the sampling size (or both) can change depending on the value

of the charting statistics [18]. As discussed in the literature, one notable advantage

of the VSR over the FSR is that, given the IC ARL0 and the IC average sampling

rate, the VSR has good performance in detecting small to moderate shifts.

The VSR scheme depends on several features which are changed according to state

of the process at the current time point. A typical VSR scheme would depend on

either the variable sampling interval (VSI), the variable sampling size (VSS) or both

variable sampling interval and variable sampling size (VSSI).

During the Phase-II SPC, if a sample point plots beyond the warning limits, the

control chart with the VSI is designed to wait lesser than usual before observing the

next batch of observations, while for the VSS case, the next batch is set to be larger

than usual. The control chart with VSSI combines both methods when a sample point
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plots beyond the control limits. On the contrary, if the sample point plots within the

central region, the control chart with the VSI delays the next batch, and for the VSS

chart, fewer observations are taken in the next batch. In this case, the VSSI combines

both methods again [7].

While taking into account the potential shift size in a process, several researchers

have suggested a variety of methods to adaptively control subsequent sampling times

during the Phase-II SPC. The VSI schemes were introduced by Reynolds et al. [23],

and were also implemented in the X̄ chart. Reynolds et al. [22] also proposed VSI

schemes for CUSUM charts. In this case, the sampling interval, d(·), is defined to

equal either one of two values (d1 or d2) based on the membership of its charting

statistic in a specific region defined by its control limits. More recently Li and Qiu

[15] proposed the dynamic sampling interval scheme which is defined as a continuous

function of the p-value of a charting statistic. These sampling interval schemes form

the framework of some VSI control charts used for the detection of potential but

unknown mean shifts in the distribution of a production process. The VSI schemes

allow the sampling time to be changed according to the current state of the process

readings.

Luo et al. [17] implemented the VSI scheme proposed by Reynolds et al. [22]

in their design of a VSI adaptive CUSUM (VSI-ACUSUM) chart. Li and Qiu [15]

implemented the dynamic sampling scheme in the design of the dynamic sampling

CUSUM (DyS-CUSUM) chart. These charts have shown to have good performance,

that is, they detect unknown shifts quicker than traditional charts. For comparison,

while the VSI-ACUSUM chart uses the conventional VSI scheme which takes two

possible values, the DyS-CUSUM chart employs the dynamic sampling scheme. Also,

the VSI-ACUSUM chart uses the conventional control limits in its design while the
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DyS-CUSUM chart uses the p-value of the CUSUM chart in its design. However, both

VSI-ACUSUM and DyS-CUSUM charts use the adaptive selection of the reference

value of the CUSUM chart which was developed by [26].

Numerical studies shown in [15] shows that in general, the DyS-CUSUM chart

has the advantage of quickly detecting certain shift sizes when compared to the

VSI-ACUSUM chart. This means that the dynamic sampling scheme has better

performance than the conventional 2-interval sampling scheme. Thus, our study

focuses on the incorporation of the dynamic sampling schemes in other conventional

SPC charts. We emphasize this method because of its computational efficiency and

optimal performance when handling different shift sizes.

Among popular SPC charts with a fixed ARL0 value, the CUSUM chart has

optimal performance − the lowest ARL1 − for detection of distributional shifts

in a production process that is normally distributed if the reference value k of its

charting statistic is chosen properly for a particular shift size [19]. Nevertheless,

if the production process follows some other distribution that is not normal, the

CUSUM chart does not perform well in detecting distributional shifts. Specifically, the

CUSUM chart is sensitive to the assumption that both the IC and OC distributions

of the sequential process are normally distributed [6]. In most real-world applications,

the distribution of the production process is usually unknown, hence it becomes

imperative to derive dynamic sampling schemes for other control charts which are

robust to the normality assumption.

In the next section, we provide a brief overview of the dynamic sampling scheme

for the CUSUM chart proposed by Li and Qiu [15].
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3.2 The Dynamic Sampling Scheme for the CUSUM chart

We begin the discussion with the design of the CUSUM control chart using p-

values. For this design, let us assume that the IC process distribution is known. Li

et al. [16] provide a rigorous discussion of this design which is presented below. The

p-value of the charting statistic of the CUSUM chart is described as follows.

Suppose we have a sequence of independent Xi observations from a production

process, where


X1, X2, ..., Xτ ∼ N(µ0, σ

2), if the process is IC

Xτ+1, Xτ+2, ... ∼ N(µ1, σ
2), if the process is OC

where τ is an unknown change point in the mean of the process, and µ0 6= µ1, and

σ2
0 = σ2

1 = σ2. Then as shown in (1.4), the charting statistic of the conventional

CUSUM chart for detecting an upward mean shift is defined by


C+

0 = 0

C+
n = max(0, C+

n−1 + (Xn − µ0)− k)

(3.1)

If reference parameter k is chosen as (µ1− µ0)/2 = δ/2, then the chart is optimal for

detecting the particular shift µ1. The chart gives a signal of an upward mean shift

when

C+
n > h (3.2)

where h > 0 is a control limit chosen to achieve a given ARL0 value. The p-value of
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the charting statistic of the CUSUM chart is described as follows. Let C+∗
n be the

observed value of the charting statistic C+
n , then the p-value at the n-th time point

is defined by

PC+∗
n

= P (C+
n > C+∗

n ) (3.3)

We would conclude that the process has gone out-of-control at the n-th time point if

PC+∗
n
< α (3.4)

Otherwise, we say that the process is still IC. The analogy follows much from the

classical statistical test of hypothesis, where the null hypothesis that the process

is IC is rejected if the p-value is less than a significant level α. As stated in the

Section 3.1, this approach has some pivotal benefits. Specifically, the p-value informs

the practitioner of the likelihood of a potential shift in the distribution of the process.

This information would be a beneficial tool for adjusting the next sample and also

for taking subsequent actions. In the case when the p-value is much larger than

the significant level α, this signifies that the process is still very much in control

and thus we would want to delay the time of observing the next sample or collect

less observations at the next regular time. In contrast, when the p-value is much

lesser than α, this indicates that the process must have gone out-of-control, thus,

the process should be stopped immediately. In the case where the p-value is only

marginally less than or marginally greater than α, we would want to observe the next

sample sooner than usual. Therefore, we notice that subsequent actions is dependent

on the magnitude of the p-value. With this in mind, how does the practitioner decide

how long to delay the process when the p-value is greater than α or how soon to

observe the next sample when the p-value is only marginally greater than or less than
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α? The waiting time to observe the next sample is dependent on the sampling interval

function d(·). Logically, the d(·) should be an increasing function of the p-value, that

is, d(·) increases as PC+∗
n

increases. We proceed by describing the sampling interval

function proposed by Li and Qiu [15]. Their sampling interval function is chosen from

the Box-Cox transformation family and is defined as

d(PC+∗
n

) =


a+ bP λ

C+∗
n

if λ > 0

a+ b log(PC+∗
n

) if λ = 0,

(3.5)

Next, we review the methods used to estimate the parameters of the model above. But

before then, we know that the ARL is commonly used to evaluate the performance of

the traditional SPC charts which have fixed sampling rates. Thus, when these charts

are employed, the (FSR) sampling interval is usually constant. For the variable

sampling rate (VSR) control chart, the ARL would not be an idealistic measure of

performance of the chart since sampling interval in this setting varies over time. In

the literature, two widely used performance measures are usually employed. These

are the average time to signal (ATS) and the adjusted average time to signal (AATS).

The ATS is defined as the expected value of the time interval from the start of the

Phase-II process monitoring to the time when a chart gives an OC signal. While the

AATS is defined as the expected value of the time interval from the occurrence of

a shift to the time when the chart gives an OC signal. As in the case of the FSR

schemes, the chart with a larger IC ATS will have lower false alarm rate, and the

chart with the smallest OC AATS will perform best for detecting a specific shift size.
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3.2.1 Estimation of Parameters

In order to estimate the parameters a, b, and λ in the sampling interval d(·), Li

and Qiu [15] carried out several simulation studies to obtain optimal values for these

parameters. The authors primarily used the AATS1 as a measure of the performance

of the control chart for detecting several shift sizes. In this section, we provide a brief

overview of the results provided by the authors.

For their numeric experimentation of the parameter a, the authors chose a to be

in interval [0, 1], negative values of a, could result to negative values for the sampling

interval. Also, when λ > 1, d(PC+∗
n

) would be consistently larger than 1 if a > 1.

This would not be ideal when a potential shift has been observed. When λ = 0, a

was chosen to be 1, and when λ > 0, a was chosen to be 0. Using the information

from the selection of a, it was shown that the performance of the scheme is almost

identical when λ ≥ 2. Thus, the authors chose λ = 2. With these chosen parameters,

the sampling interval, d(PC+∗
n

), now becomes

d(PC+∗
n

) = b · P 2
C+∗
n

(3.6)

The parameter, b, which can be determined to satisfy the requirement that ATS0

= ARL0, is selected as an integer multiple of the smallest time unit in a specific

application, and thus, the sampling interval needs to be rounded when necessary.

