
Approximating a Multi-Grid Solver
Valentin Le Fèvre∗, Leonardo Bautista-Gomez†, Osman Unsal† and Marc Casas†

∗École Normale Supérieure de Lyon, France
Email: valentin.le-fevre@ens-lyon.fr
†Barcelona Supercomputing Center (BSC), Spain

Email: {leonardo.bautista,osman.unsal,marc.casas}@bsc.es

Abstract—Multi-grid methods are numerical algorithms used
in parallel and distributed processing. The main idea of multi-
grid solvers is to speedup the convergence of an iterative method
by reducing the problem to a coarser grid a number of times.
Multi-grid methods are widely exploited in many application
domains, thus it is important to improve their performance and
energy efficiency. This paper aims to reach this objective based
on the following observation: Given that the intermediary steps
do not require full accuracy, it is possible to save time and energy
by reducing precision during some steps while keeping the final
result within the targeted accuracy.

To achieve this goal, we first introduce a cycle shape different
from the classic V-cycle used in multi-grid solvers. Then, we
propose to dynamically change the floating-point precision used
during runtime according to the accuracy needed for each
intermediary step. Our evaluation considering a state-of-the-art
multi-grid solver implementation demonstrates that it is possible
to trade temporary precision for time to completion without
hurting the quality of the final result. In particular, we are
able to reach the same accuracy results as with full double-
precision while gaining between 15% and 30% execution time
improvement.

Index Terms—Multi-grid, algorithms, parallel processing, iter-
ative method, approximate computing

I. INTRODUCTION

Multi-Grid (MG) solvers are a class of linear methods [1]
that emerged in the 80’s to increase the convergence rate
of more classical iterative methods. They became even more
important with the advent of very complex scientific appli-
cations [2], which required very powerful linear solvers. The
usage of MG solvers has become a common practice in today’s
parallel systems due to the good scalability properties of
these methods, which have been analyzed and modeled in
detail [3]. Also, MG solvers have been reported to display
more robustness against silent data corruptions than traditional
iterative methods deployed over a single grid [4], which also
implies they behave well under reduced accuracy scenarios.

MG solvers rely on a grid of evaluation points that discretize
the domain of a continuous differential equation. Typically,
MG schemes are defined by coarsening a fine-grain grid until
reaching a small set of evaluation points where a direct method
can be applied. Solutions obtained on the inaccurate and
coarse grids are used on the more accurate and fine-grain
levels to accelerate the process of obtaining the final solution
of the system. Multi-grid solvers typically consist of three
components: The Relaxation, Restriction and Interpolation
phases. The relaxation phase applies a few steps of an iterative

solver like Jacobi or Gauss-Seidel at a certain coarseness
level. The restriction phase propagates the algorithmic state
to a coarser grid by means of linear transformations while
the interpolation phase maps the coarser estimate to the finer
version and adjusts the current solution with the new error.

One common way of orchestrating a Multi-Grid Solver
execution is via a V-cycle, where we first iterate on the finest
grid, then the second finest grid and so on until reaching the
coarsest grid where a direct solve is used instead of an iterative
method as the problem size has become smaller. Then we
iterate again on all the other grids in the reverse order to have
a solution expressed with the initial granularity of the grid.
Different parameters, such as the iterative method used at each
step or the granularity of the grid and the previously mentioned
cycle shape, affect the convergence rate of the algorithm.

In this context, this paper investigates different trade-offs
between accuracy and execution time (or energy consumption)
for MG algorithms. We focus our efforts on one of the most
popular parallel implementations of a multi-grid solver, the
BoomerAMG [5], implemented using the HYPRE library [6].
We change the shape of the V-cycle and adapt the number of
relaxations at each cycle to achieve performance gains. In addi-
tion, we propose a new multi-grid algorithm that dynamically
optimizes its floating-point precision to improve performance
and reduce energy consumption while maintaining the quality
of the final solution. In particular, this paper makes the
following contributions beyond the state-of-the-art:

• We evaluate the performance impact of solver’s param-
eters such as the shape of cycles and the number of
iterations.

• We propose a new cycle configuration and show that it is
more efficient than the state-of-the-art configurations by
up to 28.3%. Our experiments consider a total of 9 dif-
ferent matrices and 3 parallel scenarios and demonstrate
that our new cycle configuration can be applied to a wide
range of problems.

• We evaluate the impact of different floating-point preci-
sions on the time-to-solution while reaching full accuracy
on the final result.

• We propose an algorithm that dynamically adapts the
precision of the MG algorithm variables to increase
performance and efficiency.

• We perform a large evaluation and demonstrate the we
can reduce by 15% the execution time needed to reach
the same quality result as the original double-precision

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

algorithm and up to 30% for single-precision accuracy.
The reminder of this paper is organized as follows: Sec-

tion II introduces the motivations for this work. Section III
investigates the impact of different parameters on the time to
completion. Section IV explores precision-performance trade-
offs. Section V discuss other related works and Section VI
concludes this paper.

II. MOTIVATION AND BACKGROUND

In high performance computing (HPC), maximizing per-
formance is the main objective. However, in order to reach
extreme scale computing, it is necessary to also improve the
energy efficiency of current applications and algorithms. This
section explains why approximate computing is a potential
solution and why MG solvers are a good candidate for this
type of optimizations.

A. Approximate Computing

Approximate computing categorizes a wide set of tech-
niques aimed at trading off computation quality with perfor-
mance and/or energy. It is based on the intuition that operating
at peak level accuracy may produce significant resources waste
without adding any valuable information to the numerical
data. The increasing restrictions that parallel architectures are
suffering in terms of power and circuitry area have made
the approximate computing technique an appealing and cost-
effective approach that can be potentially applied to a wide
range of application domains like data analytics, scientific
computing, multimedia or signal processing [7]. Indeed, recent
approaches demonstrate how up to 50x energy savings can be
achieved when applying approximate computations to the k-
means clustering algorithm while only losing 5% classification
accuracy [8]. Also, an approximate approach based on neural
networks can speedup an inverse kinematics application by
more than 20x by allowing a final application error of just
5% [9].

