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Abstract

Several recent surveys ask for a person’s subjective probabilities that the in-
flation rate falls into various outcome ranges. We provide a new measure of the
uncertainty implicit in such probabilities. The measure has several advantages
over existing methods: It is trivial to implement, requires no functional form
assumptions, and is well-defined for all logically possible probabilities. From a
theoretical viewpoint, the measure can be motivated as the entropy function of
a strictly proper scoring rule. We demonstrate the measure’s good performance
in a simulation study based on empirical data from the Survey of Consumer
Expectations.

1 Introduction

Economists have long used surveys to study expectations about future outcomes
like the inflation rate or a person’s wage. While surveys have traditionally fo-
cused on point expectations, Manski (2004), Delavande (2014) and Manski (2018)
review a growing number of surveys in labor economics, development economics
and macroeconomics that cover probabilistic expectations. The move from point
predictions to probabilistic expectations seems natural since standard theories of
choice indicate that probabilities matter for economic decision making.

In macroeconomics, the Survey of Professional Forecasters (SPF; Croushore,
1993) and its European counterpart (Garcia, 2003) are popular data sources cov-
ering experts’ probabilistic forecasts. Furthermore, several recent surveys address
the probabilistic expectations of firms and consumers. Examples include the Sur-
vey of Consumer Expectations (SCE) launched by the Federal Reserve Bank of
New York (Armantier et al., 2017), a similar initiative by the Bank of Canada

∗Financial support from the German Research Foundation (DFG) via grant KR 5214/1-1 is grate-
fully acknowledged.
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(Gosselin and Khan, 2015), and the firm survey by Coibion et al. (2018). Given
that expectations are potential drivers of economic decisions, these surveys are
of interest to academics and policymakers alike (Trautmann and van de Kuilen,
2014; Armantier et al., 2015; Roth and Wohlfart, 2019; European Commission,
2019).

Figure 1 illustrates subjective probability distributions from the December
2017 wave of the SCE. Each survey participant provides probabilities for various
outcome ranges of next year’s inflation rate, as represented by the horizontal axis.
In practice, each outcome range corresponds to a ‘bin’, to which participants are
asked to assign a probability. The participant in the figure’s top left panel assigns
positive probability to a single bin, whereas the other participants use two (top
right), three (middle left), four (middle right), five (bottom left) and ten (bottom
right) bins. On average, SCE participants in the December 2017 wave use 4.3
bins, with 31 % of the participants using one or two bins.

The present paper considers methods for quantifying the uncertainty ex-
pressed by a histogram-type distribution as in Figure 1. Such uncertainty mea-
sures are an important input to studies that consider either the determinants
or the consequences of subjective uncertainty. See, for example, Coibion et al.
(2018) for an analysis of firms’ expectations, Ben-David et al. (2019) for a house-
hold finance perspective (using the SCE data), and Rich and Tracy (2010) for
a macroeconomic perspective (using expert forecasts from the Survey of Profes-
sional Forecasters, SPF).

Surveys like the SCE and the SPF feature a special type of censoring in that
participants do not specify the probability distribution within each bin. This
property precludes the direct computation of a standard measure of spread, such
as the standard deviation or interquartile range, from the distribution. The popu-
lar approach by Engelberg et al. (2009) thus approximates a subjective histogram
by a flexible generalized beta distribution. After this step, one can simply com-
pute the desired measure of spread as implied by the fitted distribution. However,
the approach is not feasible when all probability mass is concentrated on a small
number of histogram bins. Engelberg et al. (2009) thus recommend to use the
flexible approximation only if three or more bins contain nonzero probability, and
to resort to a simple triangular distribution otherwise. This concern is important
for the SCE, where about a third of the participants uses only one or two bins.
Similar concerns apply to approximations based on other continuous distributions
as reviewed by Glas (2018, Section 2) and Liu and Sheng (2019, Section 2).
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Figure 1: Illustration of probabilistic inflation expectations from the December 2017
wave of the SCE. The area of a rectangle corresponds to the subjective probability of
the corresponding outcome range. For example, in the middle left panel the probability
for an outcome between 4 and 8 equals 4× 1/8 = 1/2.
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Motivated by the properties of the SCE data, we propose a summary measure
of uncertainty that is given by

K∑
k=1

Pk (1− Pk), (1)

where Pk =
∑k

j=1 pj is the cumulative probability of the first k bins, and pj
indicates the probability of bin j ∈ {1, . . . ,K}. Note that the bins are arranged
in ascending order: For example, the right endpoint of the first bin (-12% in the
SCE) is smaller than the right endpoint of the second bin (-8% in the SCE). The
measure at (1) has a number of advantages. First, it is transparent and trivial to
implement. Second, it requires no information beyond that provided by survey re-
spondents. By contrast, existing approaches require assumptions on the support
of the subjective histogram, the distribution within each bin, or the functional
form of the underlying continuous distribution. Third, it is well-defined even if
all probability mass is concentrated on one or two bins. Finally, the measure
can be theoretically motivated as the generalized entropy function of the ranked
probability score (Epstein, 1969), a strictly proper scoring rule. We therefore
refer to the measure at (1) as the ERPS, for Expected Ranked Probability Score.

To illustrate the ERPS, consider its assessment of the example distributions
in Figure 1. The top left distribution attains the lowest possible score of zero,
corresponding to no uncertainty. This assessment seems natural, given that all
probability mass is contained in a single bin. The scores of the other subjective
distributions are also shown in the figure. Intuitively, the scores reflect both the
number of bins used by the respondents (ranging from one to ten in the figure)
and the way the respondents distribute probability mass within these bins. For
example, the middle right distribution yields a lower score than the middle left,
as the majority of the mass is concentrated within the inner two adjacent bins,
as compared to the more evenly distributed mass depicted in the middle left panel.

Along with the ERPS, we present a corresponding measure of objective uncer-
tainty that is based on a recent proposal by Galvao and Mitchell (2019). Compar-
ing subjective uncertainty (as measured by the ERPS) to a measure of objective
uncertainty allows to assess whether survey participants’ uncertainty can be ra-
tionalized from realized data. This comparison is of economic relevance since
over– or underestimating objective uncertainty has possibly severe implications
for decision making (see e.g. Moore et al., 2015, for a survey).

