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Abstract. The synthesis of a reactive system generates a set of con-
current tasks coordinated by an operating system. This paper presents
a synthesis approach for reactive systems that aims at minimizing the
overhead introduced by the operating system and the interaction among
the concurrent tasks. A formal model based on Petri nets is used to syn-
thesize the tasks. A practical application is illustrated by means of a
real-life industrial example.

1 Introduction

1.1 Embedded systems

Concurrent specifications, such as dataflow networks [9], Kahn process net-
works [7], Communicating Sequential Processes [6], synchronous languages [4],
and graphical state machines [5], are interesting because they expose the in-
herent parallelism in the application. However, their mixed hardware-software
implementation on heterogeneous architectures requires to solve a fundamental
scheduling problem. We assume in the following that the preliminary allocation
problem of functional processes to architectural resources has been solved, either
by hand or by some appropriate heuristic algorithm. The task of this paper is to
define and solve the scheduling problem for a portion of a functional specification
allocated to a single processor.

Most embedded systems are reactive in nature, meaning that they must pro-
cess inputs from the environment at the speed and with the delay dictated by
the environment. Scheduling of reactive systems thus is subject to two often con-
tradicting goals: (1) satisfying timing constraints and (2) using the computing
power without leaving the CPU idle for too long.

1.2 Static and Quasi-Static Scheduling

Static scheduling techniques do most of the work at compile-time, and are thus
suitable for safety-critical applications, since the resulting software behavior is
highly predictable [8] and the overhead due to task context switching is mini-
mized. They may also achieve very high CPU utilization if the rate of arrival of
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inputs to be processed from the environment has predictable reqular rates that
are reasonably known at compile time.

Static scheduling, however, is limited to specifications without choice
(Marked Graphs or Static Dataflow [9]). Researchers have recently started look-
ing into ways of computing a static execution order for operations as much as
possible, while leaving data-dependent choices at run-time. This body of work
is known as Quasi-Static Scheduling (QSS) [1,10,12,2,13]. The QSS problem,
i.e. the existence of a sequential order of execution that ensures no buffer over-
flow, has been proven to be undecidable by [1] for specifications with data-
dependent choices . Our work fits in the framework proposed by [12,2], in which
Petri nets (PNs) are used as an abstract model, that hides away correlations
among choices due to the value of data that are being passed around, and thus
achieves a two-fold improvement over [1]:

1. undecidability has not been proven nor disproven. It remains an interesting
open problem except in the decidable cases of Marked Graphs [9] and Free-
Choice Petri nets [12].

2. powerful heuristics, based on the theory discussed in this paper, can be used
to speed up the identification of a solution, if it exists.

In the rest of the paper, we define various scheduling problems for Petri
nets, and motivate their practical interest by showing how concurrent programs
communicating via FIFO queues can be implemented as software tasks running
under a Real Time Operating System. In particular, we use a game-theoretic
formulation, in which the scheduler must win against an adversary who can de-
termine the outcome of non-deterministic choices, by avoiding overflow of FIFO
queues. The scheduler can resolve concurrency in an arbitrary fashion, but is
not allowed to “starve” any input by indefinitely refusing to service it.

1.3 Specification model

We consider a system to be specified as a set of concurrent processes, similar
to those discussed in [3]. A set of input and output ports are defined for each
process, and point-to-point communication between processes occurs through
uni-directional FIFO queues between ports. Multi-rate communication is sup-
ported, i.e. the number of objects read or written by a process at any given time
may be an arbitrary constant.

Each communication action on a port, and each internal computation action
is modeled by a transition in a corresponding Petri net, while places are used to
represent both sequencing within processes and FIFO communication.

Fig. 1 depicts the specification of a concurrent system with two processes,
two input ports (IN and COEF) and one output port (OUT). The processes com-
municate to each other through the channel DATA. The process Get_Data reads
data from the environment and sends it to the channel DATA. Moreover, after
having sent N samples (IV is a constant), it also inserts their average value in
the same channel. The process Filter extracts the average values inserted by
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PROCESS Filter (InPort DATA,
PROCESS GetData (InPort IN, InPort COEF,OutPort OUT) {
OutPort DATA) { float c,d; intj;
float sample,sum; int i; c=1;j=0;
while (1) { while (1) {
sum =0; oaTa | SELECT (DATA, COEF) {
for (i=0; i<N; i++) { case DATA:
READ (IN,sample,1); =1l READ (DATA d,1);
sum += sample; |f. (==N){
WRITE (DATA, sample,1); j=0; d = d*c; WRITE (OUT,d,1);
} } elsej++;
WRITE (DATA, sum/N,1); break;
1} case COEF: READ(COEF,c,1); break;
1

Fig. 1. System specification

Get_Data, multiplies them by a coefficient and sends them to the environment
through the port 0UT. This example also illustrates the main extensions of the
C language to support communication. The operations to communicate through
ports have syntax READ_DATA (port, data, nitems) and WRITEDATA (port,
data, nitems). The parameter nitems indicates the number of objects involved
in the communication. This allows to support multi-rating, although the example
uses only 1-object read/write operations. A READ DATA blocks when the number
of items in the channel is smaller than nitems.