Despite its potential, approximate computing must be ap-
plied in an extremely careful way. For example, reducing the
accuracy of control flow instructions or memory addresses
computations may cause segmentation faults. Also, applying
approximate techniques to floating point computations can
potentially lead to wrong results or cause iterative algorithms
to stall if they are blindly applied. The success of approximate
approaches requires them to be judicisouly applied to the most
low-accuracy tolerant phases of numerical algorithms. In this
paper we apply approximate computing approaches to the MG
solver in several different ways. Some of them reduce the
amount of computations of certain routines while keeping the
accuracy of each computation, like reducing on the number
of relaxation iterations (Section III). Other approaches keep
the number of computations but reduce their accuracy. For
instance, using floating point representations with less bits
devoted to store the mantissa (Section IV), only at some points
in the computation so that the impact on the final solution stays
minimal.

l = 0

l = 1

l = 2

l = 3

Fig. 1: V-cycle and W-cycle on 4-level grid.

B. Multi-Grid Algorithm

MG’s cycles start and end on the finest grained grid and are
defined by the order in which its different coarseness levels are
applied. The simplest cycle is the V-cycle, already described
in Section I, where a few iterations of an iterative method (the
Relaxation step) are performed at each level from the finest
to the coarsest levels and then in the reverse order. Another
common approach is the W-cycle scheme where the coarsest
grid level is reached several times before going back to the
finest grid level. It is possible to generalize the notion of cycle
to a k-cycle (where a V-cycle is a 1-cycle and a W-cycle is a
2-cycle). Figure 1 shows a representation of the V- and the W-
cyles with 4 levels where we can see how the W-scheme goes
back and forth the coarsest level 4 times before reaching again
the finest level of the grid. The cycles are executed multiple
times iteratively until the error is lower or equal to a certain
tolerance (i.e., the expected accuracy) or until the maximum
number of cycles is reached.

III. MG ALGORITHM CYCLE OPTIMIZATION

A. Relaxation VS Cycle Shape Study

In this Section we compare different types of cycles and
study how the number of Relaxation steps influence MG’s
convergence. The MG algorithm makes use of many different
input parameters that have an impact on its success. In our
context, we define a strategy as a combination of values of
the most relevant parameters: The type of cycle (V or W),
the number of relaxation steps α, and the total number of
coarseness levels of the grid.

Type of cycle V V V V W W W W
α 1 2 3 10 1 2 3 10

TABLE I: Combining α and V/W cycles.

We consider a total of 8 different strategies shown in Table I
where we test V- and W-cycles and we perform 1, 2, 3 and 10
relaxation steps for each kind of cycle. For all configurations,
the number of different coarseness levels of the grid is 8. To
compare the different strategies we consider an input matrix
of size 512000 × 512000, and a maximum number of cycles
from 1 to 100. The algorithm’s tolerance is set to 0 to always
reach the maximum number of cycles (1 to 100 depending on
the experiments). We measure for each experiment the final
relative residual norm and the execution time. Each experiment
is run 10 times to have an accurate average execution time.

2

0 20 40 60 80 100

#cycles

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
re

la
ti

v
e
 r

e
si

d
u
a
l
n
o
rm

V_1

V_2

V_3

V_10

W_1

W_2

W_3

W_10

0 20 40 60 80 100

#cycles

0

20

40

60

80

100

ti
m

e
 (

s)

V_1

V_2

V_3

V_10

W_1

W_2

W_3

W_10

10-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1

relative residual norm

0

5

10

15

20

25

30

ti
m

e
 (

s)

V_1

V_2

V_3

V_10

W_1

W_2

W_3

W_10

Fig. 2: Final residual norm of the 8 strategies per iteration (left), interpolated execution time per iteration (middle) and
convergence time as a function of the tolerance (right).

The results are presented on Figure 2. The left figure
shows how the accuracy evolves with the number of cycles
performed. For example, we see that the V cycle with 1
relaxation step (plain line in red) converges with more cycles
than the other strategies. However, if we look at the middle
figure we observe that this configuration converges faster than
the other methods. This makes sense as the first configuration
is a simple V-cycle with only one relaxation, thus even when
the execution requires more cycles, each cycle is less time
consuming and therefore the total execution time is shorter.

To be able compare the convergence speed, we present the
cost of reaching a given accuracy on the right figure (the right
of the x-axis is a small tolerance i.e. correspond to accurate re-
sults while the left of the x-axis represent inaccurate (but fast)
results). What we can observe is that, as expected, increasing
the number of relaxation steps (i.e., complexifying the cycle)
decreases the number of cycles needed for convergence but it
increases the overall time to do one cycle. We see on the right
figure that actually, for a given precision, the simple V-cycle
with only 1 relaxation at each step is the fastest way to reach
it, followed closely by the W-cycle with α = 1.

The conclusion is that relaxation steps seem to be too costly
for the accuracy they grant. It is better to do more cycles, thus
more moves in the grid, than doing more relaxation steps. This,
once again, demonstrates that MG algorithms are faster than
classic iterative methods.

B. Cycle Complexity Breakdown

Given the previous results, we embarked to investigate
how to improve the efficiency of the simple V-cycle with
1 relaxation step. The first step is to breakdown the time
spent in the different parts of a cycle. Note that all the
matrices for each level are computed in a setup phase and
it is not necessary to analyze that setup time. We only focus
on measuring the following two computations: (i) the time
spent doing a relaxation at each level and (ii) the time spent
computing the next linear system. The latter (i.e., computing
the next linear system) can be divided in two options: going
down by restricting the solution to a coarser grid, which
corresponds to a sparse matrix-vector computation; and going

up by interpolating the error term which also corresponds to
another sparse matrix-vector computation.

Level Matrix
size

Non-zero
elements

Relax
(down)

Relax
(up) Restriction Interpolation

1 512,000 4,042,520 20 ms 20 ms 15 ms -
2 256,000 6,475,239 20 ms 25 ms 12 ms 4 ms
3 58,893 2,000,513 8 ms 8 ms 3 ms 2 ms
4 14,285 788,509 2 ms 2 ms 1 ms 0.7 ms
5 4,238 386,333 1 ms 1 ms 0.5 ms 0.2 ms
6 609 53,493 < 0.1 ms < 0.1 ms < 0.1 ms < 0.1 ms
7 69 2,873 < 0.1 ms < 0.1 ms < 0.1 ms < 0.1 ms
8 2 4 < 0.1 ms - - < 0.1 ms

TABLE II: Time breakdown of a V-cycle with α = 1.