The remainder of this paper is structured as follows. Section 2 summarizes
some stylized facts of the SCE data that motivate our methodology. Section 3
develops our proposal (the ERPS), detailing its advantages as mentioned above.
Section 4 studies the behavior of the ERPS in Monte Carlo experiments based
on the SCE data. In particular, we document that the ERPS is robust with
respect to variations in the design of survey histograms, and to small changes in
the subjective probabilities. Section 5 provides empirical illustrations. Section 6
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sketches a corresponding measure of realized uncertainty, and Section 7 concludes.
Proofs, implementation details and additional results are collected in appendices.

2 Background on the SCE data

As noted, the SCE data is a major motivation for the methods we propose in
this paper. Here we briefly describe stylized facts that are relevant to our pro-
posal, and review the Engelberg et al. (2009) quantification method. The latter
method is used to derive uncertainty measures that are reported in official SCE
publications such as Armantier et al. (2017).1

2.1 Design and stylized facts of probability questions

The SCE is conducted at a monthly frequency with a sample size of about 1,200
respondents per month. The core module of the SCE asks for subjective proba-
bilities of various outcome ranges, covering three variables: The Consumer Price
Index (CPI) at two different horizons, real estate prices, and the respondent’s per-
sonal earnings. In the SCE questionnaire made available by Federal Reserve Bank
of New York (2019), the relevant question codes are Q9 and Q9c (CPI inflation
rate), C1 (growth rate of the average home price nationwide) and Q24 (growth
rate of the respondent’s personal earnings). The relevant outcome ranges (in
percent), which are the same for all variables, can be represented by the intervals

(−∞,−12]; (−12,−8]; (−8,−4]; (−4,−2]; (−2, 0); [0, 2); [2, 4); [4, 8); [8, 12); [12,∞).

These outcome ranges are reflected in the horizontal axis labels of Figure 1. In
the case of inflation, for example, the two rightmost intervals refer to an inflation
rate between 8% and 12% and to an inflation rate of 12% or more.2

The upper panel of Table 1 presents summary statistics on the number of
histogram bins used by SCE participants (that is, the number of bins containing
strictly positive probability mass). We focus on the time period from January
2014 to December 2017 for comparability to the SPF (see below). For inflation
and the average home price, around 30% of the participants uses one or two bins.
For personal earnings, roughly half of the participants use one or two bins. The
mean number of bins used is somewhat higher for inflation and the average home
price (4.2−4.4), compared to personal earnings (3.3). Finally, more than a quar-
ter of the participants use one or both of the outer bins that correspond to the
intervals (−∞,−12] and [12,∞).

1These uncertainty measures are also included in the SCE data set that is available for public
download (Federal Reserve Bank of New York, 2019).

2The inclusion (or exclusion) of interval limits is not specified by the SCE survey questions. For
example, the survey question leaves it unspecified whether an inflation rate of exactly 12% belongs
to the last or penultimate bin. Our choice of half-open intervals (with the exception of the (−2, 0)
interval) are arbitrary – as is any choice in that regard – but seem unlikely to be of empirical relevance.
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Share of respondents using Mean nr.
n one bin two bins outer bin(s) of bins

SCE

Average Home Price 54220 16.0 15.8 40.1 4.2
Inflation (one-year) 61762 12.4 17.1 39.6 4.4
Inflation (three-year) 61874 13.0 17.5 39.4 4.4
Personal Wage 41837 26.4 23.9 28.5 3.3

SPF

Inflation (GDP def.) 569 2.5 14.9 19.2 4.5
GDP 592 3.9 17.7 7.1 4.5
Inflation (CPI) 571 1.6 14.0 14.2 4.6
Inflation (PCE) 539 1.1 15.2 13.9 4.6
Unemployment 567 8.6 22.2 29.8 3.4

Table 1: Summary statistics on the number of bins used in the SCE (January 2014
to December 2017 waves) and SPF (2014:Q1 to 2017:Q4 waves); n denotes the total
number of responses. We exclude histograms that do not sum to one (less than 0.35%
of responses in both surveys).

The lower panel of Table 1 presents analogous statistics for the SPF. The
SPF histograms are similar in design to those of the SCE, except that the two
surveys use different numerical ranges for the histogram bins.3 The number of
bins (ten) is the same as in the SCE, except for GDP (eleven). While the share
of participants using two bins and the mean number of bins used are comparable
to the SCE, there are two major differences to the SCE: First, the SPF features
a much smaller share of participants who use a single bin. For example, this
share is about ten percentage points lower for the inflation variables. Second,
the share of participants using at least one outer bin is much smaller in the SPF.
For example, this share is more than 20 percentage points lower for the inflation
variables. Based on these statistics, we will argue that the common strategy of
fitting a continuous distribution is less promising in the case of the SCE data
than in the case of the SPF data.

2.2 The Engelberg et al. (2009) quantification method

The histogram probabilities do not specify a full probability distribution since
the endpoints of the histogram’s support as well as the distribution within each
bin are unknown. Based on the raw probabilities alone, it is hence impossible
to compute each participant’s subjective mean or variance. Following similar

3While the SPF’s bin definitions have been adapted over time (see the documentation by Federal
Reserve Bank of Philadelphia, 2019, for details), they are constant over the time period reported in
Table 1.
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methods for income expectations (Dominitz and Manski, 1997), Engelberg et al.
(2009) propose to fit a continuous distribution to the histogram probabilities.
The choice of continuous distribution depends on the number of histogram bins
that are being used: The authors propose to fit a simple triangular distribution
in case a forecaster uses one or two bins, and to fit a flexible generalized Beta
distribution if the forecaster uses three or more bins. We provide formal details
in Appendix B. Figure 4 in the appendix provides examples for the method’s
practical application to the SCE data.