The SELECT statement supports synchronization-dependent control, which
specifies control depending on the availability of objects on input ports. In the
example, the SELECT statement in Filter non-deterministically selects one of
the ports with available objects. In case none of them has available objects, the
process blocks until some is available. Figure 2(a) depicts the representation of
the concurrent system specified in Fig. 1 with a Petri net model.

o Init () {
sum=0; i=0; || Tcoef () {
c=1; j=0; READ(COEF,c,1);
1 t2 ) Y
| sum=0;i=0] | WRITE(DATA sumiN,)
Tin () {

READ(IN,sample,1);
sum += sample; i++;

Tin DATA = sample; d = DATA;
if (j==N) {
j=0; d=d*c; WRITE(OUT,d,1);
IN } else j++;

LO: if (i<N) return;
DATA = sum/N; d = DATA;
if (j==N) {
t4 j=0; d=d*c; WRITE(OUT,d,1);
READ(IN,sample,1);
sum += sample;
WRITE(DATA, sample,1)

} else j++;
sum=0; i=0; goto LO;

}

*) (b)

Fig. 2. (a) Petri net specification, (b) Single-source schedules.

WRITE(OUT,d,1)

1.4 Schedule composition

The main topic of this paper is schedule composition. In general a schedule is
defined by requiring the system to alternately wait for any one input transi-
tion, and perform some internal computation or communication. While this is a
very useful theoretical notion, in practice it is much easier to tie inputs of the
embedded software to interrupt sources of the processor on which it runs.



Basically, if we were able to define fragments of the schedule so that each
of them represented the “maximal amount of work” that could be performed
in reaction to each input from the environment, then each such fragment would
become an interrupt service routine. When defining such schedule fragments we
will mostly focus on their execution in a non-preemptive way, i.e. so that only
one of them can be executed at any given time. This results in a simple and
general definition of composite schedule, and has the only practical problem
that some buffering may be needed on fast inputs in order to process and store
the input data while another schedule fragment (called Single Source Schedule
in the following) for another input is being executed.

As an example, Fig. 2(b) shows three tasks that implement the behavior of
Fig. 1. The task Init is executed only at the beginning to reach a steady state.
After that, the tasks Tin and Tcoef are invoked by the arrival of events from IN
and COEF, respectively.

2 Background

The following definitions introduce the nomenclature used in the paper.

Definition 1 (Petri net). A Petri net is a 4-tuple N = (P,T, F, M), where
P is the set of places, T is the set of transitions, F : (P x T)U (T x P) - N
is the flow relation and My : P — N is the initial marking. The set of reachable
markings of a Petri net is denoted by [My). The fact that M’ is reachable from
M by firing transition t is denoted by M[t)M'. The pre-set and post-set of a
node x € PUT are denoted by *x and x*, respectively.

Given a Petri net N with P = (p1,...,pn), the notation Pre[t] is used to
represent the vector (F(p1,t),..., F(pn,t)). Given a set of nodes X, N \ {X}
denotes the subnet of IV obtained by removing the nodes in X and their adjacent
arcs from N. If for any node z in PN N we have *z N z®* = (, then N is called
self-loop free. M (p) denotes a number of tokens in place p under marking M.

In this paper we use nets with source transitions, i.e. with empty pre-sets.
These transitions model the behavior of the input stimuli to a reactive system.

Definition 2 (Source and non-source transitions). The set of transitions
of a Petri net is partitioned into two subsets as follows:

TSZ{tET | 't:@}, TN:T\TS.
Ts and Tn are the sets of source and non-source transitions, respectively.

Definition 3 (Free-choice set). A Free-choice Set (FCS) is a mazimal subset
of transitions C' such that

th,tg e C st ty 7é to : Pre[tl] = Pre[t2] N ('tl 75@ = (C= ('tl).).

Proposition 1. The set of FCSs is a partition of the set of transitions.



Proof. The proof immediately follows from the consideration that the relation
R induced by FCS (i.e. t1Rts <= 3TFCS C : t1,t2 € C) is an equivalence
relation.

We will call FCS(#) the set of transitions that belong to the same FCS of t.
Any conflict inside a FCS is said to be free-choice. In particular, Ts is a FCS.

Definition 4 (Transition system). A transition system is a 4-tuple
A=(S,%Y,—,sin), where S is a set of states, X is an alphabet of symbols,
— C S x X xS is the transition relation and s;, is the initial state.

With an abuse of notation, we denote by s = s',s — s',s =, — s,...,
different facts about the existence of a transition with certain properties.

A path p in a transition system is a sequence of transitions
§1 —23 59 -2 53 =3 0 > 5y 2 Sn+1, such that the target state of each transi-
tion is the source state of the next transition. A path with multiple transitions
can also be denoted by s = s’, where ¢ is the sequence of symbols in the path.

3 Schedules

Scheduling of a PN imposes the existence of an additional control mechanism for
the firing of enabled transitions. For every marking, a scheduler defines the set of
fireable transitions as a subset of the enabled transitions. The composite system
(PN+scheduler) proceeds from state to state by firing fireable transitions.

Definition 5 (Sequential schedule). Given a Petri net N = (P, T, F, M),
a sequential schedule of N is a transition system Sch = (S,T,—,so) with the
following properties:

. S is finite and there is a mapping p: S — [My), with u(sg) = Mp.

. If transition t is fireable in state s, with s - s', then w(s)[tyu(s') in N.
. If t1 is fireable in s, then t2 is fireable in s if and only if to € FCS(t1).
. t is fireable in so if and only if t € T.

. For each state s € S, there is a path s —— s' 4 for each t € Ts.

v AN o v~

Property 2 implies a trace containment for Sch and N (any feasible trace in
the schedule is feasible in the original PN). Property 3 indicates that one FCS is
scheduled at each state. The FCS scheduled at sg is the set of source transitions
(property 4). Finally, property 5 denotes the fact that any input event from the
environment will be eventually served.

Given a sequential schedule, a state s is said to be an await state if only
source transitions are fireable in s. An await state models a situation in which
the system is “sleeping” and waiting for the environment to produce an event.