To study the internal time breakdown of a V-cycle we chose
as problem an unstructured domain with some anisotropy
(denoted as Unstructured-Anisotropy) of size 512,000 with a
8-level grid. The results of these evaluations are depicted in
Table II, along with information on the matrix used at the
corresponding level, such as matrix size and the number of
non-zero elements. Our first observation is that there is a direct
correlation between the time spent on relaxations at each given
level and the number of non-zero entries in the input matrix.
Most importantly, in these results we observe that relaxations
represent ≈ 66% of the total cost of a V-cycle, while the
matrix-vector multiplications are only ≈ 30%. In addition, we
notice that the two first levels are the most expensive ones.
It is important to highlight that in the experiments depicted
in Figure 2, although different number of relaxations were
evaluated, all levels executed the same number of relaxations.

C. Level-Dependent Relaxation Tuning

Based on this information, we propose to reduce the execu-
tion time of a V-cycle by tuning the number of relaxations
differently for each level. More precisely we propose the
following two ideas: (i) to add more relaxations in the last
levels because their cost is negligible and they could poten-
tially reduce the time to convergence or (ii) to remove some
relaxations in the first levels to reduce the computational cost,
and see how that affects convergence. We translate these ideas
into the four following strategies (based on a 8-level grid):

• Fast : no relaxations at level 2.
• Fast2 : 10 relaxations at level 6.

3

0 20 40 60 80 100

#cycles

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
re

la
ti

v
e
 r

e
si

d
u
a
l
n
o
rm

V_1

V_1_fast

V_1_fast2

V_1_fast3

V_1_fast4

0 20 40 60 80 100

#cycles

0

2

4

6

8

10

12

14

16

ti
m

e
 (

s)

V_1

V_1_fast

V_1_fast2

V_1_fast3

V_1_fast4

10-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1

relative residual norm

0

2

4

6

8

10

12

14

ti
m

e
 (

s)

V_1

V_1_fast

V_1_fast2

V_1_fast3

V_1_fast4

Fig. 3: Evaluation of 4 level-dependent relaxation tuning strategies. Residual norm per cycle (left), time spent in each cycle
(middle) and convergence time in function of the error tolerance (right).

• Fast3 : 2 relaxations at levels 6 and 4.
• Fast4 : no relaxations at level 3.

The strategy Fast aims at reducing the cost of the cycle by
removing the penultimate relaxation which is very expensive,
and expecting that the accuracy lost at this point can be
compensated by the relaxation at level 1. The strategy Fast2
executes a lot of relaxations at level 6, because it should not
increase by much the execution time of the V-cycle. The reason
to choose level 6 instead of level 7 or 8 is that the relaxation
at level 8 is actually a direct solve. Thus, the result term is
almost exact at level 7, because the only source of error comes
from the interpolation of e8 (which is exact) into e7. This is
why, we might expect better results by adding relaxations at
level 6. The strategy Fast3, pushes the previous idea one step
further. If we assume that doing more than one relaxation gets
a more accurate error estimation at level l, then at level l− 1
we do not need to correct a lot by doing more relaxations.
However at level l− 2 we have been through 2 interpolations
since the last good estimation of the error vector, therefore we
increase the number of relaxations again. Since the first levels
are very expensive, we stop this recursion at level 3. Finally,
we propose one last strategy Fast4 which is a softer version
of Fast where the relaxation at level 3 is removed, producing
a less accurate result at that point, but expecting it can be
compensated by the two relaxations at level 1 and 2.

We evaluate these 4 proposed strategies in the original
512, 000×512, 000 matrix. The results are shown in Figure 3.
The first thing to observe is that removing the relaxation at
level 2 (i.e. the Fast approach) does not provide any benefit.
It does save time during each cycle but the accuracy loss
per cycle is too high (i.e., more cycles needed for conver-
gence), leading to a convergence rate close to the baseline
configuration. The other thing to notice is that adding more
relaxations in the last levels slightly increases the execution
time but it does not provide any benefit on the accuracy
side. Thus, strategies Fast2 and Fast3 are not really efficient.
Overall, strategy Fast and strategy Fast4 seem to be more
or less equivalent to the original V cycle as it reduces a bit
the cost of each cycle and the convergence rate per cycle is
also slightly smaller. More tests were performed on a smaller

matrix with an initial matrix size of 64,000 with only a 6-level
grid. The results were similar (all strategies except Fast4 were
less efficient than the original algorithm) and are not shown
in this paper for brevity.

D. An Asymmetric Strategy

In the previous section, we observed no big improvement
compared to the original V-cycle with 1 relaxation at each
level, except for strategy Fast4 which did show some slight
improvement. Initially, we applied the same number of re-
laxations at all levels; then we tried different numbers of
relaxations for different levels. However, all these strategies
share something in common: for a given level they do the
same number of relaxations when going down or up in the
cycle, following a very symmetric behaviour.

In contrast, the main idea behind a MG algorithm is rather
asymmetric. More precisely, in MG algorithms the types of
computations performed when moving to a coarser grid level
are different than the type of computations done when going
back to a finer grid level. In the first case, the objective is
to compute a first approximate solution to the current system
while in the second case the objective is to refine the error
term. In other terms, we first compute an approximation at
level l, then we use the level l+1 to compute an approximate
error term el and finally we redo some relaxation to refine the
solution. The two relaxations do not have the same goal.

This analysis opens the door for strategies in which grid
levels have a different number of relaxations when going down
than when going up in the cycle. In fact, assuming that the
values of the error vectors are smaller than a given ε from the
exact value after just a relaxation step, one would not need
to do a relaxation before computing the approximate error
term for the next level, but just compute directly the error
term when going back up in the cycle. In other words, the
relaxations done when going up could potentially compensate
inaccuracies obtained after removing relaxations when going
down. From that idea we define a new asymmetric strategy:
we use a V-cycle in which we do one relaxation at each level
only when we are going up in the cycle (i.e., no relaxations
when going down). We call this strategy Up.