A major advantage of the quantification methodology is that it provides a full
analytical distribution from which any feature of interest (such as measures of
location or spread and probabilities for ‘extreme’ events) can be computed. How-
ever, this wealth of information comes at a cost: First, the choice of a particular
parametric distribution is potentially restrictive, and seems hard to justify if the
histogram uses only one or two bins. Second, the approach entails a discontinuity
when moving from two bins (approximated via a triangle distribution) to three
bins (approximated via a generalized beta distribution). We provide a numerical
evaluation of this discontinuity in Section 4.2. Finally, practical implementation
requires judgmental choices pertaining, e.g., to parameter limits imposed in nu-
merical optimization, or to the handling of certain cases that are not covered by
Engelberg et al.’s original proposal, simply because they did not occur in their
original data set (see Appendix B for details). These choices may reasonably be
made differently by different authors. Full reproducibility hence requires careful
documentation of all implementation choices.

As noted above, the Engelberg et al. (2009) quantification method seems more
appealing in the context of the SPF than for the SCE which features a higher share
of single-bin histograms and a more pronounced use of outer bins. Furthermore,
the larger sample size of the SCE calls for simple and robust methods that apply
to any possible histogram. We next propose a method that satisfies these criteria.

3 A new approach to quantifying uncertainty

in survey histograms

3.1 General idea: Quantifying uncertainty via entropy

Suppose a survey participant issues a vector of probabilities p :=
(
p1, p2, . . . , pK

)′
,

where pk denotes the subjective probability that the inflation rate is within the
interval rk that defines the range of bin k. See Section 2.1 for the intervals char-
acterizing the SCE’s bin definitions. In practice, the intervals {rk}Kk=1 are disjoint
and their union is the real line. Hence the probabilities p form a subjective survey
histogram as in Figure 1.

Our proposed measures of uncertainty are based on the concept of entropy.
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Informally, if the entropy of distribution p is large, then a forecaster with subjec-
tive distribution p places a high probability on making large forecast errors. In
that sense, p is associated with little predictability and high uncertainty. Vice
versa, under a low-entropy distribution p, large forecast errors are unlikely, and
hence low entropy is associated with high predictability and low uncertainty.

More formally, the concept of entropy relates to strictly proper scoring rules.
The latter are a standard tool in statistical decision theory. In economics, they are
commonly used for eliciting beliefs in experiments (Schotter and Trevino, 2014)
and for evaluating probabilistic forecasts (Gneiting and Katzfuss, 2014). Scoring
rules are functions of the form S(p, k∗) that measure the performance of the
probabilistic forecast p if the outcome k∗ realizes. The integer k∗ ∈ {1, 2, . . . ,K}
indicates the histogram bin that contains the realization. We consider specific
choices of S below. For each of these choices, a smaller value of S indicates a better
forecast. A scoring rule S is called strictly proper if a forecaster minimizes their
expected score by stating what they think is the true probability distribution p
(conditional on their information set); see Gneiting and Katzfuss (2014, Section
3.1.1) for a formal definition. The function

ES(p) =

K∑
k=1

pk S(p, k) (2)

is called the entropy function associated with the scoring rule S (e.g. Gneiting
and Raftery, 2007, Section 2.2). We propose to use this function in order to
measure the subjective uncertainty in a probabilistic survey forecast p. To obtain
intuition, consider a very confident forecaster who places a probability of one on
a single bin l, such that p := p

l
is a vector of zeros, except for the lth entry

being equal to one. If the lth entry materializes (i.e., if k∗ = l), then the forecast
is perfect in retrospect. Indeed, both choices of S we consider below satisfy
S(p

l
, l) = 0, which implies that ES(p

l
) = 0. This implication is plausible: Since

the forecaster places all probability mass on a single bin, they implicitly state that
the only possible situation is one in which this bin realizes, such that the forecast
is perfect in retrospect. By contrast, consider a forecaster who is very uncertain,
such that the probability forecast p := p

u
is a discrete uniform distribution across

all K bins. The uncertain forecaster hence places considerable probability mass
on outcomes k for which S(p, k) is ‘large’, i.e. the forecast is considered poor in
retrospect (after all, the forecaster placed a probability of 1− 1/K on outcomes
other than the one that realized). Accordingly, ES(p

u
) is ‘large’ as well.
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3.2 Expected Ranked Probability Score (ERPS)

Define

Pk =

k∑
j=1

pj

to be the cumulative probability of the first k bins. As a first choice of scoring
rule S, we consider the ranked probability score (RPS; Epstein, 1969) given by

RPS(p, k∗) =


∑K

k=1(1− Pk)2 if k∗ = 1∑k∗−1
k=1 (Pk)2 +

∑K
k=k∗(1− Pk)2 if k∗ ∈ {2, 3, . . . ,K} ;

The score rewards forecasters who put much probability mass into bins that are
equal or close to the realizing bin k∗. The entropy function for the RPS is given
by

ERPS(p) =

K∑
k=1

pk RPS(p, k)

=
K∑
k=1

Pk(1− Pk). (3)

As its name suggests, the RPS is designed for ranked categorical variables.
That is, the RPS treats the realizing bin k∗ ∈ {1, . . . ,K} as an ordinal variable,
with k∗ = 1 representing a smaller outcome than k∗ = 2. However, the RPS
does not attach any numerical interpretation to the outcomes.4 In the context of
survey histograms, this means that the RPS is invariant to re-definitions of the
bin ranges, as long as their ordering is preserved and the probability in each bin
remains unchanged.

As we show in Appendix A, the maximal ERPS is attained for the vector

p∗ =
(
1/2, 0, . . . , 0, 1/2

)′
that places probability one half on each of the two outer bins. The intuition for
this solution is that under p∗, it is certain that one of the two outer bins will
materialize. Both outcomes produce a large score RPS(p∗, k), since p∗ places no
probability mass on the neighboring bins.

