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Abstract

Motivation: Recent technological advances revealed that an unexpected large number of proteins

interact with transcripts even if the RNA-binding domains are not annotated. We introduce

catRAPID signature to identify ribonucleoproteins based on physico-chemical features instead of

sequence similarity searches. The algorithm, trained on human proteins and tested on model or-

ganisms, calculates the overall RNA-binding propensity followed by the prediction of RNA-binding

regions. catRAPID signature outperforms other algorithms in the identification of RNA-binding pro-

teins and detection of non-classical RNA-binding regions. Results are visualized on a webpage and

can be downloaded or forwarded to catRAPID omics for predictions of RNA targets.

Availability and implementation: catRAPID signature can be accessed at http://s.tartaglialab.com/

new_submission/signature.

Contact: gian.tartaglia@crg.es or gian@tartaglialab.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-binding proteins (RBPs) use RNA-binding domains (RDs) to rec-

ognize target RNAs and to regulate co-/post-transcriptional processes.

Examples of classical RDs include RNA-recognition motif (RRM),

double-stranded RNA-binding domain (dsRRM), K-homology (KH),

RGG box and the Pumilio/FBF (PUM) domain (Lunde et al., 2007). In

addition to classical RDs, recent experimental studies on HeLa

(Castello et al., 2012), HEK298 (Baltz et al., 2012) and mESC (Kwon

et al., 2013) cells, indicate that a number of RNA-interacting proteins

contain non-classical RDs (ncRDs) for which annotation is not yet

available. Discovery of new RDs is a challenging task: domain-

detection tools, such as HMMER (Finn et al., 2011) and BLAST

(Camacho et al., 2009) rely on sequence similarity searches to identify

annotated RDs and fail to recognize newly discovered RBPs. Similarly,

other methods such as RNApred (Kumar et al., 2011) predict RNA-

binding ability using features of annotated RDs that might be different

in ncRDs. Alternatives to identify RNA-binding regions include

BindNþ (Wang et al., 2010), PPRInt (Kumar et al., 2008) and

RNAbindRþ (Walia et al., 2014), but the algorithms have been trained

to identify single amino acids and not contiguous regions. catRAPID

signature overcomes these limitations by (i) predicting the propensity

of a protein to interact with RNA and (ii) identifying RNA-binding re-

gions through physico-chemical properties instead of sequence pat-

terns. The algorithm is an extension of the catRAPID approach

(Bellucci et al., 2011) to predict protein-RNA interactions and the

cleverSuite algorithm (Klus et al., 2014) to classify protein groups using

physico-chemical features.

2 Algorithm and performances

To build catRAPID signature we exploited a number of physico-chem-

ical properties reported in our previous publication (Klus et al., 2014):
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• We used each physico-chemical property [e.g. structural disorder

(Castello et al., 2012)] to build a signature, or profile, containing

position-specific information arranged in a sequential order from

the N- to the C-terminus;
• We computed Pearson correlation coefficient between signatures

of annotated human RDs and same-length regions taken from

RNA-binding proteins as well as negative controls (Supplementary

Table S1 and online Documentation);
• We identified a number of discriminating physico-chemical proper-

ties, their associated RDs and correlation cutoffs (Supplementary

Table S2 and online Documentation).

For each protein, we calculated the fraction of residues with

correlation coefficients above the cutoffs that are associated

with physico-chemical properties and RDs (Table S2; online

Documentation), which we then used to train catRAPID signature.

Using a Support Vector Machine with RBF-kernel (online

Documentation), we built a method for the (i) identification of ribo-

nucleoproteins and (ii) prediction of RNA-binding regions:

i. catRAPID signature shows an AUC¼0.76 for discrimination of

950 RBPs from 950 negative cases (10-fold cross-validation;

Supplementary Fig. S1, Table S1). On an independent test set

(Table S3) comprising 47 mouse proteins harboring ncRDs and

same number of negatives (Kwon et al., 2013), we obtained ac-

curacy¼0.71, sensitivity¼0.70, specificity¼0.72 and preci-

sion¼0.70. By contrast, conventional pattern recognition

methods such as HMMER and BLAST show poor sensitivity

(Table S3). Our algorithm outperforms RNApred in both specifi-

city and precision (0.25 and 0.52, respectively; Table S3).

