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Abstract: Muḥyī al-Dīn al-Maghribī (d. 1283 AD) carried out a systematic observational 
programme at the Maragha observatory in northwestern Iran in order to provide new 
measurements of solar, lunar, and planetary parameters, as he explains in his treatise  
Talkhīṣ al-majisṭī (Compendium of the Almagest). His project produces a new and consistent 
set of parameters. On the basis of his four documented observations of Mars, carried out in 
1264, 1266, 1270, and 1271 AD, he measured the unprecedented values for the radius of the 
epicycle, the longitude of the apogee, and the mean motion in longitude of the planet and 
also confirmed that Ptolemy’s value for its eccentricity was correct for his time. This paper 
presents a detailed, critical account of Muḥyī al-Dīn’s measurements. Using a criterion 
described below, we compare the accuracy of his values for the structural parameters of Mars 
with that of other historically important values known for these parameters from medieval 
Middle Eastern astronomy from the early eighth to the late fifteenth century. Muḥyī al-Dīn 
attained a higher degree of precision in his theory of Mars established at Maragha than the 
majority of his predecessors; the results were also more accurate than those established in 
his earlier zīj written in Damascus in 1258 AD and used in the official astronomical tables 
produced at the Maragha observatory, the Īlkhānī zīj. 

Keywords: Positional Astronomy, Spherical Astronomy, Medieval Astronomy, Islamic 
Astronomy, Middle East, Mars, Orbital Elments, Muḥyī al-Dīn al-Maghribī, The Maragha 
Observatory, Īlkhānī Zīj,  Talkhīṣ al-Majisṭī.

In the late Islamic period (post-1050 AD), astronomers turned their attention to 
testing the accuracy of the astronomical tables compiled in the classical period of 
medieval astronomy in the Middle East (ca. 800-1050 AD). This led to a revision 
of the fundamental parameter values, theories, and ideas adopted in those works 
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via the execution of new measurements of the parameters at the great observato-
ries founded in Beijing, Maragha, and Samarqand. This paper deals with some of 
these activities, and presents a critical case study of the only surviving account of 
the measurement of the structural parameters (eccentricity, radius of the epicycle, 
and longitude of the apogee) and the mean motion of Mars carried out by  Muḥyī 
al-Dīn al-Maghribī (d. 1283 AD) at the Maragha observatory. The historical data 
put forward in this paper evidently provide conclusive evidence that the accuracy 
of Ptolemaic planetary theories was significantly improved over the course of the 
medieval Islamic period. Although these data have been available to modern 
scholars since the middle of the past century (or even earlier), it appears that they 
have not attracted the attention they deserve; so much so, in fact, that the achieve-
ments of the medieval Middle Eastern astronomers have often been underesti-
mated: “Muslim astronomers, in spite of much boasting, restricted themselves by 
and large to the most elementary parts of Greek astronomy: refinements in the 
parameters of the solar motion, and increased accuracy in the determination of 
the obliquity of the ecliptic and the constant of precession”.1 

The paper is organized as follows. In the first three parts of Section 1, we 
briefly review the history of the Maragha observatory, discussing the observa-
tional activities carried out and the important works written there, paying particu-
lar attention to Muḥyī al-Dīn’s al-Maghribī’s life and works as well as his Talkhīṣ 
al-majisṭī, which is the main focus of the paper. In the last two parts of this sec-
tion, we outline Ptolemy’s planetary models and Muḥyī al-Dīn’s exposition of 
them. In Section 2, Ptolemy’s iterative method of the determination of the orbital 
elements (eccentricity and direction of the apsidal line) of the superior planets is 
explained. Section 3 deals with Muḥyī al-Dīn’s observations of Mars and the 
spherical astronomy method he used to derive the ecliptical coordinates of a ce-
lestial body from the observational data (meridian altitude and time of the merid-
ian transit). In Section 4, we explain in detail Muḥyī al-Dīn’s measurement of the 
orbital elements, mean motion in longitude, and radius of the epicycle of Mars. In 
Section 5, we first discuss a hitherto unexamined aspect of his activities in the 
field of observational astronomy at the Maragha observatory; he appears to have 
conducted a project to test the accuracy of his predecessors’ theories through his 
observations, as reflected in his provisional use of Ibn al-Fahhād’s (ca. 1170 AD) 
value for the mean motion in longitude of Mars in his measurement of the orbital 

1. Neugebauer 1975, Vol. 1, p. 145.
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elements of the planet. We then propose an unbiased criterion for evaluating the 
accuracy of the historical values for the orbital elements of the superior planets, 
which provides us with a quantitative and comparative view of the precision of the 
values measured for these parameters in the medieval Islamic period. Finally, we 
compare the accuracy of the theories of Mars established at the Maragha observa-
tory —that is, Muḥyī al-Dīn’s theory and the one adopted in the Īlkhānī zīj.

As Neugebauer emphasized over half a century ago,2 any research on a par-
ticular subject, treatise, or scholar in ancient and medieval astronomy should in-
clude a broad-ranging programme to ensure that all relevant matters are system-
atically analysed. This is the approach applied to the research in the present study.  

1. Introduction 

1.1. The Maragha observatory 

The Marāgha observatory was built in 1259 AD by Hülegü (d. 1265 AD), the 
founder of the Īlkhānīd dynasty of Iran.3 For the sixty or so years of its active life, 
the observatory represented the pinnacle of Islamic astronomic achievement. The 
influence of this astronomical academy on the later Islamic observatories founded 
in Samarqand in the early 15th century, in Istanbul in the 1570s, and by Jai Singh 
II (1688-1743 AD) in India in the early 18th century can hardly be overestimated. 
The intellectual atmosphere and the availability of financial resources were con-
ducive to the pursuit of serious, proper research. 

During the first two decades of the life of the observatory, two zījes were writ-
ten: Naṣīr al-Dīn al-Ṭūsī’s (d. 1274 AD) Īlkhānī zīj in Persian and Muḥyī al-Dīn 
al-Maghribī’s (d. June 1283) Adwār al-anwār in Arabic. According to the colo-
phon of MS. T of the Īlkhānī zīj, this work was completed around the end of 

2. Neugebauer 1945/1946, p. 45. 
3. Sayılı [1960] 1988, pp. 187-223; some necessary corrections to Sayılı’s historical arguments 

have already been given in Mozaffari and Zotti 2013. It appears that astronomical observations 
were carried out at Maragha a century before the foundation of the observatory there; in his treatise 
on the stereographic projection of the celestial sphere (the fundamental basis of the astrolabe), Ibn 
al-Ṣalāḥ al-Hamadhānī (d. 1153 AD) states that in Maragha, he found a magnitude of 23;35° for the 
obliquity of the ecliptic (see Lorch 2000, p. 401; Mozaffari and Zotti 2013, p. 51, note 10).
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Rajab 670 H/end of February 1272.4 The majority of the underlying parameter 
values adopted in it are either Ptolemaic or are borrowed from earlier zījes, but 
some are not known in any earlier texts and appear to be the results of the obser-
vational programme of the main staff of the observatory in the 1260s; for exam-
ple, the solar theory in this work is identical to Ibn Yūnus’s (d. 1007 AD) as es-
tablished in his Ḥākimī zīj, except for the value adopted for the longitude of the 
solar apogee,5 which, according to Quṭb al-Dīn al-Shīrāzī, an early member of the 
observatory, was the result of the new observations (raṣad jadīd) performed at 
the Maragha Observatory.6 Another example is the non-Ptolemaic star table in the 
Īlkhānī zīj, in which the ecliptical coordinates of 16 bright stars are tabulated 
along with the updated longitudes from the star tables of Ibn Yūnus and the 
Mumtaḥan zīj.7 Of particular interest to the present study is the unprecedented 
value adopted for the radius of the epicycle of Mars in the Īlkhānī zīj (see 
5.2.2(B)).

Shams al-Munajjim (Shams al-Dīn) Muḥammad  b. ‘Alī Khwāja al-Wābkanawī 
(1254–after 1316 AD), the outstanding figure of the second period of the Mara-
gha observatory (after 1283 AD), conducted a project to test the accuracy of the 
theoretical data derived from the Īlkhānī zīj and Adwār al-anwār, the two prod-
ucts of the first period of the observational activities at Maragha. These data were 
the times of the synodic phenomena, such as the planetary conjunctions and 
eclipses, and the longitudes at which they occur, which he checked against his 
own observations apparently carried out over a long period of 40 years. The first 
documented observation in his al-Zīj al-muḥaqqaq al-sulṭānī (The verified zīj for 
the sultan) is a simple measurement of the lunar altitude from Maragha early on 
the night of 3 December 1272.8 He also observed the annular solar eclipse of 30 
January 1283,9 the conjunction between Jupiter and Saturn in 1276 AD, and the 
triple conjunctions between these two planets in 1305-1306 AD.10 Furthermore, 
in the instructions to Ibn al-Fahhād’s ʿAlāʾī zīj he made for Gregory Chioniades, 

  4. Īlkhānī zīj, T: Suppl. P: f. 31v. 
  5. See Mozaffari 2018, pp. 229-232. 
  6. al-Shīrāzī, Tuḥfa, f. 38v; Ikhtiyārāt, f. 50v. 
  7. This table has recently been analyzed; see Mozaffari 2016a. For the two star tables in the 

Mumtaḥan zīj and their relation to Ibn al-Aʿ lam (d. 985 AD), see Mozaffari 2016-2017. 
  8. Wābkanawī, Zīj, T: f. 89v, Y: f. 155r, P: 135r.  
  9. See Mozaffari 2013a. 5MCSE, no. 07820.
10. Wābkanawī, Zīj, T: ff. 2r-v, 134v-135r, Y: ff. 2v-3r, 235v-236r, P: ff. 2v-3r, 205r-v. 
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Wābkanawī computes the parameters of the solar eclipse of 5 July 1293 and the 
lunar counterpart of 30 May 1295 from this work for the longitude of Tabriz 
(north-western Iran), and Chioniades incorporates these data into its Greek trans-
lation.11 These worked examples were to replace the ones given by Ibn al-Fahhād.12 
In the Revised Canons —which was, perhaps, a part of a preliminary version of 
the Muḥaqqaq zīj— Chioniades explains the computation of the parameters of 
the lunar eclipse of 30 May 1295 and the solar eclipse of 28 October 1296 on the 
basis of the Īlkhānī zīj from the “oral teaching of Shams Bukhārī”.13 Wābkanawī’s 
experiments over a period of 40 years (as reflected in his dated observations) led 
him to severely criticize the Īlkhānī zīj for its obvious errors in the planetary 
ephemerides, the timing and magnitudes of the eclipses, and the times of the 
planetary conjunctions computed from this official work produced at the Mara-
gha observatory. Instead, he preferred to refer to Muḥyī al-Dīn’s observational 
programme as the “Īlkhānid observations” (raṣad-i Īlkhānī). The most notorious 
error occurred in the case of the 1305-1306 AD triple conjunctions of Saturn with 
Jupiter, of which the Īlkhānī zīj could predict only the first; in contrast, all three 
could be predicted on the basis of Muḥyī al-Dīn’s last planetary theory estab-
lished at Maragha. This apparently had a decisive influence on Wābkanawī’s final 
conclusion.  

1.2. Muḥyī al-Dīn al-Maghribī

Little is known about  Muḥyī al-Dīn except that, according to Ibn al-Fuwaṭī, the 
librarian of the Maragha observatory, his full name was  Muḥyī al-Dīn Abu al-
Shukr Yaḥyā b. Muḥammad b. Abī al-Shukr b. Ḥamīd al-Tūnisī (of Tunis) al-
Maghribī (of the Maghrib). He had learned Islamic jurisprudence (fiqh), accord-
ing to the Mālikī school, in his native city. He spent some years in the service of 
al-Sulṭān al-Malik al-Nāṣir Yūsuf b. al-ʿAzīz b. Ghāzī b. al-Malik al-Nāṣir Yūsuf 
b. Ayyūb (reign: 1237-2 October 1260 AD) in Damascus, before the king was 

11. Pingree 1985-1986, Vol. 1, Chapters 32-36: pp. 131-169. 5MCSE, no. 07846. 5MCLE, no. 
07961.

12. In ʿ Alāʾī zīj I.35 and I.36: pp. 30-35, Ibn al-Fahhād explains how to compute the parameters 
of the solar eclipse of 11 April 1176 (5MCSE, no. 07555) and the lunar eclipse of 25 April 1176 
(5MCLE, no. 07660). On their accuracy, see Mozaffari and Steele 2015, pp. 347-348, note 17. 

13. Pingree 1985-1986, Vol. 1, Chapters xvii-xxii: pp. 307-333. 5MCSE, no. 07853.
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killed by the Mongols; at that point, Muḥyī al-Dīn was sent to the Maragha ob-
servatory. Other than a short migration to Baghdad in the latter part of the 1270s, 
he lived in Maragha until his death in Rabīʿ I 682 H/June 1283 AD.14 He taught 
students at the Maragha observatory,15 and wrote some 26 works on mathematics, 
astronomy, and astrology.16

Muḥyī al-Dīn wrote his first zīj, the Tāj al-azyāj wa-ghunyat al-muḥtāj (The 
crown of the zījes, sufficient for the needy), in Syria ca. 1258 AD for the longitude 
of Damascus. Interestingly, in this work he presents non-Ptolemaic values for the 
orbital elements of Jupiter, Mars, and Mercury together with a set of new values for 
the solar, lunar, and planetary mean motions in longitude and anomaly;17 this zīj 
also contains the most precise value measured for the rate of precession throughout 
the ancient and medieval periods (1°/72 years).18 Shortly after his arrival at Mara-
gha, Muḥyī al-Dīn prepared his second zīj, the ʿUmdat al-ḥāsib wa-ghunyat al-
ṭālib (Mainstay of the astronomer, sufficient for the student), preserved in a unique 
manuscript (Cairo, Egyptian National Library, MM 188), ca. 1262 AD.19 This zīj is 
a collection of various materials taken from different sources, so it is difficult to 
establish which parts are originally from his own independent work. Moreover, 
more than 40% of the folios are missing from the codex. Indeed, its preserved form 
has very few characteristics in common with  Muḥyī al-Dīn’s observational activi-
ties in Syria and Maragha and with his other two zījes written on the basis of their 
results, and in fact if his name was not mentioned on its first folio, there would be 
no indication that he is the author. This work appears to have been formulated dur-
ing a course of astronomy at the Maragha observatory and was compiled by one of 

14. Ibn al-Fuwaṭī, Vol. 5, p. 117. A quotation from Mālik b. Anas can be found in Muḥyī al-
Dīn’s ʿUmda, f. 24r (above the table of the anomaly of Saturn). 

15. Among them, Ibn al-Fuwaṭī (Vol. 1, 146-147) mentions ʿIzz al-Dīn al-Ḥasan b. al-Shaykh 
Muḥammad b. al-Shaykh al-Ḥasan al-Wāsiṭī al-ʿaṭṭār Shaykh Dār Sūsīyān. 

16. See Suter 1900, p. 155; Brockelmann 1937-1942, Vol. 1, p. 626; 1943-1949, S1, p. 868; Sar-
ton 1927-1948, Vol. 2, Part 2, pp. 1015-1016; Sezgin 1978, p. 292; Rosenfeld and Ihsanoglu 2003, 
p. 226. Some of his mathematical works were studied; e.g., see Hogendijk 1993. Tekeli’s short entry 
on al-Maghribī in DSB (Gillispie et al., Vol. 9, p. 555) covers only his mathematical works. See, 
also, M. Comes’ entry in BEA (Hockey et al. 2007, pp. 548-549).   

17. See Dorce 2002-2003; 2003. 
18. See Mozaffari 2017, p. 6. 
19. On the basis of the date of a Ptolemaic star table found in it, for the end of 630 Y/9 January 

1262; al-Maghribī, ʿUmda, f. 137r. 
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Muḥyī al-Dīn’s students there. In the prologue,20 we are told that “our master, the 
learned, the model of the lords of teaching, the prince of the geometricians, Yaḥyā 
b. Muḥammad b. Abī al-Shukr al-Maghribī, said: ‘a group of the friends trying to 
learn the science of mathematics asked me to lay down a zīj for them in order to 
obtain the ephemerides of the planets, so that its understanding might be easy for a 
student, its sources might be close at hand for a practitioner, and that it might be a 
benefit for a beginner and a reminiscence for a professional’”. It was in essence a 
tutorial work for learning mathematical astronomy and the basic structure of astro-
nomical tables, and how to work with them. The ease of understanding and the 
access to the necessary sources, defined as its main goals, may explain why it is an 
“essential” collection of previous works. According to Benno van Dalen’s thor-
ough but unpublished analysis, the work contains scarcely any parameter values 
that are either unprecedented or related to his Damascus zīj composed four years 
earlier. In fact, the values for the mean motions and orbital elements underlying its 
tables are mostly taken from earlier zījes: the solar mean motion and equation ta-
bles are based on Ibn Yūnus’s solar theory; the lunar mean motion in longitude 
derives from al-Battānī (d. 929 AD), and in anomaly from Ibn Yūnus; and in the 
case of the planets, the ʿ Umda is completely dependent upon Ibn al-Fahhād’s ʿ Alāʾī 
zīj. The equation tables are also closely related to the Īlkhānī zīj; in the case of 
Saturn and Jupiter, we are told that they are based on the Īlkhānīd parameter values 
[derived] from the observations by al-Ṭūsī. Of course, Ptolemy’s values for the 
orbital elements of the planets underpin all of equation tables, and the only differ-
ence is in their format (they are displaced, asymmetrical, and always-additive). 
However, it is very difficult to determine exactly whether they were later used to 
prepare the Īlkhānī zīj or whether they were taken from the Īlkhānī zīj and inserted 
into this codex. Of course, there are some differences, for example, in the case of 
the table of the epicyclic equation of Mars, which is not based on the new param-
eter value adopted in the Īlkhānī zīj. However, the similarities between the ʿUmda 
and Īlkhānī zīj are persuasive enough to conclude that, in accordance with van 
Dalen’s hypothesis, the ʿ Umda proves to be a side project of working on the Īlkhānī 
zīj. Support for this hypothesis comes from the common values for the stellar co-
ordinates in Ibn Yūnus’s star table as preserved in the ʿUmda and the Īlkhānī zīj, 
which cannot be found in other source of Ibn Yūnus’s star table.21 If this is indeed 

20. al-Maghribī, ʿUmda, f. 1v.  
21. See Mozaffari 2016a, p. 300. 
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the case, then the Īlkhānī zīj evolved from a tutorial work by  Muḥyī al-Dīn, and it 
is very surprising that his significant contribution to this zīj was totally ignored by 
(or was unknown to) al-Ṭūsī. 

Muḥyī al-Dīn successfully performed an extensive systematic observational 
programme at the Maragha observatory from 1262 to 1274 AD, independently of 
any other astronomical activity conducted there. He explains in detail his obser-
vations and measurements of the solar, lunar, and planetary parameters in his 
Talkhīṣ al-majisṭī (Compendium of the Almagest). The parameter values result-
ing from these activities were incorporated into his third zīj, Adwār al-anwār 
mada ’l-duhūr wa-’l-akwār (Everlasting cycles of lights, also called as Zīj-i 
kabīr, Great zīj).22  Muḥyī al-Dīn’s systematic observations at the Maragha ob-
servatory established him as an outstanding figure, so much so that his contempo-
raries and immediate successors referred to him using unique honorific titles that 
reflected his skill in astronomical observations. For instance, Ibn al-Fuwaṭī calls 
him al-muhandis al-raṣadī, the “geometrician of the observations”.23 His obser-
vational programme is referred to as the “Īlkhānid observations” or the “new 
Īlkhānid observations” (al-raṣad al-jadīd al-Īlkhānī).24 His fame was so wide-
spread that his astrological doctrines were widely trusted (nine of his treatises are 
on astrology). A prime example of this is the interpretation of the appearance of 
the comet C/1402 D1 on the basis of his astrological doctrines, which triggered a 
major war in the Middle East at the turn of the 15th century.25 None of  Muḥyī al-
Dīn’s new parameter values were used in the Īlkhānī zīj.26 It is also noteworthy 

22. Kamālī, Ashrafī zīj, F: ff. 231v, 232r, G: f. 248v; al-Kāshī, Khāqānī zīj, IO: f. 104r. Kāshī 
refers to Muḥyī al-Dīn as the sage/wise (ḥakīm). 

23. Ibn al-Fuwaṭī, Vol. 5, p. 117.
24. In Mozaffari and Zotti 2013, all the indications of these terms, as found in the works written 

either during the lifetime of the Maragha observatory or afterwards, are introduced.
25. See Mozaffari 2016b. 
26. Except, perhaps, for his value of 23;30° for the obliquity of the ecliptic, resulting from the 

measurements of the maximum and minimum annual solar noon-altitudes performed on three suc-
cessive days after the two dates of 12 June and 7 December 1264; Muḥyī al-Dīn’s altitude values 
(76;9,30° and 29;9,30°) strictly result in the value of 23.5° for the obliquity of the ecliptic. 9 Decem-
ber 1264 was four days prior to the day of the winter solstice (13 December 1264). It is surprising 
that the decrease in the solar meridian altitude in the days after 9 December should have escaped 
Muḥyī al-Dīn’s attention. In the Īlkhānī zīj (C: p. 203, T: f. 102v, P: f. 59v, M1: f. 104v, M2: f. 89v), 
al-Ṭūsī remarks that “on the basis of our observations, the obliquity of the ecliptic exceeds 23;30° 
by a small amount, and we estimated it to be 23;30°” (the emphasis is added). Also, in his Risāla 
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that his astronomy does not show any influence from Western (Andalusian and 
Maghribī) Islamic astronomy; the only incidental indication in the Talkhīṣ of his 
Andalusian astronomical background is an error of +1/2 day in Meton’s and Eu-
ktemon’s value for the length of the solar year, which he quotes from Almagest 
iii.1 in Talkhīṣ iii.4, and which can be traced back to some Maghribī/Andalusian 
MSS of the Almagest.27 In contrast, some traces of the influence of the Tāj al-azyāj 
on the Western Islamic zījes have been brought to light by Julio Samsó.28 

The Talkhīṣ is preserved in a unique copy (Leiden, Universiteitsbibliotheek, 
Orientalis 110) in al-Maghribī’s handwriting. According to the table of contents 
given on f. 2r, the treatise consists of ten books (maqāla). They discuss plane and 
spherical trigonometry (books i and ii), spherical astronomy (iii), solar theory 
(iv), lunar theory (v), lunar parallax and theory of eclipses (vi), stellar astronomy 
(vii), planetary theory in longitude (viii), retrograde motion and latitude of the 
planets (ix), and the stereographic projection of the celestial sphere on the plane 
tangential to its north pole (x). The manuscript is incomplete and corrupt; when 
the author finishes his computations of Mars, the reader would expect him to 
commence the computations related to the inferior planets. It is probable that the 
author never managed to write any more of the treatise. The last two books are 
also missing from this copy, but the contents of the last book would probably 
have been adapted from (possibly, a brief survey of) his treatise on the astrolabe, 
which deals with the same topic. Muḥyī al-Dīn dedicated the Talkhīṣ to Ṣadr al-

fī kayfiyyat al-irṣād (The treatise on how to make [astronomical] observations) (P: f. 7v, N: f. 41r), 
al-ʿUrḍī states that the same value was known due to the continuous observations in Maragha. 