Furthermore, the reference value k of the CUSUM chart is selected adaptively

using the method proosed by Sparks [26]. At each time point, k is chosen according

to the estimated shift size. A brief description of the scheme is given here. The

estimator of a potential mean shift at the current time point is given as



35

δ̂n = max
{
δmin, (1− r)δ̂n−1 + r(Xn − µ0)

}
(3.7)

where δmin > 0 is the minimum shift size of interest, δ̂0 = δmin and 0 < r < 1 is a

weighting parameter. Define kn = δ̂n/2, and the resulting charting statistic becomes


C+

0 = 0,

C+
n = max(0, C+

n−1 + (Xn − µ0 − kn)/hn),

(3.8)

where hn > 0 is a control limit. In order to approximately reach a pre-specified ARL0

value, Shu and Jiang [25] provided the following formula to compute the control limit

hn =
log(1 + 2k2

n · ARL0 + 2.332kn)

2kn
− 1.166 (3.9)

These authors provide some practical guidelines for choosing the parameters δmin and

r, and also showed that the CUSUM chart with adaptive selection scheme shown

above performs well in various cases.

3.2.2 Calculating the p-values

In order to compute the p-value, PC+∗
n

, it is imperative to specify the distribution

of the CUSUM charting statistic, C+
n . Here, two common cases are usually considered

− when the IC process distribution is either known or unknown. For the case when

the IC process distribution is known, Monte Carlo simulations have been used in the

literature to estimate the IC distribution of C+
n . In this setting, random observations

are generated from the known distribution, then these observations are used to

estimate the IC distribution parameters of C+
n . These parameters are then used

to compute the p-value of the charting statistic as if the IC distribution is known.
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When the IC process distribution is unknown, availability of an IC dataset would

be handy in estimating the distribution of C+
n . In this setting, the bootstrap approach

is another alternative for estimating the IC distribution of C+
n . Thus, resampled data

are repeatedly drawn from the available IC process data, and these resampled data

are then used to compute C+
n . This process is repeated as much as B times, after

which the B number of C+
n are used to compute the p-values of the observed charting

statistic, PC+∗
n

, in the Phase-II SPC.

Using Monte Carlo simulations, Li and Qiu [15] further showed that their control

chart with the adaptively selected reference value kn has the steady-state property

for n ≥ 50. By steady-state, we mean that as the shift time τ increases, the value

of AATS1 remains quite stable. In general, the control chart given in (3.8) with the

sampling interval (3.6) is called the dynamic sampling CUSUM chart (DyS-CUSUM).

As stated earlier, we adopt the dynamic sampling approach for monitoring big

data processes because it shows to have the best performance in the class of VSI

schemes. From this point, we begin the design of other traditional SPC charts using

dynamic sampling schemes.

3.3 The Dynamic Sampling Scheme for the Shewhart Con-

trol Chart

In Section 1.2.1, we introduced the Shewhart control chart. Before we begin the

discussion regarding the integration of the dynamic sampling scheme in the Shewhart

chart, we further discuss its application in the Phase-I and Phase-II SPC.
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3.3.1 The Phase-I SPC

In this Phase, we present an overview of the design of the control limits. Suppose

we are have an independent sequence of Xi {i = 1, ..., n} observations with unknown

change point τ . Let µ0 denote the IC mean and σ denote the IC standard deviation

of the process. In this case, we assume that a shift is observed only in the mean of the

process, whereas the variance remains stable. Typically, the Shewhart control chart is

commonly used when batch data are observed. Nevertheless, under mild adjustments

of the charting statistic, the chart can be used to monitor individual observations.

In order to employ the control limits of the traditional Shewhart chart to monitor

individual observations, we bin the observations into groups using a moving window

technique with window size w and a total of n− w − 1 groups. Thus, we have

Group 1: X1, ..., Xw

Group 2: X2, ..., Xw+1

...

Group n− w − 1: Xn−w+1, ..., Xn

Several researchers [21] advise against grouping the observed data in such a way where

the first group consists of the first w̃ observations, the second group consists of the

next w̃ observations, and so on; where w̃ > 1 is the group size. In this context, it will

be difficult for the practitioner to pinpoint the exact time at which the process went

OC. Another limitation of this approach is that, the exact ARL0 value which is used

to evaluate the performance of the control chart becomes speculative since the exact

OC timepoint is difficult to obtain.
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Evaluating the performance of the process at each time point can be constructed

as a test of hypothesis problem. That is, we test the following hypothesis

H0 : µ = µ0; H1 : µ 6= µ0

where µ denotes the true process mean. Thus, an appropriate test statistics for this

hypothesis is given as

Z =
Xi − µ0

σ
∼ N(0, 1) (3.10)

Given the observed value of the test statistic |Z∗|, the null hypothesis is rejected at

a pre-specified level of significance α if

|Z∗| > Z1−α/2

where Zα/2 is the α/2 critical value of the standard normal distribution. Thus, in this

setting, given the observed data at time point i, the process is said to OC if

Xi < µ0 − Z1−α/2 σ or Xi > µ0 + Z1−α/2 σ (3.11)

In practice, the IC mean µ0 and standard deviation σ are usually unknown. Given

the observed values from the process, we estimate the IC mean as

µ̂0 = X̄ =
1

n

n∑
i=1

Xi (3.12)

In order to estimate σ, we know from statistical theory that the sample standard

deviation s is a biased estimate of the population standard deviation σ. According
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to Kenney and Keeping [11], this bias depends on w, and thus we have

E

(
1

d3(w)
si

)
= σ (3.13)

where si is the sample standard deviation of each moving window with size w, and

d3(w) is a constant that corrects for the bias, and its expression is given as

d3(w) =


2(v−1)(2v−2(v−2)!)2

(2v−3)!

√
2

π(2v−1)
if w = 2v

(2v−1)!
2(2v−1(v−1)!)2

√
π
v

if w = 2v + 1

notice that 3 ≤ w < 170, otherwise, d3(w) does not exist. Therefore, we have that

the estimate of σ is

σ̂ =
s̄

d3(w)

where s̄ = 1
n−w+1

∑n−w+1
i=1 si. Some researchers have also used the range of each batch

to estimate σ, however we prefer the sample standard deviation, because for large

batch sizes, the range loses statistical efficiency when it is used to estimate σ [18].

Since we have adequate computational resources and w will be mostly large, it is

natural to use to the sample standard deviation. Thus, given the estimated parame-

ters and by rewriting (3.11) the Shewhart control chart for individual observations is

given as

U = X̄ + Z1−α/2 σ̂; C = X̄; L = X̄ − Z1−α/2 σ̂

and the control chart gives an OC signal if
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Xi < L or Xi > U (3.14)

With this modification, the process observations are usually assumed to follow a

normal distribution. Borror, Montgomery, and Runger [3] studied the performance of

the Shewhart control chart for individual observations when the process observations

are not normally distributed. Their study showed that if the process follows some

other distribution, then the control limits presented in (3.14) could be inappropriate.

Specifically, suppose the IC process follows a non-normal distribution such as the t

distribution, Exponential distribution or any other distribution with a long right tail,

we notice that the ARL performance for these processes are poor. For α = 0.0027, the

control charts for these distributions yield ARL values that are constantly less than

370 which is the standard ARL value to achieve when this control chart is employed.

Therefore, it will be necessary to check the normality assumption before the Shewhart

chart for monitoring individual observations can be employed.

3.3.2 Phase-II SPC

In this Phase, we begin monitoring the process observations. After obtaining the

control limits and IC dataset from the Phase-I SPC, suppose we have an incoming

sequence of independent process observations Yi {i = 1, 2, 3, ...} with unknown change

point τ . Again, we assume that random shifts occur only in the mean of the process,

whereas the variance remains stable. Now, we begin the monitoring of the sequential

process.

From the control limits given in (3.14), the control chart will detect the time

point at which a mean shift in the process was observed, thus, at each time point,

the process is either IC or OC. Since our primary goal is to design a control chart
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with dynamic sampling scheme, we are majorly concerned with the detection of the

likelihood of possible mean shifts in the sequential process. The current set up cannot

give us vital information about potential mean shifts. In order to make our control

chart robust to potential shifts in the process, we proceed by using the p-value of

the individual process observation to detect shifts in the mean of the process. Given

that the process is IC, the p-value is a measure of the extremity of each sample

observation [2]. Thus, it gives us vital information for assessing evidence of a mean

shift in the process. For the p-value approach, rather than comparing the observation

at each time point with the control limits, we compute the p-value corresponding to

each observation and then, compare the obtained p-value at each time point with

a pre-specified level of significance α. This comparison replaces the initial decision

expression in (3.14) which is used to decide if the process is IC at each time point.

The p-value of the observed value Y ∗ at the n-th point is defined as

PY ∗
n

= P

(
|Z| >

∣∣∣∣Yn − µσ

∣∣∣∣) ≈ P

(
|Z| >

∣∣∣∣ Yn − X̄s̄/d3(w̃)

∣∣∣∣) (3.15)

where µ and σ are the unknown parameters of the IC distribution. From (3.12),

µ0 = E(X̄), and from (3.13), σ = E
(

s̄
d3(w̃)

)
which are estimated in the Phase-I SPC.