Moreover, catRAPID signature reliably detects ribonucleopro-

teins across different kingdoms, including M. pulmonis, E. coli,

C. albicans, S. cerevisiae, A. thaliana and A. oryza

(Supplementary Fig. S2; online Documentation).

ii. The training for the identification of RNA-binding regions has been

done on 1115 annotated RNA-binding regions. As negative counter-

part we randomly selected 1115 non-binding regions of the same

length from each RBP (AUC¼0.80 in 10-fold cross-validation;

Supplementary Fig. S1). On 102 ncRDs versus 102 negative mouse

proteins, catRAPID signature outperforms other algorithms: accur-

acy¼0.67, sensitivity¼0.76, specificity¼0.60 and precision¼0.65

(Supplementary Table S4). By contrast, RNABindRþ shows

accuracy¼0.48, sensitivity¼0.53, specificity¼0.42 and

precision¼0.48. Similar performances were obtained for

BindNþ and PPRInt (Supplementary Table S4). In addition, we

observed high performances on a protein dataset whose RNA-bind-

ing sites have been determined through X-ray and NMR

(Supplementary Fig. S3 and online Documentation).

3 Server description and example

The input of the server is a FASTA sequence. To illustrate the output

with an example, we studied the RNA-binding ability of Fragile X

Mental Retardation Protein FMRP. catRAPID signature predicts

that FMRP binds to RNA (overall interaction score¼0.85; Fig. 1A;

Fig. S4) and correctly identifies two peaks corresponding to the KH

domains and one peak in the RGG box (Ascano et al., 2012)

[Fig. 1A,B and C; ‘classical’ score¼0.73]. In addition, catRAPID

signature indicates that the N-terminus (amino acids 1-215; Fig. 1B)

has RNA-binding ability (‘putative’ score¼0.74), which is in agree-

ment with very recent evidence revealing the presence of a novel KH

domain (Myrick et al., 2015). Comparing experimental targets

[number of PAR-CLIP binding sites�1] (Ascano et al., 2012) with

transcriptome-wide predictions of FMRP N-terminus [amino acids

1–215; Fig. 1D] (Agostini et al., 2013) we observed a significant

enrichment in predicted interaction propensities (P-value<1�9

calculated with Kolmogorov–Smirnov test on 105�103 transcripts

of which 7�103 positives), which suggests that the N-terminus

contributes to the RNA-binding ability of the full-length FMRP.

4 Conclusions

As newly discovered RDs are not annotated, traditional domain-

detection tools fail their identification. catRAPID signature addresses

this limitation by detecting binding regions through physico-chemical

features. Our algorithm will be helpful to investigate components of

ribonucleoprotein complexes and to identify RNA-binding regions.

Fig. 1. RNA-binding ability of Fragile X Mental Retardation Protein FMRP. (A) The server reports the propensity of FMRP for the putative (0.74), classical (0.73) and

non-classical (0.57) RBP classes, as well as an overall prediction score (0.85); (B) The profile shows protein regions and their propensity to interact with RNA.

catRAPID signature correctly identifies two peaks corresponding to the central KH domains, a region in the RGG box [amino acids 527-552] at the C-terminus

(Ascano et al., 2012) and a recently discovered RD at the N-terminus (Myrick et al., 2015). (C) Annotated RDs are shown in a table and linked to PFAM webpages; (D)

Annotated and predicted RNA-binding sequences can be downloaded and/or forwarded to catRAPID omics (Agostini et al., 2013) for further analysis
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