27. Toomer [1984] 1998, p. 139; Arabic Almagest, Isḥāq-Thābit: S: f. 30r, PN: f. 33r, Pa1: f. 
45v, Pa2: f. 45v, TN: f. 40v, Ḥajjāj: LO: f. 60v, LE: f. 36r; Neugebauer 1975, Vol. 2, p. 601. Meton’s 
and Euktemon’s value for the length of the solar year is equal to 3651/4 + 1/76 days, but Muḥyī 
al-Dīn has… 1/76.5 days. This erroneous value can be found in the 14th-century Andalusian MS. 
PN and the Maghribī MS. TN of the Arabic Almagest, but the other MSS consulted of both Arabic 
translations of the Almagest have the correct value. al-Ṭūsī also has this faulty value in his Taḥrīr 
al-majisṭī (P1: p. 87, P2: f. 24v, P3: f. 41r). Both al-Maghribī’s Talkhīṣ and al-Ṭūsī’s Taḥrīr are 
based upon Isḥāq-Thābit’s translation, and among the MSS we have consulted for the present study 
only the two abovementioned MSS of this translation share the error in question. Although it is 
extremely difficult to determine conclusively where and when this error entered the text for the first 
time, it appears to have originated somewhere in the Eastern Islamic world prior to ca. 1260, and 
then passed into the Western Muslim realm, perhaps, via media of a prototype to which a group of 
the Andalusian/Maghribī MSS of the Almagest belong, including our MSS. PN and TN. 

28. See Samsó 1998, pp. 94-97; 2001, pp. 168, 170, 172, 173.
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Dīn Abū al-Ḥasan ʿAlī b. Muḥammad b.  Muḥammad b. al-Ḥasan al-Ṭūsī,29 the 
son of Naṣīr al-Dīn al-Ṭūsī, who was appointed director of the observatory after 
the death of his father.30 As described in the Talkhīṣ, Muḥyī al-Dīn’s period of 
observations at the Maragha observatory extended from 7 March 1262 AD (lunar 
eclipse) to 12 August 1274 AD (the meridian transit of Jupiter). 

A manuscript of the Adwār al-anwār which was apparently written under Muḥyī 
al-Dīn’s supervision is preserved in Iran (Mashhad, Holy Shrine Library, no. 332), 
in which our author records the dates of the completion of its explanatory parts 
(canons) and of its tables, respectively, as Dhu al-qaʿda 674 H (April-May 1276)31 
and Rajab 675 H (December 1276-January 1277).32 Thus, he seems to have finished 
his observations between 12 August 1274 and April-May 1276, and was busy with 
the construction of the tables between April and December 1276. In the prologue of 
this copy of the Adwār he also mentions that he began to write it after completing a 
(now lost) treatise entitled Manāzil al-ajrām al-ʿulwiyya (The mansions of the up-
per bodies). Thus, we can safely assume that Muḥyī al-Dīn wrote the Talkhīṣ after 
the Adwār, i.e., after 1276 AD. According to Ibn al-Fuwaṭī,33  Muḥyī al-Dīn left the 
observatory and spent a while in the service of al-Ṣāḥib Sharaf al-Dīn b. al-Ṣāḥib 
Shams al-Dīn in Baghdad. The date of his departure is not given, but it very likely 
occurred after he finished writing the Adwār. Ibn al-Fuwaṭī’s statements give the 
strong impression that his departure was due to certain difficulties in Maragha after 
the death of al-Ṭūsī, because he states that after Muḥyī al-Dīn’s return to Maragha, 
he was honoured and supplied with substantial stipends and honoraria. It is quite 
probable that he wrote the Talkhīṣ after his return to Maragha from Baghdad, when 
the observatory was under the direction of Ṣadr al-Dīn, and its dedication to Ṣadr 
al-Dīn was regarded as an act of thanksgiving. 

The Talkhīṣ, its characteristics, and its place in the history of Islamic observa-
tional astronomy were already described in three papers by George Saliba in the 
1980s, and the solar and lunar theories in it have been thoroughly studied by the 
present author.34 It resembles the analogous treatises belonging to the category of 

29. al-Maghribī, Talkhīṣ, f. 2r. 
30. Sayılı 1960 [1988], p. 205. 
31. al-Maghribī, Adwār, M: f. 55v. 
32. al-Maghribī, Adwār, M: f. 124v.
33. Ibn al-Fuwaṭī, Vol. 5, p. 117. 
34. The contents of the treatise were described in Saliba 1983. The computations related to the 

eccentricity of the Sun and of Jupiter were addressed in two critical studies by G. Saliba (1985, 
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the “Almagest revision/rewritten/exposition…” only in the title and subject. 
These treatises, sometimes accompanied by criticisms of Ptolemy, constituted a 
genre with its own particular characteristics and played a pivotal role in medieval 
Islamic theoretical astronomy. However, despite its name, the Talkhīṣ is neither 
a rewriting, nor an abridgement of the contents of the Almagest; a significant 
feature that sets it apart from  other similar treatises is the abundance of its ob-
servational records, whereas not a single report of an observation can be found 
in the others. In this respect, the Talkhīṣ has no counterpart in the medieval astro-
nomical corpus of the Middle East. Like Ptolemy in the Almagest, Muḥyī al-Dīn 
explains how he systematically established his parameter values, starting from 
the measurement of the latitude of Maragha, the length of the solar year, the solar 
mean daily motion in longitude, up to the planetary parameters. There is no de-
nying that the treatise left its mark on other developments in late Islamic as-
tronomy; indeed, it led Taqī al-Dīn  Muḥammad b. Maʿrūf (1526-1585 AD), the 
director of the short-lived observatory at Istanbul, the owner of its surviving 
manuscript, to register the reports of his observations carried out in Istanbul 
about two centuries later.35 

Broadly speaking, each section of the Talkhīṣ consists of the following sub-
sections:

(a) The narrative subsection, divided into the two major parts: first, a sum-
mary of pertinent passages from the Almagest with a focus on certain spe-
cific topics, and second the reports of  Muḥyī al-Dīn’s observations carried 
out at the Maragha observatory; 

(b) The observational subsection: to present his measurements,  Muḥyī al-Dīn 
first puts forward the data derived from his dated observations, which are 
arranged chronologically; 

(c) The computational subsection: he then explains the computational proce-
dure used to determine a parameter. Finally, the calculations which apply 
the observational data are described in detail. The result obtained is either 
established as a new value or is verified as an already existing one for that 
parameter; and 

1986). For al-Maghribī’s solar theory, see Mozaffari 2013b, pp. 318, 330; 2018, esp. pp. 229, 235. 
For his lunar measurements, see Mozaffari 2014a. 

35. On them, see Mozaffari and Steele 2015. 
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(d) The cosmographical subsection, which appears only at the end of three 
books, maybe the least important of the treatise; this includes the configura-
tion of the spheres of the Sun, Moon, and planets, according to Ptolemy’s 
Planetary Hypotheses, added apparently only for the sake of completeness. 

These materials allow us to trace Muḥyī al-Dīn’s line of investigation in great 
detail, to identify his mistakes and their effects on the final results, and to recog-
nize the probable circular arguments, and so on, which are very useful for making 
a comprehensive critical study. 

1.3. The history of the unique MS of the Talkhīṣ al-majisṭī

The history of the surviving manuscript of the Talkhīṣ can be retrieved from a 
number of the statements regarding ownership and marginal annotations left on 
some of the folios. The earliest of them appears to be the one written in the upper 
left corner of f. 1r, which belongs to a certain ʿAbd al-ʿAzīz ʿAlī b.  Muḥammad 
al-Munajjim, and which dates from 20 Ramaḍān 746/14 January 1346. The next 
one is a passage written on the same folio, opposite the abovementioned remark, 
in which we are told that the manuscript is an autograph;36 the owner’s name, 
place, and time are barely legible: ʿAbd al-Bāqī Kamāl al-Tūkānī in the city of 
Kāshān (central Iran)… in the year 757 H/1356 AD (?). 

With a lacuna of about two centuries, the MS found its way to Cairo some time 
before 1544 AD, and was then transmitted to the library of the short-lived observa-
tory in Istanbul where it was placed at the disposal of the two outstanding astrono-
mers working there until 1585 AD at the latest. One of these astronomers was ʿAlī 
al-Riyāḍī (ʿAlī the mathematician), a scribe who seems to have lived and worked 
in Cairo about 950-951 H/1543-1544 AD. To the best of our knowledge, he is 
unknown in the modern literature, but besides the Leiden MS of Talkhīṣ, some 
information about him can be found in a codex preserved at the Rare Book and 
Manuscript Library at University of Pennsylvania, LJS 412, which is the collec-
tion of the following four treatises on astronomical instruments:

36. The survival of an autograph from 13th-century Maragha is not unusual —a good number 
of manuscripts written in the hand of Quṭb al-Dīn al-Shīrāzī survive (on them, see Pourjavady and 
Schmidtke 2007). 
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(i)	 Al-ʿAmal bi-’l-kura of Qusṭā b. Lūqā (ff. 1v-10v, copied on 10 Ṣafar 
950/15 May 1543); 

Two treatises by Ḥabash b. ʿAbd-Allāh al-Ḥāsib:

(ii)	 Risāla fī kayfiyyat al-irṣād wa aʿmāl dhāt al-ḥalaq (How to make [astro-
nomical] observations and the applications of the armillary sphere) (ff. 
11r-12r) and

(iii)	Al-ʿamal bi-’l-asṭurlāb al-kurī wa ʿajāʾibi-hī (The application of the 
spherical astrolabe and its marvels) (ff. 12v-13v);37 

and

(iv)	Tasṭīḥ al-asṭurlāb of Muḥyī al-Dīn al-Maghribī (ff. 14r-18v, copied in 
mid-Ṣafar 950).

The latter is called Fī rasm al-asṭurlāb, and is ascribed to ʿAlī al-Riyāḍī him-
self on f. 14r, but this cannot be considered a demonstrated case of plagiarism, 
since some folios between 13v and 14r, containing the initial part of the treatise, 
are missing from this MS.38 In it, the scribe introduces himself as ʿAlī al-Riyāḍī 
al-munajjim fī bāb/ʿatabat al-salṭanat al-Qāhira/al-qāhira (on the front cover, ff. 
1v, 10v, and 18v). The last word may refer to Cairo (al-Qāhira) or may literally 
mean “the victorious” (al-qāhira). In the first case, the sentence would mean “ʿAlī 
the mathematician, the astronomer in the royal place/threshold in Cairo” and in the 
latter case, “ʿAlī the mathematician, the astronomer in the victorious royal place/
threshold”, and thus he could have worked from Istanbul.39 In the Leiden MS of  
Talkhīṣ, he claims to be its owner, first at the end of a comment on f. 58v:40 al-

37. I have checked this against another copy preserved in Tehran, Library of Mahdawī, no. 503, 
ff. 95r-100r. Both treatises (ii) and (iii) are wholly different from Ḥabash’s treatise on the structure 
and applications of the astronomical globe, titled Fī maʿrifat al-kura wa-’l-ʿamal bihā; for its edi-
tion and study, see Lorch and Kunitzsch 1985; also, for the other instrument proposed by Ḥabash, a 
universal plate for timekeeping by the luminous clock stars, see Charette and Schmidl 2001. 

38. This treatise was edited by the present author in his M.Sc. thesis in 2006. 
39. I am grateful to an anonymous referee for bringing this point to my attention. 
40. In this comment, it is said that on the basis of the value of 365;14,30 days that Muḥyī al-Dīn 

derived for the length of the solar year, the length of the true solar month is equal to 30;26,12,30 days. 
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muḥarrir ʿAlī al-Riyāḍī ṣāḥib al-kitāb, “The scribe, ʿAlī al-Riyāḍī, the possessor 
of the book”, as well as in the ownership statement in the end of the treatise, on f. 
137r, in the same typical phrase that can be found in the Pennsylvania MS; below 
the latter passage, we are told that the MS was given to a certain ʿUqlidis Najm 
al-Dīn, otherwise unknown, on 11 Ṣafar 951/4 May 1544. 

The two comments written by al-Muḥarrir al-Riyāḍī (on f. 67r) or simply al-
Muḥarrir (on f. 137r) can also be found in the Leiden MS written in a hand dif-
ferent from the one used in two abovementioned samples from ʿAlī al-Riyāḍī, but 
they appear to have been left by ʿAlī al-Riyāḍī himself. It was by no means ex-
traordinary that scribes were able to write in different handwriting styles and in 
various types of Islamic calligraphy; ʿAlī al-Riyāḍī exhibits the variety of his 
handwritings in the Pennsylvania codex; as can be seen clearly on f. 10v of this 
MS, the body of the treatise and the closing versified statement which contains 
the year and name of the scribe, are written in two distinctly different hands. On 
f. 137r of the Leiden MS the ownership statement of al-Riyāḍī is seen at the bot-
tom and a comment by al-Muḥarrir on the left side.41 

The other commentator is a person named al-Riyāḍī who is not, of course, ʿ Alī 
al-Riyāḍī himself. This person signs his remarks with a special signature of his 
own, and his comments can be found on ff. 18r, 19r, 31r, 43v, 58r, and 64r. He is 
quite probably Dāwūd al-Riyāḍī of Thessalonica, whom A. Ben-Zaken identifies 
as David Ben-Shushan, a Jewish scholar. He was a colleague of Taqī al-Dīn 
Muḥammad b. al-Maʿruf and observed the total lunar eclipse of 26/27 September 
1577 from Thessalonica; he supplied corroborating data to Taqī al-Dīn, who 
could not observe it due to the cloudy weather in Istanbul at the time.42 

The last and most famous commentator is Taqī al-Dīn, whose only comment 
is found on f. 50v43 in which he criticizes Muḥyī al-Dīn’s method of deriving the 
ecliptical coordinates from the horizontal ones (see below, Section 3). His owner-
ship statement is found on f. 1r, which is similar to the one on the title folio of the 
Leiden MS of Ibn Yūnus’s Ḥākimī zīj.44

41. The comment reads: the end of 600 Y [the epoch of Maragha zījes] is equal to 23 Rabīʿ I 
629 [according to the astronomical reckoning of the Hijra calendar]; from it to the beginning of the 
year 841 H, when the observations at Samarqand were made, there are 211 complete Arabic years.   

42. See Mozaffari and Steele 2015. On David Ben-Shushan, see Ben-Zaken 2010, esp. pp. 21-
24; 2011, pp. 132-134.

43. See below, note 81. 
44. See King 2004-2005, Vol. 1, p. 284. 
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1.4. Ptolemy’s Planetary Models

According to Ptolemaic planetary models,45 a planet revolves on an epicycle 
whose centre C rotates in the direction of increasing longitude on an eccentric 
deferent with centre O removed from the Earth T by an eccentricity OT = e (see 
Figure 1), but its motion is uniform with respect to the equant point E removed 
from the Earth in the same direction by an eccentricity ET = 2e. The extension of 
TE defines the apsidal line with A as the apogee and Π as the perigee, the spatial 
direction of which is sidereally fixed. The mean motion in longitude with the 
daily rate of ω

λ
 is measured with respect to the vernal equinox. The first inequal-

ity of the planet is related to the ecliptic, in the sense that its apparent angular 
velocity is different in the various longitudes it occupies throughout the ecliptic. 
This can be explained with the use of the eccentric deferent, and so the inequality 
can be quantified by the difference between the mean and true longitude of C, 
respectively as measured from E and T; thus, ∠ECT defines the first correction 
named the “equation of centre” c1 which is a double-variable function of e and the 
mean eccentric anomaly κ̅ =  λ̄   - λ

a
 (the daily mean motion in the eccentric anom-

aly is then equal to ω
λ
 - ψ

d
, where ψ

d
 is the daily precessional motion). The sec-

ond inequality of the apparent motion of the planet is related to the Sun, and the 
epicycle is used in order to account for the resulting synodic phenomena. The 
epicyclic anomaly is uniform, with a daily rate of ω

a
, with respect to the line 

drawn from E to C; the extension of this line intersects the outer rim of the epicy-
cle at the mean epicyclic apogee A

p
, and the extension of line TC defines the true 

epicyclic apogee A
p
′; the angular difference between the mean and true epicyclic 

anomaly respectively, α̅ = A
p
CP and α = A

p
′CP is, indeed, equal to c

1
. The plan-

et’s motion on the epicycle causes its true longitude, the ecliptic point which the 
extension of line TP points to, and is different from the longitude of C; the differ-
ence between the two is the second correction, called the epicyclic equation c

2
, 

which is a triple-variable function of e, κ̅ and α̅. For the superior planets, the di-
rection of the epicycle radius points to the mean Sun, i.e., ω

λ
 + ω

a
 = ω

☉
, but for 

the inferior planets, the vector EC holds it, i.e., ω
λ
 = ω

☉
.

45. For Ptolemy’s models and their properties which, due to page constraints, cannot be explai-
ned in detail here, see: Pedersen 1974, chapters 9 and 10; Neugebauer 1975, Vol. 1, pp. 145-190; 
Duke 2005.   
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Figure 1. Ptolemy’s model of the superior planets and Venus.

This model works well for the superior planets and Venus. For Mercury, Ptole-
my constructs a complicated model with a movable deferent, like that of the 
Moon. In it, the equant point E is far from the Earth T by a single eccentricity e

1
, 

and the centre O of the deferent is movable on the circumference of a small circle 
of radius e

2
, whose centre O′ is located at a distance e

2
 from E, and so is removed 

from the Earth by e
1
 + e

2
 (Figure 2). The deferent centre moves uniformly with 

the angular velocity ω
λ
 in the direction of decreasing longitude, and the epicycle 

centre also moves uniformly at the same speed with respect to E, but in the direc-
tion of increasing longitude. By this model, Mercury is located at twice the least 
distance from the Earth, which, of course, unlike the other planets, does not occur 
at κ̅ = 180°, but at κ̅ ≈ 120° (by deploying the Almagest values e

1
 = e

2
 = 3, if the 

radius of the deferent R = OC = 60), as displayed in Figure 2. It is evident that in 
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this model, the total eccentricity of the planet varies from a maximum of e
1
 + 2e

2
, 

when the epicycle centre lies at the apogee, to a minimum of e
1
, when the deferent 

centre coincides with the equant point and the epicycle centre is located on the 
counter-apogee point A′ at a distance R - e

1
 from the Earth. 

Figure 2. Ptolemy’s model for Mercury.

In the case of the Moon, Bīrūnī presents an excellent geometrical proof that the 
trajectory of its epicycle centre has an ellipse-like shape, but does not actually de-
scribe a perfect ellipse;46 this proof may also hold for Mercury. A century later, Ibn 
al-Zarqālluh considered an elliptical deferent for Mercury in order to construct an 

46. Bīrūnī, al-Qānūn vii.7.1: 1954-1956, Vol. 2, pp. 794-795. It was elucidated in detail in 
Mozaffari 2014b. For an extensive treatment of the path of Mercury’s epicycle centre, see Hartner 
1955, pp. 109-117. 
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equatorium for finding the longitude of the planet geometrically, and almost four 
centuries later, Kāshī deployed it in his own invented device, the Ṭabaq al-manāṭiq 
(“Plate of zones”) as described in his treatise Nuzha al-ḥadāʾiq (A fruit-garden 
stroll) completed in 818 H/1415 AD.47 But, somewhat surprisingly, neither of them 
considered that the oval shape of the path of the epicycle centre is more evident in 
the case of the Moon, since neither in Ibn al-Zarqālluh’s geometrical method for 
finding the lunar distances nor in the lunar plate of al-Kāshī’s instrument was such 
a smart and useful auxiliary consideration taken into account.48 Of course, over a 
decade later, when Kāshī was a fellow at the Samarqand observatory, he appended 
10 “afterthought” passages (Ilḥāqāt al-ʿashara, completed on 15 Shaʿbān 829/22 
June 1426) to his treatise, the first two of which are on the ellipsoidal shapes of the 
paths of the centres of the epicycles of the Moon and Mercury; Kāshī emphatically 
asserts that from the geometrical proofs and computational procedures, he obtained 
that the shapes of both trajectories are neither ellipsoidal (ihlīlajī) to be drawn by a 
compass, nor any [of the known conic] section[s] to be drawn by a “Perfect Com-
pass” (farjār al-tāmm),49 but are similar/close to an ellipsoid; of course, no proof is 
given there, and he only puts forward an approximate method for drawing the el-
lipsoidal deferents.50 Quite probably, it was because of the unique influence of 
Bīrūnī’s al-Qānūn on the later medieval Middle Eastern astronomers that the oval 
trajectories of the epicycle centres of the Moon and Mercury were schematically 
represented in some cosmographical works of the Maragha school, most notably, in 
al-Shīrāzī’s three well-known treatises, in which he mentions that the path of the 
centre of the lunar epicycle is ellipsoidal (ihlīlajī bayḍī), but not an ellipse (qatʿ 
nāqiṣ, “deficient [conic] section”); of course, he gives no geometrical proof, and 
does not identify his source. In the case of Mercury, he also refers solely to the el-

47. Kāshī, Nuzha, esp. pp. 266-267; Hartner 1955, pp. 118-122; Samsó and Mielgo 1994; Ken-
nedy 1950/52, Part 2, pp. 46-47 and 49-50; for Kāshī’s treatise and instrument, esp. see Kennedy 
1960. 

48. See Puig 1989; Kennedy 1950/52, Part 1, pp. 182-183. Like Ibn al-Zarqālluh, Georg von 
Peurbach (1423-1461), in his Theoricae Novae Planetarvm, maintains the oval trajectory of the 
epicycle centre only in the case of Mercury, without referring to the existence of a similar situation 
for the Moon; see Hartner 1955, pp. 130, 132-134; Aiton 1987, p. 26 (his figure, captioned “Figure 
16”, is on p. 27). 

49. A specialized compass for drawing the conic sections; e.g., see Sezgin and Neubauer 2010, 
Vol. 3, pp. 149-151. 

50. Kāshī, Nuzha, pp. 289-291. The fact that Kāshī wrote the appendices at Samarqand is expli-
citly stated on p. 299. See also Kennedy 1960, pp. 170-174. 
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lipsoidal shape of the trajectory as drawn in the pertinent figure (see Figures 3(a) and 
3(b)).51 Similarly, in his preliminary cosmographical work, Lubāb I.5,7, Kāshī brief-
ly notes the ellipsoidal paths of the epicycle centres of the Moon and Mercury.52

   (a)                                                                     (b)
Figure 3. (a) The ellipsoidal shape of the trajectory of the lunar epicycle centre and (b) that of 
Mercury from al-Shīrāzī’s Nihāya al-idrāk.

For the derivation of the fundamental orbital elements of the superior planets, 
e and λ

a
 which define the spatial coordination of the geocentric orbit, a triple op-

position of the planet to the mean Sun is needed for each superior planet (see 
Section 2); the size of the epicycle can be computed from the angle subtending 
the epicycle radius as seen from the Earth, which can be measured by only one 
further observation, for which  Muḥyī al-Dīn makes use of his observations of the 
near appulses of the superior planets to the star Regulus (α Leo; see Section 3). 

51. Shīrāzī, Ikhtīyārāt, ff. 66r-v, 84v; Nihāya, P1: ff. 34r, 41v, P2: ff. 82r-v, 103v; Tuḥfa, ff. 51r, 
61v. Hartner (1971, pp. 282-287) notes a mistake he made due to a confusion between Peurbach’s 
consideration of the ellipsoidal figures described by the apogee and counter-apogee of Mercury, 
which results from the motion of the centre of the deferent of the planet on a small circle according 
to the Ptolemaic model, and Quṭb al-Dīn’s model of trepidation accounting for the change in the 
obliquity of the ecliptic. But, surprisingly, Hartner says nothing of the resemblance of Quṭb al-Dīn 
and Peurbach’s figures of the ellipsoidal path of the centre of the epicycle of Mercury, which is 
much more evident. 