Intuitively, scheduling can be deemed as a game between the scheduler and
the environment. The rules of the game are the following:



— The environment makes a first move by firing any of the source transitions
(property 4 of definition 5).

— The scheduler might pick up any of the enabled transitions to fire (prop-
erty 3) with two exceptions:

(a) it has no control over choosing which of the source transitions to fire and

(b) it cannot resolve choice for data-dependent constructs (which are de-
scribed by free-choice places).

In cases (a) and (b) the scheduler must explore all possible branches during
the traversal of the reachability space, i.e. fire all the transitions from the
same FCS. However it can decide the moment for serving the source transi-
tions or for resolving a free-choice, because it can finitely postpone these by
choosing some other enabled transitions to fire.

The goal of the game is to process any input from the environment (prop-
erty 5) while keeping the traversed space finite (property 1). In case of success
the result is to both classify the original PN as schedulable and derive the set
of states (schedule) that the scheduler can visit while serving an arbitrary mix
of source transitions. Under the assumption that the environment is sufficiently
slow, the schedule is an upper approximation of the set of states visited during
real-time operation.

The notion of sequential schedule is illustrated in Figures 3 and 4. Figure 3
shows two non-schedulable specifications and parts of their reachability spaces.
The impossibility to find a schedule for the PN in Fig. 3(a) stems from the in-
ability of a scheduler to control the firing of source transitions. A cyclic behavior
in this PN is possible only with correlated input rates of transitions a and b. On
the other hand, the PN in Fig. 3(b) is non-schedulable because of the lack of
control on the outcome of free-choice resolution for the place pl.

Figure 4(a) presents an example of arbitration with two processes competing
for the same resource (place pg). The schedule for this specification is given in
Fig. 4(b), where await states are shown by shadowed rectangles. Note that the
scheduler makes a smart choice on which one among the concurrently enabled
transitions a, d or f fires in the state {p4, ps}, by first scheduling transition f to
release the common resource pg as quickly as possible.
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Fig. 3. Non-schedulable PNs
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Fig. 4. Processes with arbitration.
3.1 Single-source schedules: rationale

As discussed in Section 1, the proposed strategy synthesizes a set of tasks that
serve the inputs events produced by the environment and may share common
data structures in the system. Therefore, their interaction must be consistent,
independent of the occurrence order of the external events.

The concept of task in the reactive system corresponds to the concept of
single-source schedule (SSS) in our formal model. A SSS is a sequential schedule
associated to a single source transition. Each SSS serves only one input channel
as if other source transitions were never produced by the environment. In that
way a SSS gives a projection of the scheduler activity in which only one source
transitions is fireable.

Given a set of SSSs, we want to check whether it can implement the specifi-
cation of the system. For that, we need to calculate their composition and check
that it fulfills the properties of sequential schedule (see definition 5).

The rationale behind generation of SSSs in first place rather than construct-
ing a sequential schedule is the following:

— Lower complexity for the generation of SSSs. The size of a sequential schedule
can be exponentially larger than the size of the set of SSSs.

— SSSs give a natural decomposition of a sequential schedule which is beneficial
for implementation as ISRs on an RTOS.

— A scheduler that behaves according to SSSs has a uniform response for firings
of the same source transitions, since each SSS often has just a single await
state. This uniformity can be exploited during code generation and provides
potentially smaller code size due to the higher probability for sharing pieces
of code.

3.2 Single-source schedules: definition and composition

Definition 6 (Single-source schedule). Given a Petri net N =
(P,T,F, M), a single-source schedule of N with the transition a € Ts is a
sequential schedule of N\ (Ts \ {a})

Next, sequential composition is defined. The intuitive idea behind this com-
position is as follows. Each transition system represents a task associated to a
source transition. When a task is active, it cannot be preempted, i.e. only events



from that task can be issued. A task can only be preempted when it is waiting
for an event from the environment (source transition). The composition builds
a system that can serve all the events of the environment sequentially.

Definition 7 (Sequential composition). Let N = (P,T, F, My) be a Petri
net and X = {S55(t;) = (S, Tt;, —i,S0;) | ti € Ts} be a set of SSSs of N. The
sequential composition of X is a transition system A = (S,T,—,so) defined as
follows:

- S0 = (8017"‘780k)

— S C Sy x---x S is the set of states reachable from sy according to —. A
state is called an await state if all its components are await states in their
corresponding SSS.

— For every state s = (s1,...,5k),
e if s is an await state, then the set of fireable transitions from s is the set
., . t; ' .
of source transitions, i.e. (S1,...,8i,...,8k) —> (S1,...,85,...,5¢) in A

if and only if s; iy s} in SSS(t;).

e if s is not an await state, there is one and only one' state component s;
of s such that s; is not an await state in SSS(t;). Then the set of fireable
transitions from s is the set of fireable transitions from s; in SSS(t;), i.e.
(S1y-vnySiyenySk) N (S1y+-++8},...,8c) in A if and only if s; N s}
in SS5(t;).

Figure 5 depicts the sequential composition of two SSSs obtained from the
PN in Fig. 4. The shadowed circles correspond to await states. Initially both SSSs
are in await states. Thus, only source transitions a and d are fireable in state 00
of the composition. The firing of any of them, e.g. d, moves the corresponding
SSS from the await state and forces the composition to proceed according to
the chosen SSS(d) until a new await state is reached (state 3 of SSS(d)). In the
corresponding state of the composition (state 03) both state components are
await states and, therefore, both source transitions a and d are fireable again.
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Fig. 5. Two single-source schedules and their sequential composition.

! This claim can be easily proved by induction from the definition of — and from the
fact that so is an await state.



Definition 8 (Sequential independence). Given a Petri net N =
(P,T,F, M), a set of single-source schedules X is sequentially independent if
its sequential composition is isomorphic to a sequential schedule of N.