3.3 Expected Brier Score (EBS)

The Brier score (BS; Brier, 1950) is given by

BS(p, k∗) =
K∑
k=1

(Ik∗=k − pk)2,

4The continuous counterpart to the RPS, the Continuous Ranked Probability Score (CRPS Math-
eson and Winkler, 1976) is a popular strictly proper scoring rule in the econometric literature on
probabilistic forecasting; see Krüger et al. (2019) and the references therein.
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where Ik∗=k is an indicator function that equals one if k∗ = k, and equals zero
otherwise. The entropy function for the BS is given by

EBS(p) =

K∑
k=1

pk BS(p, k)

=
K∑
k=1

pk(1− pk). (4)

The BS is designed for multinomial random variables, that is, the outcome
categories k∗ ∈ {1, . . . ,K} are viewed as interchangeable labels. In the context
of survey histograms, this means that the BS is invariant to permutations of the
histogram probabilities.

López-Menéndez and Pérez-Suárez (2019) have recently considered the EBS
for measuring uncertainty in tendency forecast surveys, where each participant
states a deterministic prediction of whether the economy will go ‘up’, ‘down’ or
remain ‘unchanged’. They then construct an aggregate probability distribution
where the probability of each category (‘up’, ‘down’ or ‘unchanged’) corresponds
to the proportion of participants for that category. They use the EBS in order
to quantify the uncertainty of their aggregate probability distribution at a given
point in time. By contrast, probability information in the histograms allows us
to study the uncertainty of any individual survey participant.

As noted by López-Menéndez and Pérez-Suárez (2019), the maximal EBS is
attained for

p∗∗ = τ × (1/K),

where τ is a K × 1 vector of ones (see Appendix A for details). Hence flat prob-
abilities represent maximal uncertainty, as is standard in a multinomial setup.

3.4 Discussion

The idea of measuring uncertainty via entropy is standard, and has most famously
been applied in the context of the logarithmic score given by LS(p, k∗) = − log pk∗ ,
for which the entropy function ELS(p) is the Shannon entropy; see Gneiting and
Raftery (2007, Section 2.2) and the references therein. In economics, Shannon
entropy plays a key role in the theory of rational inattention (Sims, 2003; Caplin
et al., 2017). Despite its general popularity, applying the logarithmic score to
survey histograms seems problematic: Due to the logarithmic function, it is very
sensitive to small changes in the probabilities whenever some of the elements in
p are close to (but strictly greater than) zero. This sensitivity seems unjustified
in a survey context, where small changes may occur due to rounding or practical
details of the survey design (such as the number of digits that participants are
allowed to enter). See Selten (1998) for further discussion, and Boero et al. (2011)
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for empirical results on survey histograms.5 Our use of the RPS and BS, both of
which remain numerically stable in the presence of small nonzero probabilities, is
in line with the recommendations of the latter paper.

As noted, the RPS is based on an ordinal interpretation of the histogram bins,
whereas the BS is based on a multinomial interpretation. Accordingly, neither
the ERPS nor the EBS utilize information on the numerical definition of each
bin. This property is very useful, as it removes the need to make assumptions
on the support of the histogram (i.e., the endpoints of the two outer bins) or the
probability distribution within each bin. That said, the multinomial interpreta-
tion underlying the EBS implies that the latter is invariant to permutations of
the probabilities p1, . . . , pK . For example, for a hypothetical three-bin histogram,
the probabilities p

a
= (1/4, 1/2, 1/4)′ yield the same EBS as the probabilities

p
b

= (1/2, 1/4, 1/4)′. This assessment seems implausible, given that p
b

is ob-
tained from p

a
by shifting probability mass from the central bin to the more

extreme leftmost bin. Under the ERPS, which utilizes an ordinal interpretation,
p
b

is considered more uncertain than p
a
.

4 Simulation study

This section presents numerical evidence on the behavior of the uncertainty mea-
sures we consider.

4.1 Design of the histogram bins

We first consider various designs for the histogram bins, including the one used by
the SCE. At present there seems to be no strong consensus on how the histogram
bins should be defined; for example, the SCE’s bin definitions differ widely from
the SPF’s, and the SPF’s definitions have been updated over time. We hence
contend that an uncertainty measure should be qualitatively robust across var-
ious ‘reasonable’ choices. To study the robustness of our proposed measure, we
consider a continuous distribution that represents a respondent’s true but un-
observable beliefs. We then discretize the distribution according to four sets of
histogram bins shown below. Each bin design yields a histogram from which we
then recover a measure of forecast uncertainty. Ideally, the measures obtained
for the four bin designs should be similar, given that the underlying continuous
forecast distribution is the same in each case.

5More specifically, the sensitivity of the logarithmic score appears unproblematic in the context of
the Shannon entropy ELS(p), but is of considerable practical relevance when computing the realized
score LS(p, k∗) for an outcome bin k∗. The realized score is central for comparing subjective and
objective uncertainty, an issue we address in Section 6.
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Specifically, we consider the following histogram bin designs:

(−∞,−12]; (−12,−8]; (−8,−4]; (−4,−2]; (−2, 0); [0, 2); [2, 4); [4, 8); [8, 12); [12,∞) B1

(−∞,−6]; (−6,−4]; (−4,−2]; (−2, 0); [0, 2); [2, 4); [4, 6); [6,∞). B2

(−∞,−4]; (−4,−2]; (−2, 0); [0, 2); [2, 4); [4, 6); [6, 8); [8,∞). B3

(−∞,−4]; (−4,−3]; (−3,−2]; (−2,−1]; (−1, 0); [0, 1);[
1, 2); [2, 3); [3, 4); [4, 5); [5, 6); [6, 7); [7, 8); [8,∞) B4

The first design, B1, is the one used by the SCE. The bins in B2 cover a smaller
range than the ones in B1, but are otherwise identical. B3 is obtained by shifting
B2 to the right, such that the bins are symmetric around two percent (in contrast
to B1 and B2, which are symmetric around zero). Finally, the bins in B4 are
finer than the ones in B3, possibly allowing for a more detailed assessment of
subjective uncertainty.

Of course, differences between the four histogram designs depend on the choice
of underlying continuous distribution. We therefore consider a large number of
distributions that we estimate from n = 1, 210 histograms for inflation (one year
ahead) from the SCE’s December 2017 wave.6 For participant i = 1, . . . , n, we
run the following steps.