52. Kāshī, Lubāb, N: ff. 7r, 9r-v, P1: pp. 187, 191-192, P2: ff. 8r, 10v. Note that the Lubāb was 
written before the Nuzha and, of course, its appendices. It seems that Kāshī was already aware of 
the ellipsoidal shape of the trajectories, but it took him some time to consider the matter in depth 
and to reach his final opinion, as presented in the Nuzha. 
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In the case of the inner planets, the observations of two symmetrical maximum 
elongations are necessary, at least, for the determination of the direction of the 
apsidal line, and those of two other maximum elongations when the mean Sun is 
located at either one of the apses, are required for the measurement of the deferent 
eccentricity and the epicycle radius. If a further test of bisection of the eccentric-
ity is intended, another maximum elongation of the planet is observed when the 
centre of the epicycle is in an eccentric anomaly of 90° further from the apogee. 

Following the tradition established by Ptolemy’s Almagest/Handy Tables for 
the reduction of his elegant planetary theories to numerical tables, the medieval 
astronomers usually tabulated the mean motions α̅ and κ̅ or  λ̄, which are the linear 
functions of time. The true longitude of a planet is computed as follows:

λ
C
 =  λ̄   ∓ c

1
  κ = κ̅ ∓ c

1
  (-: 0 ≤ κ̅ ≤ 180°; +: 180° ≤ κ̅ ≤ 360°)

α = α̅ ± c
1
  (+: 0 ≤ α̅ ≤ 180°; -: 180° ≤ α̅ ≤ 360°)

λ = λ
C
 ± c

2
 = κ̅ + λ

a
 ∓ c

1
 ± c

2
 (+: 0 ≤ α ≤ 180°; -: 180° ≤ α ≤ 360°)

Ptolemy uses the following approximate interpolation scheme to reduce the 
calculation of c

2
 to a multiplication and an addition:

c
2
 = c

2m
 + (c

2m
 - c

2a
) × f(κ̅)    if 0 ≤ κ̅ ≤ κ̅

m
 

c
2
 = c

2m
 + (c

2Π
 - c

2m
) × f(κ̅)    if κ̅

m
 ≤ κ̅ ≤ 180°

in which c
2m

 is the epicyclic equation in the mean distance (TC = OC = R), 
where the eccentric anomaly is equal to κ̅

m
, c

2Π
 at the least distance, and c

2a
 at the 

greatest distance, and f is an interpolation function. In the equation tables of 
Ptolemaic type each of the components of the equations, i.e., c

1
, c

2m
, f, and (c

2m
 - 

c
2a

) together with (c
2Π

 - c
2m

) are tabulated in a separate column/table, and due to 
the symmetry of the underlying trigonometrical functions a double-entry table/
column is sufficient for each; for half of the arguments, the entries are subtractive 
or additive, but the opposite is true for the other half. Medieval Islamic astrono-
mers devised various simple methods for arranging the equations in the displaced 
asymmetrical equation tables in which the entries are always-additive, so that a 
practitioner did not need to worry much about the addition-subtraction procedure.  
Muḥyī al-Dīn’s equation tables in both the Adwār and the Tāj are similar to Ptole-
my’s, which seems to have been a customary procedure among astronomers with 
a series of non-Ptolemaic underlying quantities, but the famous zījes in which 
Ptolemy’s parameter values were adopted very often deployed these “conven-
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tional equation tables”, as called by Kamālī who reviews these methods in his 
Ashrafī zīj (some of these methods will be briefly explained later in the apparatus 
to Tables 6(a)-6(c)).53 

1.5. A Review of the Introductory Chapters on the Planetary Models in the 
Talkhīṣ

In vii.4,  Muḥyī al-Dīn begins by briefly stating that the apparent anomalies we 
see in the motion of each of the five planets can be defined by the simple uni-
form circular motion, which is proper to the heavenly objects, as we have said 
in the case of the Sun. Attaining this hypothesis/model (aṣl) [as that of the Sun 
for the planets] is of great value and benefit, but it is difficult, because of the 
weakness of [an observer’s] vision and his failure to perceive their motions at 
the times of observations. For this reason, if there is a deviation in their motions, 
the error becomes apparent later: quite soon, if the period [at which the motion 
is measured] is short and less soon, if it is long. And for the same reason, a sig-
nificant doubt is raised in the sizes of their two inequalities/anomalies, which are 
combined, but different in size and period: The one is related to the Sun (visibil-
ity-invisibility and station-retrogradation), and the other to the ecliptic position 
(the variation in speed and the motion in latitude). These situations are not spe-
cific to a single longitude, but are transformed to all degrees of the ecliptic in the 
sense [of the zodiacal signs]. It is difficult to isolate one of the inequalities from 
the other without expending more effort (tasāhul) or making more exact obser-
vations, especially the observations of the first visibility/invisibility or in the 
days of the occurrence of the station and retrogradation; the start of these phe-
nomena cannot be fixed, since the motions of the planets cannot be perceived for 
several days before or after their occurrence. Also, the errors occur in the start-
ing times of the visibilities owing to the differences in the atmospheric situation 
or in the observer’s vision. Then, Muḥyī al-Dīn proceeds to explain why the 
observation of the planets with stars involves difficult computations and also 

53. Kamālī, Ashrafī zīj iii.5: F: ff. 48r-49r, G: ff. 52r-53v. On the methods of displacements in 
the medieval planetary equation tables, see, e.g., Samsó and Millás 1998, pp. 270-272; Brummelen 
1998; van Dalen 2004a; Chabás and Goldstein 2013; Chabás 2014, pp. 34-39; and the other refe-
rences mentioned therein.
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guesswork: this is mainly because the circle passing through them does not al-
ways form right angles with the ecliptic, and also because of the optical illusion 
(well-known today) which causes the two objects to appear closer to each other 
when culminating than near the horizon. These matters are in reality an abridge-
ment of the first paragraph of Almagest ix.2, which is followed by Ptolemy’s last 
paragraph in the same chapter; in the latter, Ptolemy recommends two types of 
observations as being the most reliable: the observations of the planetary ap-
pulses to the fixed stars and of the conjunctions with the Moon, and those made 
by an armillary sphere.54 Thereafter, recapitulating Almagest ix.5,55 our author 
explains that [for the inequality relative to the Sun,] the time from the maximum 
to the mean velocity is greater than the period from the mean to the minimum 
speed, a situation which cannot be accounted for by the eccentric hypothesis 
alone, as is the case with the Sun, since the opposite occurs. It can thus be ex-
plained by the epicyclic hypothesis if it is assumed that the planet moves on its 
circumference from the west to the east [i.e., in the direction of increasing lon-
gitude], so that the greatest motion takes place at the epicyclic apogee and the 
minimum speed at the epicyclic perigee, in contrast to the lunar model. For the 
inequality related to the ecliptic, the eccentric model is deployed; our author 
combines its explanation with the introduction of the equant point in the follow-
ing manner: it is conceptualized that [the centre of] the epicycle sphere rotates 
on the circumference [read: equator] of the sphere of the eccentric from the west 
to the east neither uniformly with respect to the [eccentric] deferent centre, nor 
uniformly with respect to that of the universe, but with respect to the centre of 
another sphere whose centre is eccentric from that of the deferent towards the 
apogee by the same amount of the deferent eccentricity, which is called the 
sphere of the equant.56 For all the planets except for Mercury, the centre of the 
deferent sphere carrying the epicycle is the midway of the centre of the universe 
and that of the equant sphere, which is to make a true agreement between the 
various observed motions of the planets and the hypothesis/ model established 
for them [i.e., epicycle-eccentric]. In a very curious statement, he then adds that 
“Ptolemy knew it by means of artifice (ḥīla) rather than by means of proof, [but] 

54. Toomer [1984] 1998, pp. 420-421, 423. 
55. Toomer [1984] 1998, pp. 442-3. 
56. For Ptolemy: “the eccentric which produces the anomaly”, distinguished from “the eccen-

tric that carries the epicycle”, i.e., the deferent. 
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we offer a proof for it later, God willing”.57 The preserved incomplete MS of the 
Talkhīṣ does not contain any such proof, and, as we shall see presently, Ptole-
my’s iterative procedure is strictly applied to the computation of the eccentrici-
ties of the superior planets. Nevertheless, since one of the missing last two books 
of the treatise is on the retrograde motions and latitudes of the planets, it is 
tempting to speculate that the mentioned proof (if it was indeed included in the 
treatise) might have had something to do with the variation of the sizes of the 
arcs of retrograde motion of the planets, where the bisection of the eccentricity 
appears to account for their different sizes.58 It is noteworthy that in his Nihāya 
ii.8,59 Shīrāzī attempts to give an observational proof that in the case of the three 
outer planets, the centre of the deferent should be located between the equant 
and the Earth, since the difference in size of the arcs of the retrograde motions 
of the planets can be explained on this basis.60 It appears somewhat strange that 
such a philosophically-minded astronomer as al-Shīrāzī should on the one hand 
attempt to construct alternative models to eliminate the physical/philosophical 
difficulties with the equant point in Ptolemaic models61 by superimposing it on 
complicated systems of “cycle on epicycle, orb on orb”62 and, on the other hand 
accept its validity in an observational aspect. Moreover, Shīrāzī’s proof is circu-
lar, simply because the first step in his derivation of the deferent eccentricity of 
the outer planets from their retrograde arcs consists in the use of Apollonius’s 
theorem for the determination of their stationary points; according to it, one 
needs to calculate the true angular velocity of a planet on the epicycle and that 
of its epicycle centre —neither of which can, of course, be determined prior to 
an early derivation of the eccentricity of the equant.63 Shīrāzī’s Nihāya was writ-
ten in the early 1280s,64 quite probably after  Muḥyī al-Dīn’s Talkhīṣ, but due to 

57. Al-Maghribī, Talkhīṣ, f. 117v.
58. It should be noted that the relevant section in the Adwār (ii.6: M: ff. 19r-v, CB: ff. 18r-v) 

also gives no information about Muḥyī al-Dīn’s proof. 
59. Shīrāzī, Nihāya, P1: ff. 37v-38r, P2: ff. 93r-94v. 
60. The text in question is edited and translated in Gamini and Masoumi 2013.  
61. Note that there is still equant motion in Shīrāzī’s models produced by the eccentricity and 

the small epicycle.
62. The phrase is taken from Herschel 1851, p. 266.  
63. It is probable that Shīrāzī himself recognized the circular reasoning in his proof, and so did 

not include it in his two later works, Ikhtiyārāt and Tuḥfa. 
64. According to Niazi (2014, pp. 85-86, 98), Shīrāzī’s three works were written in the first part 

of the 1280s; first, Nihāya, next, Ikhtiyārāt, and then Tuḥfa. 
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the corruption of the only surviving MS of the latter work, we cannot, unfortu-
nately, compare the two proofs given for Ptolemy’s bisecting the equant eccen-
tricity at Maragha and examine whether Shīrāzī borrowed his proof from  Muḥyī 
al-Dīn without acknowledging him —as he did in the case of the model of the 
superior planets and Venus and the idea of placing Venus above the Sun, which 
he took from his other elder contemporary, al-ʿUrḍī.

At the end of vii.4, Muḥyī al-Dīn deals with how to derive one of the inequal-
ities independently of the other; by this, he in fact means how to isolate the mean 
motions in longitude from those in anomaly, as he explains that the inequality 
related to the ecliptic is the amount that the centre of the epicycle travels on the 
circumference of the ecliptic at a known time, and the inequality related to the 
Sun is the amount the planet travels on the circumference of the epicycle at that 
time. Its procedure is as follows: The appulse of a planet to a star is very accu-
rately observed at a particular time and its distance from the mean Sun is known. 
Then, such an appulse is observed once again under the condition that the dis-
tance of the planet from the mean Sun is equal to the corresponding distance in 
the first appulse. At both times, the planet should be in the same direction both 
with respect to the Sun and the epicyclic apogee, so that it returns to the first epi-
cyclic position, and thus travels the complete cycles in the period between them. 
And it is known that the planet travels the complete cycles on the ecliptic plus an 
amount which is the motion of the fixed stars between the two times. In order to 
derive the mean daily motions, the cycles of the planet’s motion throughout the 
ecliptic are converted into degrees, and each of them is divided into the time in-
terval counted in days. It is known that the sum of the two mean daily motions in 
anomaly and in longitude is equal to the solar mean daily motion in the case of 
the superior planets, but for the inferior ones, the mean motion in longitude is 
equal to the solar mean daily motion. The motion of the fixed star in the period in 
question is also known: The elongations of the planet from the mean Sun at both 
times are equal, which requires the motion of the fixed star to be equal to that of 
the mean Sun minus the complete cycles travelled in the period in question, which 
is also equal to the [angular] distance between the centres of the epicycles be-
tween the two times. 
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Figure 4(a). Lemma 1 (redrawn based on Talkhīṣ, f. 120v)

○ ZE = EH = e and BE ⟘ AD; so BZ = BH; ∠ZGH is an angle subtending the equant 
eccentricity ZH from an arbitrary point G on the deferent falling between B and the 
perigee D. It is wanted to prove that ∠BHG > ∠BZG.
● Proof: BZ is extended to T, and BH to Y; BZT = BHY, and so ZT = HY. We join lines 
GT, GY and TY; ∠BTG = ∠BYG and ∠BTY = ∠TYB; thus, ∠TYG [= ∠TYB + 
∠BYG] > ∠YTG [= ∠YTB - ∠BTG]. Thus, TG > GY. We cut off TK to be equal to 
YG and join ZK; ΔZTK = ΔHYG; hence, ∠TZK = ∠YHG; thus, ∠GHB = ∠KZB; 
∠KZB > ∠GZB; therefore, ∠GHB > ∠GZB. Q.E.D. 
○∠ZBH is the maximum angle subtending the equant eccentricity from a point on the 
deferent.
● Proof: from lemma 1, above: ∠GHB > ∠GZB; ∠L is equal in triangles ZBL and 
GHL; therefore, ∠ZBH > ∠ZGH. Similarly, it can be demonstrated that ∠B is great-
er than any other angle subtending the equant eccentricity from a vertex on the cir-
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cumference of the deferent, except the equal angle symmetrical to it with respect to 
diameter AD of the deferent (∠B′, not drawn in the original).

Figure 4(b). Lemmas 2 (redrawn based on Talkhīṣ, f. 121v): If the epicycle cen-
tre cuts off equal arcs from the circumference of the equant circle at centre H, it 
cuts off the different[-in-size] angles at the centre of the universe [T], the least of 
which is closer to the apogee, and the greatest of which is near the perigee.

○ Arc AB = arc BG = arc GD = arc DE = arc EZ (the epicycle centre has cut off these 
equal arcs in the equal times). We join BT, GT, DT, and ET. I say: the angles at T are 
successively being increased, so that ∠ATB is the least and ∠ETZ is the greatest of 
them […].
● Proof: We join lines AB, BG, GD, BZ, and GZ, cuts off ZY to be equal to ZG, and 
join BY. Since ∠AZB = ∠BZG and BY = BG = BA, ΔABY is isosceles. Also, since GT 
+ TZ > GZ = ZY [= ΤΖ + ΤΥ], GT > TY. TK is made equal to TG. We join BK; BK < 
AB = BY, because it comes from the apex of the isosceles triangle to its base. Thus, BK 
< BG; therefore, ∠KTB < ∠BTG. 
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○ […] Also, I say: ∠BTG < ∠GTD. 
● Proof: We extend BT to L, join GL and DL, and cut off LM being equal to LD. 
We join GM; GM = GD = GB. Also, sine DT + TL > DL = LM [= TL + TM], TD > 
TM. TN is made equal to TD, and we join GN; GN < GD, as demonstrated. There-
fore, ∠NTG < ∠GTD. And analogously it would be demonstrated that ∠GTD < 
∠DTE, if we extend DT to the circumference [of the equant circle] and proceed 
according to what mentioned earlier. This is so in the case of the remaining an-
gles. Q.E.D.

In vii.5, the Ptolemaic model of the superior planets and Venus and that of 
Mercury are explained, and in vii.6, it is proved that in the equal mean eccen-
tric anomalies on the two sides of the apsidal line, the equation of the ecliptic 
anomaly (i.e., the equation of centre) and the greatest true elongation of the 
planet from the mean position are identical (corresponding to Almagest ix.6).65 
In vii.7, our author posits three lemmas (muqaddama, “preliminary”) about 
the planetary motions; the first two concern the variation in the apparent mo-
tion of a planet in longitude in comparison with its mean motion, and the fact 
that its true motion increases from the apogee to the perigee and decreases in 
the inverse direction (Figures 4(a)-4(b)), analogous to his lemmas in the case 
of the Sun in Talkhīṣ iv.1.66 A corollary of the first lemma is presented to prove 
that the equation of centre attains its maximum amount when the line dropped 
from the circumference of the deferent to its centre is perpendicular to the 
apsidal line (c

1max
 = ∠EQT in Figure 1). Although they have simple geometri-

cal structures, these lemmas cannot be addressed in the Almagest. The third 
comprises three parts, each one of which in fact corresponds to one of the lem-
mas Ptolemy sets forward in Almagest x.6;67 their purpose is to prove that in 
the case of the superior planets, the line joining the epicycle centre and the 
body of the planet is parallel to the line from the Earth pointing toward the 
mean Sun; thus, when the planet is at the true epicyclic apogee, it is in con-
junction with the mean Sun, and while it is in the true epicyclic perigee, it is in 
opposition to the mean Sun.68 

65. Toomer [1984] 1998, pp. pp. 443-448. 
66. Al-Maghribī, Talkhīṣ, ff. 51r-53r.  
67. Toomer [1984] 1998, pp. 480-484. 
68. In his al-Qānūn x.3.2 (1954-1956, Vol. 3, pp. 1186-1187), Bīrūnī presents some unjus-

tified objections to Ptolemy in this aspect, which reveal his extraordinary difficulties in unders-
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In the introductory chapter viii.1, on only one page does Muḥyī al-Dīn note 
that for the superior planets, the equant eccentricity and the longitudes of the 
apogees can be determined by the observations of three mean oppositions, and 
he explains why the mean conjunctions or quadratures (as used for the deriva-
tion of the lunar eccentricity) cannot be used for this purpose: simply because 
in the first situation the planet is invisible, and the second requires the true 
longitude of the epicycle centre, which cannot be known prior to the derivation 
of the eccentricity.

2. Orbital elements: Eccentricity  
and direction of apsidal line

Ptolemy’s iterative method for determining the orbital elements of the superior 
planets in Almagest x.7 and xi.1,569 is basically the same general three-point 
method that was used for quantifying the solar model and computing the radius 
of the lunar epicycle. For the outer planets, the three points are determined by 
the planets’ triple oppositions to the mean Sun, when they are located at the 
perigees of their epicycles, and thus the lines of sight from the Earth to the 
planets point to their epicycle centres. Of course, Ptolemy’s planetary models 
are essentially more complicated than the simple Hipparchan lunar model, on 
the basis of which the size of the lunar epicycle is determined, as well as his 

tanding that (i) the line drawn from the centre of the solar eccentric to the mean Sun, a point on 
the circumference of the Sun’s eccentric, can be replaced by a line parallel to it but drawn from 
the Earth, so that this second line also points toward the mean Sun; in this concept, the mean Sun 
would be a fictitious spot circulating uniformly around the ecliptic; and that (ii) as the epicycle 
radius joining the epicycle centre and the body of the planet is parallel to the line connecting 
the centre of the solar eccentric and the mean Sun, it is also parallel to the abovementioned se-
cond line joining the Earth and the imaginary mean Sun rotating uniformly around the ecliptic. 
Ptolemy’s demonstration of this simple lemma is merely the fact that from  λ̄   

☉
=  λ̄   + ᾱ, one can 

simply derive  λ̄   
☉
 =  λ

C
 + α. In Bīrūnī’s view, the line pointing toward the mean Sun should ne-

cessarily be drawn from the centre of the solar eccentric, and also when the planet is in the true 
epicyclic apses, the mean Sun does not align with it, except when the epicycle centre is located 
at the planet’s eccentric apogee/perigee: nonetheless, on the condition that the Sun’s and the 
planet’s apsidal lines coincide with each other, which itself adds another difficulty, since it does 
not in fact occur in the case of any of the five planets.

69. Toomer [1984] 1998, pp. 484-499, 507-519, 525-537.
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solar model. Consequently, a complicated mathematical procedure is required 
to measure the fundamental elements of the outer planets. The difficulty arises 
from the principle of the equant motion in the Ptolemaic model described ear-
lier. In Figure 5, the three continuous circles represent the ecliptic with centre 
N, on which the differences in true longitude between the mean oppositions are 
marked, the deferent with centre O, which carries the epicycle, and the equant 
circle with centre T, on which the arcs representing the differences in mean 
longitude between the mean oppositions are displayed. The epicycle is illus-
trated three times, with the planet at P in opposition to the mean Sun (not 
shown). We have arcs Q

1
Q

2
 and Q

2
Q

3
 showing the differences in true longitude 

Δλ
12

 and Δλ
23

 respectively, which are measured from the observations of a trio 
of mean oppositions, and arcs D

1
D

2
 and D

2
D

3
 displaying the differences in 

mean longitude, respectively, Δ λ̄  
12

 and Δ λ̄  
23

, which are computed from an al-
ready available and reliable value for the planet’s mean motion in longitude and 
the known intervals of time between the triple observations. A ready and 
straightforward application of the three-point method requires knowledge of 
arcs C

1
C

2
 and C

2
C

3
, which are the angular distances between the positions oc-

cupied by the epicycle centre at the times of the three mean oppositions, but 
they are not known (note that points C are defined by the projection of the mean 
positions D on the equant circle onto the eccentric deferent). Ptolemy’s solution 
to this problem consists of the following iterative procedure. In the first step, it 
is “falsely” assumed that the true positions of the planet on the ecliptic are 
given by the lines drawn from N to points D, not passing through points P and 
C, and then the differences in longitude between the thus marked ecliptic points 
Q′

1
, Q′

2
, and Q′

3
 are, respectively, equal to Δλ

12
 and Δλ

23
. Then, the double ec-

centricity 2e = TN and the direction of the apsidal line AΠ with respect to points 
D are computed. Then, in the second step, from the value computed for e, an-
gles η and ζ in Figure 5 are derived, the differences of which give the small 
correction angles ε. The lengthy step 3 is the iteration procedure: taking the 
values of ε, the better estimates Δλ

12
′ and Δλ

23
′ can be calculated for arcs Q′

1
Q′

2
 

and Q′
2
Q′

3
 (based on the configuration shown in Figure 5: Δλ

12
′ = Δλ

12
 + ε

1
 + ε

2
 

and Δλ
23
′ = Δλ

23
 - ε

2
 - ε

3
), and then new values for e and angles DTA and/or 

DTΠ. This procedure is repeated as often as required until no new values are 
derived for Δλ′, e, and the equant arcs DA and/or DΠ. These steps will be 
clarified further later in the explanation of Muḥyī al-Dīn’s account of his meas-
urements in Section 4.1.
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Figure 5. Ptolemy’s iterative method for the derivation of the orbital ele-
ments of the superior planets.

3. Muḥyī al-Dīn’s observations of Mars

In the majority of his recorded observations (28 out of 35),  Muḥyī al-Dīn meas-
ured the meridian altitude of a celestial object and the time of its meridian transit 
as counted from the specific moments when a reference celestial body whose 
celestial and ecliptical coordinates are already known is located in a special posi-
tion with respect to the horizon; e.g., the meridian transit of the Sun (i.e., true 
noon) or of a bright clock star or the Sun being located at a low altitude a short 
while before sunset or after sunrise. Then, the celestial and ecliptical coordinates 
of that celestial object can be computed from the already known coordinates of 
the reference body and the observational data. 