One can easily check that the sequential composition in Fig. 5 is isomorphic
to the sequential schedule in Fig. 4(b) and, therefore, the set {SSS(a),SSS(b)},
is sequentially independent.

From the definition of SSS, it follows that the existence of a sequential sched-
ule implies the existence of SSSs (once a sequential schedule has been obtained
all SSSs can be immediately derived by using the sub-graphs in which only one
source transition fires). Moreover, Definition 8 indicates that sequential indepen-
dence for a set of SSSs is a sufficient condition for the existence of a sequential
schedule. In fact, it even gives a constructive way for deriving such a sched-
ule by using the sequential composition of SSSs. For this reason, checking the
independence of a set of SSSs is a key issue in the suggested approach.

3.3 Checking sequential independence

Given a Petri net N and a set A" of single-source schedules of N, checking their
independence can be done as follows:

1. Build the sequential composition A of X.
2. Check that A is a sequential schedule of N, according to Definition 5.

This approach is computationally expensive because it requires to derive
explicitly the composition of SSSs.

We next propose an alternative way for checking independence of SSSs that
does not require to calculate their composition. Let us consider the case in which
the SSSs are not independent, resulting in a failure to find an isomorphic sequen-
tial schedule Sch for A. Let us consider paths from the initial states of A and
Sch, where Sch mimics A and keeps track of the reachable markings in the Petri
net. If there is no independence, there will be two paths that lead to states s and
s' in A and Sch, respectively, in which some transition ¢ is enabled in s but not
enabled in s', i.e. the Petri net cannot simulate the sequential composition of
SSSs. Figure 6 shows the structure of the paths, where shadowed circles denote
await states.

SsY(t)) SSY(t)) SSS(ty)

t

?

Fig. 6. Matching SSS composition with a sequential schedule.

?

Sch:

In the last await state sy before s, SSS(¢) is chosen to proceed in the com-
position by firing transition t;. The only reason for ¢ not being enabled in state
s' € Sch might come from the “interference” of the execution of the schedules



SSS(t;) and SSS(t;) preceding sy with SSS(¢x). Simply speaking, SSS(¢;) and
SSS(t;) must consume tokens from some place p in the pre-set of ¢. This leads to
the idea of applying marking equations for the check of SSS independence. It is
known that self-loops introduce inaccuracy in calculating the fireable transitions
by using the marking equations. For the rest of this section we will assume that
a specification is provided as a PN without self-loops 2. The following hierarchy
of notions is used for the formulation of independence via marking properties:

— For X = {SSS(t;) | t; € Ts} and given place p
e For SSS(t;) with set of states Sy, and set of await states S

x For state s € Sy, let change(p,s) = u(so)(p) — 1(s)(p), i.e. the dif-
ference in token counts for place p between markings corresponding
to initial state of SSS(¢;) and state s.

* let SSS_change(p,t;) = maxses,, change(p,s), i.e. the maximal
change in token count for place p in markings corresponding to states
of SSS(¢;) with respect to the initial marking.

* let await_change(p,t;) = maxsesas change(p,s), i.e. the maximal
change in token count for place p in lrnarkings corresponding to await
states of SSS(#;) with respect to the initial marking.

e let worst_change(p,t;) = Ztﬁéti,t]—eTs await_change(p,t;), i.e. the sum
of await_change for all SSS except for SSS(t;)

Here is the semantics of the introduced notions:

— SSS_change(p,t;) shows how much the original token count for place p
deviates while executing the single source schedule SSS(t;). If SSS(#;)
started from the initial marking with a number of tokens in p less than
SSS_change(p, t;) then SSS(¢;) would deadlock due to a lack of tokens to fire
some transition in the post-set of p.

— await_change(p, t;) gives a quantitative measure of the influence of SSS(#;)
on the other schedules. Indeed, as await states are the only points where
a scheduler switches among interrupt service routines (SSSs), the change
in PN markings due to the execution of SSS(t;) is fully captured by the
markings of await states, where await_change(p, t;) gives the worst possible
scenario.

— worst_change(p, t;) generalizes the notion of await_change(p,t;) to the set
of all SSSs except for the chosen SSS(#;). The execution of other SSSs has a
cumulative influence on SSS(¢;) expressed by worst_change(p,t;).

The following theorem establishes a bridge between the sequential indepen-
dence of SSS and the firing rules in Petri nets when the schedules are executed.

Theorem 1. A set of single source schedules X = {SS55(t;) | t; € Ts} derived
from a self-loop free PN N = (P,T, F, M) is sequentially independent if and
only if Vp € P and VSS55(t;) € X the following inequality is true:

My (p) — worst_change(p,t;) — SSS_change(p,t;) > 0 (IE.1)

2 This requirement does not impose restrictions because any PN with self-loops can
be transformed into a self-loop-free PN by inserting dummy transitions.



Proof. =. Suppose that X is sequentially independent but there exists a place
p for which inequality TE.1 is not satisfied. Sequential independence implies the
existence of a sequential schedule isomorphic to the composition of X'.