• Apply the Engelberg et al. (2009) quantification method to participant i’s
survey histogram. As described in Appendix B, we obtain a triangular
distribution in case the histogram contains one or two (adjacent) bins, and
we obtain a generalized beta distribution otherwise.

• Discretize the distribution according to the bin designs B1 to B4 introduced
above. This step yields the histograms p

i,b
, where b ∈ {1, 2, 3, 4} indicates

the bin design.

• Compute the uncertainty measures ERPS(p
i,b

),EBS(p
i,b

), σ̂(p
i,b

), and IQR(p
i,b

),

whereby the latter two denote the standard deviation and interquartile range
of Engelberg et al.’s continuous approximation to p

i,b
.

To assess the robustness of the ERPS measure across the bin designs B1 to B4,
we then estimate the correlation matrix of ERPS(p

i,b
) across b. Ideally, the en-

tries of this matrix should all be close to one. We proceed analogously for EBS
as well as the fitted standard deviation and IQR.7

6We drop nine participants whose histogram probabilities are negative or do not add to one, and
54 participants for which the Engelberg et al. (2009) quantification method is undefined; see Appendix
B for details.

7By using correlation as a measure of similarity, we do not require the uncertainty measures to
remain numerically identical across bin designs but only require close linear dependence. Our results
are qualitatively unchanged when using Spearman rank correlation instead of standard (Pearson)
correlation.
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ERPS

B1 B2 B3 B4

B1 1.000 0.970 0.966 0.960
B2 0.970 1.000 0.979 0.978
B3 0.966 0.979 1.000 0.995
B4 0.960 0.978 0.995 1.000

EBS

B1 B2 B3 B4

B1 1.000 0.876 0.907 0.702
B2 0.876 1.000 0.969 0.866
B3 0.907 0.969 1.000 0.861
B4 0.702 0.866 0.861 1.000

σ̂

B1 B2 B3 B4

B1 1.000 0.890 0.953 0.955
B2 0.890 1.000 0.934 0.930
B3 0.953 0.934 1.000 0.988
B4 0.955 0.930 0.988 1.000

Interquartile Range

B1 B2 B3 B4

B1 1.000 0.909 0.962 0.961
B2 0.909 1.000 0.947 0.942
B3 0.962 0.947 1.000 0.990
B4 0.961 0.942 0.990 1.000

Table 2: Correlation matrices of uncertainty measures across bin designs, based on
n = 1, 210 probability histograms in each setup. See text for details.

Table 2 summarizes the simulation results. The ERPS, standard deviation and
IQR are generally robust across bin designs, with correlation coefficients exceeding
0.93 in all instances except one (standard deviation σ̂, correlation between settings
B1 and B2). The EBS is somewhat less robust across bin designs, with four of the
six pairwise correlations being below 0.9. The latter result can partly be explained
by the fact that the EBS treats the histogram probabilities as multinomial. This
means that shifting probability mass to a neighboring bin is equivalent (in terms
of EBS) to shifting probability mass to a distant bin.

4.2 Discontinuity of the Engelberg et al. (2009) method

As noted, the Engelberg et al. (2009) method uses a triangle distribution if the
participant uses at most two bins, and uses a generalized beta distribution if the
participant uses three or more bins. This case distinction leads to a discontinuity.
We next present data-based simulation experiments to assess the magnitude of
this discontinuity in empirically plausible scenarios.

We use data from the January 2017 to December 2017 waves of the SCE. We
focus on participants who use two adjacent bins, none of which is an outer bin in
the SCE’s histogram design shown at B1. We further require that the histogram
probabilities sum to one and exceed a threshold of one percent, which is the mag-
nitude of the perturbation we consider. These selection criteria leave us with
2450 two-bin histograms. For each of these histograms, we consider two simple
perturbations: First, we move one percentage point of probability mass from the
left bin to its left neighboring bin. For example, suppose that the original his-
togram allocates 50% probability to the two bins [0, 2) and [2, 4). The perturbed
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histogram then places probability 1%, 49% and 50% to the three bins [−2, 0),
[0, 2) and [2, 4) respectively. Second, we apply an analogous perturbation to the
right histogram bin, such that the perturbed histogram contains one percent of
probability mass in a third bin located to the right of the original histogram. A
perturbation of one percent is the smallest size that seems empirically plausible,
and is hence deemed appropriate for the present experiment.

As expected, both types of perturbation lead to a rightward shift in the dis-
tribution of individual standard deviations. For example, the median standard
deviation increases from 0.739 (without perturbation) to 0.784 (under either type
of perturbation). Table 3 further shows the correlation between the fitted stan-
dard deviation under each setup. The correlation between the baseline setup and
two perturbed versions is at 0.807 and 0.643 for left and right perturbation, re-
spectively. These correlations seem remarkably modest given the small magnitude
of the perturbation. The results for IQR are similar, with the two correlations
being equal to 0.825 and 0.706, respectively.

The results in the bottom panels of Table 3 also indicate that the impact of
right perturbation is larger than the impact of left perturbation. This effect is due
to the empirical pattern that many of the two-bin histograms focus on the bins
[2, 4) and [4, 8). According to the SCE’s bin design shown at B1 above, the left
neighbor of these bins is at [0, 2), whereas the right neighbor is at [4, 8). Hence left
perturbation expands the support of the histogram by two units, whereas right
perturbation expands the support by four units. This asymmetry matters here
since the Engelberg et al. (2009) algorithm adopts the support of the histogram
if only interior bins are used.