The chart gives evidence of an OC mean shift if

PY ∗
n
< α (3.16)

Otherwise, the process is considered to be IC. We employ the two-sided p-value

because we are interested in detecting both upward and downward mean shifts in

the distribution.
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Indeed, using the p-value approach has several advantages. The most paramount

advantage being that it is able to inform the practitioner about the likelihood of a

potential shift in the mean of the process. In this sense, if the p-value is way larger

than α, which indicates that the process is likely to be stable and likely to remain

stable in the near future, the practitioner can delay the time before the next sample is

collected or collect fewer observations at the next regular sampling time. In contrast,

if the p-value is less than α, this indicates that the process is unstable at such time

and the process should be stopped. However, if the p-value is only marginally less

than α, this indicates that the process is on its way to be unstable and the chart

is likely to give a signal in the near future. In this case, the process may still be

allowed to continue running, monitoring of the next sample should be sooner than

usual and with the collection of more observations at this sampling time. In each

setting presented above, the sampling time is variable and also, it is a function of

the p-value. In subsequent sections, we will discuss how the sampling time will be

determined.

This approach of skipping observations that are judged to be IC during the

monitoring procedure will be highly instrumental for sequential processes generating

large volumes of data. Rather than monitoring the observation at each time point, we

reduce the complexity of the monitoring procedure by placing more emphasis on time

points where potential shifts are noticed. Thus, we are able to reduce the run time

of the monitoring procedure while still maintaining quick detection of distributional

shifts in the process.

In addition, the p-value approach provides a clear and intuitive interpretation

of the process control scheme because of the weight of information it carries. It is

commonplace to report the results of most statistical analyses in terms of the p-value,
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where a pre-specified level of significance is used to judge if the hypothesis should be

either rejected or not rejected. Using the decision criteria of (3.16), at each time point,

the practitioner will be able to clearly report the status of the process. Also, this

approach allows the practitioner to make more informed decisions and take insightful

actions in cases when the process is still IC or when a shift has been detected.

In order to compute the p-value at each time point, first, we need to indicate the

parameters of the IC process distribution. Given that the IC process distribution

family is known, we can estimate the mean and the standard deviation of the IC

process distribution from IC observations obtained from this distribution family using

the estimation approach described in Section 3.3.1, in which µ is estimated by X̄ and

σ is estimated by s̄
d(w)

. As an alternative to the estimation approach described in

Section 3.3.1, we can estimate the parameters of the IC process distribution using

the bootstrap approach when IC process observations are available. In this sense,

resampled data are obtained by repeatedly drawing observations of size w̃ with

replacement from the IC data set. This process is carried out B times, then, the B

number of samples are used to estimate the parameters of the IC process distribution.

In the same vein, the resampled data can also be used to design the control limits of

the Shewhart chart. For approximately large B, and w > 1, the bootstrap method

gives a good approximation of the parameters of the IC process distribution.

Next, we investigate the behavior of the distribution of the p-value for different

values of the moving window size w, used for estimation of the IC parameters in the

Phase-I SPC. Suppose the actual distribution of the IC process is N(0,1), and we have

IC dataset from this distribution. From Figure 3.1, we see that the distribution of the

p-value is almost identical for several values of w used in estimating the parameters

of the IC distribution. Also, notice that as the observation values depart from the IC
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Figure 3.1: Distribution of the p-values of a N(0, 1) process where different values
of w were used in the computation of σ̂ = s̄

d3(w)
during the Phase-I SPC.

mean (in this case µ = 0) in either direction, the corresponding p-value decreases, but

the observations clustered about the IC mean have the largest p-values. Therefore

using the expression in (3.16), the control chart is more likely to give a signal for a

mean shift when observations drift away from their IC mean. Also, since the dynamic

sampling scheme is an increasing function of the p-value, we would delay the sampling

time of the next observation when we notice that a sequence of process readings are

consistently clustered around the IC mean, that is, these sequence of observations

have large p-values. However, if the p-value begins to get closer to the significant

level, the practitioner is alerted to be become more cautious of the process.

3.3.3 Estimation of the Sampling interval

In this section, we present the selection procedure of the size of the sampling

interval. We adopt the dynamic sampling scheme proposed by Li and Qiu [15] to

estimate the sampling interval. Section 3.2 provides a brief overview of this scheme

when applied to the CUSUM control chart. In that section, we saw that the sampling

interval function d(·) was chosen from the Box-Cox transformation family. The
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expression given in (3.5) which is restated below shows the sampling interval function

with parameters a, b and λ.

d(PC+∗
n

) =


a+ bP λ

C+∗
n

if λ > 0

a+ b log(PC+∗
n

) if λ = 0,

Section 3.2 also briefly describes the estimation of these parameters for the CUSUM

control chart. Subsequently, we discuss the estimation of the parameters of the

dynamic sampling scheme for the Shewhart control chart.

The parameters, a, b and λ will be evaluated using the ATS and the AATS of the

Shewhart control chart. For a pre-specified ATS0 value and for a specific shift size,

the optimal chart will be the chart with the least AATS1 value. By convention, we

want to achieve the situation where ATS0 = ARL0. This allows us to estimate the a

and λ and then set b to reach this requirement.

First, we begin by estimating the parameter a. As advised by Li and Qiu [15],

let a be chosen from the interval [0, 1]. Let us consider the case when the IC

process distribution is N(0,1) with a mean shift at the initial time point of size

{0, 0.1, 0.5, 0.75, 1.0, 1.5, 2, 2.5, 3}. For investigative purpose, let us also consider the

cases when λ = 0 and λ = 0.5. Figure 3.2 shows the AATS values of the chart

(3.15)-(3.16) when this process is monitored. For the case when λ = 0, the values of

AATS1 decrease as the values of a increase, and the chart has the best performance

when a = 1. However, when λ = 0.5, the AATS1 decreases when a decreases, and

the chart performs best when a = 0. Therefore, we set a = 1, when λ = 0 and a = 0

when λ > 0.

In order to investigate the effect of λ, we choose its values from [0, 0.5, 1, 1.5, 2,
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Figure 3.2: AATS values of the control chart (3.15)-(3.16) with the dynamic
sampling interval (3.5) for monitoring a process whose IC distribution is N(0,1) with
mean shift of size {0, 0.1, 0.5, 0.75, 1.0, 1.5, 2, 2.5, 3} occurring at the initial observation
time. For the dynamic scheme, two cases are cosidered − (a) λ = 0 and (b) λ = 0.5.
In both cases, the value of a is cosidered to be {0, 0.2, 0.4, 0.6, 0.8, 1.0} and b is chosen
to achieve ARL0 = ATS0 = 400.

2.5, 3, 6, 10]. From Figure 3.2, we set a = 1, when λ = 0 and a = 0 when λ > 0. Other

settings provided in the preceding paragraph are maintained. Figure 3.3 shows the

AATS values for the monitoring process. Apparently, the AATS values decrease when

λ increases. Furthermore, the AATS performance becomes identical when λ > 2.

Figure 3.3(b) shows the AATS values for the case when λ ∈ [2, 10], the AATS values

obtained are virtually the same in this setting. Li and Qiu [15] recommends that

λ = 2.
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Figure 3.3: AATS values of the control chart (3.15)-(3.16) with the dynamic
sampling interval (3.5) for monitoring a process whose IC distribution is N(0,1) with
mean shift of size {0, 0.1, 0.5, 0.75, 1.0, 1.5, 2, 2.5, 3} occurring at the initial observation
time. For the dynamic scheme, two cases are cosidered − (a) λ ∈ [0, 10] and (b)
λ ∈ [2, 10]. In both cases, a = 0 when λ > 0, a = 1 when λ = 0 and b is chosen to
achieve ARL0 = ATS0 = 400.

The estimated parameters obtained from our numerical studies are largely con-

sistent with the parameters obtained by Li and Qiu [15]. Therefore, we write the

dynamic sampling interval as

d(PY ∗
n

) = b · P 2
Y ∗
n

(3.17)

where b can be obtained to achieve ARL0 = ATS0.
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If (3.16) is true, the process should be stopped, otherwise, (3.17) provides the

sampling interval before the next process reading is monitored. In general, we

incorporate the dynamic sampling interval which is expressed in (3.17) into the

Shewhart control chart which uses the charting statistic defined in (3.15)-(3.16). This

chart is called the dynamic-sampling Shewhart (DyS-S) chart .

3.3.4 Simulation Study

In this section, we discuss and compare the performance of the standard Shewhart

chart (SS) and dynamic-sampling Shewhart chart. As earlier stated, the traditional

Shewhart chart has a fixed sampling rate while DyS-S chart has a variable sampling

rate.

Figure 3.4: Phase-II monitoring times (in seconds) of the traditional Shewhart
chart and the Shewhart chart with a dynamic sampling scheme for an IC process
distribution of N(0, 1) of several sizes n.

First, we begin by investigating the Phase-II monitoring times for both charts. Let

us consider the case where we have an IC process which follows a N(0, 1) distribution

and we choose different sizes of n, say, 103, 105, 107, 108, 109. For both charts we use
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the control chart defined in (3.15)-(3.16). However, we define the sampling interval

for SS as d(PY ∗
n

) = 1, while the sampling interval for DyS-S is the expression given

in (3.17) in which b = 3.0262 achieves ARL0 = ATS0 = 370. Figure 3.4 displays the

monitoring times (in seconds) for both control charts when n observations from the IC

process distribution of N(0, 1) is monitored. The DyS-S chart consistently performs

better than the SS chart, because the former does not monitor the observation at

each time point whereas the SS chart monitors all observations. From Figure 3.4,

the difference in the monitoring times of both methods is almost negligible when n is

small, but as n increases the difference becomes more substantial. It is imperative to

note that a little difference in the monitoring time of the process is capable of greatly

increasing the efficiency of the chart. This advantage of DyS-S will greatly reduce the

complexity of monitoring a large sequence of observations.