Muḥyī al-Dīn’s observations of Mars are presented as follows. The procedure 
for deriving the ecliptical coordinates from the observational data and the time of 
the opposition of the planet to the mean Sun is given only in the first observation, 
which will be explained in detail later in this section.
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1.	 70 We released the minute (al-daqīqa) from its [i.e., Mars’] meridian transit 
to the meridian transit of ʿAyn al-thawr [i.e., Aldebaran, α Tau]. It was in 
service for 33 minutes. Its [i.e., Mars’] maximum altitude in the circle of the 
meridian was equal to 72;2°. It was on the night of Wednesday, the first [day] 
of Bahman-māh [i.e., the month of Bahman, the 11th month] in the year 633 
Yazdigird. Dāʾir al-daqīqa [i.e., the duration measured by the minute as ex-
pressed in terms of the revolution of the celestial sphere, time-degree]: 8;16°. 

[Calculation of the ecliptical coordinates of Mars:] The [right] ascension 
of the transit degree of Aldebaran: 148;56°. We subtract the dāʾir from it. The 
remainder is equal to the [right] ascension of the transit degree [of Mars]: 
140;40°. The transit degree of Mars: Taurus 23;5° [= 53;5°]. The [maximum] 
altitude of the transit degree of Mars [on the meridian of Maragha]: 74;15°. 
The difference between the two altitudes [i.e., the meridian altitudes of Mars 
and its transit degree]: 0;47°. Its sine: 0;49,13. The complement of the decli-
nation of the ascendant [i.e., the acute angle between the ecliptic and the 
meridian]: 75;21,38°. Its sine: 58;3,8. We multiply it by the other sine value, 
and divide the resultant into 60; the result amounts to 0;47,33. Its correspon-
ding arc: 0;45° which is equal to the latitude of Mars in the north direction of 
the ecliptic. Its complement: 89;15°. Its sine: 59;59,41,32. The complement 
of the difference between the two altitudes: 89;13°. Its sine: 59;59,39,50. We 
divide it into the other sine value, and divide the resultant into 60, which re-
sults in 59;59,58,18. Its corresponding arc: 89;46°. Its complement: 0;14°. 
We add it to the degree of transit of Mars; the longitude of Mars is derived as 
Taurus 23;19° [= 59;19°]. 

[Derivation of the time of the mean opposition of the planet to the mean 
Sun:] The daily motion (buht li-yawm) of Mars: 0;22°. At midday on Wed-
nesday, the longitude of Mars: 53;8° and the mean longitude of the Sun: 
232;3,44°. The difference between the two [i.e., the angular distance in 
longitude of either the Sun or Mars from a point on the ecliptic that is dia-
metrically opposed to the other object at the time: 53;8° + 180° - 222;3,44° 
=]: 1;4,16°. We multiply it by 24, and divide the resultant into the adjusted 
motion (al-buht al-muʿaddal) [i.e., the relative angular velocity of Mars 
with respect to the Sun], which is equal to 1;21,8° [= the mean daily motion 
of the Sun, 0;59,8° + the daily motion of the planet given as 0;22°], which 

70. al-Maghribī, Talkhīṣ, f. 132v.
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results in 19 hours after midday. Thus, the date of the mean opposition 632 
[years] 301 [days] 19 [hours]; at the time, the mean longitude of the Sun: 
232;50,31° and the longitude of Mars: 52;50,31°. 

2.	 71 We released the clepsydra at the end of the daylight on Sunday, 15 
Isfandhārmadh-māh [i.e., the month of Isfandhārmadh or Isfand, the 12th 

month] in the year 635 [Yazdigird, when] the altitude of the Sun was 3° 
west. It was in service for 7 [turns] 18 [minutes] until its [i.e., Mars’] me-
ridian transit. Its [i.e., Mars’] maximum altitude was equal to 79;42°. […] 
Dāʾir al-mankām: 112;36,22°.

3.	 72 We released the clepsydra in the night on Thursday, the 20th [day] of 
Urdībihisht-māh [i.e., the month of Urdībihisht, the 2nd month] in the year 
640 [Yazdigird] from the meridian transit of Qalb al-asad [i.e., Regulus, α 
Leo]. It was in service for 1 [turn] 32 [minutes] 30 [seconds] until its [i.e., 
Mars’] meridian transit. Its maximum altitude in the circle of the meridian 
was equal to 62;33°. Dāʾir al-mankām: 23;33,25°. 

The meridian altitudes in the first three observations were measured with the 
aid of the mural quadrant of the observatory, called the “high copper quadrant”, 
and the durations, by a clepsydra, called mankām. The mural quadrant is de-
scribed in al-ʿUrḍī’s Fī kayfiyyat al-irṣād (How to make [astronomical] 
observations).73  Muḥyī al-Dīn appears to have been so interested in the instru-
ment that he composed a poem in its praise during the observations of 1265-1266 
AD, and a certain astronomer Majd al-Dīn Abū  Muḥammad al-Ḥasan b. Ibrāhīm 
b. Yūsūf al-BaʿAlbakī (modern: Baalbek in Lebanon) had the poem engraved on 
the quadrant.74 He called the clepsydra mankām (or minkām), a corruption of the 
term bankām (or binkām) which comes from (in fact, is the Arabicized form of) 
the Persian term pangān. This Persian term appears to have been converted into 
Arabic in two different forms in the early Islamic period: fankān (or finkān) which 

71. al-Maghribī, Talkhīṣ, f. 132v.
72. al-Maghribī, Talkhīṣ, f. 133r.
73. Al-ʿUrḍī, Fī kayfiyyat al-irṣād, P: ff. 2v-4r, N: ff. 38r-39v; Seemann 1929, pp. 28-32. For a 

reconstruction of it, see Sezgin and Neubauer 2010, Vol. 2, p. 38. 
74. Ibn al-Fuwaṭī, Vol. 4, pp. 413-414; the poem reads:

أنا ربع دائرة الفلک / طوبى لمن مثلي ملک / بى تدرک الأوقات حقّاً / ويقيناً دون شک

A tentative translation of this goes as follows: “I am a quadrant of the circle of orb. / Good for 
everyone such me as an angel! / By me the times are known truly / and securely, without any doubt”. 
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was used to mean “clock”, in general, and bankām which meant “water-clock”, in 
particular, as can be understood from the work of al-Jazarī, the 12th century Is-
lamic engineer and craftsman, on mechanical devices.75 Hardly anything is known 
about the clepsydra  Muḥyī al-Dīn used in his observations at Maragha. It appears 
that two mechanisms were embedded in it in order to measure hours and minutes 
independently of each other: one called by the general name of the clepsydra, i.e., 
al-mankām, which was used to measure hours, and the other called the minute 
(al-daqīqa), which was used to count minutes. This is suggested by the first ob-
servation of Mars, in which the time interval is less than one hour, and indeed 
Muḥyī al-Dīn’s statements make it clear that only the minute was used to measure 
it. The resulting time-degree is called dāʾir al-daqīqa (cf. dāʾir al-mankām).

Muḥyī al-Dīn’s observational data obtained from the first three observations and 
the values he computed for the celestial and ecliptical coordinates of Mars from 
them are presented in Table 1 for comparison with the modern data, which are pre-
sented in bold: Cols. I and II indicate, respectively, the numbers assigned to the 
observations and their dates in the Yazdigird era, the Julian calendar, and Julian Day 
Number. The Yazdigird era, 16 June 632, is used with the Egyptian/Persian year 
consisting of 12 months of 30 days plus five epagomenal days which, in the early 
Islamic period, were placed after the eighth month, but in the late Islamic period 
were transferred to the end of the year. Col. III gives the origins of time, from which 
the times of the meridian transits of Mars were measured, and Col. IV, the corre-
sponding mean local times; Col. V presents  Muḥyī al-Dīn’s and true modern values 
for the meridian altitudes of Mars and their differences; Col. VI contains the true 
times of the meridian transits of Mars; Col. VII gives his values for the times of the 
meridian transits of Mars measured from the origins mentioned in Col. III, and 
their differences with respect to the true time intervals (i.e., the differences between 
Cols. IV and VI). Cols. VIII and IX give, respectively, his values for the declination 
and right ascension of Mars in comparison with the corresponding modern values 
at the time; note that he does not calculate the declinations, since they were not 
necessary in his computations; we have derived them simply from RA = h

max
 + φ - 

90° with the values of h
max

 in Col. V and φ = 37;20,30°, and have rounded the results 
to the nearest 0.5′). Cols. X and XI indicate, respectively, his computed values for 
the latitude and longitude of Mars together with the corresponding modern values 
at the time and the differences between them.

75. Al-Jazarī 1973, p. 17. 
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The longitudes computed from this trio of observations of Mars are used to 
compute the times of the oppositions of the planets to the mean Sun, and then to 
determine the orbital elements of the planet and its mean motion in anomaly, as 
shall be explained below (see Sections 4.1 and 4.2). The fourth, and last, recorded 
observation of Mars is its near appulse to the star Regulus (α Leo), which is used 
in order to determine the size of its epicycles (see Section 4.3):

4.	 76 I say that the circle of latitude had aligned the centres of Mars and Regu-
lus when 14;30 hours was elapsed since midday on Tuesday, the tenth of 
Diy-māh [i.e., the month of Diy, the 10th month] in the year 639 Yazdigird, 
when nearly the one-third of [the ecliptic sign] Virgo rose. [Mars] was in 
the north of Regulus as much as 40 arc-minutes. The longitude of Regulus 
and of Mars was 4 [ecliptic signs] 19;5°2 [= 139;52°].

The time of this observation is given as 14;30h after true noon on 14 October 
1270. Mars rose on 15 October at 0:34 MLT. At 2:30 MLT, the apparent longitude 
of Mars was about 139;42,30° and that of Regulus, 139;40,0° (both at an altitude 
of 22°), whereas  Muḥyī al-Dīn found them to be in conjunction with each other; 
consequently, he appears to have committed an error of ~ +2.5′ in the estimation 
of the distance in longitude between Jupiter and Regulus. The apparent conjunc-
tion took place between 0:30 MLT and 1:0 MLT. The difference between the ap-
parent latitudes of Mars (+1;37°) and Regulus (+0;27°) was ~ 70′, and thus his 
error is ~ -30′. It is noteworthy that  Muḥyī al-Dīn’s style of describing the near 
appulse of the planets to Regulus as “the circle of latitude aligned…” is funda-
mentally different from the common standard terminology adopted in Islamic 
astronomy; e.g., the roots q-r-n, “to be in conjunction”, k-s-f, “to occult”, or l-ṣ-q, 
“to associate/to be close”. 

In Talkhīṣ iii.11,77 Muḥyī al-Dīn explains in detail how to compute the eclipti-
cal coordinates of a celestial body from its meridian altitude and time of its me-
ridian transit or from its altitude and azimuth. For a better view of his observa-
tional-computational method to determine the longitude and latitude, instead of 
reading them off directly from an armillary sphere, we explain the procedure with 
a worked-out example related to Mars-1. Assume that a heavenly object passes 

76. Al-Maghribī, Talkhīṣ, f. 135r
77. Al-Maghribī, Talkhīṣ, ff. 49r-50v. 
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Figure 6(a). The derivation of the celestial and ecliptical coordinates of 
a heavenly object from its maximum altitude measured at the time of its 
meridian transit and the span of time passed from, or remained until, the 
meridian transit of a reference celestial object with known celestial/eclip-
tical coordinates. 

Figure 6(b). The derivation of the eclipical coordinates from the horizontal 
ones (3D reconstruction from the analemma drawn on f. 50r).
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across the meridian at a given time t
1
 (Mars in our example). See Figure 6(a). The 

great circle ETOW is the celestial equator with N as the north celestial pole, and 
RQPL stands for the ecliptic, and P is its northern pole. The body is located at M. 
Arc ♈P displays its longitude λ, and arc MP is its latitude β. Arc ♈O shows its 
right ascension RA, and arc MO is its declination δ. Arc MS is the observed me-
ridian altitude h

max
. Arc OS is the complement of the geographical latitude of 

place (= 90° - φ, where φ = 37;20,30°, modern: 37;23,46°). Point L stands for the 
transit degree λ

m
 (i.e., polar longitude) of the object, which is also called the mid-

heaven at time t
1
; arc ♈O︎ displays its right ascension, arc LO: its declination δ

m
 

= δ(λ
m
), and arc LS: its altitude h

m
. Arc ML is called the difference in altitude, Δh 

= h
max

 - h
m
. At time t

2
, the reference body (the star Aldebaran, α Tau) S is located 

on the meridian, as shown in Figure 6(b): Arc ♈Q︎ shows its longitude λ*, arc QS: 
its latitude β*, arc ♈T: its right ascension RA*, and arc TS: its declination δ*. 
Point R is the mid-heaven at t

2
. The period between the meridian transits of the 

two objects Δt = t
2
 - t

1
 is expressed in terms of the revolution of the celestial 

sphere (time-degree, 1 hour = 15°), which corresponds to arc TO. Thus,

RA = RA* ± Δt 				           (1)

In our example, it is obvious that the sign is negative. The declination δ can be 
readily computed from

δ = h
max

 - φ + 90°,			          (2)

although our author does not need to do so. 
In order to derive the ecliptical coordinates, it is necessary to derive λ

m
 and 

then to solve the spherical triangle MLP. RA in (1) is also the right ascension of 
the mid-heaven L at t

1
. Hence, it can either be derived from the table of right as-

cension78 or can be directly computed, e.g., from

tan λ
m
 = tan RA / cos ε,			        (3a)

and its declination δ
m
 either from the table of the declination79 or from

78. Table of the right ascension RA(λ): Al-Maghribī, Talkhīṣ, ff. 34v-35r. 
79. Table of the first and second declinations δ(λ): Al-Maghribī, Talkhīṣ, f. 32r.
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sin δ
m
 = sin λ

m
 sin ε, and 

h
m
 = δ

m
 - φ + 90°,				           (4)

where ε is the obliquity of the ecliptic (23;30°). In triangle MLP, arc ML = Δh is 
known and also, angle P = 90°. We want to calculate the acute angle MLP = γ 
between the ecliptic and the meridian, which has been already explained in  
Talkhīṣ iii.6:80 

cos γ = cos RA sin ε.			          (5)

(Note that knowing angle γ, λ
m
 can also be derived from

sin λ
m
 = sin RA / sin γ,			        (3b)

as our author mentions in  Talkhīṣ iii.6).
Thus, we can compute the latitude β = arc ΜP and the difference in longitude 

Δλ = |λ - λ
m
| = arc PL, from which the longitude can be known as well:

sin β = sin Δh sin γ 					            (6)
cos Δλ = cos Δh / cos β, and thus, λ = λ

m
 ± Δλ.		         (7)

In our example (see below), the sign is positive. The conditions are given as 
follows: 

□ Latitude: (A1) If the object and the ecliptic are in the southern region of the horizon: 
If h

max
 > h

m
 → β > 0 and if h

max
 < h

m
 → β < 0. (A2) If the body and the ecliptic are in 

the northern zone of the horizon, the opposite is correct. (B1, B2) If the body and the 
ecliptic are in the two opposite directions with respect to the prime vertical, the body 
is in the same direction with respect to the ecliptic as the zenith. 
□ Longitude: If the latitude of the body and the ascendant/horoscope (i.e., the point of 
the ecliptic located on the eastern horizon, whose right ascension is more than that of 
the mid-heaven by 90°) are in the same direction [with respect to the ecliptic], then Δλ 
should be added to λ

m
, but if they are in the opposite directions, Δλ should be sub-

tracted from λ
m
.

80. Al-Maghribī, Talkhīṣ, ff. 40v-42r. 
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Finally, our author adds that we have demonstrated this issue by many exam-
ples in the cases of the fixed stars and other objects, as will be mentioned later, if 
God wishes.

■ Example Mars-1: The date of observation is 4/5 November 1264 (Table 1, no. 
1), whereas the reference body is Aldebaran whose coordinates were finally estab-
lished with the aid of an observation made some four years later on 17 September 
1268. 

The input data are: 

(1) RA*:  Muḥyī al-Dīn takes the right ascension of Aldebaran as equal to 148;56° as 
counted from the winter solstice point, or the head of Capricorn (i.e., 58;56° from 
the vernal equinox point, or the head of Aries) at the time of observation Mars-1. 
The coordinates of the star he measured in 1268 AD are λ = 60;0°, β = -5;29°, and 
RA = 148;59,49°. The precessional motion in longitude in the interval of time of 
1412 days between the two observations amounts to about 3.5′ ≈ 4.0′. So, for the 
time of observation Mars-1: λ ≈ 59;56°, and hence, RA ≈ 148;56,35°. 

Observational data: 

(2) Δt = 33 minutes of Pangān = 8;16° (Table 5); and 
(3) h

max
 = 72;2°.

Therefore, 

(1) RA = 148;56° - 8;16° = 140;40° counted from the head of Capricorn;
(2) [δ = 19;22,30°];
(3) λ

m
 = 53;5°;

(4) [δ
m
 = 18;35°]; h

m
 = 71;15°; Δh = 0;47°;

(5) γ = 75;21,38°; 
(6) β = +0;45°; and
(7) Δλ = 0;14°; λ = 53;19°.

Then, in a separate unnumbered chapter in  Talkhīṣ iii.11,  Muḥyī al-Dīn 
explains the general case of how to derive the ecliptical coordinates of a celes-
tial object at a given time from the ascendant/horoscope and its horizontal co-
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ordinates, i.e., the altitude and azimuth. With regard to Figure 6(b) (redrawn 
from f. 50r), arc AB is a quadrant of the horizon circle, arc AC: a part of the 
ecliptic and D its north pole, A: the pole of the great circle DCB, so that AY = 
AC = 90°, E: the zenith, i.e., the pole of arc AB (EH = 90°), and Z: a heavenly 
body; we draw arc EZH of a great circle; hence, ZH is its observed altitude h, 
ZT, its latitude β, and T marks its ecliptic longitude. The ecliptical coordinates 
can be known by the following procedure. We draw arc AZY of a great circle. 
We have:

 sin EZ     sin EH
–––––– = –––––– → sin ZY = cos h sin HB
 sin ZY     sin HB

AH is called the azimuth counted from the ascendant/horoscope, al-samt min al-
ṭāliʿ (if the celestial object is not on the prime vertical), or the ortive amplitude of 
the ascendant/horoscope, saʿat mashriq al-ṭāliʿ (if the celestial object is on the 
prime vertical, and thus its azimuth is equal to zero). Accordingly, HB is called 
the complement (tamām) of AH. From the above, we know arc AZ = 90° - arc ZY. 
→ sin YB = sin h / sin AZ

 sin AZ      sin AY
–––––– = –––––– → sin YB = sin h / sin AZ
 sin ZH      sin YB

Arc YB is called the arc of experiment/observation (qaws al-iʿtibār). Arc CB 
is already known, because it is the complement of the altitude of the northern pole 
of the ecliptic, D. Thus, arc YC = arc YB - arc CB. 

Also,

 sin AZ      sin AY
–––––– = –––––– → sin β = sin AZ sin YC
 sin ZT      sin YC

So, arc ZD = 90° - β.

 sin DZ      sin DT
–––––– = –––––– → sin TC = sin ZY / cos β
 sin ZY       sin TC

Arc TC is called the arc of difference (qaws al-ikhtilāf), indicating the differ-
ence in longitude between the ecliptic position T of the celestial body under scru-
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tiny and point C, which is 90° in longitude behind the ascendant/horoscope A. 
Therefore, the longitude of the heavenly object is known.

The conditions below are put forward in order to determine the direction of the 
celestial body with respect to the ecliptic and how to add qaws al-iʿtibār YB to the 
longitude of point C in order to derive the longitude of the object:

□ Latitude: (A1) If the body and the ecliptic are in the southern zone of the horizon: If 
YB > CB, the latitude is northern; if YB < CB, the latitude is southern; and if YB = CB, 
the object has no latitude. (A2) If they are in the northern region of the horizon, the 
situation would be reversed. (B1, B2) If the body and the ecliptic are in two opposite 
directions with respect to the prime vertical, the body is in the same direction with 
respect to the ecliptic as the zenith.
□ Longitude: If the latitude of the object and the ascendant/horoscope are in the same 
direction [with respect to the ecliptic], we add arc TC to the longitude of point C. If 
they are in two opposite directions, we subtract TC from the longitude of point C. 

In the right margin opposite the longitude conditions (f. 50v), Taqī al-Dīn  
Muḥammad b. Maʿrūf leaves this comment:

Here there is a great detail. And these sentences are neither rejected, nor are believed, 
except for a particular condition. So, it should be treated with caution. —Released by 
the poor Taqī al-Dīn.81

In his Sidra muntaha… (or Shāhanshāhiyya Zīj) ii.4.5 (topic 53),82 which 
bears a separate title “On the explanation of observational operations by the alti-
tude-azimuthal instrument”, Taqī al-Dīn explains the above-mentioned computa-
tional procedure in order to convert the horizontal coordinates to the ecliptical 
ones, from which it would be clarified that his critical annotation above only re-
fers to considering the various conditions possibly encountered in adding or sub-
tracting the arc of difference TC to/from the longitude of point C (e.g., in the case 

 هنا تفصيل کبير. وهذه الجمل لاتطردّ ولاتصدّق، الّٕا فی جزوی ٍمن جزوياّتها. فليتنقّظ لذلک. حرّرها الفقير تقي الدّين .81
82. Taqī al-Dīn, Sidra, K: ff. 26r-27r, Ν: ff. 33v-34v, V: ff. 31v-32r. Note that each Book 

(maqāla) in this work is divided into Sections (bābs) and every Section into chapters (faṣls), but 
the smallest subdivisions consist of the various topics discussed in a Book (called “principle”, aṣl, 
in Book i and “proposition”, qaḍiyya, in Book iii), which are numbered continuously; for example, 
Book ii, Section 4, Chapter 5 contains nine topics, 51-59.
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of the circumpolar stars). In a marginal note in the end of his account, Taqī al-Dīn 
again refers to Muḥyī al-Dīn:

Sheikh Muḥyī al-Dīn b. Abī [al-]Shukr —May God have mercy on him— wished 
fervently to deal with it, but his words were confused, as I saw them in a manuscript 
in his hand.83

Both these comments seems harsh, since there is absolutely no confusion in  
Muḥyī al-Dīn’s consideration of conditions: In the case of latitude, they are com-
plete, and those he explains for longitude are also (at the very least) sufficient for 
handling a transformation of the horizontal coordinates to the ecliptic ones for 
any place located in a northern latitude between ε and 90° —ε (ε: the obliquity of 
the ecliptic).

In an unnumbered chapter appended to iii.11, Muḥyī al-Dīn explains how to 
compute the declination from the altitude and azimuth. The proof is as presented 
above, if in Figure 6(b) we take circle DCB as the meridian, AC: the celestial 
equator, D: the northern celestial pole, then arc ZT becomes the declination of the 
celestial body, arc CT: its distance from the mid-heaven circle (dāʾirat wasaṭ al-
samāʾ; i.e., the meridian) in terms of the equinoctial time-degree (bi-azminat 
muʿaddal al-nahār), and arc AT: its true ascension for the given azimuth AH (al-
maṭāliʿ al-ḥaqīqīya li-l-samt al-mafrūḍ). The computational procedure is as men-
tioned earlier; if we take arc HB as the complement of the observed azimuth AH, 
the declination is known.