For ERPS and EBS, the impact of the perturbation can be described analyt-
ically. Let p denote a two-bin histogram, and p̃

L
and p̃

R
its perturbed version

with probability mass shifted to the left and right neighboring bin, respectively.
Let δ denote the size of the perturbation (with δ = 0.01 in our simulation study).
For the ERPS, Equation (3) yields that

ERPS(p̃
L

) = ERPS(p̃
R

) = ERPS(p) + δ (1− δ),

i.e. both perturbations lead to an additive increase in ERPS by δ (1 − δ). This
means in particular that perturbation affects all n histograms in exactly the same
way, leading to correlations of one in Table 3. For the EBS, Equation (4) yields
that

EBS(p̃
j
) = ERPS(p) + 2 δ (pj − δ) > ERPS(p),

where j ∈ {L,R}, and pj denotes the probability mass in the (left or right) bin
from which one percentage point is removed. Hence perturbation leads to an
additive increase in EBS by 2 δ (pj − δ). Empirically, this increase is negligible,
in the sense that the correlation of the EBS values across perturbation setups is
very close to one (see Table 3).
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ERPS

N L R

N 1.000 1.000 1.000
L 1.000 1.000 1.000
R 1.000 1.000 1.000

EBS

N L R

N 1.000 0.999 0.999
L 0.999 1.000 0.997
R 0.999 0.997 1.000

σ̂

N L R

N 1.000 0.807 0.643
L 0.807 1.000 0.523
R 0.643 0.523 1.000

Interquartile Range

N L R

N 1.000 0.825 0.706
L 0.825 1.000 0.609
R 0.706 0.609 1.000

Table 3: Correlation matrices of uncertainty measures across perturbation setups (N =
no perturbation, L = left perturbation, R = right perturbation), based on n = 2, 450
probability histograms in each setup. See text for details.

4.3 Discussion

The simulation experiment of Section 4.1 indicates that ERPS and the measures
based on the Engelberg et al. (2009) method are robust with respect to vari-
ous design choices related to the number, width and support of the histogram
bins. This evidence is reassuring since there are various plausible choices of these
parameters, with little methodological guidance as to which choice is most ap-
propriate.

The evidence in Section 4.2 indicates that uncertainty measures based on the
Engelberg et al. (2009) can be sensitive to small perturbations of the probabil-
ity histogram. This sensitivity is due to a case distinction which implies that
the derived uncertainty measures are discontinuous functions of the vector p of
probabilities, which seems economically implausible. The ERPS and EBS do not
share this drawback. The robustness of the ERPS in the setup of Section 4.2 can
be established via simple analytical calculations.

While this paper focuses on measures of subjective uncertainty, a measure
of location (such as the mean of the subjective forecast distribution) is also of
interest in many applications. The Engelberg et al. (2009) method allows to
construct such a measure. In the simulation designs of Sections 4.1 and 4.2, the
mean forecast constructed from Engelberg et al.’s method is remarkably robust
across the variants we consider in each design; see Table 4 in the appendix for
details. Hence the method’s discontinuity is not reflected in its mean forecasts.
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5 Empirical illustration

This section presents an empirical illustration of the ERPS as a measure of indi-
vidual uncertainty using SCE data from the June 2013 to December 2017 waves.
We consider respondents’ probabilistic forecasts about the inflation rate, change
in the average price of a home, and change in personal earnings. All of these
expectations are one year ahead and are taken from the core module of the sur-
vey (see Section 2.1 for details on the data). Figure 2 plots the average ERPS
across all respondents within each wave.8 Interestingly, respondents are consis-
tently more uncertain about the future development of the two macroeconomic
outcomes (inflation rate and house prices, marked by black and green lines), as
compared to uncertainty about personal earnings (red line). The figure further
shows that average uncertainty about the three variables is remarkably constant
over time. The latter result can perhaps be rationalized by the relatively long
one-year horizon to be forecast (such that conditioning information may be of
limited subjective relevance), and by the short sample period of the SCE.
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Figure 2: Subjective uncertainty (ERPS) across economic variables. For each variable
and month, the figure shows the mean ERPS across survey respondents.

We next analyze individual heterogeneity in subjective uncertainty. Following
Federal Reserve Bank of New York (2019), we distinguish respondents according
to a number of demographic and socioeconomic characteristics: Age, educational
attainment, household income, as well as financial literacy and numeracy skills.9

8For comparability, Figure 2 is based on respondents who provide expectations for all variables.
This implies in particular that it covers only participants who are employed since earnings uncertainty
is only available for these participants.

9The official SCE website (Federal Reserve Bank of New York, 2019) publishes graphical summaries
of uncertainty for these demographic groups. Regarding their age, survey participants are classified
into three groups: ‘Under 40’, ‘40 to 60’ and ‘Over 60’ years. In terms of educational attainment, the
SCE allows to distinguish between respondents with no college education, some college education and
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Figure 3 plots the time trends in uncertainty by demographics, focusing on infla-
tion uncertainty for brevity. The figure indicates that older, richer, more highly
educated and more financially literate survey participants experience lower infla-
tion uncertainty. These patterns are fairly consistent, in that the lines in Figure
3 rarely cross. Furthermore, we again observe little time variation in subjective
uncertainty.

The differences across demographic and socioeconomic groups just reported
are broadly similar for inflation at a three-year horizon as well as for house prices
and personal earnings at a one-year horizon; see Figures 5 to 7 in the appendix.
Furthermore, our findings in Figures 2 and 3 are qualitatively very similar to the
ones reported by Federal Reserve Bank of New York (2019), which are based on
the Engelberg et al. (2009) method.

6 Comparing subjective and objective

uncertainty

It is often relevant to ask whether a person’s subjective uncertainty is in line with
an objective measure of uncertainty. In particular, miscalibrated probabilistic ex-
pectations (with subjective uncertainty exceeding objective uncertainty or vice
versa) may lead to suboptimal decisions in a wide range of situations (see e.g.
Ben-David et al., 2013, and the references therein). In the macroeconomic liter-
ature, subjective and objective uncertainty ar often called ‘ex ante uncertainty’
and ‘ex post uncertainty’ (see e.g. Clements, 2014). This terminology reflects the
fact that subjective uncertainty is typically based on forecasts, whereas objective
uncertainty is based on subsequent realizations.