3.4 Performance of the Shewhart Control Chart with a Dy-

namic Sampling Scheme

3.4.1 Comparing the AATS1 values for both control charts

In this section, we further evaluate the differences in the performance of the DyS-S

chart and the SS chart. For our investigative purpose, we compute the AATS values

achieved for several shift sizes for both charts. Since a better chart will achieve a

smaller AATS value for a non-zero mean shift, we employ this conventional method

to compare both charts. Furthermore, for a zero-mean shift in the process, we have

that ATS0 = AATS0. Also, we know that the SS chart is equivalent to the DyS-S

chart when d(PY ∗
n

) = 1, thus, we can compute its AATS1 values for several shift sizes.
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From the description of both charts, we note that the major differences between

the SS chart and the DyS-S Chart are (i) the SS chart uses the conventional control

limits to detect shifts in the process whereas the DyS-S chart poses the monitoring of

the process as a classical test of hypothesis problem, where the p-value is compared

with a pre-specified α value for shift detection, and (ii) the SS chart uses a fixed

sampling rate, while the sampling interval defined in (3.17) is used for DyS-S.

For the purpose of evaluation and since we aim to monitor a big data process,

we set the value of the ATS0, which is the expected number of observations from the

beginning of the Phase-II process to the time when the chart gives a signal, to be

quite large. In order to avoid false alarms when monitoring these large volumes of

data, sticking with the conventional ATS0 = ARL0 = 370 will not be ideal. Since

ARL = 1
α

, we can obtain larger ARL values by decreasing α. Then, for the dynamic

scheme, we obtain the value of b which achieves ATS0 = ARL0.

For our numerical study, we aim to achieve ATS0 = 1000, thus, we set α = 0.001.

Also, we assume that the IC distribution of the process is N(0, 1), and the mean of

the process shifts from 0 to 0 + δ, where δ = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25,

2.5, 2.75, and 3.0 are the shift sizes we aim detect. For the sampling interval defined

in (3.17), b = 2.994215 achieves ATS0 = ARL0 = 1,000. Table 3.1 shows the AATS

values for the DyS-S chart and the SS chart, respectively. For all shift sizes, δj, the

DyS-S chart consistently shows to have better AATS performance than the SS chart.

Furthermore, we investigate the performance of both charts when the parameters

of IC process distribution are either known or unknown. As stated in Section 3.3.2,

we can use either the distribution estimation method (IC distribution is known) or

the bootstrap method (when an IC dataset is available) to estimate these parameters.

Figure 3.5 displays the performance of both DyS-S and SS charts in the case where
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Table 3.1: AATS values for the dynamic-sampling Shewhart Chart and the tradi-
tional Shewhart chart when both charts are used to detect several mean shifts δj. We
assume the process is N(0, 1) and ATS0 = ARL0 = 1000 for both charts.

δj DyS-S SS
0.00 1000.000 1000.000
0.50 333.006 367.960
0.75 144.225 179.973
1.00 60.955 89.921
1.25 26.616 48.171
1.50 12.205 27.638
1.75 5.771 16.307
2.00 3.043 10.091
2.25 1.892 6.673
2.50 1.376 4.609
2.75 1.165 3.406
3.00 1.071 2.591

the bootstrap approach and the distribution estimation approach are used to estimate

the parameters of the IC process distribution. Both estimation techniques perform

similarly, however, the overall performance of the DyS-S chart remains better than

the SS chart because of lower AATS values of the former.

3.4.2 Abrupt Shifts

From the previous two sections, it has been shown that the DyS-S chart proves to

be more efficient and quicker in detecting drifts in the mean of the process. However,

there may be certain limitations to its application. In the Phase-II SPC, there

is a tendency of the DyS-S chart skipping an observation that is actually OC. If

this happens, then it must be that there was an abrupt shift in the process mean.

Consider this scenario, during the Phase-II monitoring of a process whose IC process

distribution is N(0,1), we obtain four consecutive observations in the interval [-0.0001,

0.0001] which is followed by a single observation in the interval [3.0, 4.0] and then
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Figure 3.5: AATS values of the Shewhart chart with a dynamic scheme and the
Traditional Shewhart chart, where ARL0 = ATS0 = 1,000. In this example, the
parameters of the IC distribution are unknown. In plot (a), the parameters are
estimated using the bootstrap approach. In plot (b), we compute the parameters
using the distribution estimation approach.

more observations from the initial interval are obtained. The DyS-S chart may not

detect that the single observation from the interval [3.0, 4.0] is actually OC. In this

setting, the dynamic scheme is taken unawares and thus fails to detect such shift.

However, since SS chart monitors all observations, it will not miss the shift as such

time point. In theory, missing such observation may impair the efficiency of the

DyS-S chart as this will likely increase the run time of the monitoring process and

also increase the AATS1 of the control chart with a dynamic scheme. In practice, the

cost of letting one defective item slip away may also be substantial.
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It could be argued that the parameters of the dynamic scheme may be adjusted

to handle such shifts. Tweaking the parameters may affect the overall effectiveness of

the scheme in detecting other gradual shifts in the process. Since the dynamic scheme

will almost never skip more than 3 consecutive observations at any time point, if such

shift has a long-staying shift, the dynamic scheme will detect it.

In a real world setting, say for instance in the surveillance and epidemiology of

diseases, it is usually unlikely to encounter such unreasonable discrepancies between

two observations. However, when the process to be monitored is known to have

sudden shifts (with large discrepancies between consecutive observations), then it

may be reasonable to adjust the parameters to avoid the scheme skipping more than

2 observations at any given time point. However, this may elongate the monitoring

time. In general, since we are concerned with monitoring big data streams, the delay

in run time caused by the abrupt change in the distribution of the process will be

negligible and the computation is tractable. Nonetheless, the DyS-S chart is even

more efficient in detecting gradual shifts in the process.

3.4.3 Simulated Data Example

In this section, we implement the proposed DyS-S chart. Here, we use the control

chart to monitor a univariate process with simulated random numbers, and further

explain the mechanism of the scheme while giving sufficient interpretation of the

monitoring process.

Suppose that IC numerical measurements from a certain quality characteristic

of a production process follows a normal distribution where the parameters of this

distribution are unknown. An individual numerical measurement from this sequential

process is observed every 0.0001 second, and thus, the process generates 36,000,000
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observations per hour. Let us assume a mean shift occurs after the 10,000,000th

measurement is observed. Given this scenario, we aim to use our proposed DyS-S

chart to detect moderate to large shifts in the mean of the process observations.

In order to estimate the IC parameters of the distribution, we assume that we

have 1,000,000 IC observations which are individual measurements from the quality

characteristic of interest. We then proceed to use the bootstrap approach to estimate

these parameters. Using the bootstrap approach with bootstrap sample size B =

1, 000, 000, we estimate the IC mean and IC standard deviation. Furthermore, let

α = 0.001, and we obtain b = 2.97204 which achieves ATS0 = 1,000. Here, α is

chosen to detect large shifts in the mean of the process.

Figure 3.6: Control chart for monitoring the simulated univariate process observa-
tions. The warning lines are the control limits for the chart obtained at a significance
level of α = 0.001.

Figure 3.6 visualizes a subset of the monitoring process, from the 9,999,000th

sample to the 10,001,000th sample. Notice that the process becomes unstable after
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the 10,000,000th sample is observed. Furthermore, the process observations from the

9,999,971th sample to the 10,000,030th sample along with their p-values and dynamic

sampling intervals are presented in Table 3.2. At time point n = 9999981, the p-value

is computed to be 0.905, which indicates that the process is likely to be stable at

this time point. The resulting sampling interval is computed to be 2.436, which

specifies the time unit before the next sample is monitored. In contrast, at time

point, n = 10000005, the p-value is computed to be 0.025 and the resulting sampling

interval is 0.002. This indicates that the process is on its way to being unstable and

future observations are likely to be OC. From Table 3.2, we notice that the process

runs stably up till the observation of the 10,000,010th sample, where PY ∗
10000010

< α.

The chart gives an OC signal at this time point, and the process should be stopped.

In order to show the relationship between the sampling interval d(PY ∗
n

) and the

p-value in this application, we monitored all observations obtained from this process.

In reality, certain observations will be skipped depending on the magnitude of the

preceding sampling interval, we present this result in Table A.1 found in Appendix A.

Furthermore, before the control chart gives a signal at the 10,000,010th time point,

only 7,286,065 observations were monitored when the dynamic scheme is employed.

Thus, the control chart skipped a total of 2,713,945 observations during the monitor-

ing procedure. This further confirms the efficiency of the scheme.