In the set of states of the sequential composition of X' let us choose an await
state s = (s1,...,5k), such that for any SSS(¢;),t; # t; the corresponding await
component s; of s is chosen to maximize the token consumption in place p, while
s; is chosen to be the initial state of SSS(¢;). From the choice of state s follows
that by reaching s in the composition, the corresponding marking for place p
equals to My(p) — worst_change(p,t;). Let us execute SSS(t;) from s. By the
definition of SSS_change(p,t;) there is a state s; € SSS(¢;) such that the token
count for place p in the marking corresponding to s reduces by SSS_change(p, t;)
with respect to the initial marking from which SSS(¢;) starts. From this follows
that if Mo (p) —worst_change(p,t;)—SSS_change(p,t;) < 0 then in the sequential
schedule isomorphic to the sequential composition of X’ it would be impossible
to fire some transition ¢ that enters state s’, where s' = (s1,...,5},...,sx). The
latter contradicts the isomorphism between the composition and the sequential
schedule

<. Suppose that inequality IE.1 is satisfied but X is not sequentially inde-
pendent. In a set of all sequential schedules let us choose the schedule Sch that
is isomorphic to the largest subpart of the sequential composition A, i.e. if a
mismatch like in Fig. 6 is found by simulating Sch and A then there does not
exist any other sequential schedule with state s isomorphic to s and capable of
firing transition ¢. Let us rearrange the sequence in Fig. 6 by first executing the
schedules other than SSS(¢;) and let sy be the first await node in which SSS(t;) is
chosen. Then the token count for a place p in the marking corresponding to s is
larger than Mo (p) — worst_change(p, t;). By definition the execution of SSS(#;)
cannot reduce it more than by SSS_change(p,t;). Then due to the validity of
IE.1 when state s’ is reached in SSS(¢;), transition ¢ cannot lack tokens in p
needed for its enabling. The case of Fig. 6 is impossible.

A sufficient condition for checking the sequential independence can now be
derived.

SS(d) SSS(d)
ssS(a) (po | sss(@)
pr? p;pa prri po(:as

b c le b c e
p2 p2
4p5 4p5
pf
d d f
POpS| pOp3p5 p3p4p5 POp3p5

(b) ©

Fig. 7. Process with arbitration and its single source schedules.

Corollary 1. A set of single source schedules X = {S55(t;)} is sequentially
independent if for any marking M corresponding to an await state s of SSS(t;)
(M = p(s)) we have Vp : M(p) > Mo(p).



Proof. The proof follows from inequality IE.1 by taking into account two obser-
vations:

— If for any marking M of the await state s M(p) > Moy(p), then
worst_change(p,t;) < 0.

— The ability of any SSS(;) to be executed from My means that for any place p,
My (p) — SSS_change(p, t;) > 0. Note that this captures the case of arbitrary
PNs (not self-loop free only).

We illustrate the suggested approach with the example in Fig. 7. The two dif-
ferent sets of SSSs are shown in Fig. 7(b,c). The only place shared by both SSS(a)
and SSS(d) is the place pg. We can immediately infer the irrelevance of other
places with respect to independence violation. Checking the marking count for pg
in SSS(d) in Fig. 7(b) gives the following results: worst_change(po,d) = 0 (po is
marked in both await nodes of SSS(d)) and SSS_change(po, d) = 1 due to the con-
sumption of pg in non-await states of SSS(d) (see the marking {p4, ps} e.g.). From
similar considerations: worst_change(po,a) = 0 and SSS_change(po,a) = 1. It is
easy to see that under the initial marking My(po) = 1 inequality IE.1 is satisfied
for both SSS(a) and SSS(d). This is in full correspondence with the conclusion
about the sequential independence of SSS(a) and SSS(d) that was derived earlier
through the explicit construction of their composition (see Fig. 5).

Reversing the order of firing for transitions d and f in SSS(d) from Fig. 7(c)
results in worst_change(py,d) increasing to 1 (in the await state {p4,ps} place
po is unmarked). The latter leads to the violation of inequality IE.1 for SSS(a)
and tells about the dependency between SSS(a) and SSS(d) from Fig. 7(c). Note
that the same result could be immediately concluded by observing await states
of SSS(d) and applying Corollary 1.

From the above example it follows that from the same specification one can
obtain independent and dependent sets of SSSs. In case an independent set exists,
finding it can be computationally expensive, since an exhaustive exploration of
the concurrency in all SSSs may be required. In practice, we suggest to use a “try
and check” approach in which a set of SSSs is derived and, if not independent,
a sequential schedule is immediately constructed (if possible). This design flow
for scheduling is illustrated by Fig. 8.

independent

l

Independence | dependent ‘ Sequential ‘ exists ‘ Code

check schedule generation
does not exist
Failure

Fig. 8. Design flow for quasi-static scheduling.

does not exist

3.4 Termination criteria

Single-source schedules are derived by exploring the reachability graph of a Petri
net with source transitions. Unfortunately, this graph is infinite.



Next, we discuss conservative heuristic approaches to prune the exploration
of the reachability space while constructing a schedule. Conservatism refers to
the fact that schedules may not be found in cases in which they exist. Our
approach attempts to prune the state space when the search is done towards
directions that are qualified as non-promising, i.e. the chances to find a valid
schedule are remote. The approach is based on defining the notion of irrelevant
marking. This definition is done in two steps: 1) bounds on places are calculated
from the structure of the Petri net and 2) markings are qualified as irrelevant
during the exploration of the state space if they cover some preceding marking
and exceed the calculated bounds. Note that the property of irrelevance is not
local and depends on the pre-history of the marking.

Definition 9 (Place degree). The degree of a place p is defined as:

degree(p) = max(My(p), max F(t,p) + max F(p,t) — 1)
te®p tep®

Place degree intuitively models the “saturation” of p. If the token count
of p is max F(p,t) or more, then adding tokens to p cannot help in enabling
output transitions of p. By the firing of a single input transition of p at most
max F'(t,p) tokens can arrive, which gives the expression for place degree shown
in Definition 9.

Definition 10 (Irrelevant marking). A marking M is called irrelevant with
respect to a reachability tree rooted in initial marking My, if the tree contains
marking My such that:

— M is reachable from M,

— no place has more tokens in M, than in M, and

— for every place p at which M has more tokens than M, the number of tokens
in My is equal to or greater than degree(p).