Table 2 illustrates how Muḥyī al-Dīn derives the times of the oppositions of 
Mars to the mean Sun from his measured durations and computed longitudes in 
the first three observations of the planet. Cols. I and II display, respectively, the 
dates of the observations and the ecliptical longitudes of Mars at the times of its 
meridian passages (identical to Cols. II and IX of Table 1, nos. 1-3). Col. III indi-
cates the values he gives for the true daily motion of the planet in longitude (al-
buht); our author does not explain how he derived these values, but it seems fair to 
assume that he observed the meridian transit of the planet at least on the two 
consecutive nights around each mean opposition, and then derived its longitude 
from the observed time and the meridian altitude by his method explained above; 
thus, the difference between the two longitudes is equal to the daily motion of the 

الشيخ محيی الدّين بن ابٔی شکر -رحمه الله تعالی- حام فيه حول الحمی ولکن اضطربت عبارته فيه رائته فی نسخة بخطه .83
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planet in longitude. Col. IV gives the longitude of the planet at noon either on the 
day preceding the observation or on the day of the observation, which are com-
puted from Cols. II and III. As seems clear, our author took midnight as the time 
for all three of his observations,84 since he either added half of the true daily mo-
tion to, or subtracted it from, the longitude of the planet in Col. II in order to de-
rive the longitude of the planet at noon. Col. V presents the mean longitude of the 
Sun at noon, as computed from his solar theory. Col. VI gives Muḥyī al-Dīn’s 
values for times of the mean oppositions as computed from the data in Cols. III-V 
and the mean solar daily motion (ω

☉
 = 0;59,8°/d). For example, as we have already 

seen in the observation report of Mars-1, at midnight on 5 November 1264, the 
longitude of the planet λ = 53;19°; with the true daily motion v = 0;22°, at noon on 
the same day, its longitude λ = 53;19° - 0;22°/2 = 53;8° and the solar mean longi-
tude  λ̄  ☉

= 232;3,44°. Consequently, a distance of Δλ = 1;4,16° must be travelled 
partly by the mean Sun and partly by the planet until they are placed in opposition 
to each other. Then, the time needed for it is equal to Δλ/(v + ω

☉
) = 1;4,16°/(0;22°/d 

+ 0;59,8°/d) ≈ 19;1 hours; our author has the value 19;0 hours (a trivial error of -1 
minute, which has no undesirable consequences). In Col. VII, our author’s times 
of the mean oppositions are converted to the mean local time (MLT) of Maragha 
for comparison with the modern times marked in bold. Of course, it should be 
noted that the opposition of a superior planet to an “imaginary” spot of the eclip-
tic, the mean Sun, is in reality an “invisible” phenomenon, and the times of its 
occurrence are computed solely on the basis of a crude and simple linear method. 
Thus, the derived times do not appear to be so relevant to (or comparable with) 
those computed on the basis of modern theories and on highly precise data. Nev-
ertheless, it is sufficient to say that there is a negative systematic error in Muḥyī 
al-Dīn’s times for the opposition of Mars to the mean Sun (μ = -8.3 hours). For the 
longitudes of the planet at the derived times of the mean oppositions, our author 
first simply calculates the mean solar longitudes at these times from his solar 
theory, and then takes the longitudes diametrically opposed to them as those of 
the planet, as will be shown in the following section.

84. As the true modern times given in Col. VI of Table 1 indicate, all the meridian transits had 
taken place close enough to midnight: the differences did not exceed 18 minutes. 
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4. Muḥyī al-Dīn’s measurements of Mars

4.1. Orbital elements85

Muḥyī al-Dīn gives the times of the mean oppositions in the Yazdigird era (see 
Table 1, Col. II and Table 2, Col. VI) and the true longitude of Mars and the mean 
longitude of the Sun at them as follows:

t λ   λ̄  
☉

1 632y 301d 19;  0h     52;50,31°  232;50,31°

2 634y 344d 22;27h   94;53,26 274;53,26 (1)

3 639y   50d   1;15h 163;  2,53 343;  2,53

Then, the time intervals between the mean oppositions and the mean and true 
motion of Mars during these time intervals are derived as follows:

Δt Δλ  Δ λ̄

1 → 2 2y 43d 3;27h     42;2,55°   45;11,  4° (2)

2 → 3 4y 70d 2;48h   68;9,27      81;53,36

The values for Δ λ̄   seem to have been computed from a mean daily motion in 
longitude of about 0;31,26,39,52° which is nearly equal to the value underlying 
the mean motion tables of the planet in al-Maghribī’s ʿUmda which is, in turn, 
borrowed from Ibn al-Fahhād’s ʿAlāʾī zīj. 

The value of Δ λ̄  12
 is given as 45;11,3° on f. 133r, but as 45;11,4° on f. 133v, 

which is used in the calculations. The first is in accordance with the abovemen-
tioned value for the mean daily motion. I do not know how likely it is that 
Muḥyī al-Dīn first wrote his computed value in Abjad numerals, but misread the 
third sexagesimal digit (3/ج → 4/د) when beginning his calculations. However, 

85. al-Maghribī, Talkhīṣ viii.11: ff. 133v-134v, 136r-136v. 
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such small deviations would hardly cause undesirable consequences in the sub-
sequent derivation. 

Step 1: Initial estimations

Muḥyī al-Dīn draws the orbital configuration of the planet at the times of the triple 
mean oppositions on f. 133v, which we reproduce in Figure 7, and explains that arc 
KL of the ecliptic does not correspond to arc EZ of the equant circle, but exceeds its 
ecliptic projection, arc RX, by the sum of arcs KR and XL (ε

1
 and ε

2
 in Figure 5); and 

arc LM of the ecliptic is lesser than arc XΘ, the ecliptic projection of arc ZH of the 
equant circle, by the sum of arcs XL and MΘ (ε

2
 and ε

3
 in Figure 5). Then, he draws 

the equant circle in the two separate figures on f. 134r, redrawn in Figure 8(a) and 
8(b), with A, B, and G representing the planet’s mean positions (equivalent to E, Z, 
and H in Figure 7) and D the centre of the Earth (not to be confused with D in Fig-
ure 7, standing for the centre of the eccentric deferent). We have: 

arc AB = Δ λ̄  12
    ∠ADB = Δλ

12
 

arc BG = Δ λ̄  23
    ∠BDG = Δλ

23

Figure 7. Derivation of the orbital elements of Mars.
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(a)                                                                          (b)

Figure 8

Then,

∠BEG = ½ arc BG = 40;56,48°
∠DBE = ∠BDG -∠BEG = 27;12,39° 
Sin(∠BDE) = Sin(∠BDG) = 55;41,33,21	 […,23]
Sin(∠DBE) = 27;26,9,26			   […,28]

If we take DE = 60 arbitrary units, then we can compute the length of BE in 
terms of it:

	           	 Sin (∠BDE)
BE = DE –––––––––––– = 121;47,41.

	           	 Sin (∠DBE)

Also,

arc ABG = arc AB + arc BG = 127;4,40° 
∠AEG = ½ arc ABG = 63;32,20° 
∠ADG =∠ADB +∠BDG = 110;12,22° 
∠EAD = ∠ADG -∠AEG = 46;40,2° 
Sin(∠ADG) = Sin(∠ADE) = [56;18,26,32]	 (omitted in the text)
Sin(∠EAD) = 43;38,34,10			   […,9]
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from which 

	    	 Sin (∠ADE)
AE = DE ––––––––––– = 77;24,40		  (text: 27;…; scribal error:عز →کز)
	    	 Sin (∠EAD)

in terms of the same arbitrary units of which DE = 60. Also,

∠AEB = ½ arc AB = 22;35,32°
∠EAZ = 67;24,28°  
Sin(∠AEB) = 23;3,0,43		  (text: …48; scribal error: مج → مح) 
Sin(∠EAZ) = 55;23,45
AZ = AE Sin(∠AEB)/R = 29;44,21	 (text: 19;…; scribal error: 20,…[ )کط → یط] 
AZ2 = 14,44;25,4,55,21			  […;24,5,26,40]
EZ = AE Sin(∠EAZ)/R = 71;28,15	 (text: 21;…; scribal error: عا → کا) 
ZB = BE - EZ = 50;19,26
ZB2 = 42,12;29,37,39[,16]
AB2 = AZ2 + ZB2 = 56,56;54,42,34,37	 […;53,43,5,56]

and so

AB = 58;27,15,40						      […,11]

in terms of the same arbitrary units. We now want to convert the lengths com-
puted until now into the trigonometrical norm that the radius of a circle is taken 
as 60. In doing so, we can compute the length of AB from its corresponding arc:  

AB = Crd(arc AB) = 46;6,1,36					     […,26]

The error in this value appears to be scribal (لو → کو), but our author deploys 
the same value, as can be seen in the calculation of the length of AE below. The 
two values above provide us with a scale for transforming the lengths from our 
arbitrary units to trigonometrical units:

DE = 60 × 46;6,1,36/58;27,15,40 = 47;19,10   
AE = 77;24,40 × 46;6,1,36/58;27,15,40 
      = 59,28;41,11,51,28/58;27,15,40 = 61;3,3
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It is clear that the small errors in the two values for the length of AB have no 
negative effect on the values computed for the lengths of DE and AE. 

Then, 

arc AE = Crd-1(AE) = 61;9,44° 
arc EAG = arc AE + arc AB + arc BG = 188;14,24°, and thus 
arc GE = 171;45,36°

Now, we are able to compute the lengths on EG: 

½ GE = Sin(½ arc GE) = 59;50,42, 
and hence GE = 119;41,24 
GD = GE - DE = 72;22,14 
GD × DE = 57,6;6,43						      […,4;32,4]

Unlike the earlier steps, al-Maghribī makes a rather surprising error in this 
multiplication, which causes a lesser value to be derived for the eccentricity. 
Segment GAE is greater than a semi-circle, and thus its centre lies inside it. 
With regard to Figure 8(b), he takes the centre to be H, and connects DH and 
extends it to points T and Y. T is the position of the apogee and Y is the perigee. 
We have:

4e2 = DH2 = R2 - GD × DE = 2,53;53,17,				   […,55;27,56]
and thus, 2e = DH = 13;11,12					     […;14,47]

The perpendicular HKL is drawn to bisect GE at K and arc GYE at L. The first 
estimates of the directions of the apsidal line with respect to the mean positions 
are computed as follows:

EK = ½ GE = 59;50,42 
DK = EK - DE = 12;31,32
arc YL = sin-1(DK/DH) 
           = sin-1(0;56,59,31) = 71;46,49°				    […;0,41]  
arc GL = ½ arc GE = 85;52,48° 
arc GY = arc YL + arc GL = 157 ;39,37 °				    [156;53,29]

And thus, 
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								        in Figure 5
arc GT = 22;20,23°				    [  23;  6,31]	 =∠D

3
TA

arc BT = arc BG - arc GT = 59;33,13°		  [  58;47,  5]	 =∠D
2
TA

arc AT = arc BT + arc AB = 104;44,17°		  [103;58,  9]	 =∠D
1
TA

arc AY = 180° - arc AT = 75;15,43°		  [  76;  1,51]	 =∠D
1
TΠ

The latest value is given in the text as …;13,45 (scribal error: یه مج → یج مه), 
but our author actually applies 75;15,43° to the later computations. He takes the 
above values as the angular distances of the epicycle centre from the apsidal line. 

Step 2: Derivation of the small angles η, ζ, and ε 

   (a)                                             (b)                                            (c)

Figure 9

∠NTS in Figures 9(a)-9(c), redrawn on the basis of  Muḥyī al-Dīn’s figures on f. 
135r, corresponds, respectively, to arcs AY, BT, and GT, derived above. With e = 
6;35,36,  Muḥyī al-Dīn first computes the lengths of the projections of e and 2e 
onto the lines connecting the epicycle centre with the equant point (TC and TS) 
and the lengths of the lines DC and NS dropped, respectively, from the centre of 
the deferent and of the Earth perpendicular to the radius of the equant circle:
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∠NTS Sin Cos DC NS = 2DC TC = CS TS = 2TC

  75;15,43° 58;  1,33 15;15,50 6;22,35 12;45,10 1;40,38 3;21,16

[76; 1,51] [58;13,32] [14;29,  2] [6;25,38] [12;51,17] [1;35;56] [3;11,52]

59;33,13  51;43,241  30;24,142 5;36,  2 11;12,  4 3;20,28  6;40,56

[58;47, 5] [51;18,49] [31;  5,43] [5;39,52] [11;19,43] [3;25,57] [ 6;51,54]

22;20,23 22;48,21 55;29,49 2;30,22  5;  0,44 6;  5,55  12;11,503

[23; 6,31] [23;32,55] [55;11,  9] [2;35,58] [ 5;11,56] [6;  5,30] [12;11,  1]

1. It should be …,34, but because of the error in the value computed for the length of DC (which 
should be around 5;41,3 by applying either of the sine values) it cannot be known whether the third 
sexagesimal digit is simply a scribal error (34/لد → 24/کد).

2. Text: 32;… (obviously, a scribal error: ل → لب).
3. Text: …;1,… (a scribal error: یا → ا).

Our author then computes the distances of the mean positions on the equant circle 
from the points marked by the perpendiculars drawn from the Earth N to its radii.

ES = 60 - TS = 56;38,44					     [56;48,  8]
ZS = 60 + TS = 66;40,56					     [66;51,54]
HS = 60 + TS = 72;  1,50					     [72;11,  1]

The angles at the epicycle centres subtending the perpendicular lines drawn 
from the centre of the deferent to the radii of the equant circle are derived from 
Sin-1(DC) as follows.

∠DAC = 6; 6,  3°1	 →	 ∠ADC = 83;53,57°
	 [6; 8,58]				   [83;51,  2] 
∠DBC = 5;21,21			   ∠BDC = 84;38,39
	 [5;25, 2]				   [84;34,58] 
∠DGC = 2;23,38			  ∠GDC = 87;36,22
	 [2;28,59]			   [87;31,  1]

1. Text: …;5,… (a scribal error: و → ه). 
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Then,

AC	 = Sin(∠ADC)	 = 59;39,37				    […;…,17]
BC	 = Sin(∠BDC)	 = 59;44,17				    […;43,55]
GC	 = Sin(∠GDC)	 = 59;56,52				    […;…,37]

and 

AS	 = AC - CS	 = 57;58,59				    [58;  3,21]
BS	 = BC + CS	 = 63;  4,45				    […;  9,52]
GS	 = GC + CS	 = 66;  2,47				    […;…,  7]

Thus, the small angles can be computed as follows: 

η ζ ε

NS/ES NS/AS
∠NES
= tan-1(NS/SE) 

∠NAS
= tan-1(NS/AS)

∠KNR = arc KR

0;13,30,28 0;13,11,47  12;41,15°    12;24,15°1  0;17,  0°
[0;13,34,42] [0;13,17,  7] [12;44,27] [12;29, 0] [0;15,27]

NS/ZS NS/BS
∠NZS
= tan-1(NS/ZS)

∠NBS
= tan-1(NS/BS)

∠XNL = arc XL

0;10,  4,43 0;10,39,15   9;32,  7°   10;  4,  8 °   0;32,   1°
[0;10, 9,56] [0;10,45,40] [9;36,  6] [10;  9,28] [0;33,22]

NS/HS NS/GS
∠NHS
= tan-1(NS/HS)

∠MGS
= tan-1(NS/AS)

∠MNΘ = arc MΘ

0; 4,10,30 0; 4,33,12   3;58,49°  4;20,23°  0;21,34°
[0; 4,19,17] [0; 4,43,25] [4;  6,54] [4;29,41] [0;22,47]

1. Text: …;…,12, but a scribal error (یب → یه), as understood from the value given for ε.

Step 3: Iterative procedure

With regard to Figure 7,  Muḥyī al-Dīn notes again that the sum of the small arcs 
KR and XL (i.e., respectively, ε

1
 and ε

2
 in our general notions) should be sub-

tracted from arc KL (Δλ
12

), and the sum of the small arcs XL and MΘ (i.e., ε
3
) 

should be added to LM (Δλ
23

):
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Δλ
12
′ = Δλ

12
 - ε

1
 - ε

2
 

Δλ
23
′ = Δλ

23
 + ε

2
 + ε

3
 

He then repeats the whole procedure with the above quantities and derives a 
new set of values for the eccentricity, the angular distances of the planet’s mean 
positions on the equant circle from the apsidal line (arcs AY, BT, and GT in Figure 
8(b), corresponding to ∠D

1
TΠ, ∠D

2
TA, and ∠D

3
TA in Figure 5), and the small 

angles ε. As our author states, it is repeated for the other three times, although he 
presents only the results, as summarized in the next tabulation. He notes that in 
the iteration process for the third time, it is -ε

1
 + ε

2
 = 0;28,21° that must be sub-

tracted from Δλ
12

, which is, indeed, correct;86 for this reason, we indicate ε
1
 re-

sulting from the second round of computation by a negative sign.

e ∠D
1
TΠ ∠D

2
TA ∠D

3
TA

1 13;11,12  75;15,43°  59;33,13° 22;20,23°

[13;14,47] [76;  1,51] [58;47,  5] [23;  6,31]

2 11;53,46  87;14,53  47;34,  3  34;19,33

[11;50,56] [87;24,39] [47;24,17] [34;29,19]

3 11;58,24  83;44,20   51;  4,36 30;49,  0

[11;59,29] [83;39,24] [51; 9,32] [30;44,  4]

86. Consider Figures 5 and 7; the equant circle intersects with the eccentric deferent at the two 
points with the longitudes of (i) λ

a
 - 90° - q = λ

Π
 + 90° - q and (ii) λ

a
 + 90° + q = λ

Π
 - 90° + q, where 

λ
a
 and λ

Π
 indicate the longitudes, respectively, of the apogee and perigee and q = tan-1(e/2R). These 

two points together with the apogee and perigee of the equant circle mark the four segments of it, 
the two in the vicinity of the apogee and the two in the perigeal region: S1: from (i) to the apogee, 
S2: from the apogee to (ii), S3: from (ii) to the perigee, and S4: from there to (i). Every time the 
computational procedure is repeated, ∠D

3
TA,∠D

2
TA, and∠D

1
TΠ derived at the end of Step 1 

show in which segment of the equant circle the planet’s mean position falls at the time of each mean 
opposition. In the first round of computation, Muḥyī al-Dīn derives e ≈ 6.6, from which q ≈ 3;9°; 
hence, the points on the equant circle located within ~ 93;9° from the apogee are in either S1 or S2, 
and those located within ~ 86;51° from the perigee are placed in either S3 or S4. From∠D

1
TΠ = 

75;…° derived in the first round of computation, it is known that in the first mean opposition, Mars 
is in S4, but in the second round,∠D1TΠ = 87;…° results, which means the planet’s mean position 
shifts to S1. However, the planet’s mean position in the first mean opposition is located again in S4 
in the later round of calculation.
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e ∠D
1
TΠ ∠D

2
TA ∠D

3
TA

4 11;58,48,  6 —— ——  31;25,27

[11;57,  0,55] [84;37,23] [50;11,33] [31;42,  3]

5 11;58,48,  6 —— —— 31;25,27

[11;58,32,55] [84;14,55] [50;34,  1] [31;19,35]

ε
1

ε
2

ε
3

Δλ
12
′ Δλ

13
′

1  0;17,  0°   0;32,  1°  0;21,34°  41;13,54°  69;  3,  2°

[0;15,27] [0;33,22] [0;22,47] [41;14, 6] [69;  5,36]

2 -0;  0,  3 0;28,24 0;25,11 41;34,34 69;  3,  2

  [0;  0,  0] [0;28,10] [0;24,35] [41;34,45] [69;  2,12]

3  0;  4,  3  0;28,44 0;23,51 41;30,  8 69;  2,  2

[0; 4,35] [0;29, 1] [0;24,37] [41;29,19] [69;  3,  5]

4 —— —— —— —— ——

[0;  2,45] [0;29, 2] [0;23,40] [41;31,8] [69;  2,  9]

5 —— —— —— —— ——

[0;  3,40] [0;29, 2] [0;23,40] —— ——

In the fifth time, al-Maghribī says, the same quantities are achieved as in the 
fourth time, for which he only gives e and ∠D

3
TA. Our recomputed values in the 

above tabulations originate from the re-computed value e = 6;37,23,30 for the 
first estimation of the eccentricity, which inevitably makes substantial changes in 
all the subsequent steps of the derivation. If we continue the computation for the 
two additional times, we obtain 2e = 11;58,22 and 11;58,35. 

Muḥyī al-Dīn reasonably rounds the finalized value for the eccentricity to e = 
6 which is the same Ptolemaic value, and then in an unnumbered chapter ap-
pended to viii.11, proceeds to calculate the mean longitude and anomaly and the 
longitude of the apogee for the time of the third opposition. These values are used 
in viii.13 for the derivation of the mean motions and epoch positions (see below, 
4.2). With regard to Figure 10 (f. 136v):∠OTG =∠D

3
TA = 31;25,27° and e = TD 

= DN = 6; we have:
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DC = e sin(∠OTG) = 6 × 0;31,16,56 = 3;7,41,36
TC = CS = e cos(∠OTG) = 6 × 0;51,12,0				             […,11,59]
      = 5;7,12
NS = 2DC = 6;15,23,12
∠DGC = Sin-1(DC) = 2;59,19°
∠GDC = 87;0;41°
GC = Sin(∠GDC) = 59;55,6
GS = GC + CS = 65;2,18
∠NGS = tan-1(NS/GS) = tan-1(0;5,46,18) = 5;29,40°			   […,41]
∠ONG =∠OTG -∠NGS = 25;55,47°					     […,46]

The true longitude of Mars at the time of the third opposition was λ
3
 = 

163;2,53°; thus, the longitude of apogee, mean anomaly, and mean longitude of 
the planet at that time are:

λ
a3

 = λ
3
 -∠ONG = 137;7,6 °						      […,  7]

ᾱ 
  3

 = 180° -∠NGS = 174;30,20°						     […,19]
λ̄ 

  3
 = λ

a3
 +∠OTG = 168;32,33°						      […,34]

Figure 10. Derivation of the epoch positions: Mars. 
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4.2. Mean motion in longitude and the radixes87

Muḥyī al-Dīn compares the mean longitudes of the superior planets in any of his 
third mean oppositions with the corresponding data derived by Ptolemy for his own 
third mean oppositions observed over one millennium earlier. The intervals of time 
between them are thus too long to allow accurate values for the mean daily motion 
in longitude of the outer planets to be derived. In the tabulation below, t

3
 stands for 

the time of Muḥyī al-Dīn’s third mean opposition that he converts into the Nabo-
nassar era (he notes that the interval of time between the Nabonassar and Yazdigird 
eras is equal to 1379y 90d) and the column headed λ̄ 

3
  contains the values he has 

already derived for the mean longitude; analogously, t
3P

 denotes the times of 
Ptolemy’s third mean oppositions and λ̄ 

3P
, his mean longitudes. For Mars: 

t
3z

t
3P

λ̄ 
3

λ̄ 
3

2018y 140d   1;15h 885y 312d 10h 168;32,33° 251;9°88

Thus,

Δt = 1132y 192d 15;15h = 41[3]372d 15;15h = 1,54,49,32;38,7,30d

Δ ̄λ  = 277;23,33°

The planet also rotates 601 times on the ecliptic in this time interval, and 
hence

ω
λ
 = 0;31,26,39,44,40,48°					     […,47]

The mean motions Δ λ̄  
03

 of the planet during the time intervals Δt
03

 from the 
epoch, t

0
 = the end of 600 Y, to the moment of the third mean opposition are com-

puted from the values ω
λ
 derived above and the amounts Δλ

a03
 of the progress in 

longitudes of the apogees, from the precessional rate of 1°/66y. These are then 
subtracted, respectively, from λ̄  3

 and λ
a3

 to produce the epoch mean positions λ̄  
0
 

and λ
a0

: 

87. al-Maghribī, Talkhīṣ viii.13: ff. 135v, 137r. 
88. Almagest x.7: Toomer [1984] 1998, p. 498.
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Δt
03

Δ λ̄  
03

λ̄  
0

Δλ
a03

λ
a0

39y  50d  1;15h 286;24,30° 242;  8,  3° 0;35,35° 136;31,31°

     […,31]         […,2]

4.3. Radius of the epicycle89

As we have already seen in Section 3, Muḥyī al-Dīn observed an appulse of Mars 
to Regulus, which he uses to determine the size of the epicycle of the planet. For 
Mars, our author obtained a new value, but in the cases of Saturn and Jupiter his 
derivations only confirmed the values Ptolemy had derived over 11 centuries 
earlier.