3.5 Conclusion

Due to the ability of the DyS-S chart to skip several observations when the process

is poised to be IC, the DyS-S shows to have better OC AATS performance than the SS

chart, that is, the DyS-S yields quicker detection of distributional shifts. This distinct
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ability of the DyS-S chart lessens the run time and the complexity of monitoring

procedure, thereby making the chart applicable for monitoring observations from

big data applications. The underlying assumptions for optimal performance of this

control chart include, the observations are independent and are normally distributed,

and the process is not characterized by abrupt disturbances.

By incorporating the dynamic scheme in the design of the Shewhart chart, the

DyS-S chart takes lesser time (in seconds) in detecting a shift, however, the SS chart

takes lesser epoch time for detection of such shift. Furthermore, since the DyS-S

chart is designed with the p-values which give information about observations in the

near future, the dynamic scheme improves the performance of the Shewhart chart

in detecting persistent and gradual shifts in a production process. Also, since it is

common practice to report the results of most experimental studies using p-values,

the practitioner employing the DyS-S will be able to understand the procedure and

clearly report its results.

The DyS-S chart carries an inherent limitation of the SS chart, which is its

inability to detect small shifts in the mean of a production process. Thus, it becomes

imperative to design SPC charts with dynamic schemes which will detect such small

distributional shifts. The EWMA chart performs well in this regard, therefore, in the

next chapter, we present discussions on the design of the EWMA control chart with

a dynamic scheme.
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Table 3.2: The observed value Y ∗
n , the p-value of the charting statistic PY ∗

n
, and

dynamic sampling interval d(PY ∗
n

) at time point n for the dynamic-sampling Shewhart
Chart. The values are shown for a subset of the entire process, namely from the
9,999,951th sample to the 10,000,010th sample.

n Y ∗
n PY ∗

n
d(PY ∗

n
) n Y ∗

n PY ∗
n

d(PY ∗
n

)
9999971 2.893 0.035 0.004 10000001 5.290 0.773 1.775
9999972 5.855 0.393 0.459 10000002 6.489 0.137 0.056
9999973 6.643 0.101 0.030 10000003 5.840 0.402 0.479
9999974 6.921 0.055 0.009 10000004 5.823 0.411 0.502
9999975 4.065 0.349 0.362 10000005 7.243 0.025 0.002
9999976 4.835 0.868 2.240 10000006 7.054 0.040 0.005
9999977 4.727 0.784 1.827 10000007 7.677 0.007 0.000
9999978 3.139 0.063 0.012 10000008 4.394 0.544 0.879
9999979 3.632 0.171 0.087 10000009 5.960 0.338 0.339
9999980 6.375 0.169 0.085 10000010 8.489 0.000 *
9999981 4.882 0.905 2.436 10000011 5.829 0.408 *
9999982 4.282 0.472 0.662 10000012 5.071 0.945 *
9999983 5.080 0.937 2.608 10000013 6.610 0.108 *
9999984 4.448 0.580 1.001 10000014 5.325 0.746 *
9999985 6.083 0.279 0.231 10000015 5.928 0.354 *
9999986 6.737 0.083 0.020 10000016 6.642 0.101 *
9999987 4.722 0.780 1.810 10000017 4.643 0.720 *
9999988 4.387 0.539 0.864 10000018 5.220 0.827 *
9999989 4.965 0.971 2.801 10000019 5.689 0.491 *
9999990 4.948 0.958 2.727 10000020 7.777 0.005 *
9999991 4.858 0.886 2.334 10000021 5.708 0.480 *
9999992 3.306 0.090 0.024 10000022 7.257 0.024 *
9999993 4.655 0.729 1.580 10000023 7.215 0.027 *
9999994 5.767 0.444 0.585 10000024 6.177 0.240 *
9999995 3.876 0.261 0.202 10000025 4.989 0.990 *
9999996 4.369 0.527 0.826 10000026 6.027 0.305 *
9999997 5.956 0.339 0.342 10000027 6.327 0.185 *
9999998 5.691 0.490 0.714 10000028 9.023 0.000 *
9999999 6.517 0.130 0.050 10000029 6.134 0.257 *
10000000 4.375 0.531 0.839 10000030 8.166 0.002 *
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CHAPTER 4

EWMA CONTROL CHART WITH A DYNAMIC

SAMPLING SCHEME

4.1 Introduction

As stated in Section 1.2.3, the EWMA chart which makes use of history data

for evaluating the performance of the process, is based on a weighted average of all

observed data available at the current time point. This design makes the control

chart effective in detecting small and persistent mean shifts. In this respect, the

EWMA chart is often used in the Phase-II SPC where such shift are common. In

Section 1.2.3, we presented the charting statistic and control limits of the EWMA

chart. From (1.6), we have that

En = νXn + ν(1− ν)Xn−1 + ....+ ν(1− ν)n−1Xn−1 + (1− ν)nµ0

= ν
n∑
i=1

(1− ν)n−iXi + (1− ν)nµ0

(4.1)

Below, we indicate some interesting properties of the EWMA charting statistic, En,

1. From (4.1), the En is the weighted average of IC mean, µ0 and all available

observations at the current time point, n.

2. The control chart based on En is called an Exponential Weighted Moving
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Average chart because at time point, n, the weight ν(1 − ν)n−i received by

the i-th observation decays exponentially when i moves away from n.

3. Notice that when ν = 1, the observations {X1, X2, ...} receive no weight, that

is, the charting statistics does not consider any history data. Thus, the chart

based on En becomes equivalent to the Shewhart control chart.

4. From (1.6), obviously, more weight will be given to the current observation,

and less weight will be given to the previous observations when ν is large (say,

ν > 0.5). On the contrary, when ν is small, less weight will be given to current

observation while more weight will be given to the previous observations.

5. It can shown that with increasing value of n, the charting statistic En has stable

variance.

Furthermore, suppose that the IC process distribution is normally distributed with

mean µ0 and variance σ2, and if the process is IC up to a particular time point n, the

distribution of the charting statistic is given as

En ∼ N

(
µ0,

ν

2− ν
[1− (1− ν)2n]σ2

)
(4.2)

In the case when the mean of the process drifts from µ0 to µ1 at time point τ , the

distribution of the charting statistic is now defined by

En,τ ∼ N

(
µ0 + [1− (1− ν)n−τ+1](µ1 − µ0),

ν

2− ν
σ2

)
(4.3)

In Appendix B, we provide justifications of (4.2) and (4.3). It is easy to see that the

last property of the charting statistic stated above is true.
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4.2 EWMA Chart using p-values

Let X1, X2, ...., Xτ , Xτ+1, Xτ+2, ... be a sequence of independent random variables

from the same distribution. The observations, Xi, 1 ≤ i ≤ τ come from an IC

process which has mean µ0, while the observations Xi, τ + 1 ≤ i ≤ n are OC process

observations with mean µ1, where µ0 6= µ1, and τ, 1 ≤ τ ≤ n, is an unknown change

point. The charting statistic of the EWMA control chart for detecting an upward

shift in the mean of the process is defined by

E+
n = max

(
0, ν(Xn − µ0) + (1− ν)E+

n−1

)
, (4.4)

where E+
0 = 0, and the chart gives an OC signal for an upward mean shift when

E+
n > ρU

√
ν

2− ν
σ (4.5)

where ρU is a pre-specified parameter chosen to reach a desired ARL0 value. The

EWMA chart for detecting downward mean shifts can be determined designed simi-

larly.

The weighting parameter ν in (1.6) and (4.4) is usually pre-specified. The value

of ν is chosen in such a way where the ARL1 value for detecting a specific shift is

minimized. Since we aim to monitor a process generating large volumes of data, we

ought to select combinations of ν and ρU values that reach a large ARL0 value. Also,

since the magnitude of ν will determine the weight which current and previous process

observations receives, it is imperative to select this value with care. A small value of

ν can affect the overall performance of the EWMA chart, this is because it gives more

weight to previous data than the current observation. Thus, if there is a mean shift
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at the current time point, the EWMA chart may take longer to detect such shift. On

the other hand, a very large value of ν will impede the efficiency of the EWMA chart

in detecting persistent mean shifts in the process due to the reason that it gives less

weights to history data. In Section 4.3.1, we provide guidelines for selecting ν.

Similar to the case of the traditional Shewhart chart and CUSUM chart, the

typical EWMA chart monitors each observation during the monitoring procedure

and only previous data to evaluate the performance of the process. This set up does

not provide information about the performance of the process in the near future. To

circumvent this, we use the p-value of its charting statistic (similar to the approach

introduced in Chapter 3) in the design of the control chart. We define the p-value

of the charting statistic as follows. Let E+∗
n be the observed value of the charting

statistic E+
n at time point n, then, the p-value at the n-th time point is given as

PE+∗
n

= P (E+
n > E+∗

n ) (4.6)

We reject the null hypothesis that the process is IC at the n-th time point if

PE+∗
n
< α (4.7)

where α is a pre-specified level of significance. The setup above is a p-value design

of the EWMA chart for detecting upward mean shift in the process, the design for

detecting downward shifts in the process follows an analogous pattern.

If PE+∗
n

is much larger than α, the next sampling time is delayed and fewer samples

will be collected at such time. On the contrary, the process gives a signal of a mean

shift if PE+∗
n
< α, and thus the process should be stopped. Nonetheless, if the PE+∗

n
is
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only slightly larger or less than α, the process may still be allowed to continue running.