The example in Fig. 9 illustrates the crucial difference between the ap-
proaches targeted to pre-defined place bounds and irrelevant markings.

P52 peZp1p2-3-pSpt p?
b a

Irrelevant space

. .. b) L
Fig. 9. Constraining the search space by irrelevance criterion

The maximal place degree in PN from Fig. 9(a) is k. This information is the
best (as far as we know) one can extract from the PN structure about place



bounds. The predefined upper bounds for places should be chosen to exceed
place degrees. In fact, the higher place degrees are, the higher upper bounds are
expected. Suppose that based on this rationale the upper bounds are chosen as
maximal place degree multiplied by some constant margin.

Let us assume for our example that place bounds are assigned to be 2k—1 and
consider the PN reachability space when k¥ = 2. When the schedule is checked
with the pruning based on pre-defined place bounds, any marking that has more
than 3 tokens in a place should be discarded. Clearly no schedule could be
found in that reachability space because after a,a,b,a occurs, the only enabled
transition is a, but its firing produces 4 tokens in place p2 (see the part of
reachability graph shown in Fig. 9(b), where superscripts near places show the
number of tokens the place has under the current marking). The search fails.

The irrelevance criterion handles this problem more graciously. It guides
the search for the “proper” direction in the reachability space by avoiding the
irrelevant markings. The first guidance is given when marking {p2,p?,p3} is
reached. In that marking one need to choose which transitions a or b to fire from
the enabled set. The firing of a however produces the marking {pZ, p}, p3} which
is irrelevant because it covers {pZ, p}, p3}, where places p; and p, are already
saturated. Therefore transition b should be chosen to fire. After this, a fires
two times, resulting in the marking {pZ,ps,p?,pi}. Note that even though the
place degree for ps is exceeded in this marking, the marking is not irrelevant
because in all the preceding markings containing ps, p; is not saturated. From
this marking the system is guided to fire b because the firing of a again would
enter the irrelevant space (see Fig. 9(b)). Finally this procedure succeeds and
finds a valid SS schedule.

Though pruning the search by using irrelevance seems a more justified cri-
terion than by using place bounds, it is not exact for general PNs. There exist
PNs for which any possible schedule enters the irrelevant space. This is due to
the fact that for general PNs accumulating tokens in choice places after their
saturation could influence the resolution of choice (e.g., by splitting token flows
in two choice branches simultaneously). If for any choice place p in PN either
at most one of transitions in p*® is enabled (unique choice) or every transition in
p® is enabled (free-choice) then adding tokens to p does not change the choice
behavior of a PN. This gives the rationale behind the conjecture that the ir-
relevant criterion is exact for PNs with choice places that are either unique or
free-choice. However we are unable either to prove the exactness of this criterion
or to find a counterexample for that. This issue is open for the moment.

4 Algorithm for schedule generation

This section presents an algorithm for computing a sequential schedule. It can
also be used to compute a single-source schedule for a source transition ¢;, if it
takes as input the net in which all the source transitions except t; are deleted
(see Definition 6). Finally, a sequential program is generated from the resulting
schedule by the procedure described in Sect. 4.2.



4.1 Synthesis of sequential schedules

Given a PN N, the scheduling algorithm creates a directed tree, where nodes
and edges are associated with markings and transitions of IV respectively. In the
sequel, u(v) denotes the marking associated with a node v of the tree, while
T([v,w]) denotes the transition for an edge [v,w]. Initially, the root r is created
and p(r) is set to the initial marking of N. We then call a function EP(r, r),
shown in Figure 10(a). If this function returns successfully, the post-processing is
invoked to create a cycle for each leaf. The resulting graph represents a sequential
schedule (S,T,—,r), where S is the set of nodes of the graph, T is the set of

transitions of NV, and — is given by v T o for each edge [v, w].

function EP(v, target) // returns (status, ap, ep) function EP_FCS(F, v, target)
ap + 0, ep < UNDEF, FC'S(v) + ¢; // returns (status, apr,epr)
if(termination conditions hold) return (0, 0,UNDEF); apr + 0, epr < UNDEF,
if(Ju : v < v and p(u) = p(v)) return (1,0, u); current_target < target;
for(each FCS F enabled at u(v)) for(each transition ¢ of F')
if(v = r and F # Ts) continue; // r is the root. create a node w and an edge [v, w];
if(F = Ts) current_target < v; T([v, w]) « t;
else current_target < target; wu(w) < the marking obtained by
(status, app, epp) < EP_FCS(F, v, current_target); firing ¢t at p(v);
if(status = 0) continue; (status, ap, ep) + EP(w, current_target);
if(apr = 1) if(status=0) return (0, apr, UNDEF);
FCS(v) < F, return (1,1,epp); if(ap =1 or FCS(w) =Ts)
if(epr < current_target) apr < 1, current_target < v;
FCS(v) < F, return (1,0, epp); if(apr = 0 and v < ep)
if(epr < ep) return (0, 0, UNDEF);
FCS(v) « F, ap < apr, ep < epr; if(ep < v) epr + min(epr, ep);
if(FCS(v) = ¢) return (0, ap, ep); if(epr < target) current_target + v;
else return (1, ap, ep); return (1,apr, epr);

(a) (b)
Fig. 10. The two main functions called in computing a sequential schedule

EP takes as input a leaf v of the current tree and its ancestor target. We
say that a node u is an ancestor of v, denoted by u < wv, if u is on the path
from the root to v. If in addition u # v, u is a proper ancestor of v, denoted
by u < v. EP creates a tree rooted at v, where each node z is associated with
at most one FCS enabled at u(z). The goal is to find a tree at the root v with
two properties. First, each leaf has a proper ancestor with the same marking.
Second, each non-leaf z is associated with an FCS so that for each transition ¢
of the FCS, z has a child y with T'([z,y]) = t. If such a tree is contained in the
one created by EP, we say that EP succeeds at v. FCS’s are associated so that
the conditions given in the definition of sequential schedules (Definition 5) are
satisfied, which will be elaborated next.