Following a recent proposal by Galvao and Mitchell (2019), comparing a fore-
caster’s ERPS to their RPS (on average across several time periods) yields a
simple and theoretically appealing comparison of ex ante and ex post uncer-
tainty.10 We next provide a formal treatment tailored to our setup. To this end,
we consider a so-called prediction space setup (Gneiting and Ranjan, 2013) that
models the joint distribution of expectations and realizations. We treat the K
histogram probabilities p as a random vector, and denote the bin containing the
realization by the discrete random variable k∗ ∈ {1, . . . ,K}. The sample space

a fully accomplished college degree. Household income is reported in three categories: ‘Under 50k’,
‘50k to 100k’ and ‘Over 100k’. Finally, a measure of the respondents’ numeracy and financial literacy
is introduced, such that one can distinguish between respondents with high and low skills. Following a
widely used approach, five questions in the survey aim to evaluate respondents knowledge of concepts
used in financial decision-making such as interest compounding, understanding of inflation and risk
diversification. Respondents who give a correct answer to four out of the five questions are categorized
as having high numeracy and financial literacy skills.

10As Galvao and Mitchell note, measuring ex post uncertainty via a generic measure of forecast
performance (such as RPS) generalizes existing approaches such as Clements (2014) that measure ex
post uncertainty via the squared errors of mean forecasts.
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Figure 3: ERPS across sociodemographic groups (inflation, one year ahead).
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of interest, Ω, consists of forecast-observation pairs (p,k∗). We omit time indexes
for simplicity; to obtain an intuition, subsequent realizations of (p,k∗) can be
thought of as independent (whereas one would expect contemporaneous depen-
dence between p and k∗, of course).11 As in Ehm et al. (2016, Section 3.1), let
Q be a probability measure on (A,Ω), where A is a σ-field on Ω. The following
result then provides a formal condition under which ex ante uncertainty and ex
post uncertainty coincide in expectation.

Assumption 1. Assume that there is some information set F ⊆ A such that

Q(k∗ = k|F) = pk

holds almost surely for k = 1, . . . ,K, where Q(k∗ = k|F) is the true conditional
probability that k∗ = k (conditional on the information set F), and pk is the kth
element of p.

Proposition 1. Under Assumption 1, it holds that E(RPS(p, k∗)) = E(ERPS(p)).

Proof. We have that

E(RPS(p,k∗)) = E(E(RPS(p,k∗)|F))

= E(

K∑
k=1

pk RPS(p, k))

= E(ERPS(p)),

where the first equality follows from the law of iterated expectations, the sec-
ond equality follows from Assumption 1, and the final equality follows from the
definition of ERPS.

Assumption 1 requires that the probability forecast p is correctly specified, in
the sense that there is some information set relative to which the forecast is op-
timal. Under this assumption, Proposition 1 states that the RPS and ERPS
of p coincide in expectation. As a simple example (loosely following Gneit-
ing et al., 2007, Table 1), let Y = X + ε, where both variables on the right
are independently standard normal. Suppose for simplicity that there are only
two outcome bins, r1 = (−∞, 0] and r2 = (0,∞). Consider forecaster A with
pA
1 = Φ(−X),pA

2 = 1−Φ(−X) = Φ(X). For forecaster A, Assumption 1 is satis-
fied with F = σ(X), the sigma algebra generated by X. In line with Proposition
1, it can be shown that the expected RPS and expected ERPS of forecaster A are
both equal to 1/6.12 For a second forecaster B with pB

1 = pB
2 = 0.5, Assumption

1 is satisfied with F = ∅, the empty information set. The expected ERPS and
expected RPS of forecaster B are both equal to 1/4, confirming the intuition that

11It can be shown that the methodology of comparing ERPS to RPS remains valid under serial
dependence in the forecast-observation tuples, as long as their joint process is strictly stationary. See
Strähl and Ziegel (2017) for a technical treatment of a prediction space under serial dependence.

12In the notation of Proposition 1, it holds that E(RPS(pA, k∗)) = E(ERPS(pA)) = 1/6.
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B’s forecast is less informative than A’s forecast.

We think that the ideas just sketched are a useful first step toward comparing
subjective and objective uncertainty based on the (E)RPS. That said, further
questions need to be addressed before applying the comparison to the SCE data,
notably relating to the panel structure of the data (with many cross-sectional
units and relatively few time periods). We leave these questions for future re-
search.

7 Conclusion

In this paper, we propose a new measure of subjective uncertainty in histogram-
type survey probabilities and demonstrate its conceptional and practical advan-
tages. Our methodology is motivated by the Survey of Consumer Expectations
(SCE), a novel micro data set covering consumers’ probabilistic expectations of
macroeconomic variables. In addition to its usefulness in the SCE, we think
that the benefits of our measure are relevant in many other applications of
histogram-type survey probabilities in labor economics, development economics,
and macroeconomics.
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A Maximal ERPS and EBS

The ERPS of a distribution p is given by

ERPS(p) =

K∑
k=1

Pk(1− Pk)

In matrix notation, let p be the K × 1 vector with probabilities pk, and P be
the corresponding vector of cumulative probabilities Pk. We have that P = C ′p,
where C is a K ×K upper triangular matrix with all elements above the main
diagonal equal to one, and all diagonal elements equal to one. We can write

ERPS(p) = P ′(τ − P ) = p′Cτ − p′CC ′p,

where τ is a K × 1 vector of ones. To find the maximand of the ERPS, we solve
the following problem:

arg maxp ERPS(p) such that p′τ = 1;

note that the constraint that probabilities be nonnegative need not be enforced
explicitly. Setting up the Langrangian and solving the resulting quadratic prob-
lem then shows that the maximand is given by

p∗ =
[
1/2, 0, . . . , 0, 1/2

]′
;
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note that the second-order condition for a maximum is satisfied since CC ′ is
strictly positive definite. Along similar lines, consider the expected Brier score
given by

EBS(p) =
K∑
k=1

pk(1− pk) = p′(τ − p).

Using standard constrained optimization as above yields that EBS(p) is maxi-
mized by

p∗∗ = τ × (1/K);

the latter result is also noted by López-Menéndez and Pérez-Suárez (2019).