In this case, the next sample is taken quicker than usual and more observations are

collected at this time point. Since this set up is based on the convention of “reject/do

not reject hypothesis” which is popular among industry practitioners, the control

chart designed with p-values will be easier to interpret than the standard EWMA

chart. Implicitly, our chart will have variable sampling intervals. In subsequent

sections, we present discussions on estimation of parameters which determines the

interval size at the current time point.

Now, we discuss the computation of the p-value of the random variable E+
n . We

present two different scenarios − when the IC distribution of the process is known,

and when this distribution is unknown. In the case when the IC distribution of

the process observations {X1, X2, ..., Xτ} is known, then the IC distribution of the

charting statistic, E+
n can be obtained by Monte Carlo simulation. Then, the p-value

of the charting statistic is computed as if the IC distribution is known. Given values

of ν, the variance of the charting statistic becomes stable as n increases, that is, the

charting statistic has a steady-state distribution when n is large [21].

For values of n from 1 up to 100, Figure 4.1 shows the variance of the charting

statistic for several values of ν. We notice that for some values of ν, say, ν ≥ 0.05,

σ2
En

becomes stable when n ≥ 30. However, larger values of n will be needed to

achieve stability when ν < 0.05. Here, let us assume that we choose ν = 0.05 (later,

we present guidelines for choosing ν when monitoring the big data process) and since

a process generating large volumes of data is of interest, it is reasonable to assume

that a shift can only occur after n ≥ 30. Thus, we use the steady state distribution of

E+
n to obtain the p-values. For n = 10, 20, 30, 50, 100, 200 and 500, Figure 4.2 shows

the p-values defined by (4.6) of the empirical distribution of E+
n defined by (4.4). We
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Figure 4.1: Values of σ2
En

as given in the expression of (4.2) for n = 1, ..., 100, in
cases when σ2 = 1, and ν = 0.02, 0.05, 0.1, or 0.2.

notice that for n ≥ 30, the distribution of E+
n displays the the steady-state property.

Consider the second scenario, when the IC distribution of the process observations

is unknown. In this case, if we have available IC dataset, we can use the bootstrap

approach which is analogous to the method discussed by Chatterjee and Qiu [6] to

determine the IC distribution of E+
n . In this setting, we repeatedly obtain resampled

data from the available IC data, and these resampled data are then used to compute

the values of E+
n in the Phase-II monitoring of the process. This method is repeated

B times and resulting values of E+
n are used to estimate the distribution of E+

n . With

sufficient IC process observations, the result obtained using this approach is very

similar to the result obtained when the IC distribution is known. Likewise, we obtain

the steady-state distribution when n ≥ 30.

4.3 EWMA chart with a dynamic scheme

As stated in Section 4.2, the magnitude of PE+∗
n

at the current time point n will

determine the next sampling time. That is, the time interval between successive



64

Figure 4.2: p-values of the empirical distribution for the charting statistic (4.4)
when n = 10, 20, 30, 50, 100, 200 and 500.

samples follows a variable nature which is dependent on the p-value of the charting

statistic at the current time point. Based on the approach proposed by Li and Qiu

[15], in Section 3.2 and 3.3.3, we described the sampling interval d(·) as an increasing

function of the p-value of the charting statistic of interest. Thus, the sampling interval

d(PE+∗
n

) follows (3.5), that is

d(PE+∗
n

) =


a+ bP λ

E+∗
n

if λ > 0

a+ b log(PE+∗
n

) if λ = 0,

Next, using the guidelines presented by Li and Qiu, we discuss the estimation of

the parameters of the a, and λ. And as seen previously, b is chosen to satisfy ATS0

= ARL0.

Here, we provide discussion on the selection of a. Before now, we constrained a to

be chosen from the interval [0, 1], otherwise, d(PE+∗
n

) will be adversely impacted. Let

us assume that the IC distribution of the process is N(0, 1), ATS0 = 200, ν = 0.05,

and λ is chosen from the interval [0, 10]. Let us further assume that a mean shift
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occurs at the initial observation, Figure 4.3 shows the AATS1 when shift sizes 0.05,

0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5 and 2.0 are considered.

Figure 4.3: AATS values of the control chart (4.4) with the dynamic sampling
interval (3.5) for monitoring a process whose IC distribution is N(0,1) with mean
shift of size {0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} occurring at the initial observation
time. For the dynamic scheme, two cases are cosidered - (a) λ = 0 and (b) λ = 0.5.
In both cases, the value of a is cosidered to be {0, 0.2, 0.4, 0.6, 0.8, 1.0} and b is chosen
to achieve ARL0 = ATS0 = 200 and ν = 0.05.

As shown in Figure 4.3, we present the case for two scenarios, when λ = 0 and

when λ = 0.5. For the case when λ = 0, we notice that as the value of a increases

from 0 to 1 the chart performs better in detecting the specified shifts. In contrast, for

the case when λ = 0.5, we notice that as the value of a decreases the chart performs

better. Thus, we choose a = 1 when λ = 0 and a = 0 when λ > 0.



66

In order to investigate the selection of the λ, Figure 4.4 shows the AATS1 values

of 4.4 when values of λ in the interval [0, 10] are chosen to compute the sampling

interval. In plot (a), where the λ values are 0, 0.5, 1, 1.5, 2, 2.5, 3, 6, 10, we notice

that as the value of λ increases, the chart has better performance. We also notice that

the AATS1 does not change much for λ ≥ 2. Plot (b) buttresses this point, it shows

the AATS1 values when λ values 2, 2.5, 3, 4, 5, 6, 7, 8, 10 are considered. Indeed, the

AATS1 values become stable when λ ≥ 2. Again, the result obtained here is similar

to the result obtained by Li and Qiu, and thus we choose λ = 2.

Therefore, based on the investigation of a and λ, and from Figure 4.3 and Figure

4.4, we suggest that sampling interval for the charting statistic 4.4 should be

d(PE+∗
n

) = b · P 2
E+∗
n

(4.8)

where b is chosen to reach a pre-specified such that ARL0 = ATS0.

Therefore the EWMA chart proposed here, which we will call the dynamic sam-

pling EWMA chart (DyS-EWMA), uses the charting statistic described in (4.4), where

the chart gives an OC signal for a mean shift in the process if (4.7) is true and the

sampling interval function is defined in (4.8). Also, as shown before now, the charting

statistic converges to a steady-state distribution when n is reasonably large.

4.3.1 Guidelines for selecting ν

Earlier on, we stated that the shift size to be detected will determine the value of

the weighting parameter ν. Also in Section 4.3, we saw that for ν ≥ 0.05 with moder-

ate to large values of n, the variance of the EWMA charting statistic becomes stable.

However, larger values of n will be needed when ν < 0.05. These two considerations



67

Figure 4.4: AATS values of the control chart (4.4) with the dynamic sampling
interval (3.5) for monitoring a process whose IC distribution is N(0,1) with mean
shift of size {0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} occurring at the initial observation
time. For the dynamic scheme, two cases are cosidered − (a) λ ∈ [0, 10] and (b)
λ ∈ [2, 10]. In both cases, a = 0 when λ > 0, a = 1 when λ = 0 and b is chosen to
achieve ARL0 = ATS0 = 200 and ν = 0.05.

will be necessary in selecting ν. But since we are monitoring a big data process, we can

relax the later consideration. For the former consideration, since the size of shift to

be detected is usually unknown, it may be worthwhile to adaptively select ν. Capizzi

and Masarotto [4] proposed an algorithm for choosing ν adaptively under different

situations. Even though the method proposed by Capizzi and Masarotto may be

effective in adaptively selecting ν, we are hesitant in incorporating the algorithm in

the design of the EWMA chart with a dynamic scheme. We note that this algorithm
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is tedious and requires ample statistical knowledge on the part of the analyst. Since

we aim to monitor observations which are generated at a high velocity, performing

the adaptive selection of ν at every sampling time point will impede the efficiency of

the chart to swiftly detect mean shifts in the process.

Figure 4.5: ARL1 values of the EWMA chart when ARL0 = 10,000, ν =
0.01, 0.05, 0.2 and the shift size changes from 0 to 3 with a step of 0.1

Other practical guidelines for selecting ν have been discussed by several researchers

([18], [21]). From Figure 4.5, we see that small values of ν will effectively detect small

shifts in the process, while large values of ν will detect large shifts. In fact, ν = 0.01

will detect shift sizes in the interval [0, 0.7], ν = 0.05 will effectively detect shift

sizes in the interval (0.7, 1.2], while ν = 0.2 will effectively detect shift sizes greater

than 1.2. The practitioner using this scheme is advised to perform some preliminary

analysis to estimate the magnitude of the shift prevalent in the process.
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4.4 Simulation Study

In this section, we provide discussions on the numerical performance of the dy-

namic sampling EWMA chart. For this discussion, we compare the performance of the

DyS-EWMA chart to the standard EWMA (S-EWMA) chart. Both charts employ

the charting statistic defined in (4.4) and use the p-value of the charting statistic

defined in (4.6)-(4.7). However, for the S-EWMA chart, the sampling interval is

defined as d(PE+∗
n

) = 1 while the sampling interval of DyS-EWMA is defined by the

expression in (4.8).