EP returns three values, denoted by status(v), ap(v), and ep(v). There are
two terminal cases, given in the third and fourth lines of the code in Fig. 10(a),
for which the returned values are presented respectively. Suppose that v does
not fall into the terminal cases. status(v) is a boolean variable, which is 1 if and
only if EP succeeds at v. The other two values are meaningful only if status(v) is
1. ap(v) is a boolean variable, which is 1 if and only if v has a path to an await
node in the created tree such that for each edge on the path, say [z,y], an FCS



is associated with = and T'([z,y]) is in the FCS. A node is said to be await if it
is associated with an FCS and this is the set of source transitions Ts.

ep(v) is an ancestor u of v for which there exists an FCS enabled at u(v)
that satisfies the following three conditions. First, for each transition ¢ of the
FCS, a child w has been created with T'([v,w]) =t and p(v)[t)p(w). Second, for
each such w, status(w)= 1 and either ap(w) = 1 or ep(w) < v. Third, u is the
minimum among ep(w) for all w such that ep(w) < v, i.e. the one closest to the
root r. If no ep(w) is an ancestor of v, or if there is no FCS that satisfies these
conditions, ep(v) is set to UNDEF. Intuitively, if ep(v) is not UNDEF, it means that
there exists an FCS enabled at u(v) with the property that for each transition ¢ of
the FCS, if ep(w) < v holds for the corresponding child w, there is a sequence of
transitions starting from ¢ that can be fired from p(v) and the marking obtained
after the firing is p(u). Further, at each marking obtained during the firing of the
sequence, there is an FCS enabled at the marking that satisfies this property. If
there exists such an FCS at v, EP further checks if there is one that also satisfies
ep(v) < target. If this is the case, EP associates one of them with v, which is
denoted by FC'S(v) in the algorithm. Otherwise, EP associates any FCS with the
conditions above. If no such FCS exists, no FCS is associated and F'CS(v) is set
to empty.

To find such an FCS, EP calls a function EP_FCS for each FCS enabled at
p(v). The enabled FCS’s are sorted in EP before calling EP_FCS, so that Ts is
positioned at the end of the order. This heuristic tries to minimize the number
of await nodes introduced in a schedule. The exception of this rule is at the
root r, in which EP_FCS is called only for T's. This ensures the property 4 given
in the definition of sequential schedules. If EP succeeds at the root r, we call
the post-processing to create a schedule and terminate. Otherwise, we report no
schedule and terminate.

The post-processing consists of two parts. First, we retain only a part of the
created tree that are used in the resulting schedule, and delete the rest. The
root is retained, and a node w is retained if its parent v is retained and the
transition T'([v,w]) is in F'CS(v). Second, a cycle is created for each leaf w of
the retained portion of the tree, by merging w with its proper ancestor u such
that pu(u) = p(w). By construction, such a u uniquely exists for w. The graph
obtained at the end is returned. It is shown that this algorithm always finds
a schedule, if there exists one in the space defined by the terminate conditions
employed in EP.

The resulting graph may have more than one node with the same marking
and FCSs associated with these nodes may not be the same. The freedom of
associating different FCSs at nodes with the same marking allows the scheduler
to explore the larger solution space, and thus the algorithm does not commit to
the same FCS for a given marking.

4.2 Code generation

The code generation algorithm takes a graph of a sequential schedule and syn-
thesizes code [11]. We briefly illustrate it in this section.



The algorithm proceeds in three steps. First, we traverse the schedule Sch
to identify a set of sub-trees that covers Sch, i.e. for each node v of Sch, there
exists a tree that contains a node v’ with FCS(v) = FCS(v'). We say that v
corresponds to v'. Our procedure finds a minimal set with an additional property
that for each v, there is exactly one v’ that v corresponds to.

The second step generates code for each tree. This code is made of two
types. One is the code for realizing the control flow statements. For example,
if-then-else is introduced at a node with multiple child nodes. Also, switch
and goto are used to jump from each leaf of the tree to the root of another tree.
For this purpose, variables are introduced for places and the markings in the tree
are represented with them. This and the correspondence information obtained
in the first step are used to implement the jump correctly. The other type of
code is operations executed at each transition from one node to another. In our
applications, the Petri net is generated so that each transition is annotated with
a sequential program. This program is copied in the generated code.

The third step is concerned with channels between processes that have been
merged into a single schedule. For each such channel, we define a circular buffer
and replace write and read operations for the channel that appear in the gener-
ated code with operations on the buffer. The size of the buffer can be statically
identified as the upper bound found in the schedule. If the buffer has size 1, it
is substituted by a single variable.

5 Experimental Results

We used as our test system an MPEG-2 video decoder developed by Philips
(see [14]) and shown in Fig. 11. Processes Thdr and Tvld parse the input video
stream; Tisiq and Tidct implement spatial compression decoding; TdecMV, Tpre-
dict and Tadd are responsible for decoding temporal compression and generating
the image; Tmemory, TwriteMB, TmemMan and Toutput manage the frame store
and produce the output to be sent to a visualization device. Communication is
by means of channels that can handle arbitrary data types. Philips used approx-
imately 7700 lines of code to describe the 11 processes, and 51 channels. An
average of 16 communication primitives per process are used to transfer data
through those channels.