4

10-1510-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100

relative residual norm

0

2

4

6

8

10
ti

m
e
 (

s)

V_1

V_1_fast4

V_1_up

(a) UNSTRUCTURED-ANISOTROPY

10-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100

relative residual norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ti
m

e
 (

s)

V_1

V_1_fast4

V_1_up

(b) 3DLAPLACE-7PT(1,1,1)

10-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100

relative residual norm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ti
m

e
 (

s)

V_1

V_1_fast4

V_1_up

(c) 3DLAPLACE-7PT(0.1,0.1,0.01)

10-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100

relative residual norm

0.0

0.5

1.0

1.5

2.0

2.5

ti
m

e
 (

s)

V_1

V_1_fast4

V_1_up

(d) 3DLAPLACE-7PT(5,5,5)

10-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100

relative residual norm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ti
m

e
 (

s)
V_1

V_1_fast4

V_1_up

(e) 3DLAPLACE-27PT

10-1110-1010-910-810-710-610-510-410-310-210-1100

relative residual norm

0.0

0.5

1.0

1.5

2.0

ti
m

e
 (

s)

V_1

V_1_fast4

V_1_up

(f) PDE-DIRICHLET

Fig. 4: Comparison of the original algorithm V1 with Fast4 and Up strategies.

We run Up and Fast4, as long as the classical V-cycle, on
the same inputs. For generality purposes, this time we evaluate
matrices generated from other physical problems besides the
Unstructured-Anisotropy one: i) 3D Laplace equation with a
9-pt stencil (considering three diffrent configurations of the
cx, cy, cz anisotropy parameters), ii) 3D Laplace with a 27-
point stencil and iii) 3D Laplace partial derivative equation
with Dirichlet boundary conditions. All problems use the same
matrix size of 512,000. The results are presented in Figure 4.

The first thing we observe is that the Fast4 strategy does not
always perform well. In fact, for two of these four applications
the convergence rate is significantly slower than the classic V1
strategy. However, the Up strategy seems to be quite efficient;
it improves convergence speed by 12%, 7%, 26%, 7%, 20%
and 22% for UNSTRUCTURED-ANISOTROPY, 3DLAPLACE-
7PT(1,1,1), 3DLAPLACE-7PT(0.1,0.1,0.01), 3DLAPLACE-
7PT(5,5,5), 3DLAPLACE-27PT and PDE-DIRICHLET re-
spectively.

Given these positive results, we extended further our evalu-
ation from single-node runs to distributed memory executions
in multiple nodes, in order to test the viability of the Up
strategy when the algorithm is parallelized and distributed.
Larger cases were tested on a cluster with 100 compute nodes,
each node equippred with 2 Intel Xeon E5-2630 v3 Haswell
8-core processors, each core at 2.4 GHz, and with 20 MB L3
cache.

The problems tested are 3DLAPLACE-7PT and

3DLAPLACE-27PT. The total size of the matrix is set
to either 5,832,000 or 13,824,000, while the topology is
composed of either 27 (3x3x3), 36 (6x6x1) or 64 (4x4x4)
processors, where each processor holds 1 MPI process and
runs 1 OpenMP thread per process. For these 6 possible
combinations, we observe an average improvement of 18.4%
(ranging from 16.0% to 28.3%) for 3DLAPLACE-7PT and
20.5% (ranging from 16.2% to 25.0%) for 3DLAPLACE-
27PT. It seems that Up outperforms the classical V-cycle
even more when the problem size increases, but seems to cap
at around 25% improvement. Figure 5 presents the results for
the matrix size 13,824,000 and 3DLAPLACE-27PT, for the
3 different processor topologies. Similar results are obtained
for the other physical problems but are not shown here for
brevity.

IV. PRECISION-PERFORMANCE OPTIMIZATIONS

A. A new version of multi-grid algorithm

Observing the initial results presented on Figure 2, one can
notice that independently of how many relaxations are per-
formed, or which cycle shape is used, and more importantly,
of how many cycles are executed, the residual norm of the
algorithm reaches a lower bound (it is around 10−15). This
bound comes from the internal limitations of the double
floating-point representation. Indeed, a double uses 8 bytes
(52 bits for the mantissa, 11 for the exponent and 1 bit for the
sign). Naturally, a space-constrained representation does not

5

10-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100

relative residual norm

0

2

4

6

8

10

12

ti
m

e
 (

s)

V_1

V_1_up

(a) 3x3x3

10-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100

relative residual norm

0

2

4

6

8

10

ti
m

e
 (

s)

V_1

V_1_up

(b) 6x6x1

10-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100

relative residual norm

0

1

2

3

4

5

6

ti
m

e
 (

s)

V_1

V_1_up

(c) 4x4x4

Fig. 5: Comparison of original algorithm V1 with Up strategy for 3DLAPLACE-27PT on a 240x240x240 grid with different
processor topologies.

allow a full description of all rational numbers (for example
between 252 and 253 only integers can be represented). If we
increase the number of bits used in the representation we can
describe more and more numbers. Similarly, if we reduce the
number of bits used in the representation, we lose accuracy
for numbers that are not fully representable.

Low precision floating point operations can potentially pro-
vide faster and more energy-efficient computations. The reason
for these gains is that floating-point units (FPUs) require
more circuit logic (silicon for ASICs, LABs/DSPs for FPGAs)
for high precision operators (the required area for a FPU
increases at least linearly with the number of bits [10]). Thus,
reducing accuracy allows a higher number of low precision
FPUs, which increases the Instruction-Level Parallelism (ILP)
or Vectorization that the processor can reach, hence increasing
its peak performance.

Considering our algorithm, lower precision computations
could be used if the required accuracy allows it. For instance,
if accuracy requirements for the final result were around 10−3,
then a 64 bits double floating-point representation would not
not be needed to reach it and, as such, a lower precision would
be enough. Moreover, by analysing the presented results, it
is clear that during the first cycles the accuracy is low and
it does not require the full precision offered by the double
floating-point representation. This observation opens the door
for making use of lower precisions temporarily during the
first cycles. Therefore, it is important to study the impact of
precision on performance for MG algorithms.

To study the trade-off between precision and performance,
we modify the relaxations step of the algorithm (note that it
is the more time consuming part of the algorithm). In this
function we can find 13 internal variables that are originally
of type double: 5 arrays and 8 scalars. We then propose the
following two modified versions of the MG algorithm.

• AMGfloat, which changes the type of the 13 variables
from double* or double to float* or float.