According to  Muḥyī al-Dīn, a conjunction between Mars and Regulus oc-
curred at 2:30 MLT on 15 October 1270, for which the orbital positions below are 
given:

For Sun: λ  
☉

= 210;31,47°

For Mars: λ̄ =   98; 4,55

ᾱ = 112;26,52

λ
a = 137;  7,  6 [137;  6,46]

к̄ = 320;57,49 [320;58,11]

λ = λ
Regulus = 139;52

Our author again uses the value for λ
a
 he derived for the time of the observa-

tion Mars-3, while between this time and the observation of the planet’s appulse 
to Regulus, there is an interval of 134 days. However, it only produces a differ-
ence of 0;0,20° in λ

a
 between the two times. So, we ignore the effect of this de-

viation, which does not cause any noticeable difference in the final result. With 
regard to Figure 11, we have:

89. al-Maghribī, Talkhīṣ viii.12: ff. 135r-v. 
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Figure 11. Derivation of the epicycle radius: Mars.

[1]	 ∠Z = 360 - κ̅ = 39;2,11°
Sin∠Z = 37;47,20
Cos∠Z = 46;36,17

[2]	 DY = DZ Sin∠Z / R = 3;46,44
YK = YZ = DZ Cos∠Z / R = 4;39,38, where DZ = e, 
EK = 2 DY = 7;32,24                                             		  […;33,28]

∠DBY = Sin-1(DY) = 3;36,39°
∠BDY = 90° -∠DBY = 86;23,21°

BY = Sin∠BDY = 59;52,51
BK = BY + YK = 64;32,29
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The equation of centre is computed as follows, instead of extracting 
from the table:90 

[3]	 ∠EBK = c
1
(κ̅) = Tan-1(EK × R / BK) = Tan-1(7;0,34) = 6;39,48 °

                                                                         [7;1,34]  [6;40,44°]
Sin∠EBK = 6;57,43,33	 […,35]

                         [6;58,41,50] 

[4]	 BE = EK × R / Sin∠EBK = 64;58,50			   [64;58,57]

[5]	 к =∠ΒΕΑ =∠Z -∠EBK = 32;22,23			   [32;21,27]

[6]	 ∠AEL = λ - λ
a
 = 2;44,54°

[7]	 ∠BEL = ∠BEA +∠AEL = 35;7,17°			   [35;  6,21]
Sin∠BEL = 34;31,7 					     [34;30,19]
∠HBL = arc HL = α =  ᾱ   - c

1
 = 105;47,4			   […;46,  8]

[8]	 ∠L = ∠HBL -∠BEL = 70;39,47
Sin∠L = 56;36,55,8					     […54,56]

[9]	 r = BL = BE × Sin∠BEL / Sin∠L 
 = 37,23;2,19/56;36,55,8
 = 39;37,30						      [39;36,17]

Our author appears to have rounded the result to the upper half-minute. As can 
be seen, all his computational errors, beginning with a strange error in doubling 
the length of DY in [2], altogether lead to a minor error of about -0;1 in the final 
result. At any rate, a non-Ptolemaic value results for r which corresponds to a 
maximum epicyclic equation of 41;20° [41;19°] at mean distance of Mars from 
the Earth. 

90. The Table in the Adwār has c1(320°) = 6;49° and c1(321°) = 6;40°, from which c1(320;57,49°) 
= 6;40,20°. It can plausibly be assumed that at the time when Muḥyī al-Dīn went on to compute the  
radii of the epicycles of the superior planets, he had the tables of the equation of centre constructed 
for Jupiter and Saturn, but not for Mars. 
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5. Discussion and Conclusion 

5.1. Muḥyī al-Dīn’s test of the available theories  

As we have seen, in order to compute Mars’ mean motions in longitude between 
his trio of their oppositions to the mean Sun,  Muḥyī al-Dīn used Ibn al-Fahhād’s 
value. Also, in the cases of the other two superior planets, he used the already 
known values for their mean daily motions in longitude: Ibn Yūnus’s value in the 
case of Jupiter, and his own value established earlier in his Tāj al-azyāj for Sat-
urn.  Muḥyī al-Dīn probably had access to Ibn Yūnus’s zīj while working in 
Syria, and it is possible that he was responsible for introducing it at the Maragha 
observatory, since, to the best of our knowledge, no trace of Ibn Yūnus’s zīj is 
found in the Eastern Islamic lands until that time; more specifically, no reference 
to it can be found either in al-Khāzinī’s On Experimental Astronomy (Kayfiyyat 
al-iʿtibār)91—in which the two most influential Middle-Eastern works, the 
Mumtaḥan zīj and al-Battānī’s Sābiʾ zīj, are mentioned—, or in Ibn al-Fahhād’s 
highly informative evaluation of the deficiencies and errors in his Islamic prede-
cessors’ works as put forward in the prologue of his ʿAlāʾī zīj.92 Muḥyī al-Dīn 
appears to have become familiar with Ibn al-Fahhad’s work after his arrival at 
Maragha; at that time, the ʿAlāʾī zīj enjoyed a wide dissemination, to the far east-
ern reaches of the Islamic lands in India93 as well as in its southernmost region, in 
the Yemen.94

91. This treatise comes as an introduction to his Sanjarī zīj and is preserved in a unique copy in 
the Vatican MS of his zīj. In it, Khāzinī deals in depth with the principal features of observational 
astronomy and describes reasonable ways to reconcile the available theories and the observational 
data in the context of Ptolemaic models from a coherent methodological point of view. He expli-
citly refers to the two most influential Middle Eastern works, the Maʾmūnī (i.e., Mumtaḥan) zīj 
and al-Battānī’s zīj (al-Khāzinī, ii.4: v: f. 8r). This work, which is a major contribution to medieval 
observational astronomy, is under study by the present author. 

92. Al-Fahhād, Zīj, pp. 3-5. 
93. E.g., in Maḥmūd b. ʿUmar’s Nāṣirī zīj, the earliest zīj written in India, ca. the mid-13th 

century; see van Dalen 2004a. 
94. E.g., in Maḥmūd b. Abī Bakr al-Fārisī’s Zīj al-mumtaḥan al-Muẓaffarī; Al-Fārisī, C: f. 57r; 

see, also, Kennedy 1956, p. 132, no. 54; van Dalen 2004a, p. 829. 
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(a)

(b)
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(c)

Figure 12. The errors in the longitude of Mars at midnight (0:0 LT) computed on the basis 
of (a) Ibn Yūnus’s Ḥākimī zīj, (b) Ibn al-Fahhād’s ʿAlāʾī zīj, and (c) Muḥyī al-Dīn’s Tāj 
al-azyāj for the longitude of Maragha in the period of 5,500 days beginning with 1-1-1260.

It is worth exploring why he used Ibn al-Fahhād’s value, especially because 
he had already measured an unprecedented set of the planetary parameter val-
ues during his residence and activities in Syria, as recorded in his Tāj al-azyāj. 
One might have been expected him to rely on, and use, these parameters as the 
provisional estimates for a renewed attempt to solve the complicated problem 
of measuring the planetary orbital elements at the Maragha observatory. One 
reason for doing so may have been to do with the accuracy achieved in the eph-
emerides of the three superior planets as computed on the basis of the three 
works, Ibn Yūnus’s Ḥākimī zīj, Ibn al-Fahhād’s ʿAlāʾī zīj, and our author’s Tāj, 
in the sense that  Muḥyī al-Dīn might have been interested in establishing which 
of these three works calculated theoretical positions that were in closest agree-
ment with the longitudes of each superior planet as measured from his observa-
tional data. In order to test this hypothesis in the case of Mars, we have recom-
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puted the longitudes of the planet day-by-day over a period of 5,500 days 
starting from 1-1-1260 (thus extending to 21-1-1275), which effectively covers 
the period of  Muḥyī al-Dīn’s activities at Maragha, and compared them with 
the ones derived from modern theories. The statistical results for the errors dλ 
in longitude, including the mean error together with standard deviation σ, limits 
of the errors, and Mean Absolute Error, MAE (i.e., the average of the absolute 
values of errors) are summarized in Table 3 and the errors are plotted against 
time in Figures 12(a)-12(c). In Table 4, the dates and times of the seven opposi-
tions of Mars to the true Sun that occurred in the period in question are given, 
together with the errors in the longitudes at midnight on the same days calcu-
lated from the three works under scrutiny; the true oppositions correlated with  
Muḥyī al-Dīn’s trio of mean oppositions (see Table 2) are highlighted in grey 
(note that the times of true and mean oppositions differ from each other by a 
few days). The oppositions of the superior planets provide astronomers with the 
best opportunities to observe them, not least because around the true opposi-
tions the superior planets travel through the middle part of their arcs of retro-
grade motion, culminate around midnight, and reach their maximum magni-
tude; above all, the measurements of their orbital elements are on the whole 
dependent upon the positional data measured for the moments of the mean op-
positions. We also need to assess whether (and if so, how) the errors committed 
by Muḥyī al-Dīn in the measurement of the midnight longitudes from the com-
plicated process of observations and computations might distort the truth about 
the accuracy of the astronomical tables available to him at the time. For this 
purpose, in Table 5 we present separately the longitudes computed from the 
three zījes mentioned above (Cols. II-IV, headed “Theoretical Longitudes”) in 
comparison with both the ones measured by  Muḥyī al-Dīn from his observa-
tional data (in italics in Col. V) and the modern ones (in bold in Col. VI) for the 
moment of any of his triple observations, i.e., midnight on the dates of the ob-
servations as given in Col. I (see Table 1, Col. II). The longitudinal errors dλ 
are given in the last four columns: Col. VII indicates the errors in  Muḥyī al-
Dīn’s measured longitudes (= Col. V minus Col. VI; NB. the values in Cols. 
V-VII have already been given in Table 1, Col. IX), which we refer to by dλ

m
; 

in the three remaining columns (VIII-X), the two sets of error values are given: 
those in italics stand for the differences between the theoretical longitudes in 
Cols. II-IV and  Muḥyī al-Dīn’s longitudes in Col. V (referred to as dλ′), and 
those in bold indicate the differences between Cols. II-IV and the modern val-
ues in Col. VI (dλ). It is evident that dλ′ = dλ - dλ

m
. Muḥyī al-Dīn must have 
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made his decision about the accuracy of the zījes at his disposal on the basis of 
the comparison between the theoretical values and his own measured values, 
i.e., the errors dλ′; thus, with the aid of Table 5, we can determine whether his 
errors dλ

m
 led him to any wrong conclusions in this regard. 

Clearly, Ibn al-Fahhād’s values for the longitude of Mars are far superior to 
the ones derived from either the Ḥākimī zīj or the Tāj al-azyāj. The range of Ibn 
Yūnus’s errors is remarkably wide. However, the errors are diminished or vanish 
at some specific points; an example is Mars’ true opposition no. 7, for which Ibn 
Yūnus’s zīj gives by mere coincidence a more accurate longitude than either Ibn 
al-Fahhād or the Tāj al-azyāj. Ibn al-Fahhād’s errors are more or less evenly 
distributed, while Muḥyī al-Dīn’s errors show a tendency towards a negative 
shift. In general, Ibn al-Fahhād’s results are notably more accurate than Muḥyī 
al-Dīn’s; so his value for its mean daily motion is the best choice for the deriva-
tion of the fundamental parameters of the planet, and is in fact the value that 
Muḥyī al-Dīn used.

When we compare the theoretical longitudes with  Muḥyī al-Dīn’s meas-
ured values in a historically sound way in Table 5, we find that his measured 
longitudes of Mars in his trio of observations have a negative error of less than 
a single degree: -1° < dλ

m
 < 0° (Table 5, Col. VII); thus, if a longitude value of 

this planet computed on the basis of one of the three historical theories in the 
Ḥākimī zīj, theʿAlāʾī zīj, or the Tāj al-azyāj, had a negative error with respect 
to a modern (correct) value (i.e., dλ < 0),  Muḥyī al-Dīn would have found for 
it a lesser error dλ′ in absolute value than it had in reality (remember: dλ′ = dλ 
- dλ

m
), and vice versa. Eight of the nine values for the error dλ in the case of 

Mars (the bold numbers in Cols. VIII-X in Table 5) are negative, and so the 
errors dλ′ which Muḥyī al-Dīn would have considered (the numbers in italics 
in Cols. VIII-X in Table 5) become less than dλ in absolute value. A conse-
quence of this situation is that  Muḥyī al-Dīn would have assumed the size of 
the errors in Ibn al-Fahhād’s theory of Mars at the time of his first and third 
observations of the planet to be less than half what they were in reality. Only 
Ibn Yūnus’s value for the time of Muḥyī al-Dīn’s first observation has a posi-
tive error dλ; so Muḥyī al-Dīn would have found a greater error for it than it 
really had. Nevertheless, the distortion arising from  Muḥyī al-Dīn’s own er-
rors dλ

m
 would not have led him to a wrong conclusion in this case, for two 

obvious reasons: first, the undisputable superiority of Ibn al-Fahhād’s theory 
of Mars over both Ibn Yūnus’s and  Muḥyī al-Dīn’s earlier theory established 
in the Tāj al-azyāj; and second, the fact that nearly all the theoretical longi-
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tudes have errors of the same sign and are thus all affected by  Muḥyī al-Dīn’s 
errors dλ

m
 in the same way. 

By this stage in the discussion, an important point should be sufficiently clear: 
simultaneously with his extensive observational project, Muḥyī al-Dīn seems 
also to have been engaged in a parallel project testing the outcomes of the avail-
able theories against his empirical data for the purpose of exploiting the best pos-
sibilities for his last round of planetary measurements.

5.2. The accuracy of Muḥyī al-Dīn’s values for the orbital elements  
of Mars in the context of medieval Islamic astronomy 

The first known attempt to systematically measure the orbital elements of the 
superior planets was made by Ibn al-Aʿ lam (d. 985 AD) at Baghdad. It was fol-
lowed (after a gap of about three centuries) by  Muḥyī al-Dīn at Maragha and by 
Jamāl al-Dīn al-Zaydī (fl. ca. 1260 AD) at the contemporary Mongolian obser-
vatory founded in Beijing, and two centuries later by the astronomers working 
at the Samarqand observatory. This situation in essence marks a difference be-
tween the two periods of the astronomical activities in medieval Islam. In its 
early period, the emphasis was placed mainly on deriving the basic solar and 
lunar parameters and fundamental parameters such as the rate of precession and 
the obliquity of the ecliptic; having convincingly solved the related issues, the 
ground was then prepared for addressing more important problems such as re-
quantifying the Ptolemaic planetary models, which, as we have seen in the pre-
ceding sections, involved a huge number of observations and required consider-
able mathematical skill. The most important of these procedures was a 
re-determination of the direction of the planetary lines of nodes and their or-
bital inclinations which, as we have explained elsewhere,95 began at Maragha in 
the case of the inferior planets and continued at the Samarqand observatory in 
the case of the superior planets. In this section, we first explain a modern crite-
rion96 for analysing the accuracy of the eccentricity, the radius of the epicycle, 
and the longitude of the apogee of Mars, and then classify the known historical 
values for these parameters.

95. See Mozaffari 2016c. 
96. Already briefly set forth in Mozaffari 2014c. 
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5.2.1. The Derivation of the Geocentric Orbital Elements  
from their Heliocentric Counterparts 

As we have seen earlier (Section 1.4), the structural parameters defining the geocen-
tric orbit of a planet are the eccentricity and the longitude of the apogee (or the peri-
gee). The Ptolemaic (geocentric) eccentricity of a superior planet is in fact the sum 
of the two vectors: the planet’s heliocentric eccentricity projected onto the Earth’s 
orbit, and the Earth’s eccentricity; their orientations determine the direction of the 
geocentric apsidal line.97 The geocentric orbital elements thus depend upon the two 
heliocentric eccentricities, the inclination of the planet’s orbit, and the angle between 
the heliocentric apsidal lines of the planet and the Earth. Since these heliocentric 
parameters change with the passage of time, it might be expected that new values for 
the Ptolemaic orbital elements would have been obtained during the two millennia 
elapsing since Ptolemy. After the combination of the two heliocentric eccentricities 
(i.e., those of the planet and Earth), the epicycle may now be considered to represent 
the Earth’s zero-eccentricity (i.e., circular) orbit with respect to the planet’s geocen-
tric orbit. The radius of epicycle is thus, in the case of a superior planet, the ratio of 
the semi-major axis of the Earth’s elliptical orbit to that of the planet. The changes in 
the semi-major axes of the superior planets are negligible in this period, but better 
approximations for the size of epicycle may be expected as well.

Figure 13. A schematic view of the transformation of the geocentric  
to the heliocentric orbital elements.

97. The transformation of the heliocentric to the geocentric orbital elements/model for the exami-
nation of the ancient and medieval astronomical parameter values have attracted little attention in the 
modern literature; only some tentative considerations of this problem can be found, e.g., in Neugebauer 
1975, Vol. 1, esp. pp. 146-8, 208 (for a major error committed by Neugebauer, see Mozaffari 2017, 
p. 5, note 3); Swerdlow and Neugebauer 1984, esp. pp. 291-297, 369-371; Aaboe 2001, pp. 154-170.



213

Muḥyī al-Dīn al-Maghribī’s Measurements of Mars at the Maragha Observatory

In the very simplest manner, Figure 13 illustrates how the two vectors of the 
heliocentric eccentricities of the Earth and a superior planet are combined to pro-
duce the planet’s geocentric eccentricity and the geocentric direction of its ap-
sidal line. In it, e is the eccentricity, a: the semi-major axis, Π: the longitude of 
the perihelion/perigee; prime (′) stands for the heliocentric orbital elements of the 
planet and the subscript zero, for those of the Earth. S represents the Sun; T is the 
centre of the elliptical orbit of the Earth, T′ its empty focus, and hence A

0
Π

0
 is the 

heliocentric apsidal line of the Earth passing through S, T and T′. O is the centre 
of the elliptical orbit of a superior planet, E′ its empty focus, and thus A′Π′ is the 
heliocentric apsidal line of the planet, which is inclined from the Earth’s orbital 
plane (i.e., the ecliptic) under an angle i.∠OST = ΔΠ is the angle between the 
apsidal lines of the planet and the Earth (= Π - Π′). In order to derive the geocen-
tric eccentricity of the planet, i.e., TO = OE (or T′O′ = O′E′) = ea′, the vector ST 
= TT′ = e

0
a

0
 should be combined with SO = OE′ = e′a′ cos i. Needless to say, T, 

O, and E are the same in Figure 1. It should be mentioned that the modern concept 
of eccentricity stands for a dimensionless “ratio” of the semi-minor to the semi-
major axis of the orbit (thus, we take e as the geocentric eccentricity), but in an-
cient and medieval astronomy it is a “length” (taken here as ea′) and displays how 
far the centre of the orbit is from that of the Earth. Figure 14 (drawn to scale) 
displays the change in the eccentricity and in the direction of the apsidal lines for 
Mars from the beginning of the Common Era to 2000 AD.

Figure 14. The correlation between the heliocentric and geocentric orbital elements  
of Mars, from 0 AD (Left) to 2000 AD (Right), drawn to scale.
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Using the formulae for the heliocentric orbital elements which refer to the true 
dynamical ecliptic and equinox of date, in Simon et al. 1994, pp. 678-679, we derived 
the following formulae in the form of polynomials for the orbital elements of Mars:

e = 0.1003208470 + 0.0005488268775∙t - 0.000004824391555∙t 2
λ

a
 = 151.0439377° + 18.48370826° t + 0.02190523593° t 2 +  

0.0003283502669° t 3 - 0.00007324357930° t 4 - 0.000001033919189° t 5         (3)

in which t = (JD - 2451545.0)/ 365250 is the time measured in thousands of Julian 
years from 1 January 2000 (JDN 2451545.0). e should be multiplied by 60, ac-
cording to the Ptolemaic norm. Figures 15 and 16 show the graphs of e and λ

a
 

respectively. Mars’ geocentric eccentricity changes by +0.003 (R = 60) in a Julian 
century of 36525 days unvarying (the coefficient of t in the above formula for e 
multiplied by 60 × 10-1), from 5.95 in 0 AD to 6.02 in 2000 AD, which is the least 
secular change in the eccentricity among the superior planets, in comparison with 
the critical rates of changes in the case of Jupiter (~ +0.01 in a Julian century) and 
Saturn (~ -0.02 in a Julian century). In the same period, λ

a
 of Mars increased from 

~ 114.16° to ~ 151.04° with an annual rate of ~ 66.5″/y  (or 1° in about 54.1 years; 
the coefficient of t in the above formula for e multiplied by 10-3).
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Figure 15. The geocentric (solid line) and heliocentric (dotted) eccentricity of Mars from the 
beginning of the Common Era to 1600 AD, according to Ptolemaic norm R = 60, along with 
the historical values from Table 6(a). M1 indicates Muḥyī al-Dīn’s value in the Tāj al-azyāj, 
and M2 shows his value as derived at the Maragha observatory (respectively, nos. 4a and 4b 
in Table 6(a)).

Figure 16. The geocentric (solid line) and heliocentric (dotted) longitude of apogee of 
Mars from the beginning of the Common Era to 1600 AD along with the historical values 
from Table 6(c). Ku1 and Ku2 stand for the two values Kūshyār mentions in the Jāmiʿ zīj 
(no. 7 in Table 6(c)). M1 indicates Muḥyī al-Dīn’s epoch value in the Tāj al-azyāj, and M2 
displays his value as derived at the Maragha observatory (respectively, nos. 11a and 11b 
in Table 6(c)).

5.2.2. Analysis of the accuracy of the medieval Islamic values  
for the orbital elements of Mars

No unprecedented values are available for the orbital elements of the superior 
planets from the classical period of medieval Islamic astronomy (before 1050 
AD). Bīrūnī declares his disapproval of his Islamic predecessors’ custom of nei-
ther mentioning their observational activities nor explaining how to derive the 
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planetary parameters in the same manner that Ptolemy described his own; so at 
the beginning of the eleventh century, it seems that no account of such measure-
ments from the early Islamic period was available to him.98 In what follows, the 
values for the orbital elements of Mars from Ptolemy through the medieval Is-
lamic period are summarized and compared with the modern values at the rele-
vant times, computed according to the formulae (3), in Tables 6(a) for the eccen-
tricity, 6(b) for the radius of the epicycle, and 6(c) for the longitude of apogee. The 
values for the eccentricity and the longitude of apogee are shown in Figures 15 
and 16 respectively, along with the graph of the geocentric eccentricity and longi-
tude of apogee of Mars.