‘ Thdr ‘

{ Tvid j TdecMV tj Tpredict

{ Tisiq E Tidct E Tadd ETwriteMBETmanager‘

Fig. 11. MPEG-2 video decoder block diagram
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In the original implementation, all processes were scheduled at run time. Our
objective was to reduce scheduling overhead by merging processes into quasi-
statically scheduled ones. We focused our attention on five processes: Tisiq, Tidct,
TdecMV, Tpredict and Tadd. They consist of about 3000 lines of code and account
for more than half of all communications occurring in the system. The inputs
to these five processes from the rest of the system are correlated, and thus they
cannot be treated as independent inputs. Instead of modeling the correlation
explicitly using additional processes, we introduced a single input that triggers
the five processes to react to this input. As a result, our procedure generated a
single source schedule for this trigger input.

The Petri net generated from the FlowC specification has 115 places, 106
transitions and 309 arcs. Our algorithm generated a single process with the
same interface as the original ones, that could be plugged into the MPEG-2
netlist, replacing the original five processes.

An example of how the code is transformed after scheduling is shown in
Fig. 12. Figure 12(a) shows a small fragment of code taken from the processes
Tpredict and Tadd. They both implement a while loop during which they
exchange some data (a macro-block is written from Tpredict to Tadd).

Process Tpredict
Tpredict_smbc = pred_prop.skipped_mb_cnt;
while (Tpredict_smbc > 0) {
DoPredictionSkipped(<params>);
WRITE_DATA(Tpredlct_mb_Om, Tpredict_mb, 1); T ——
Tpredict_smbc--; =
} Tpredict_smbc = pred_prop.skipped_mb_cnt;
/* Other Tpredict code here */ Tadd_smbc = mb_prop.skipped_mb_cnt;
label:
Tpredict_mb_Out (void) (Tadd_smbc > 0);
if (Tpredict_smbc > 0) {
DoPredictionSkipped(<params>);
Tpredict_mb_Out = Tpredict_mb;
Tadd_mb_In © Tadd_mb_Out Tedd.mb = Tpredict_mb_Out:
Tadd_smbc = mb_prop.skipped_mb_cnt; WRITE_DATA(Tadd_mb_Out, Tadd_mb, 1);
while (Tadd_smbc > 0) { Tpredict_smbc--;
READ_DATA(Tadd_mb_In, Tadd_mb, 1); Tadd_smbc--;
WRITE_DATA(Tadd_mb_Out, Tadd_mb, 1); gotolabel;
Tadd_smbc--; }
/* Other Tpredict and Tadd code here*/
/* Other Tadd code here*/ @ Tadd_mb_out
Process Tadd

(a) (b)
Fig. 12. (a) Example of FlowC specification, (b) Portion of the generated code for the
MPEG-2 decoder.

On the other hand, Fig. 12(b) shows the same fragment in the generated
process, where the two were merged into a single entity. What is generated is a
single loop which contains statements from the two original processes. Note that
the WRITE_DATA and READ_DATA statements in processes Tpredict and Tadd oc-
curring on the channel connecting them have been transformed into assignments
to and from a temporary variable (which can be easily eliminated by an opti-
mizing compiler). The WRITE_DATA statement in Tadd on the output channel is
instead preserved as is, and needs to be expanded to match the communication
protocol used in the rest of the system (in our case, it is a FIFO).



We compared the performance of the original specification with that of the
same system where a single statically scheduled process. In both cases, we re-
moved the processes that manage and implement the memory, but we kept those
that parse the input MPEG stream. Both systems received as input a video
stream composed of 4 images (1 intra, 1 predicted, 2 bidirectional predicted).

Table 1 summarizes the total execution time on a Sun Ultra Enterprise 450.
It also shows the individual contributions of the processes (split among the
parser and the five processes that we scheduled together), the test-bench and
the operating system. The increase in performance is around 45%. The gain is
concentrated in the statically scheduled processes, due to the reduction in the
number of FIFO-based communications, and in the operating system due to the
reduction in the number of context switches.

Total MPEG2 Test | OS
Total|Parser|5Procs|bench
Orig.| 7.5 |4.66| 0.94 | 3.72 | 0.27 [2.58
QSS | 4.1 [2.51| 0.94 | 1.57 | 0.28 |1.31

Table 1. CPU time, in seconds, of the MPEG-2 example

5 Processes
Total|Comp.| Int. Ext. |Code
Comm.|Comm.| size
Orig.| 3.72 | 1.01 2.23 0.48 18K
QSS | 1.57 | 0.96 0.13 0.48 24K

Table 2. CPU time, in seconds, and code size of the five selected processes

Table 2 compares the execution times due to computation and communica-
tion of the five processes, both in the original system and in the quasi-statically
scheduled one. As expected, computation and external communication are not
significantly affected by our procedure. However, internal communication is
largely improved: this is because after scheduling we could statically determine
that all channels connecting the five considered processes never have more than
one element or structure at a time. Therefore, communication is performed by
assignment, rather than by using a FIFO or a circular buffer. The table also
report the object code size, which increases in the generated single task with re-
spect to the 5 separated process: this is due to the presence of control structures
representing the static schedule in the synthesized code.

6 Conclusions

This paper proposes a method that bridges the gap between specification and
implementation of reactive systems. From a set of communicating processes,
and by deriving an intermediate representation based on Petri nets, a set of
concurrent tasks that serve input events with minimum communication effort



is obtained. This paper has presented a first effort in automating this bridge.

Experiments show promising results and encourage further research in the area.
In the future, we expect a more general definition of the concept of schedule,

considering concurrent implementations, and a structural characterization for

different classes of Petri nets.
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