• AMGmpfr(b), which makes use of the library
MPFR [11], [12] that introduces a type mpfr_t.
This type has a parameter b which is the number of bits

used in the mantissa of the variable. Every computation
is done first in full precision and then rounded to a
number with a mantissa using the number of bits given
as parameter. In this version of the algorithm AMG the
8 scalar variables of the relaxation function are replaced
by mpfr_t variables, all using the same number of b
bits for the mantissa.

Finally, we will denote by AMG this original algorithm.
In terms of arithmetic precision, AMG behaves similarly to
AMGmpfr(53) and AMGfloat to AMGmpfr(24). There can be
small differences depending on the rounding method used.

Figure 6 shows the accuracy that can be reached
with AMGmpfr(8), AMGmpfr(16), AMGfloat, AMGmpfr(32)
or AMGmpfr(64). The problem used is UNSTRUCTURED-
ANISOTROPY, with 2x2x2 processor topology and 20x20x20
matrix size. What we actually see on this figure is the lower
bound reached depending on the number of bits used. How-
ever, before reaching this lower bound, all precisions show
the same accuracy. This means that, for example, while the
accuracy of the solution is below the threshold using single
precision (32 bits), using 32 or a greater precision to do the
same computations will result in the same accuracy. However,
we expect single precision computations to be more efficient
than higher precisions in terms of time, space and energy.

The second thing we observe is that AMGfloat behaves
exactly as what we would expect from AMGmpfr(24) in terms
of accuracy: it shows the same accuracy as versions with
more precision in the beginning, then it reaches a threshold
between that of AMGmpfr(16) and that of AMGmpfr(32). It
is important to notice that in the AMGfloat version more
variables were changed from double to float, however in
the AMGmpfr(24) version we do not observe more accuracy
degradation. This is because only a few variables from the
8 scalars control the final precision as they are temporary
variables used for intermediate computations before being
plugged back into the input matrix/vector.

Given this analysis, we design a new algorithm that adapts
the precision of the variables during the execution. It is close
to the AMGmpfr(b) technique except this time the precision

6

0 10 20 30 40 50 60

#cycles

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
re

la
ti

v
e
 r

e
si

d
u
a
l
n
o
rm

8 bits

16 bits

24 bits (float)

32 bits

64 bits

Fig. 6: Accuracy for different number of mantissa bits.

can change between two cycles. We fix a threshold on the
ratio between the relative residual norm of two consecutive
steps to trigger the precision change if the gradient is lower
than the threshold (i.e., limited gain in accuracy between two
consecutive cycles). Then, we define the following 3 strategies.

• Start at b = 16 and do b = b + 8 on threshold (V 1 16
on Figure 7).

• Start at b = 32 and do b = b + 8 on threshold (V 1 32
on Figure 7).

• Start at b = 16 and do b = b× 2 on threshold (V 1 16d
on Figure 7).

We run these strategies on a 240x240x240 matrix size with
a 3x3x3 topology for 3DLAPLACE-27PT. Figure 7 presents
the evolution of accuracy for the original algorithm and the 3
new adaptive strategies introduced. We see some steps appear,
corresponding to the lower bound on the accuracy at the
current precision. Then, the precision is adapted to be able to
improve the overall accuracy. Even if we lose some accuracy
when waiting for the ratio between two consecutive relative
residual norms to reach the threshold; when the precision
changes the convergence rate is more important (for one cycle)
than that of the original double-precision algorithm (i.e. the
slope is bigger), allowing the adaptive strategies to quickly
catch-up any accuracy loss and reach the maximum accuracy
(of 4.7× 10−13) in the same number of cycles as the original
full precision algorithm (20-21 cycles).

These results demonstrate that adaptive precision can be
used to reach the same accuracy in the same number of
cycles, while each cycle is expected to be less energy and
time consuming because of lower precision. At this point
two questions arise. How to evaluate the energy/time savings
of this adaptive algorithm in a hypothetical hardware with
multiple precisions available? Which precisions should be used
to maximize these savings? The complexity to answer these
questions comes from the fact that the MPFR library used to
do these accuracy experiments introduces a huge overhead in
the computation. For instance, running AMGmpfr(53) is about
20 times more time consuming than running the classic AMG,

0 5 10 15 20 25 30

#cycles

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

re
la

ti
v
e
 r

e
si

d
u
a
l
n
o
rm

V_1

V_1_16

V_1_32

V_1_16d

Fig. 7: Accuracy of adaptive algorithms compared to the
original double-precision with a precision threshold of 0.8.

whereas it represents the same double-precision algorithm.
Moreover, this overhead is not influenced by the choice of
the number of bits. Therefore, we cannot use the execution
times of the computations done with MPFR as representatives
of performance differences at different precisions.

B. Optimal set of precisions

In this subsection, we provide an optimal set of precisions
to minimize the total execution time, under the assumption
that the time evolves linearly with b the number of precision
bits: T (b) = αb+ c. This assumption is supported by current
technologies, in which double precision executions take twice
the time to complete than single precision executions. This is
due to processors having more low precision FPUs than high
precision FPUs (See previous section).

Theorem 1. Given bmax, a maximum number of bits, n the
number of different precisions b1 ≤ b2 ≤ · · · ≤ bn−1 ≤ bn to
use, and T (b) = αb+ c, with α and c two constants, the time
to execute a cycle at precision b, then the execution time of our
adaptive algorithm is minimized for ∀1 ≤ i ≤ n, bi = i

nbmax.

Proof. From the previous experiments we can see that (i)
the number of cycles needed to reach the lower bound for a
given precision does not depend on the precision used during
previous cycles (See Figure 7), i.e. if one starts with cycles
at precision 16 bits and then switch to 32 bits, you will need
the same number of cycles to reach the lower bound with
32 bits as if you used only cycles with 32 bits from the
beginning of the algorithm; and that (ii) the number of cycles
needed to reach the lower bound is proportional to the number
of bits b used (See Figure 6). We then define MAXITER(b)
the number of cycles needed so that the ratio between the
relative residual norms computed before and after these cycles
is higher than a threshold t. We use the two observations to
model MAXITER(b) = bkbc for some constant k. Then we
can compute the total execution time:

7

Ttotal = MAXITER(b1)T (b1)

+

n−1∑
i=1

(MAXITER(bi+1)−MAXITER(bi))T (bi+1).