B Details on the Engelberg et al. (2009) quan-

tification method

Here we provide details related to the informal discussion in Section 2.2.

Case A: Forecaster uses one or two bins

Following Engelberg et al., we construct isosceles triangles that are completely
characterized by their support which we denote by [a, b]. The mode of the distri-
bution is located at c = (a+ b)/2.

In case a forecaster uses only one bin, we use a triangular distribution with
support equal to the support of the bin used. This approach, which is recom-
mended by Engelberg et al. (2009, Section 4.1.1), differs from the SCE, which
assumes a uniform distribution over the support of the bin (Armantier et al.,
2017, Footnote 28).

To discuss the two-bin case, suppose that a forecaster uses two adjacent bins,
[l,m) and [m, r), with l < m < r, probability mass α in the left bin [l,m), and
probability mass (1− α) in the right bin [m, r).

If α < 1/2, we set b = r and

a = m− (r −m) (α+
√

2α)

2− α
.

Hence the triangular distribution satisfies T ([a,m)) = α and T ([m, r)) = 1 − α,
where the notation T (I) indicates the probability mass assigned to the interval I.
In that sense, the triangular distribution matches the bin [m, r) containing more
probability mass. As α → 1/2, a→ m− (r −m), such that the fitted triangle is
symmetric around m, and the triangle’s base length is 2 (r −m).
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If α ≥ 1/2, we set a = l and

b = m+
(m− l)

(
1− α+

√
2 (1− α)

)
1 + α

.

Hence it holds that T ([l,m)) = α and T ([m, b)) = 1− α, i.e. the triangular dis-
tribution matches the bin [l,m) containing more probability mass. For α = 1/2,
the fitted triangle is symmetric around m, with base length equal to 2 (m− l).

There are two scenarios that are not covered by the preceding description:

• The forecaster uses two non-adjacent bins such as [0, 2) and [4, 8).

• The forecaster uses one or two bins, including one of the outer bins (i.e.,
p1 > 0 or pK > 0).

The method by Engelberg et al. (2009) does not prescribe a solution for the
former scenario. In the latter scenario, any solution would seem to depend on
an arbitrary choice of support limit. In our simulation analysis of Section 4, we
hence drop observations from either of the two scenarios in order not to distort
our findings on the quantification method.

Case B: Forecaster uses three or more bins

If the forecaster uses three or more bins, Engelberg et al. propose to fit a gener-
alized Beta distribution given by

FgBeta(x; a, b, l, r) =


0 x ≤ l,

1
B(a,b)

∫ x
l

(u−l)a−1(r−u)b−1

(r−l)a+b−1 du l < x ≤ r,
1 x > r,

(5)

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

Γ(a) =

∫ ∞
0

ua−1 exp(−u) du.

Instead of the limits 0 and 1 of the regular Beta distribution, FgBeta entails
flexible left and right limits l, r ∈ R with l < r. The two shape parameters
a, b ∈ R+ play the same role as in regular Beta distributions. Engelberg et al.
impose the constraint that a > 1 and b > 1 in order to obtain a unimodal shape,
which seems plausible in the present context.

In order to fit the distribution at (5) to a vector of histogram probabilities p,
Engelberg et al. propose to fix the limits l and r at the endpoints of the bins that
are being used. If one or both of the two outer bins are being used, the authors
propose to treat the limits l and/or r as free parameters to be estimated. That
is, l is a free parameter if p1 > 0, and r is a free parameter if pK > 0, where
K = 10 in the case of the SCE. Following Armantier et al. (2017, Appendix C),
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we impose the constraint that l > −38 and that r < 38 when estimating l and/or
r. We further impose that l < −12 and r > 12, as is logically required by the
SCE’s bin design. The shape parameters a and b are estimated in either case. In
the most general case where l and r are both estimated, the fitting problem is
thus given by

max
a > 1, b > 1,
−38 < l < −12,

12 < r < 38

K∑
k=1

[FgBeta(xk; a, b, l, r)− Pk]2 ,

where xk is the right endpoint of the kth histogram bin, and Pk =
∑k

j=1 pj is the
cumulative probability of the first k bins.

C Additional simulation results

Design of Section 4.1

B1 B2 B3 B4

B1 1.000 0.922 0.925 0.925
B2 0.922 1.000 0.959 0.953
B3 0.925 0.959 1.000 0.995
B4 0.925 0.953 0.995 1.000

Design of Section 4.2

N L R

N 1.000 0.997 0.995
L 0.997 1.000 0.993
R 0.995 0.993 1.000

Table 4: Correlation of mean forecasts computed via the Engelberg et al. (2009) method
across simulation designs. The top and bottom panel is analogous to Table 2 and 3,
respectively.
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D Additional figures
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Figure 4: Illustration of probabilistic inflation expectations from the December 2017
wave of the SCE. The figure is analogous to Figure 1, except that it adds fitted contin-
uous distributions (Engelberg et al., 2009) and indicates the standard deviation (s.d.)
instead of the ERPS for each panel.

27



0.00

0.25

0.50

0.75

1.00

10−2013 05−2014 12−2014 07−2015 02−2016 09−2016 04−2017 11−2017

E
R

P
S

Age Category Under 40 40 to 60 Over 60

0.00

0.25

0.50

0.75

1.00

10−2013 05−2014 12−2014 07−2015 02−2016 09−2016 04−2017 11−2017

E
R

P
S

Household Income Under 50k 50k to 100k Over 100k

0.00

0.25

0.50

0.75

1.00

10−2013 05−2014 12−2014 07−2015 02−2016 09−2016 04−2017 11−2017

E
R

P
S

Education High School Some College College

0.00

0.25

0.50

0.75

1.00

10−2013 05−2014 12−2014 07−2015 02−2016 09−2016 04−2017 11−2017

E
R

P
S

Financial Literacy and Numeracy Low High

Table 5: ERPS across sociodemographic groups (inflation, three years ahead).
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Table 6: ERPS across sociodemographic groups (pers. earnings, one year ahead).
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Table 7: ERPS across sociodemographic groups (house prices, one year ahead).
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