(A) Eccentricity: 

First of all, it is worth noting that a good number of the well-known zījes compiled 
in the Middle East in the medieval Islamic period deployed Ptolemy’s values for 
the eccentricities of the superior planets: The Mumtaḥan zīj (Baghdad and Da-
mascus, 829-833 AD), al-Battānī’s Ṣābī Zīj (Raqqa and Antakya, d. 929 AD);99 
Ibn Yūnus’s Ḥākimī zīj (d. 1007);100 Bīrūnī’s al-Qānūn al-masʿ ūdī;101 al-Fahhād’s 
Aʿlāʾī Zīj and some zījes that are based upon it, e.g., the Persian Nāṣirī  zīj by 
Maḥmūd b. ʿUmar (Delhi, 1250) and the Muẓaffarī zīj by al-Fārisī (Yemen, ca. 
1270);102 the Īlkhānī zīj;103 and Ibn al-Shāṭir’s Jadīd zīj.104 

Ibn al-Aʿlam is the first outstanding figure in the field of planetary astronomy 
in the Islamic period, and his now lost ʿAḍudī zīj exerted a great influence on the 
later medieval Middle Eastern astronomers. He was apparently the earliest medi-
eval astronomer to occupy himself seriously with the derivation of the fundamen-

  98. Bīrūnī 1954-1956, Vol. 3, pp. 1193, 1197. 
  99. Cf. Nallino [1899-1907] 1969, Vol. 2, pp. 110-123. 
100. Ibn Yūnus, pp. 120-121; Caussin 1804, p. 219.  
101. Bīrūnī 1954-1956, Vol. 3, pp. 1209-1210 (Saturn), 1225-1226 (Jupiter), 1242 (Mars). 
102. See van Dalen 2004a, pp. 829, 848. 
103. Īlkhānī zīj, C: pp. 99, 106, 115, P: ff. 34v, 36v, 38v; M1: ff. 61v, 65v, 67r. All the equation 

tables are displaced: Saturn: Min = 0;28°, Max = 13;32°; Jupiter: Min = 0;45°, Max = 11;15°; Mars: 
Min = 0;35°, Max = 23;25°.    

104. Ibn al-Shāṭir, Jadīd zīj, K: ff. 59r, 61v, 64r, L1: ff. 76r, 79r, 82r, L2: ff. 59r, 61r, 63r, O: ff. 
42v, 45v, 48v. 
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tal parameters of the Ptolemaic planetary models. The tables of his zīj are pre-
served in the Ashrafī zīj (written in Shiraz in the early 14th century),105 which tells 
us that he measured new values for the eccentricities of Saturn (3;2), Jupiter 
(2;54),106 and Mercury (3;35);107 he, also, has an unprecedented value for the ra-
dius of the lunar epicycle.108 The fact that no new tables for the equation of centre 
of Mars are associated with Ibn al-Aʿlam gives the strong impression that he 
probably did not measure a new value for its eccentricity. This situation is analo-
gous to that of Jamāl al-Dīn. Contemporary to the Maragha Observatory, Khubi-
lai Khan, the first emperor of the Mongolian Yuan dynasty of China (d. 1294 AD), 
founded an Islamic Astronomical Bureau in Beijing in 1271 AD, and appointed a 
certain Zhamaluding as its first director—quite probably an Iranian astronomer 
named Jamāl al-Dīn  Muḥammad b. Ṭāhir b.  Muḥammad al-Zaydī of Bukhārā. 
The observational activities at the Bureau produced a new set of values for the 
planetary parameters. Although the original work that was written on the basis of 
these parameter values seems to have been lost, some of them are preserved in 

105. On the reconstruction of Ibn al-Aʿ lam’s parameters, cf. Kennedy 1977, Mercier 1989, and 
Dalen 2004a, esp. p. 22, note 7. 

106. Ibn al-Aʿ lam’s tables of the equation of centre of these two superior planets are preserved 
in Kamālī’s Ashrafī zīj. The table for Saturn’s equation of centre is (F: f. 234v, G: f. 250r) and it is 
displaced with a minimum tabular value of 0;12° (for arguments 76°-81°) and a maximum value 
of 11;48° (for arguments 253°-258°). The table for Jupiter’s equation of centre is (F: f. 235r, G: f. 
250r) and it is also displaced with minimum 0;28° (for arguments 72°-78°) and maximum 11;32° 
(for arguments 246°-252°). Accordingly, the maximum equations of centre of Saturn and Jupiter 
respectively are derived as 5;48° and 5;32°. The modern values for the geocentric eccentricity of 
the two planets in Ibn al-Aʿ lam’s time are, respectively, 3;26 and 2;48 (see Mozaffari 2014c, p. 26). 
It should be noted that none of his values for the eccentricities of the two superior planets are more 
accurate than Ptolemy’s. Ibn al-Aʿ lam’s value for the eccentricity of Saturn was used in the zījes of 
three Western Islamic astronomers (see Samsó and Millás 1998, p. 273).  

107. Ibn al-Aʿ lam’s table of the equation of centre of Mercury is preserved in Kamālī’s Ashrafī 
Zīj (F: f. 237r, G: f. 252v): the maximum equation of centre in this table is equal to 3;40° (for 
arguments 99°-101°). It should be noted that his value for the eccentricity of this planet is more 
exact than Ptolemy’s three values 3;0, 2;45, 2;30, as found, respectively, in the Almagest, Planetary 
Hypotheses, and Canobic Inscription (Almagest ix.8,9: Toomer [1984] 1998, p. 459; Goldstein 
1967, p. 19; Jones 2005, pp. 69, 86-87); the true value during the past two millennia has been about 
3;50 (note that for the eccentricity of Mercury, we consider here half of the distance between the 
Earth and the centre of the hypocycle in Ptolemy’s complicated model for this planet, on whose 
circumference the centre of its deferent revolves). 

108. See Mozaffari 2014a, p. 105. 
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two later works: the one, Huihuili, a Chinese translation of a Persian zīj from the 
Bureau, prepared in Nanjing in 1382-1383; the other, the Sanjufīnī zīj written by 
a certain Sanjufīnī in Arabic in Tibet in 1366. Jamāl al-Dīn measured the new 
values for the eccentricities of Jupiter (2;40) and Saturn (3;19).109 

As we have seen in 5.2.1, the geocentric eccentricity of Mars remained almost 
constant, about 6.0, over the past two millennia; therefore, even making extreme-
ly precise observations, no astronomer could find a noticeable change in the ec-
centricity of Mars from Ptolemy’s value of 6;0 throughout the medieval period, 
and  Muḥyī al-Dīn was no exception. This may be why neither Ibn al-Aʿ lam nor 
Jamāl al-Dīn obtained a new value for it. 

Nevertheless, Kushyār has a slightly greater value than Ptolemy for the ec-
centricity of Mars. It is not known whether he obtained it by carrying out a new 
observational programme (Table 6(a), no. 3). Moreover, three highly erroneous 
values for the eccentricity of the planet are reported in the Middle East, which 
are, interestingly, very close to each other; the first two go back to about 1250 
AD, as will be explained in what follows. Among the zījes considered in the 
Ashrafī zīj, Kamālī informs us of the two (apparently lost) zījes named Razāʾī zīj 
and Muntakhab zīj, respectively, by a certain Abu ’l-Ḥasan and by a certain Mun-
takhab al-Dīn, both from Yazd (central Iran), which appear to have been written 
in the mid-13th century. Both works are now lost, but a zīj written in verse by 
Muntakhab al-Dīn, known as the Manẓūm zīj (Versified zīj), is extant. The Mun-
takhab zīj and Razāʾī zīj can be reconstructed to a large extent on the basis of the 
information that comes down to us through the Ashrafī zīj110 and the anonymous 
Sulṭānī zīj written in Yazd in the 1290s (the latter work should not be confused 
with Wābkanawī’s Zīj al-Muḥaqqaq al-Sulṭānī, nor with Ulugh Beg’s Sulṭānī 
zīj), which is preserved in a unique manuscript in Iran (Library of Parliament, no. 
184).111 Some tables of the Razāʾī zīj are preserved in this Sulṭānī zīj: (a) the table 

109. See Yabuuti 1987; 1997; van Dalen 2002a, esp. pp. 336-339; 2002b. On the accuracy of 
the values Jamāl al-Dīn measured for the eccentricities of Saturn and Jupiter, see Mozaffari 2014c, 
esp. p. 27. He found c1max = 6;19° for Saturn and 5;5° for Jupiter (see Sanjufīnī, ff. 47v and 48v; 
Yabuuti 1997, p. 33. Note that a very close value c1max = 5;6° (e ≈ 2.67) for Jupiter is also reported 
from the pre-Islamic Persian astronomy, the tradition of the Shāh zīj. 

110. Ashrafī zīj, x.8 and x.9: F: f. 230v and ff. 231v-233r, 234r, 235v, G: f. 247v and ff. 248v-
249r, 250v. 

111. Despite the late E.S. Kennedy’s conjecture (Kennedy 1956, no. 25 on p. 129), this work 
cannot be identical to the Shāhī zīj, since some materials from the latter work are explicitly quoted 
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of the longitude of the lunar node on f. 11r, (b) the procedure for the computation 
of the longitude of the superior planets in iii.6 on f. 79r, (c) the planetary mean 
positions in longitude and in anomaly on f. 81v (the longitudes of the apogees of 
the Sun and Venus are equal), and (d) the tables of the “difference in equation” 
(ikhtilāf-i taʿdīl) for the superior planets on ff. 120v-121v. The latter corrective 
equation tables confirm Kamālī’s statement that Ibn al-Aʿlam’s values for the 
equations of centres of Jupiter and Saturn were used in both the Muntakhab zīj 
and Razāʾī zīj, and also indicate the new value that Abu ’l-Ḥasan used for the ec-
centricity of Mars: In the Sulṭānī zīj, all of the principal tables for the equation of 
centre of the superior planets are displaced, but based on Ptolemy’s eccentricity 
values, and in steps of 0;5°, as follows: Saturn: Min = 0;28°, Max = 13;32° (ff. 
16v-22r); Jupiter: Min = 0;45°, Max = 11;15° (ff. 30v-36r); and Mars: Min = 
0;35°, Max = 23;25° (ff. 44v-50r). The equation tables from other zījes appear in 
the form of the auxiliary corrective tables, of the “difference in equation”, in each 
of which the differences in entries between a principal equation table of this zīj 
and the corresponding table from another are tabulated. Consequently, the three 
corrective tables in the Sulṭānī zīj for the equation of centre of the superior plan-
ets referring to the Razāʾī zīj actually present the differences between Ptolemy’s 
equation values and those originally tabulated in the Razāʾī zīj. The corrective 
table for Saturn is subtractive and displaced with Max = 1;44° and Min = 0;16° 
(f. 120v); thus, the maximum difference in Saturn’s equation of centre between 
the Razāʾī zīj and Almagest is Δc

1max
 = -0;44°; therefore, according to the Razāʾī 

zīj, the maximum value of the equation of centre of Saturn is c
1max

 = 6;31 - 0;44 
= 5;47°. The corrective table for Jupiter is symmetrical with Δc

1max
 = ±0;17° (f. 

121r); therefore, c
1max

 = 5;15 + 0;17 = 5;32°. For Mars, the corrective table is ad-
ditive and displaced with Min = 1;38° and Max = 2;28°; thus, Δc

1max
 = +0;25° (f. 

121v); thus, c
1max

 = 11;25° + 0;25° = 11;50°. Therefore, the maximum values for 
the equation of centre of Jupiter and Saturn are equal to Ibn al-Aʿlam’s (see 
above, note 106), in agreement with Kamālī’s statement. However, the longitudes 
of the apogees show no obvious relation to Ibn al-Aʿlam’s values. The source of 
the value 11;50° for the maximum equation of centre of Mars (corresponding to 
e ≈ 6;13) is unknown. However, the table of the equation of centre of Mars from 
the Razāʾī zīj as preserved in the Ashrafī zīj is based on Ptolemy’s eccentricity 

and explained in it; e.g., the tables of the equation of time on ff. 7v and 15r, and Ḥusām al-Dīn al-
Sālār’s method for the construction of the planetary equation tables on f. 77r.
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value (although displaced, with Min = 2;35° and Max = 25;25°).112 A close value 
e = 6;15 is mentioned in Ashrafī zīj iii.9.2,113 where Kamālī lists the planetary 
eccentricities. Two centuries later, astronomers at the Samarqand observatory 
measured the other close value e ≈ 6;13,30. 

Incidentally, the situation clarified above in the case of the eccentricity of 
Mars teaches us an important lesson. To measure unprecedented values for the 
various astronomical parameters new observations must often be carried out, but 
this does not always mean that a higher degree of precision will be attained in 
comparison with an already existent value; nor does it guarantee that using the 
new values will necessarily offer an effective advantage. 

(B) Radius of the epicycle: 

The radius r of the epicycle of a superior planet should be nearly equal to the ratio 
Ra

◦
/a′;114 with a

0
 ≈ 1 and a′ ≈ 1.52 for Mars, the size of the epicycle of the planet 

should be equal to ~ 39;28, which is very close to Ptolemy’s value of 39;30. The 
measurement of the size of the epicycle of a superior planet is entirely dependent 
on the orbital configuration of the Earth with respect to that of the planet at the 
moment of observation, and is also very sensitive to the input data. Three values 
measured for the radius of the epicycle of Mars in the medieval Islamic period are 
listed in Table 6(b). Ptolemy’s value is more accurate than those obtained by his 
medieval followers. 

(C) Longitude of the apogee: 

The best-known values for the longitudes of the apogee of Mars are presented in 
Table 6(c) and plotted against time along with the graphs of the heliocentric and 
geocentric longitudes of the apogee of Mars in Figure 16. Except for Ptolemy’s 
and Muḥyī al-Dīn’s values, the others are the radixes of the zījes. As noted in the 
apparatus to the table, we see for example that Ibn Yūnus’s values for the longi-

112. Ashrafī zīj, F: f. 235v, G: f. 250v. 
113. Ashrafī zīj, F: f. 51r, G: f. 56r. 
114. Neugebauer 1975, Vol. 1, p. 146. 
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tude of apogees of the planets appear to be dependent on those in the Mumtaḥan 
zīj with a difference of 1;3° between them, and that those applied in Kāshī’s 
Khāqānī zīj are in reality updated from the Īlkhānī zīj. This illustrates the pro-
found dependence of medieval zījes on each other. 

A look at Figure 16 is sufficient to show that except for Ibn al-Aʿ lam, the er-
rors in the longitudes of apogee of Mars made in the classical Islamic period, 
before 1050 AD, with a MAE of 5.0°, are much larger than those made in the late 
period (MAE ≈ 1.5°). This is an example of the comments made above regarding 
the general situation of planetary astronomy in the early Islamic period. 

All the errors in the early period are negative. This may be because they are 
dependent upon the Almagest, as is the case of both al-Battānī’s and Bīrūnī’s val-
ues, which (we are certain) are based upon Ptolemy’s value. The reason is that, as 
mentioned at the end of Section 5.2.1, the longitude of the apogee of Mars in-
creases at a rate of 66.5″ per annum, which is substantially greater than the fre-
quently-derived medieval values of 1°/66y or 1°/70y for the rate of precession/
apogeal motion. Moreover, Ptolemy’s value suffers from a negative error of ~  
-1.23°. As a result, over a sufficiently long period, the errors in the values for the 
longitude of apogee of Mars that are dependent upon Ptolemy show a large nega-
tive shift. There is no explicit evidence that the Mumtaḥan value stems from 
Ptolemy, since the increase in the longitude of Regulus (which stands for the 
precession in the time interval between Ptolemy and the Mumtaḥan observations) 
in the Mumtaḥan star table is 10;30°, which is not equal to either the difference 
of about 9° in the longitude of the apogee of Mars, or the differences of about 11° 
and 11.5° in the longitudes of the apogees of the other planets between the 
Mumtaḥan zīj and the Almagest.115 Nevertheless, it seems fair to assume that a 
large part (~ -3.5°) of the sizeable negative error found in the Mumtaḥan value 
may be due to its connection, in a way or another, to Ptolemy’s value. The in-
crease of 1;3° that Ibn Yūnus adopted to convert the Mumtaḥan values for the 
planetary apogees to his epoch is much less than the motion of the apogee of 
Mars in the time span of 174 years between them, which amounts to about 3.2°; 
hence, the error increases to about -7°.

Khāzinī has the most accurate value for the longitude of the apogee of Mars 
for his time; it is interesting that for Saturn, Jupiter, and Mercury he is dependent 
upon Ptolemy, but proposes independent values for Mars and Venus, both of 

115. See Mozaffari 2017, p. 15. 
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which are very precise (for Venus, his error is ~ -37′), which gives the impression 
that they might be the result of new observations.  Muḥyī al-Dīn’s value is second 
in order of accuracy, and Ibn al-Aʿ lam’s and Ibn al-Shāṭir are the next. Ibn al-
Fahhād’s and Ulugh Beg’s values are nearly as precise. It is worth noting that, in 
the prologue of the ʿAlāʾī zīj, Ibn al-Fahhād praises Ibn al-Aʿ lam’s theory of 
Mars,116 and so he probably adopted Ibn al-Aʿ lam’s value: al-Fahhād deploys the 
precessional rate of 1°/66y in his work, and hence Ibn al-Aʿ lam’s value amounts 
to about 134;24° for 1172 AD, which is not far from al-Fahhād’s radix; however, 
there is no relation between al-Fahhād’s and Ibn al-Aʿ lam’s values for the longi-
tudes of the apogees of the Sun and other planets. Jamāl al-Dīn’s and al-Ṭūsī’s 
values are also of the same degree of accuracy. Al-Kāshī’s dependence on the 
latter makes the negative error greater, for the reason mentioned earlier.        

5.3. Comparison with the Īlkhānī zīj  

(a)

116. Al-Fahhād, Zīj, p. 4. 
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(b)

Figure 17. The errors in the longitude of Mars at midnight (0:0 LT) computed from the 
Īlkhānī zīj (a) and Muḥyī al-Dīn’s parameter values derived in Maragha (b).

The errors dλ in the longitude of Mars computed on the basis of the Īlkhānī zīj and  
Muḥyī al-Dīn’s parameter values measured at the Maragha observatory for a long 
period of 13,000 days beginning on 1-1-1280 AD are plotted against time, respec-
tively, in Figures 17(a) and 17(b), and the relevant statistical results are summarized 
in Table 7. Notably, Muḥyī al-Dīn’s theory of Mars is significantly more precise than 
the one adopted in the official product of the observatory. The oscillation of the errors 
is an inevitable consequence of the mismatch between the complicated modern mod-
el and the simple Ptolemaic one; the geocentric longitude of the planet in the first is 
computed from the combination of the Keplerian motions of the planet and Earth 
through their elliptical orbits, and by taking the gravitational perturbations in the 
solar system into account; but, in the latter, only an equant motion and the two circu-
lar orbits (epicycle and deferent) are used to account for the motion of the planet with 
respect to the Earth. Accordingly, there is no benefit in tracing the sources of the er-
rors we are confronted with by isolating the theoretical deviation existing between 
the models. The following considerations are presented just to give a general view of 
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the impact of the errors in the fundamental parameters of Mars on the errors in its 
longitude, in the light of our lengthy discussion in the previous section. 

As regards the Earth’s motion, which is reflected in the solar theory, both Ibn 
Yūnus’s modified solar theory adopted in the Īlkhānī zīj and  Muḥyī al-Dīn’s 
solar theory established at Maragha present almost the same degree of accuracy 
(with MAE ≈ 3′ and the amplitude of the errors within ±8′).117   

As regards the mean motion in longitude and epoch mean longitude of the 
planet, the mean longitude of Mars at midnight on 1-1-1280 AD from the Īlkhānī 
zīj is equal to 61;23° and on the basis of  Muḥyī al-Dīn’s measurements 61;32. 
Their errors are, respectively, -11′ and -20′ (modern: 61;43°), which is in princi-
ple responsible for the negative values of the mean errors μ. The mean daily mo-
tion in longitude of Mars in the Īlkhānī zīj is 0;31,26,39,35,29,27°;  Muḥyī al-
Dīn’s value is 0;31,26,39,44,40,48° (see above, 4.2), and the modern value at the 
time: 0;31,26,39,19,40,34°.118 Consequently, the accuracy of the two values is 
acceptable, leading to an accumulated error of +1′ in the mean longitude of the 
planet, respectively, after 37.4 and 23.7 years.

As regards the structural elements, both theories use the same accurate value 
e = 6;0 for the eccentricity of Mars;  Muḥyī al-Dīn’s value for the longitude of the 
apogee (dλ

a
 = -0.47°) is more precise (with an error of ~ 20%) than that adopted 

in the the Īlkhānī zīj (dλ
a
 = -2.36°) (see Table 6(c) and Figure 16); however, this 

error has a small effect on the calculated ephemerides. In stark contrast to these 
two orbital elements, the value r = 40;18 for the radius of the epicycle of Mars in 
the Īlkhānī zīj (Table 6(b)) —which can be taken as one of the few remaining 
traces of the observational activities carried out at Maragha, other than  Muḥyī 
al-Dīn’s— is relatively large, and is mainly responsible for the increase in the 
amplitude of the errors dλ. For example, if we use Ptolemy’s value of 39;30, it is 
clear (cf. Table 7) that both MAE and the amplitude of the errors are appreciably 
decreased (respectively, ~ 27% and ~ 39%). 

The above comparison generally confirms the validity of Wābkanawī’s con-
clusion regarding the comparative accuracy of the Īlkhānī zīj and the Adwār al-
anwār in the particular case of the theories of Mars. 

117. Mozaffari 2018, pp. 41, 39, 45. 
118. Derived from the formula given in Simon et. al. 1994, p. 678. The mean motion in longitu-

de of Mars changed from 31,26,39,16,56,19,58° to 31,26,39,21,16,1,50° in the past two millennia. 
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The errors in Muḥyī al-Dīn’s early values for the orbital elements of Mars in 
his Tāj al-azyāj (see Tables 6(a)-6(c); Figures 15 and 16) were notably reduced 
in the new values he derived at Maragha. His value for the mean daily motion 
in longitude of Mars in his Damascus zīj is equal to 0;31,26,38,16, 2,26°; as a 
result, an accumulated error of -1′ in the mean longitude of the planet emerges 
after 9.3 years. A comparison of the ephemerides of Mars computed from his 
Damascus and Maragha zījes (Tables 3 and 7; Figures 12(c) and 17(b)) demon-
strates that Muḥyī al-Dīn significantly improved his theory of Mars at the Mara-
gha observatory.  
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Mean (′) σ (′) MAE (′) Min (′) Max (′)

Ibn Yūnus +29.5 105.0 77.3 –153.0 +489.5

Ibn al-Fahhād +  4.8   35.0 29.1 –100.9 +  69.0

Tāj al-azyāj –56.1   52.4 59.0 –228.0 +  37.8

Table 3: The statistical results of the errors in the longitude of Mars in a time 
interval of 5,500 days since 1260.0.

Date
Time  
(LT)

JDN Days(1) Ibn Yūnus Ibn al-Fahhād Tāj al-azyāj

  1 1260–06–20 16:00 2181444   172 +488.9′ +  15.9′*  –171.5′

  2 1262–09–09 11:00 2182255   983 +371.4 –  61.9* –187.9

  3 1264–11–07 12:00 2183045 1773 +  67.8 –  53.7* –124.0

  4 1266–12–19 09:00 2183817 2545 –  77.0 –  48.5* –114.5

  5 1269–01–22 13:00 2184582 3310 –152.8 –  76.3* –157.0

  6 1271–02–25 20:00 2185346 4074 –148.6 –100.2* –205.8

  7 1273–04–04 09:00 2186115 4843 –    7.2* –  77.5 –218.7

Table 4: The date and time of the true oppositions of Mars occurred during the period 
of Muḥyī al-Dīn’s observations in Maragha and the errors in the longitudes of Mars at 
midnight on the same days computed on the basis of the three zījes. 

Notes:
– Asterisks (*) indicate the least errors.  
1. The number of days counted from 1-1-1260 AD.
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Table 6: The values for the orbital elements of Mars from the medieval Islamic period.