Indeed, when we reach the number of iterations
MAXITER(bi) we change from precision bi to precision
bi+1. This means that until we are before the iteration
MAXITER(b1), we compute using b1 bits. Then until we reach
the iteration MAXITER(b2), we compute using b2 bits, that is
during MAXITER(b2) − MAXITER(b1) iterations, and so on
until we reach the maximum accuracy with bn bits at iteration
MAXITER(bn). We can rewrite Ttotal as

Ttotal ≈ kb1T (b1) +
n−1∑
i=1

k(bi+1 − bi)T (bi+1)

≈ k(bnT (n) +
n−1∑
i=1

bi(T (bi)− T (bi+1)).

By plugging the expression of T (b) into the previous
equation and considering the maximum precision we want is
bmax = bn, we finally get:

Ttotal = kα

(
b2n +

n−1∑
i=1

(b2i − bibi+1)

)
+ kbmaxc. (1)

Let us consider the function f(x1, . . . , xn) =
n∑
i=1

x2i −
n−1∑
i=1

xixi+1. Finding the minimum of f(x1, . . . , xn−1, 1) will

give us the minimum of the execution time.
By simple partial derivation:

∂f(x1, . . . , xn)

∂xi
= 2xi − (1− δi,n)xi+1 − (1− δi,1)xi−1

where δa,b is equal to 1 if and only if a = b, 0 otherwise.
This is where the boundary condition xn = 1 is useful: if

we do not set it to a number different from 0, the function
is minimized for x1 = · · · = xn = 0. Applying this to
our problem makes no sense, as we would not be doing any
computation. The boundary condition represents the fact that
we need to reach an existing precision (bmax) eventually.
By a simple scaling, considering 1 instead of bmax makes
computation easier and does not change the resolution of the
the following system (up to a factor):

∂f(x1,...,xn)
∂x1

= 2x1 − x2 = 0
∂f(x1,...,xn)

∂x2
= −x1 + 2x2 − x3 = 0
...

∂f(x1,...,xn)
∂xn−1

= −xn−2 + 2xn−1 − xn = 0
xn = 1

Solving this system of equations is equivalent to solving the
linear system Ax = b where

A =


2 −1
−1 2 −1

.
−1 2 −1

−1 2

 and b =


0
...
0
1


This system has a unique solution which is

[
1
n . . . n−1

n

]
.

The minimum of f(x1, . . . , xn) with boundary condition xn =
1 is thus reached for xi = i

n . It is, when multiplied by bmax,
the solution that minimizes our total execution time.

This proof holds only if the execution time evolves linearly
with b, but we could also apply it to minimize the energy con-
sumption assuming that the energy consumption of one cycle
increases linearly with b. In the next section we investigate
whether this assumption holds.

C. Evaluation

In order to estimate the cost of our algorithm, we want to
model the time of an iteration at precision b. We model an
iteration by the following formula: an3bα + c, where a, c and
α are constants, n is the size of the problem and b the number
of bits. Indeed, we expect the time to be proportional to the
cube of the problem size as we deal with 3D problems, and
the parameter α will characterize how the time evolves when
we double the number of bits: if α = 1, then multiplying by
two the number of bits will multiply by two the cost of an
iteration (i.e., linear proportion). Maybe the reality could be
described by a more complicated polynomial in b, but we want
to keep the model simple enough and see if the data can fit it.

To provide numerical values for a, c and most importantly
α, we measure the execution times of different scenarios. Each
scenario computes 50 iterations on matrices with different
sizes, and using either only single-precision floating point
variables or only double-precision floating point variables. We
denote by xb,n the empirical value obtained using b bits and
a problem of size n (i.e. the matrix considered will be of size
n3 × n3 as we consider 3D problems).

Then, using Python’s lmfit package, we interpolate the
data to find good values for a, c and α. We are able to
estimate different values of α, all between 0.20 and 0.32,
using 3 different applications, 2 types of cycles (the classic V-
cycle and the Up strategy) and 2 types of relaxation methods
(weighted Jacobi and an hybrid method). Each data-fitting was
done on either 30 or 40 points. With these values of α, we can
estimate the cost of our algorithm in units of time by

(
b
53

)α
for a cycle (1 unit = 1 V-cycle at double-precision) with b
the number of significant bits (i.e. the number of bits in the
mantissa plus one, as one bit is always assumed in standard
floating point representation). Then using the MPFR library we
can create different scenarios that set the number of bits used at
each cycle in a different way. We define all these scenarios by
the first precision (b in the mantissa) used and how to update it

8

8_
8

8_
16

11
_x

2.
24

4_
x2 5_
4

16
_5

3
17

_1
8

3_
4

24
_0

24
_5

3
14

_1
3

14
_x

2
4_

4
5_

3
27

_2
6

13
_1

4
28

_1
4

32
_5

3
40

_5
3

53
0 8
1

4_
53

Precision sets

0

2

4

6

8

Un
its

 o
f t

im
e

Time to reach accuracy 0.001
for different strategies with threshold 0.5

and time model is T(b) = b0.3.
Number of precisions used

1
2

3
4

5
7

13
14

17
46

5_
3

4_
4

8_
8

5_
4

8_
16

14
_1

3
3_

4
13

_1
4

14
_x

2
11

_x
2.

24
4_

x2
17

_1
8

24
_5

3
27

_2
6

28
_1

4
16

_5
3

32
_5

3
40

_5
3

4_
53

53
0 8
1

Precision sets

0

5

10

15

20

Un
its

 o
f t

im
e

Time to reach accuracy 1e-07
for different strategies with threshold 0.5

and time model is T(b) = b0.3.
Number of precisions used

1
2

3
4

5
7

13
14

17
46

4_
4

5_
3

5_
4

8_
8

8_
16

14
_1

3
13

_1
4

3_
4

17
_1

8
28

_1
4

11
_x

2.
24

4_
x2

24
_5

3
32

_5
3

14
_x

2
16

_5
3

40
_5

3
27

_2
6

53
_0

4_
53 8_

1

Precision sets

0

10

20

30

40

50

60

Un
its

 o
f t

im
e

Time to reach accuracy 1e-15
for different strategies with threshold 0.5

and time model is T(b) = b0.3.
Number of precisions used

1
2

3
4

5
7

13
14

17
46

Fig. 8: Cost of the MG solver considering several different dynamic precision scenarios to reach different error degrees in the
output: 10−3 on the left, 10−7 in the middle and 10−15 on the right. Red labels indicate current performances with either
single-precision or double-precision floating-points. Green label indicates the performance using a mix of half-, single- and
double-precision floating point as available on a GPU.