In order to compare the AATS performance of DyS-EWMA to the S-EWMA chart,

we set the weighting parameter to be ν = 0.05. Also, α = 0.00391, and b = 9.0501

are set to reach ATS0 = ARL0 = 400. Furthermore, we assume that the IC process

distribution is N(0, 1), and the mean shift size changes from 0 to 2. Table 4.1 shows

the AATS values for both charts when they are used for detecting shift sizes {0, 0.05,

0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}.

Table 4.1: AATS values for the DyS-EWMA and the conventional EWMA control
charts when are used for detecting mean shifts of size δj for a process whose IC
distribution is N(0, 1). It is assumed that ATS0 = 400 and ν = 0.05 for both charts.

δj DyS-EWMA S-EWMA
0.00 400.000 400.000
0.05 201.749 233.092
0.10 106.018 141.649
0.20 33.724 60.760
0.40 7.017 18.949
0.60 3.156 9.268
0.80 2.015 5.598
1.00 1.565 3.876
1.50 1.158 2.117
2.00 1.049 1.522
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From Table 4.1, the AATS1 values for the DyS-EWMA control chart are smaller

than that of S-EWMA when detecting the mean shifts considered. Thus, the DyS-

EWMA performs better than the conventional EWMA chart. This advantage of

quicker detection of mean shifts in a process makes the DyS-EWMA a better control

chart for monitoring a process generating large volumes of data.

Furthermore, we evaluate the performance of both charts when either distribution

estimation approach or the bootstrap approach is used to estimate the empirical

distribution of the charting statistics. Also, the discussion evaluates the performance

of the dynamic scheme used in DyS-EWMA. Using the control charts (4.6)-(4.7) to

dectect shift of sizes ranging from 0 to 2, we employ both DyS-EWMA and S-EWMA

for the monitoring process.

Suppose the IC process distribution is unknown, but there are available IC obser-

vations, we can utilize the bootstrap approach to estimate the distribution of the IC

charting statistic. Figure 4.6(a) displays the AATS values for both charts when this

approach is employed. In this case, we have 2,000 IC observations from the N(0, 1)

distribution. Resampled data are obtained from the available observations and used

to compute E+∗
n . By repeating this process several times, we use the obtained E+∗

n

for computing the p-value. From the plot, we see that the DyS-EWMA control chart

has better performance than the S-EWMA. Indeed, the dynamic scheme employed in

DyS-EWMA improves the EWMA chart.

Suppose the distribution family of the process is known, the distribution estima-

tion method provides an alternative for computing the p-values of the charting statis-

tic. In this approach, the IC distribution parameters are estimated by observations

gotten from the known distribution family, and they are used to compute the p-value.

Figure 4.6(b) shows the AATS values for both DyS-EWMA and S-EWMA when
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Figure 4.6: AATS1 values of the control chart (4.6)-(4.7). The sampling interval
of S-EWMA is given by d(·) = 1 while the sampling interval for DyS-EWMA, is
given by the expression in (4.8). In plot (a), the p-value of the charting statistic is
computed using the bootstrap approach. In plot (b), the p-value is computed by the
distribution estimation approach. Here, ν = 0.05, and ATS0 = 400

the given distribution family is N(0, 1), and the parameters of the IC distribution

parameters are estimated from 2,000 IC process observations. Using this known

distribution family, the p-values are computed based on these estimated parame-

ters. The results obtained remain consistent with the results shown in Table 4.1

and Figure 4.6(a). In this sense, it is obvious that the dynamic scheme employed

in the design of DyS-EWMA has a substantial effect on the performance of the

chart. Indeed, the distribution estimation method and the bootstrap method perform

similarly for estimation of the IC distribution of the charting statistic, however, IC
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process distribution family must be known in order to use the distribution-estimation

approach, but knowledge of the distribution family is not required for the bootstrap

method.

4.5 Simulated Data Example

In this section, we present discussions on the implementation and the mechanism

of the dynamic-sampling EWMA chart. In addition, we utilize the control chart in

monitoring a big data process.

Suppose we aim to monitor a univariate quality characteristic for which 60,000,000

process readings are available every hour. These readings are independent of each

other and they are obtained at equally spaced time intervals. We use this data

instance to demonstrate the mechanism of the DyS-EWMA control chart described

in (4.6)-(4.7) with the sampling interval given by the expression in (4.8), to detect

small to moderate upward mean shifts in the process.

Furthermore, let us assume that the IC distribution parameters of the charting

statistic are unknown, but 1,000,000 readings are available from the distribution

family of process which is known to be N(0, 1). In order to compute the p-values,

from (4.2) we use the distribution estimation approach to estimate the distribution of

the charting statistic E+∗
n . Then, PE+∗

n
is computed as if the IC distribution of E+∗

n

is known. In this case, we set ν = 0.05. Also, let ATS0 = 1,000. Then α = 0.00159,

and b = 8.7380 achieves this ATS0.

To further highlight the mechanism, let us assume that an upward mean shift

occurred after the 10,000,000th observation is collected. Figure 4.7 shows the obtained

p-values of a subset of the process, specifically between the 9,999,951th and the
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10,000,020th observation. The DyS-EWMA control chart shown in Figure 4.7 still

maintains the properties of the standard EWMA chart. Specifically, at every time

point, the chart makes use of history data in the monitoring of the current observation.

The control chart gives a signal for an upward mean shift after the 1,000,0011th

sample is observed. Table 4.2 shows the computed charting statistic, p-values and

sampling interval from the 9,999,961th sample to the 10,000,020th sample. From the

desciption of the simulated data, a shift occurred after the 10,000,000th observation

was obtained, however, the control chart did not detect this shift at this time until

12 additional observations were monitored. This delay could be attributed to the

choice of the weighting parameter ν. Recall, that the shift size to be detected should

influence the choice of ν.

Figure 4.7: The DyS-EWMA control chart for monitoring the simulated process
data described in Section 4.5. The red warning line represents the significance level,
α = 0.00159 which achieves ATS0 = 1,000.
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Furthermore, in Table 4.2, no observations were skipped during the Phase-II

monitoring. We intend to show the magnitude of the sampling interval at each time

point. For instance, when n = 9, 999, 965, the p-value of the charting statistic is

reported as PE+∗
n

= 0.502 which suggests the process is stable. The resulting sampling

interval, d(PE+∗
n

) = 2.203 indicates that we collect the next observation after 2.203

time units. In general, we see that d(PE+∗
n

) is an increasing function of PE+∗
n

, and

notice that d(PE+∗
n

) decays as the process drifts away from the IC mean, which should

make the practitioner more cautious of the process.

Prior to the DyS-EWMA conrol chart giving a signal at the 10,000,008-th time

point, a total of 7,775,017 observations were monitored. If the S-EWMA chart were

employed for the monitoring of this process, additional 2,224,991 observations would

have been monitored before the signal is given. The reduction in the number of

observations monitored connotes reduction in the total run time of the monitoring

process while the ability of the chart in detecting the shift at the known time point

is preserved. Thus, the DyS-EWMA chart should be preferred for the monitoring of

big data processes.

4.6 Conclusion

Since the DyS-EWMA chart is designed to skip observations that are IC during

its monitoring procedure, it will be efficient for monitoring observations from big data

applications. Furthermore, by incorporating the dynamic schemes in the design of

the standard EWMA chart, the DyS-EWMA chart yields better AATS performance

than its traditional counterpart. This advantage becomes even more essential when

the pace at which measurement readings from a quality characteristic of interest is
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greater than the run time of the monitoring scheme.

It is assumed that the observations from the process are independent. Also,

the distribution of the process may not be necessarily normal. Since the charting

statistics of the EWMA chart is a weighted average of the current observation and

previous observations, it will be robust to the normality assumptions in some cases

due to the central limit theorem. Particularly, if the distribution is non-normal, then

the weighting parameter ν should be selected in such a way where sufficient history

data (n ≥ 30 independent observations) will be involved in the evaluation of process

performance. Setting ν to be small will cause more observations to be involved,

however, this set-up will be only efficient in detecting small mean shifts. Thus, the

robustness of the DyS-EWMA chart to the normality assumption should be used with

discretion when moderate mean shifts are to be detected.