1 Ptolemy  6.0   5.96

2 Ibn al-A‘lam [6.0] (?)

3 Kūshyār b. Labbān of Guilan  6.04  5.99

4a
Muḥyī al-Dīn

 6.13  6.0

4b  6.0    6.0

5 Jamāl al-Dīn [6.0] (?) 

6 Abu ’l-Ḥasan of Yazd  6.22  5.99

7 mentioned in the Ashrafī Zīj  6.25

8 Ulugh Beg  6.23  6.0

(a) Eccentricity

Notes:  
1. Almagest, x.7: Toomer [1984] 1998, p. 498.
2, 5, 6, 7. See Section 5.2.2. 
3. The table of the equation of centre of Mars in Kūshyār b. Labbān’s Jāmi‘ Zīj (cf. 

Brummelen 1998, p. 269) is displaced with Min = 0;30° for arguments 33°-38° and Max 
= 23;30° for arguments 204°-207°, from which c

1max
 = 11;30°.

4a. From Muḥyī al-Dīn’s Tāj al-azyāj. The equation tables are represented in Dorce 
2003, pp. 194, 199, 200, 209; see, also, Dorce 2002-2003, p. 206: for Jupiter c

2mmax
 = 

c
2m

(99°-102°) = 11;9°; for Mars: c
1max

 = c
1
(93°-96°) = 11;40°, thus, e = 6;7,47 ≈ 6;8, 

c
2mmax

 = c
2m

(130°-131°) = 41;40°; and for Mercury: c
1max

 = c
1
(94°-96°) = 3;24°, c

2mmax
 = 

c
2m

(112°-113°) = 22;32°.
8. Ulugh Beg’s Sulṭānī zīj has c

1max
 = 11;50,48° for Mars (the table, P1: f. 141r, P2: f. 

158r, is displaced with Min = 0;9,12° and Max = 23;50,48°). In his Commentary on Zīj 
of Ulugh Beg (N: pp. 320-324, P: pp. 187-189, PN: ff. 282v-286r), ‘Alī b. Muḥamamd 
Qūshčī (ca. 1402-1474) explains the layout of the equation and mean motion tables in 
this zīj. The values he mentions for the parameter values agree with what can be extracted 
from the tables, with the exception of very slight differences in c

1max
 of Saturn and Jupiter 

(N: pp. 273-4, 371, P: pp. 158, 217, PN: ff. 241v, 329v). See, also, Mozaffari 2016c, p. 
535. 
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1 Ptolemy 39;30

2 Ilkhani zij 40;18

3a
Muḥyī al-Dīn

39;53,16

3b 39;37,30

4 Ulugh Beg 39;43

(b) Radius of the epicycle

Notes:
1. Almagest, x.8: Toomer [1984] 1998, p. 501. 
2. Īlkhānī zīj (C: p. 116, P: ff. 38v-39r, M1: ff. 70v-71v). In the first half of the table 

of the epicyclic equation of Mars for the adjusted anomaly at the mean distance, the 
region of arguments 0°-180°, the maximum value is c

2mmax
 = 42;12°. The entries in the 

latter part of the table, arguments 180-360°, are increased by 360°. Al-Kāshī (IO: ff. 99r, 
112r) notices that this value is different from Ptolemy, and that the entries of the table are 
produced by multiplying the entries of the Almagest’s table (with c

2mmax
 = 41;9°; Toomer 

[1984] 1998, p. 551) by 42;12/41;9, which the spot checks show to be correct.
3a. From Muḥyī al-Dīn’s Tāj al-azyāj. The equation tables are represented in Dorce 

2003, pp. 194, 199, 200, 209; see, also, Dorce 2002-2003, p. 206: for Jupiter c
2mmax

 = 
c

2m
(99°-102°) = 11;9°; for Mars: c

1max
 = c

1
(93°-96°) = 11;40°, thus, e = 6;7,47 ≈ 6;8, 

c
2mmax

 = c
2m

(130°-131°) = 41;40°; and for Mercury: c
1max

 = c
1
(94°-96°) = 3;24°, c

2mmax
 = 

c
2m

(112°-113°) = 22;32°. 
4. Ulugh Beg (P1: f. 141v, P2: f. 158v): The tables of the equation of the epicyclic 

anomaly are displaced and use a mixed type of the displacements explained as follows. 
For all the planets, the first half of the table, in the region of the arguments 0°-180°, 
corresponds to the equation c

2a
of the epicyclic anomaly at the greatest distance (R + e; 

for Mercury: R + 3e), when the centre of the epicycle is located at the apogee, but the 
latter half of the table, in the region of the arguments 180°-360°, to the equation c

2Π
 of 

the epicyclic anomaly at the least distance (R - e, excepting Mercury), when the centre of 
the epicycle is located at the perigee. For Mars and the two inferior planets, the first half 
of the table gives c

2a
 while the entries in the latter part of the table are increased by k

2
 = 

360°, i.e., it gives 360° - c
2Π

. For Mars, the first half of the table gives Max = 36;50,57° 
= c

2amax
 (for argument 127°) and its latter part Min = 312;22,51°; hence, c

2Πmax
 = 47;37,9° 

(for argument 101°). See, also, Mozaffari 2016c, p. 535-536. 
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Notes: 
1. Almagest, x.7: Toomer [1984] 1998, p. 498. 
2. Yaḥyā, E: f. 86v on the date of the Mumtaḥan observations, which we have 

adopted as the epoch of the longitudes of the solar and planetary apogees, is given 
as Murdād 198 Y together with a summary of the apogee longitudes; for Mars: 
128;50°, which is Ibn al-A‘lam’s value, as have been explicitly mentioned in the 
other surviving copy of the Mumtaḥan zīj, L: 88r. The reason is that the extant 
manuscripts of the Mumtaḥan zīj go back to a recension made in the 10th century, 
in which the original mean motion and equations tables of Mars have been 
replaced by Ibn al-A‘lam’s (See van Dalen 2004b). The original Mumtaḥan value 
can be known from Ḥabash’s zīj (I: 111r; also, see Debarnot 1987, pp. 44–45), 
Ibn Yūnus’s zīj (L: pp. 120–121; Caussin 1804, pp. 214–221; with a scribal error 
the longitude of the apogee of Mars, given as “93;33), as well as the comparative 
tables in the Ashrafī zīj. It should be in the Berlin copy of this work, there are 
also the two tables for the longitudes of the apogees of the Sun and five planets. 
The one gives the values up to the five sexagesimal fractional places, in which 
the fractions from the seconds to the fifths place are equal (…;…,24,2,43,53°) (f. 
28r); the tabular values are by about 3;9° less than the apogee longitudes in the 
Mumtaḥan/Ḥabash’s zīj, and thus they should be for the beginning of the Hijra 
era. Above it, Ibn al-A‘lam’s value is given in a different hand, presumably for the 
same date, as 125;36,24,29°, i.e., about 3;14° less than his value for the epoch of 
the apogee longitudes in the Mumtaḥan zīj. The other gives the apogees longitudes 
up to the ninth sexagesimal fractional place for the year 872 H (f. 17v), whose 
beginning was 1 August 1467, according to the astronomical Hijra calendar. In 
its beginning, we are explicitly told that the tabular values were updated from 
the Mumtaḥan zīj. The values are by about 9;44° more than those in Ḥabash’s 
zīj. The apogee longitudes associated with the mean motion tables were updated 
for 878 H (B: 29r (Sun), 41r (Saturn), 45r, 46r (Jupiter), 49r (Mars), 53r (Venus), 
57r (Mercury)), and the increment due to the apogeal motion with respect to the 
epoch of Ḥabash’s zīj is 9;44° (there are some minor disagreements because of 
the confusing scribal errors in the alphanumerics with similar forms), which is 
in accordance with the second table for the apogee longitudes described above. 

3. Al-Battānī, Ṣābi’ zīj, chapter 45: E: f. 117v; Nallino [1899–1907] 1969, 
Vol. 3, p. 173; also, in the tables of planetary equations: E: ff. 208v, 211v, 214v, 
217v, 220v; Nallino [1899–1907] 1969, Vol. 2, pp. 108, 114, 120, 126, 132. MS. 
E was written in the Western Arabic script from the late 11th or early 12th century, 
and the alphanumerics in it are in the Maghribī abjad sequence. The scribal 
errors in the abjad numerals can be found both in the end of chapter 45 and 
in the planetary equation tables in it; e.g., for Mars: فکو یح for قکو نح. About the 
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surviving materials of al-Battānī’s zīj in Arabic, Castilian, and Latin as well as 
an assessment of the tables of this work, see van Dalen and Pedersen 2008 and 
the references mentioned therein. In the case of Saturn, Mars, and Mercury, the 
difference between al-Battānī’s and Ptolemy’s values amounts to 11;28°, which 
is very close to the apogeal/precessional motion of 11;25° which al-Battānī 
measured between Ptolemy’s and his own times on the basis of a comparison 
between Ptolemy’s and his own values for the longitudes of the three stars (β Sco, 
α Leo, and α CMa); see Mozaffari 2016a, pp. 304–305. Al-Battānī mentions, 
in chapter 51 of his Ṣābi’ zīj (E: f. 127r; Nallino [1899–1907] 1969, Vol. 3, pp. 
187–188), that he carried out the stellar observations in 1627 Nabonassar/1191 
Alexander (879–880 AD), and in chapter 45 (E: f. 117v; Nallino [1899–1907] 
1969, Vol. 3, p. 172), the longitudes of the apogees are given for 1191 Alexander, 
too. An explanation for the difference 0;3° between al-Battānī’s values for the 
increments of the apogeal and precessional motions in the period from Ptolemy 
to him may be that he took a time about 3 years before the epoch of Ptolemy’s star 
catalogue (the beginning of 885 Nabonassar/20 July 137 AD) as that of Ptolemy’s 
values for the longitudes of the planetary apogees, i.e., about the mid-135s AD, 
which does not seem to be an unreasonable assumption with regard to the times 
of Ptolemy’s derivations, as given earlier.

4. In his Ashrafī zīj (F: f. 232v, G: f. 249r), Kamālī gives Ibn al-A‘lam’s values 
for the longitudes of the solar and planetary apogees as updated for 13 Adhar 
1614 Alexander/23 Rajab 702/13 Khurdād 672 (13 March 1303) (in MS. G, the 
Alexandrian date is wrongly given as 14 Adhar 1612). They are ended with 19″, 
except for Mars, giving the impression that Ibn al-A‘lam’s original values were 
up to the minutes of arc, and this 19″ is due to Kamālī’s precessional increment. 
The longitude of the apogee of Mars is 136;5,18°. The epoch of Ibn al-A‘lam’s 
zīj is unknown. As settled forth elsewhere (Mozaffari 2016–2017), it seems quite 
probable that (1) the second star table found in the preserved manuscripts of the 
Mumtaḥan zīj is a work by Ibn al-A‘lam himself, in the sense that he updated 
the longitudes in the first, and in all likelihood original, star table in this zīj (for 
the year 198 Y/829–830 AD) for the year 380 Y (1011–1012 AD) by adding an 
increment of 2;36°, which is in accordance with his rate of precession of 1°/70y 
and the interval of time of 182 between them. And (2) he attained this annual 
processional motion by a comparison between the value 135;6° he measured for 
the longitude of Regulus (α Leo) from his observation(s) carried out in 365 H 
(344–345 Y/975–976 AD) and the value 133;0° registered in the first Mumtaḥan 
star table. We convert the values for the longitudes of the apogees of Mars to 
the latter date, which is about 10 years before Ibn al-A‘lam passed away, by 
subtracting the value 4;40,19° (≈ (672–345)/70) from them.
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5. Ibn Yūnus, pp. 120–121; Caussin 1804, pp. 217–220. As established 
elsewhere (see Mozaffari 2017, pp. 14–16), Ibn Yūnus’s values for the longitudes 
of the apogees of the five planets, except for Venus, appear to be more than Yaḥyā’s 
values by 1;3°. Of course, this increment is less than the half of the expected 
values produced by either of the precessional rates 1°/66y and 1°/70y, and so it is 
not known how Ibn Yūnus could have arrived at it, esepcially, considering that 
the difference in the longitude of the solar/Venus’s apogee between Ibn Yūnus’s 
and Yaḥyā’s values (respectively, 86;10° and 82;39°; see Mozaffari 2013b, Part 
1, p. 326) amounts to 3;31°. 

6. Bīrūnī 1954–1956, Vol. 3, pp. 1193–1198. He simply converts Ptolemy’s 
values for the longitudes of the planetary apogees to his epoch by an increment 
of about 13° calculated from his rate of precession of 1°/69y (see Mozaffari 2017, 
pp. 13–14).

7. As he himself clarifies in the Jāmi‘ zīj, Kūshyār is entirely dependent upon 
al-Battānī’s Ṣābi’ zīj in the solar and planetary apogees, and thus in turn dependent 
upon the Almagest in the case of Saturn, Mars, and Mercury (see above, note 3). 
The apogee longitudes are given in the canons of his zīj, in I.4.4 (S1: f. 6v, S2: 
f. 238v) = I.19 (C1: f. 12r, B: ––dropped) in a family of MSS, for the beginning 
of the Yazdigird era (= 16 June 632, JDN 1952063) (NB. In MSS. S1 and S2, 
each book is divided into faṣls, “chapters”, and each chapter is subdivided into 
bābs, “sections”, but in MSS. C and B, every book is continuously divided into 
sections) or, in I.25 in another category of MSS (L: f. 8r), for the beginning of 331 
Y (= 26 March 962, JDN 2072513). Also, in ii, the tables: S1: ff. 44r, 45v (for the 
years 1 Y, 249 Y = al-Battānī’s epoch, and 331 Y), S2: f. 263r, L: f. 35v, C: f. 48v, 
B: p. 47 as well as in the headings of the mean motion tables. His values for 1 Y 
are less than al-Battānī’s by 3;43° and those for 331 Y are more than al-Battānī’s 
by 1;14°; both values are fairly consistent with his rate of precession of ~ 1°/66y 
(360° in 24000 years, as given in the canons) and the time intervals between 
either of these two dates and al-Battānī’s epoch, 249 Y. Of course, especially 
in the case of the longitude of apogee of Mars, we are confronted with a very 
curious note Kūshyār appends to the list of the longitudes of apogees for 1 Y in 
the tables, as found in the three copies ––B, S2, and C–– of the five manuscripts 
consulted for the present study: 

According to what Theon mentions in al-Qānūn, the longitude of apogee of Mars is 
equal to 130;36°, which is equal to the longitude of Qalb al-asad [= Regulus], and this 
is closer to the truth.

This passage deserves some comments: 
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(1)	   In the Handy Tables, Ptolemy gives the longitudes of the solar and planetary apogees 
with respect to the longitude of Regulus; the apogees are sidereally fixed, and thus it 
would be practically simple to list the longitude of Regulus along with the constant 
distances c in longitude between it and the apogees. All values are dependent upon 
the Almagest, and hence for Mars c = +353° (or –7°) which is the difference in lon-
gitude between Ptolemy’s derivation of the longitude of apogee of the planet, 115;30° 
(no. 1), and that of Regulus in the Almagest star catalogue, 122;30°. Nevertheless, 
nowhere in the edited texts of the Handy Tables and Theon’s commentaries upon 
Ptolemy’s writings, we can find any deviation from Ptolemy’s value for c of Mars.

 

Figure 18. The graphs of the longitude of the geocentric apogee (*M) and the helio-
centric aphelion (*M′) of Mars in comparison with the true longitude of Regulus (*R), 
the longitude of Regulus as updated from the Almagest through the medieval period by 
the Ptolemaic precessional rate of 1°/100y (*R1) and the medieval rate of precession 
of 1°/66y (*R2), the longitude of apogee of Mars as updated from the Almagest by the 
apogeal motion of 1°/100y (*M1). PtR and Pt stand, respectively, for Ptolemy’s values 
for the longitude of Regulus and of the apogee of Mars. The four  values shown by 
Ku* are related to Kūshyār.

(2)	 The longitude of Regulus changed from 122.2° to 149.8° in the past two millennia; 
see Figure 18, where the dotted line, *R, displays the true longitude of Regulus. The 
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longitude of Regulus on the basis of Ptolemy’s value 122;30° for 137 AD (indicated 
as PtR in Figure 18) and his value of 1°/100y and the value 1°/66y prevalently used 
in the medieval period for the rate of precession are depicted, respectively, as the 
continuous lines *R1 and *R2 in Figure 18. The first clearly becomes progressively 
less and less than the true values (*R), obviously because the value 1°/100y is less 
than the true rate of precession ~ 1°/71.2y; but, in stark contrast to it, the second 
becomes progressively closer to the true values, because adopting the value 1°/66y, 
which is greater than the true rate of precession, as the time passed, steadily com-
pensated the striking error of ~ –1.5° in Ptolemy’s value 122.5° for the longitude of 
Regulus; as discussed elsewhere, this situation explains why observing better va-
lues for the longitude of Regulus caused the precessional rate of 1°/66y to be preva-
lently maintained in the medieval period.

(3)	 Among the planets, the apogee/aphelion of Mars (shown, respectively, as the 
thick continuous graph *M and the dotted graph *M′ in Figure 18) is in reality 
located in the closest distance to Regulus. If the longitude of apogee of Mars was 
updated from Ptolemy’s value (Pt) for 139 AD by the use of the rate of preces-
sion/apogeal motion of 1°/66y (the graph *M1 in Figure 18), as the early Islamic 
astronomers did, the negative error in it would become progressively greater in 
absolute value, due to the fact that this rate is in reality smaller than the motion of 
the apogee of Mars, ~ 66.5″/y  ≈ 1°/54.1y (see above, 5.2.1). But, on the contrary, 
if the longitude of apogee of Mars was taken as equal to the longitude of Regulus 
and updated from the Almagest with the rate of precession of 1°/66y (*R2), the 
errors would be positive and progressively decrease.

(4)	 The longitude of Regulus in the above passage should have stemmed from Ptolemy’s 
value, considering the prevalent, but wrong, idea among the Islamic astronomers 
that Ptolemy borrowed his star catalogue from Menelaus, composed 40 years befo-
re his era (137 AD), by adding 0;25° to the longitudes in it; hence, 122;30° – 0;25° + 
(632 – (137 – 40))/66 ≈ 130;11° which is not far from 130;36° given in the passage 
(perhaps, it was forgotten to subtract 0;25° from Ptolemy’s value). 

(5)	 The alternative value 130;36° given in this passage for the longitude of Mars seems in 
all probability to be for the epoch, i.e., 1 Y, (shown by Ku*2 in Figure 18); the value 
123;15° taken from al-Battānī’s zīj is marked as Ku*1 in Figure 18. As explained 
above (3), al-Battānī’s value at the time suffers from a negative error of –2;33° (mod-
ern: 125;48°), owing to its dependence upon the Almagest, but, on the contrary, the 
alternative value 130;36° shows a positive error of +4;48°. We convert these two 
values for Kūshyār’s time and epoch, and compare the resultants with the modern 
values: We know that Kūshyār wrote the original of his zīj in 393 Y/1025 AD; so, for 
393 Y, his formal, i.e., al-Battānī’s, value would be about 129;9° (Ku*3) and the 
value he ascribed to Theon: 136;33° (Ku*4; NB Increment =  393/66 ≈ 5;57°). These 
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two values show the errors of approximately the same size, but with the opposite 
signs (respectively, –3;54° and +3;30°) in comparison with the modern value 133;3° 
at the time. As shown in this table, for his epoch, 331 Y: from al-Battānī’s value: λ

a
 = 

126;58 + 1;14° = 128;12° and from the longitude of Regulus: λ
a
 = 130;36° + 3;43° + 

1;14° = 135;33°. None of these values have any advantage over the others.

8. al-Khāzinī, Zīj, V: ff. 129r, 163v; L: ff. 102v, 125v; S: pp. 53–54. In a table 
in MS. V, the longitudinal differences between the apogee of the Sun and those 
of the five planets are given to the arc-minutes for the beginning of the Hijra era, 
which, added to the longitude of the solar apogee, are generally in agreement with 
the values given in the main table of the radixes of the Sun, Moon, and planets in 
this work. Kamālī (F: f. 232v, G: f. 249r) has added 10;18,48° to Khāzinī’s values 
in order to update them for 23 Rajab 702 (13 March 1303); this increment is in 
accordance with the precessional motion of 1°/66y and the period of about 681 
Persian years elapsed from the beginning of the Hijra era to the date in question. 
Khāzinī has added 7;35° to the longitudes of the apogee of Saturn, Jupiter, and 
Mercury in the Almagest, which approximately agrees with his rate of precession 
of 1°/66y and the interval of time of about 487 years, from the mid-130s AD to 
622 AD, but for Mars and Venus, his values are, respectively, by 12° and 12;35° 
greater than Ptolemy’s. We have added an increment of 7;33° to Khāzinī’s values 
in order to convert them to 1 January 1120 AD, a date falling within the period of 
his fruitful career.

  9. Ibn al-Fahhād, Zīj, p. 73; see, also, Mozaffari 2017, pp. 16–18.
10. Īlkhānī zīj, C: p. 111, P: ––dropped, M1: f. 68r, M2: ––dropped.
11. We know (Yabuuti 1997, pp. 22, 24) that Jamāl al-Dīn and his teams of 

Persian astronomers in China measured the longitude of the solar apogee as 
89;21° in 660 H (1261/1262 AD). In Sanjufīnī’s zīj, which is on the basis of their 
parameter values, the apogeal motion with a rate of 1°/60y is clearly different 
from the precessional one with a rate of 1°/73y, which can be derived from the 
values tabulated for them in the two separate columns in the table for the solar and 
planetary mean motions from 764 to 895 H (ff. 44v–46r). Sanjufīnī (f. 44v) gives 
the values 91;1,20° and 136;44°, respectively, for the longitudes of the apogees 
of the Sun and Mars for 24 Jumādā I 764 (10 March 1363, according to the 
astronomical Hijra calendar). Accordingly, it seems that he added an increment 
of 1;40,20° to Jamāl al-Dīn’s value in order to update it for his time, which is 
compatible with the rate of apogeal motion of 1°/60y and the period of about one 
century between them. If it is correct, then Jamāl al-Dīn’s value for the longitude 
of the apogee of Mars for 1261/1262 AD would be equal to 135;4°. It should be 
noted that Jamāl al-Dīn precedes Ibn al-Shāṭir (see Mozaffari 2017) in putting a 
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clear distinction between the apogeal and precessional motions by one century.
12. Ibn al-Shāṭir, K: f. 52r, L1: f. 65v, L2: 50v, O: f. 31r, PR: f. 100r. A curious 

feature of Ibn al-Shāṭir’s astronomy is that he correctly believed that the motion 
of the solar and planetary apogees (which he takes as equal to 1° in 60 Persian/
Egyptian years) is not equal, but larger than, to the precession (which he takes as 
equal to 1°/70y); see Mozaffari 2017, esp. pp. 21–24.

13. al-Kāshī, Zīj, IO: f. 128v, P: p. 109. Note that al-Kāshī’s values for the 
longitudes of the apogees exceed those in the Īlkhānī zīj by 2;37,17°, in the sense 
that they were updated from the Īlkhānī zīj with taking the precessional and 
apogee motion as equal to 1° in 70 Persian/Egyptian years; an interval of time of 
180 years separates his epoch from that of the Īlkhānī zīj.

14. Ulugh Beg, P1: f. 140r, P2: f. 157r.

Mean (′) σ (′) MAE (′) Min (′) Max (′)

Īlkhānī zīj (1) –17.0 59.0 44.7 –163.3 +225.0

Īlkhānī zīj (2) –17.2 37.3 32.5 –  94.9 +141.2

Muḥyī al-Dīn –  7.1 24.4 19.7 –  71.7 +  69.7

Table 7: The accuracy of the longitude of Mars as computed from the 
Īlkhānī zīj and Muḥyī al-Dīn’s parameter values derived at the Maragha 
observatory. 

Notes: 
1. With radius of the epicycle = 40;18. 
2. With radius of the epicycle = 39;30 (Ptolemaic).