Tolerance Baseline (DP) Up-cycle (DP) Adaptive (V-cycle) Adaptive (Up-cycle) Improvement (DP) Improvement (SP)
1e-01 1.000 1.333 0.624 0.832 16.8% -5.5%
1e-02 3.000 2.000 1.872 1.664 44.5% 29.7%
1e-03 5.000 4.667 3.284 3.131 37.4% 20.6%
1e-04 8.000 7.333 5.650 5.234 34.6% 17.0%
1e-05 11.000 10.0 8.015 7.336 33.3% 15.4%
1e-06 14.000 12.667 10.380 9.439 32.6% 14.5%
1e-07 17.000 15.333 13.169 11.964 29.6% -
1e-08 20.000 18.000 16.169 14.631 26.8% -
1e-09 23.000 20.667 19.169 17.298 24.8% -
1e-10 26.000 24.000 22.169 20.631 20.7% -
1e-11 29.000 26.667 25.169 23.298 19.7% -
1e-12 32.000 29.333 28.169 25.964 18.9% -
1e-13 35.000 32.000 31.169 28.631 18.2% -
1e-14 38.000 34.667 34.169 31.298 17.6% -
1e-15 43.000 39.333 39.169 35.964 16.4% -

TABLE III: All estimated times for UNSTRUCTURED-ANISOTROPY, size 40, hybrid relaxation method, on a single processor,
with α = 0.3. The column ‘Improvement (DP)’ corresponds to the improvement between the adaptive algorithm using a Up-
cycle (column 5) compared to the original V-cycle with fixed double-precision (column 2). The column ‘Improvement (SP)’
corresponds to the improvement between the adaptive algorithm using a Up-cycle (column 5) compared to the original V-cycle
with fixed single-precision.

(delta bits added in the mantissa when the threshold is reached
for a given precision). Strategies are denoted as b delta. This
can be either an addition or a multiplication. In particular, we
provide a scenario where the available mantissa precisions are
11, 24 and 53 (represented by a starting mantissa precision
of 11 and a multiplicator of 2.24, in green on Figure 8).
This corresponds to the case where the computation starts in
half-precision, then switches to single-precision and finally to
double-precision. This scenario is particularly relevant because
those precisions are already available in architectures such as
the recent Volta GPUs which integrates Tensor cores in half-
precision.

Figure 8 represents the cost of the MG solver, for these
different scenarios, to reach different accuracy degrees in the
output (10−3 on the left, 10−7 in the middle and 10−15 on the
right) using a value for the α parameter of 0.3. We can see that
the strategy that increases by only 1 the number of mantissa
bits (labelled 8_1) takes more time than the original algorithm

(labelled 53_0) for the 3 different accuracies presented. This
is because, in the previous experiments we saw there is usually
the same number of cycles in all our strategies (see Figure 7).
Here, the convergence rate is limited by slowly increasing
number of precision bits: by adding one bit we can reduce
by at most 2 the error on the residual norm, while the original
algorithm can reduce the error by more than that in one cycle
when it is not limited by the bit-width of the variables.

If we focus on a case starting with half precision, then going
to single and finally to double precision (labelled 11_x2.24),
we can see that, compared to the original algorithm (which
uses only double-precision), we improve by 35% the time to
reach accuracy 10−3 (see Figure 8). If one adapts the algorithm
to use only single-precision variables (labelled 24_0) as it
would be sufficient to reach this accuracy, we would still
reduce the time by 17% (still Figure 8). When higher accuracy
is needed in the final result, the performance improvement by
adapting precisions is still quite important, around 10% faster

9

than using double precision (See 10−15 on Figure 8).

D. Putting it all Together

Finally, we want to see how changing the precisions during
the algorithm also improves the execution time when we
use the Up strategy, defined in section III-D, compared to
using the original algorithm (single or double precision). The
table III presents the different estimated times (in time units
where 1 time unit is a V-cycle at double precision) for all
4 different algorithms: V-cycle (double precision), Up-cycle
(double precision), V-cycle (adaptive precisions 11-24-53),
Up-cycle (adaptive precisions 11-24-53) for Problem 1, using
a hybrid relaxation method. We also present the improvement
of the best method (i.e. Up-cycle with different precisions)
compared to the original algorithm (in double-precision and
in single-precision when possible).

The main result is that even to reach the maximum preci-
sion, we improve the execution time by more than 15%. When
it comes to smaller precisions, this improvement can be as
high as 30% compared to a single-precision algorithm and it
even goes up to 45% compared to the original double-precision
version. We want to highlight that these results for the adaptive
algorithm use 3 different mantissa precisions (11,24,53) (i.e.,
half, single, double) already available in current hardware.
More aggressive adaptations (e.g., 4_4) could be potentially
implemented in architectures such as FPGAs leading to even
faster executions, as shown in Figure 8.

V. RELATED WORK

Approximate computing proposals exploit in many different
ways the capacity of some computer programs to deliver
correct results while operating at low accuracy scenarios:
Precision scaling consists in reducing the precision of in-
puts or intermediate values to reduce storage or computing
operands [13], [14]. Other techniques consist in skipping
some loop iterations to reduce computational load [15]. Such
approaches are reported to provide performance improvements
over a factor of two while impacting the final application’s
accuracy by less than 10%. Load Value Approximation (LVA)
consists in exploiting the redundant nature of some computer
codes to predict load values and let the execution to progess
without stalling [16]. Memoization, which is an approach
consisting in storing function results to predict the result of
subsequent computations, it is being used to achieve perfor-
mance enhancements and energy consumption reductions [17],
[18]. Fast but slightly incorrect hardware adders have also been
explored for video and image compression algorithms [19].
Post-layout simulations show improvements of up to 60%
in terms of power and area savings of up to 37% without
significant output quality loss. Voltage-scaling techniques have
also been explored to reduce energy consumption at the SRAM
level, which increases the probability of bit flips [20]. Chang-
ing the bit-width of some variables has been proposed [21] to
trade image quality for bandwidth.