Furthermore, since the shift size to be detected by the control chart is usually

unknown, DyS-EWMA chart may not give its best performance when an improper

value of ν is used in its charting statistic. We suggest a preliminary analysis of the

sequential process to determine a proper value of ν. However, more studies are needed

to develop schemes which will select ν adaptively.
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Table 4.2: The observed charting statistic E+∗
n , the p-value PE+∗

n
, and dynamic

sampling interval d(PE+∗
n

) at time point n for the dynamic-sampling EWMA chart.
The values are shown for a subset of the entire process, namely from the 9,999,961th
sample to the 10,000,020th sample.

n E+∗
n PE+∗

n
d(PE+∗

n
) n E+∗

n PE+∗
n

d(PE+∗
n

)

9999961 0.077 0.318 0.882 9999991 0.008 0.483 2.038
9999962 0.001 0.500 2.187 9999992 0.000 0.502 2.203
9999963 0.033 0.421 1.549 9999993 0.000 0.502 2.203
9999964 0.000 0.502 2.203 9999994 0.000 0.502 2.203
9999965 0.000 0.502 2.203 9999995 0.000 0.502 2.203
9999966 0.029 0.430 1.614 9999996 0.000 0.502 2.203
9999967 0.037 0.410 1.466 9999997 0.029 0.431 1.620
9999968 0.050 0.378 1.249 9999998 0.000 0.502 2.203
9999969 0.019 0.456 1.813 9999999 0.012 0.472 1.943
9999970 0.000 0.502 2.203 10000000 0.031 0.424 1.572
9999971 0.005 0.490 2.100 10000001 0.080 0.311 0.843
9999972 0.000 0.502 2.203 10000002 0.126 0.217 0.412
9999973 0.000 0.502 2.203 10000003 0.169 0.146 0.185
9999974 0.000 0.502 2.203 10000004 0.211 0.094 0.078
9999975 0.000 0.502 2.203 10000005 0.250 0.059 0.031
9999976 0.000 0.501 2.193 10000006 0.288 0.036 0.011
9999977 0.041 0.401 1.403 10000007 0.323 0.022 0.004
9999978 0.000 0.502 2.203 10000008 0.357 0.013 0.001
9999979 0.072 0.328 0.940 10000009 0.389 0.008 0.000
9999980 0.048 0.384 1.289 10000010 0.420 0.004 0.000
9999981 0.026 0.437 1.671 10000011 0.449 0.003 0.000
9999982 0.185 0.125 0.136 10000012 0.476 0.001 *
9999983 0.166 0.151 0.198 10000013 0.502 0.001 *
9999984 0.149 0.176 0.272 10000014 0.527 0.000 *
9999985 0.116 0.235 0.483 10000015 0.551 0.000 *
9999986 0.123 0.221 0.428 10000016 0.573 0.000 *
9999987 0.090 0.288 0.724 10000017 0.595 0.000 *
9999988 0.057 0.362 1.142 10000018 0.615 0.000 *
9999989 0.018 0.458 1.832 10000019 0.634 0.000 *
9999990 0.078 0.316 0.870 10000020 0.652 0.000 *
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CHAPTER 5

CONCLUSION

In this thesis, first, we proposed an adaptive Shewhart chart for detecting small

to moderate persistent shifts in the distribution of a sequential process. The inability

of this chart to reach certain ARL0 values due to the discreteness of the scheme may

impede its usage among industry practitioners.

Chapter 3 and Chapter 4 focus primarily on the integration of dynamic sampling

schemes in the design of commonly used SPC charts for the efficient monitoring

of big data (sequential) processes. Since the dynamic sampling versions of SPC are

designed to skip certain observations, thereby reducing the run time of the monitoring

procedure, they will be more applicable for monitoring observations from big data

applications than the traditional SPC charts. The skipping of observations does not

follow an arbitrary nature, rather information about the likelihood of potential shifts

in the near future which is obtained from the p-value of the charting statistic of

interest provides an ideal criteria for skipping IC observations. In addition, with

the information obtained from the p-value during the monitoring procedure, the

practitioner can make educated decisions while clearly interpreting the outcomes of

the procedure.

The dynamic sampling charts introduced in this thesis focused on detecting mean

shifts in a large sequence of independent observations obtained from a univariate qual-
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ity characteristic. Furthermore, the efficiency of the charts rest on the assumptions

that the process is normally distributed and is not characterized by frequent abrupt

disturbances.

5.1 Future Studies

From evaluating the performance of the adaptive r-out-of-m charts in Chapter 2,

we noticed that certain ARL0 values cannot be achieved when this chart is employed.

Thus, future work is needed to develop methods that will overcome this limitation.

In Section 1.2, we briefly described other SPC charts which have profound ap-

plications. Future studies in this area will be focused on the design of the dynamic

sampling versions of these charts. In particular, we hope to design dynamic sampling

control charts for correlated data, non-normal data and data from multivariate quality

characteristics. The dynamic sampling control charts will monitor large sequence of

observations from these cases.

Furthermore, in Chapter 4, we indicated that the weighting parameter, ν of the

EWMA charting statistic is chosen based on the shift size to detected. But the shift

size to be encountered while monitoring the process is usually unknown, therefore,

future work will also be needed to incorporate schemes that select ν adaptively in the

design of the dynamic sampling EWMA charts.

Also, since the DyS-S chart performs well in detecting large mean shifts while

the DyS-EWMA chart performs well in detecting small to moderate mean shifts, it

will be worthwhile to design dynamic sampling Shewhart-EWMA control charts for

detecting small to large distributional shifts in sequential processes. Ultimately, we

intend to apply the methods developed in this thesis to a real data applications.
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APPENDIX A

SIMULATED DATA EXAMPLE - DYNAMIC SAMPLING

SHEWHART CHART
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Table A.1: The observed value Y ∗
n , the p-value PY ∗

n
, and dynamic sampling interval

d(PY ∗
n

) at time point n for the dynamic-sampling Shewhart Chart. The values are
shown for a subset of the entire process, namely from the 9,999,951th sample to the
10,000,010th sample.

n Y ∗
n PY ∗

n
d(PY ∗

n
) n Y ∗

n PY ∗
n

d(PY ∗
n

)
9999971 2.893 0.035 1 10000003 5.840 0.402 1
9999972 5.855 0.393 1 10000004 5.823 0.411 1
9999973 6.643 0.101 1 10000005 7.243 0.025 1
9999974 6.921 0.055 1 10000006 7.054 0.040 1
9999975 4.065 0.349 1 10000007 7.677 0.007 1
9999976 4.835 0.868 2 10000008 4.394 0.544 1
9999978 3.139 0.063 1 10000009 5.960 0.338 1
9999979 3.632 0.171 1 10000010 8.489 0.000 *
9999980 6.375 0.169 1 10000011 5.829 0.408 *
9999981 4.882 0.905 2 10000012 5.071 0.945 *
9999983 5.080 0.937 3 10000015 5.928 0.354 *
9999986 6.737 0.083 1 10000016 6.642 0.101 *
9999987 4.722 0.780 2 10000017 4.643 0.720 *
9999989 4.965 0.971 3 10000019 5.689 0.491 *
9999992 3.306 0.090 1 10000020 7.777 0.005 *
9999993 4.655 0.729 2 10000021 5.708 0.480 *
9999995 3.876 0.261 1 10000022 7.257 0.024 *
9999996 4.369 0.527 1 10000023 7.215 0.027 *
9999997 5.956 0.339 1 10000024 6.177 0.240 *
9999998 5.691 0.490 1 10000025 4.989 0.990 *
9999999 6.517 0.130 1 10000028 9.023 0.000 *
10000000 4.375 0.531 1 10000029 6.134 0.257 *
10000001 5.290 0.773 2 10000030 8.166 0.002 *
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APPENDIX B

DISTRIBUTION OF THE EWMA CHARTING

STATISTIC
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Here, we provide justifications for (4.2) and (4.3). From (4.1),

En = νXn + (1− ν)En−1

= νXn + ν(1− ν)Xn−1 + ...+ ν(1− ν)n−1X1 + (1− ν)nµ0

= ν

n∑
i=1

(1− ν)n−iXi + (1− ν)nµ0

The expectation of En is given as

µEn = νE(Xn) + ν(1− ν)E(Xn−1) + ...+ ν(1− ν)n−1E(X1) + (1− ν)nµ0

= νµ0 + ν(1− ν)µ0 + ...+ ν(1− ν)n−1µ0 + (1− ν)nµ0

= µ0

Since

ν
n∑
i=1

(1− ν)n−i + (1− ν)n = 1

Also, since V ar(aX + b) = a2V ar(X), then the variance of En is given as

V ar(En) = σ2
En = V ar[ν

n∑
i=1

(1− ν)n−iXi + (1− ν)nµ0] =

(
ν

n∑
i=1

(1− ν)n−i

)2

V ar(Xi)

= ν2

n∑
i=1

(1− ν)2n−2i σ2

= ν2

n∑
i=1

(1− ν)2n

(1− ν)2i
σ2 = ν2(1− ν)2n

n∑
i=1

[(
1

1− ν

)2
]i

σ2

= ν2(1− ν)2n

(
1

1−ν

)2
[
1−

(
1

1−ν

)2n
]

1−
(

1
1−ν

)2 σ2

=
ν

2− ν
[
1− (1− ν)2n

]
σ2

(B.1)
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Therefore, we obtain (4.2),

En ∼ N

(
µ0,

ν

2− ν
[
1− (1− ν)2n

]
σ2

)

In the case when the mean of the process drifts from µ0 to µ1 at time point τ ,

1 ≤ τ ≤ n, the variance of En is still (B.1), but the mean is given as

En,τ = ν
n−τ+1∑
i=1

(1− ν)n−τ+1−iXi + (1− ν)n−τ+1µ0

= ν(1− ν)n−τ+1

n−τ+1∑
i=1

(
1

1− ν

)i
Xi + (1− ν)n−τ+1µ0

Taking Expectation of both sides we have

µEn,τ = ν(1− ν)n−τ+1


(

1
1−ν

) [
1−

(
1

1−ν

)n−τ+1
]

1−
(

1
1−ν

)
µ1 + (1− ν)n−τ+1µ0

= (1− ν)n−τ+1µ0 +
[
1− (1− ν)n−τ+1

]
µ1

From (B.1), we notice that, for a given ν value, as n gets larger the distribution

of En,τ converges to

En,τ ∼ N

(
µ1,

ν

2− ν
σ2

)