One similar technique has been proposed to accelerate MG
algorithms. It is a strategy consisting in carrying out some re-

laxation steps while going down the V-cycle and interpolating
them to finer grid levels, which has been proposed in [22]. It is
aimed at damping perturbations in the linear system solution,
even if direct interpolation introduces some degree of error.

VI. CONCLUSION

This paper improves the original MG algorithm through two
distinct approaches: The first one is to remove some relaxation
steps in a V-cycle, which leads to faster cycles although
requires more of them to converge. Overall, this solution
achieves up to 30% improvement although its performance
enhancements vary a lot depending on the workload, The sec-
ond way to improve the algorithm is to adapt the precisions of
the floating point depending on MG’s precision requirements,
We use low precisions levels during the very first MG’s cycles
and we increase them as the execution progresses. Repeating
this operation until reaching the maximum available accuracy
available leads to significant speedups. We estimate the bene-
fits of these two approaches combined on different scenarios.
When combining half-, single- and double-precisions, we can
reduce by 16.4% and 14.5% the execution time compared
to using double- or single-precision, respectively, during the
whole execution.

In the future we plan to explore additional ideas to further
reduce the execution time such as changing the precision used
in different levels of a cycle. Also, we plan to estimate the
energy efficiency of our technique by evaluating the energy
consumption using different values of the α parameter.

VII. ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement No 708566
(DURO). The European Commission is not liable for any use
that might be made of the information contained therein. This
work has been supported by the Spanish Government (Severo
Ochoa grant SEV2015-0493)

REFERENCES

[1] W. Hackbusch, Multi-Grid Algorithms. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1991, pp. 133–160. [Online]. Available: https:
//doi.org/10.1007/978-3-642-76717-3 6

[2] S. F. Ashby and R. D. Falgout, “A parallel multigrid preconditioned
conjugate gradient algorithm for groundwater flow simulations,”
Nuclear Science and Engineering, vol. 124, no. 1, pp. 145–159, 1996.
[Online]. Available: http://dx.doi.org/10.13182/NSE96-A24230

[3] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and
W. Gropp, “Modeling the performance of an algebraic multigrid cycle
on hpc platforms,” in Proceedings of the International Conference on
Supercomputing, ser. ICS ’11. New York, NY, USA: ACM, 2011,
pp. 172–181. [Online]. Available: http://doi.acm.org/10.1145/1995896.
1995924

[4] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz, “Fault
resilience of the algebraic multi-grid solver,” in Proceedings of the
26th ACM International Conference on Supercomputing, ser. ICS ’12.
New York, NY, USA: ACM, 2012, pp. 91–100. [Online]. Available:
http://doi.acm.org/10.1145/2304576.2304590

[5] V. E. Henson and U. M. Yang, “Boomeramg: a parallel algebraic
multigrid solver and preconditioner,” Applied Numerical Mathematics,
vol. 41, no. 5, pp. 155–177, 2002.

10

[6] R. D. Falgout and U. M. Yang, hypre: A Library of High Performance
Preconditioners. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 632–641. [Online]. Available: http://dx.doi.org/10.1007/
3-540-47789-6 66

[7] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016. [Online].
Available: http://doi.acm.org/10.1145/2893356

[8] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in 2013 50th ACM/EDAC/IEEE Design Automation Con-
ference (DAC), May 2013, pp. 1–9.

[9] B. Grigorian and G. Reinman, “Accelerating divergent applications on
simd architectures using neural networks,” ACM Trans. Archit. Code
Optim., vol. 12, no. 1, pp. 2:1–2:23, Mar. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2717311

[10] G. Govindu, L. Zhuo, S. Choi, P. Gundala, and V. K. Prasanna, “Area
and power performance analysis of a floating-point based application on
FPGAs,” in Seventh Annual Workshop on High Performance Embedded
Computing.

[11] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“Mpfr: A multiple-precision binary floating-point library with correct
rounding,” ACM Trans. Math. Softw., vol. 33, no. 2, Jun. 2007.
[Online]. Available: http://doi.acm.org/10.1145/1236463.1236468

[12] “The gnu mpfr library,” http://www.mpfr.org.
[13] T. Yeh, P. Faloutsos, M. Ercegovac, S. Patel, and G. Reinman,

“The art of deception: Adaptive precision reduction for area efficient
physics acceleration,” in Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 40.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 394–406.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2007.41

[14] Y. Tian, Q. Zhang, T. Wang, F. Yuan, and Q. Xu, “Approxma:
Approximate memory access for dynamic precision scaling,” in
Proceedings of the 25th Edition on Great Lakes Symposium on VLSI,
ser. GLSVLSI ’15. New York, NY, USA: ACM, 2015, pp. 337–342.
[Online]. Available: http://doi.acm.org/10.1145/2742060.2743759

[15] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 124–134.
[Online]. Available: http://doi.acm.org/10.1145/2025113.2025133

[16] J. S. Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 127–139. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.22

[17] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE Transactions on Computers,
vol. 54, pp. 922–927, 2005.

[18] I. Brumar, M. Casas, M. Moreto, M. Valero, and G. S. Sohi, “Atm:
Approximate task memoization in the runtime system,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2017, pp. 1140–1150.

[19] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: Imprecise adders for low-power approximate computing,”
in Proceedings of the 17th IEEE/ACM International Symposium on
Low-power Electronics and Design, ser. ISLPED ’11. Piscataway,
NJ, USA: IEEE Press, 2011, pp. 409–414. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2016802.2016898

[20] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 164–174.
[Online]. Available: http://doi.acm.org/10.1145/1993498.1993518

[21] J. Park, J. H. Choi, and K. Roy, “Dynamic bit-width adaptation in dct:
An approach to trade off image quality and computation energy,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 18, no. 5, pp. 787–793,
May 2010. [Online]. Available: http://dx.doi.org/10.1109/TVLSI.2009.
2016839

[22] A. Jameson, “Solution of the euler equations for two dimensional
transonic flow by a multigrid method,” Applied Mathematics and
Computation, vol. 13, no. 3, pp. 327 – 355, 1983. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/009630038390019X

11

