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Quantengravitation und Axione

In dieser Arbeit untersuchen wir die Weak Gravity Conjecture (WGC) und die
Swampland Distance Conjecture (SDC) im Zusammenhang mit Axionen. Sie
legen nahe, dass Theorien von Axionen mit super-Planck’schen Feldbereichen,
wie zum Beispiel Modelle von Large-Field Inflation, nicht kompatibel mit Quan-
tengravitation sind.

Wir stellen diese Aussage in Frage, indem wir Axione mit marginal super-
Planck’schen Feldbereichen in einer Kompaktifizierung von Typ IIB Stringtheorie
mit Flüssen konstruieren. In der zugehörigen 4d effektiven Theorie sind große
Felddistanzen nur zum Preis eines exponentiell niedrigen Cutoffs möglich. Dies
ist qualitativ ähnlich zur SDC.

Des Weiteren betrachten wir effektive Theorien von Axionen mit super-
Planck’scher Zerfallskonstante, welche daher die WGC verletzen. Axionische
Strings führen zu topologischer Inflation, was als Pathologie dieser Theorie aufge-
fasst werden kann. Dies legt nahe die naive magnetische WGC ernst zu nehmen.
Jedoch können wir keine endgültigen Schlüsse ziehen.

Schließlich untersuchen wir axionische Verschiebungssymmetrien, die unserer
Erwartung nach von Effekten der Quantengravitation gebrochen werden soll-
ten. Wir stellen fest, dass bestimme fermionische Operatoren eine solche
Brechung verursachen, und quantifizieren das Verbot von exakten axionischen
Verschiebungssymmetrien durch eine spekulative untere Schranke an Axion-
massen. Außerdem diskutieren wir 3-Formen als effektive Beschreibungen von
Instantonen und Fermionwechselwirkungen, welche von gravitationellen Instanto-
nen generiert werden.

Quantum Gravity and Axions

In this thesis we study the Weak Gravity Conjecture (WGC) and the Swampland
Distance Conjecture (SDC) in the context of axions. They suggest that theories
containing axions with super-Planckian field ranges, such as models of large field
inflation, are incompatible with quantum gravity.

We challenge this statement by constructing axions with mildly super-Planckian
field ranges in a compactification of type IIB string theory with fluxes. Large field
distances in the corresponding 4d effective theory are only possible at the expense
of an exponentially low cutoff. This is in spirit consistent with the SDC.

Furthermore we study effective theories of axions with super-Planckian decay
constants which hence violate the WGC. Axionic strings lead to topological in-
flation which may be considered a pathology of such theories. This suggests to
take the naive magnetic WGC for axions seriously but we can not draw definite
conclusions.

Finally we investigate axionic shift symmetries which are expected to be broken
by quantum gravitational effects. We point out that certain fermion operators
break such symmetries and quantify the censorship of axionic shift symmetries via



a conjectured lower bound on axion masses. Besides we discuss 3-forms as effective
descriptions of instantons and fermion interactions generated by gravitational
instantons.
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Malte Schäfer and Ulrich Uwer for being part of my examination committee.

I thank Sascha Leonhardt for proofreading and helpful comments on parts of
this thesis.

I am grateful for the financial support of the Heidelberg Graduate School of
Fundamental Physics and the Institute for Theoretical Physics at Heidelberg Uni-
versity. I especially thank Sandra Klevansky and Eduard Thommes for their help
in these matters.

Finally, I thank my family, Ulla, Christian, Mark and Lotte, for their constant
and invaluable support during my PhD. I am especially grateful to Lotte, for her
patience and all the compromises she had to make for me.

7





Contents

1 Introduction 11
1.1 String Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 The String Landscape . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Moduli in String Compactifications . . . . . . . . . . . . . . 13

1.2 The Swampland Paradigm . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 The Swampland Distance Conjecture . . . . . . . . . . . . . 15

1.2.2 The Weak Gravity Conjecture . . . . . . . . . . . . . . . . 16

1.3 Natural Inflation and Swampland Constraints on Axions . . . . . . 18

1.4 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . 20

2 Super-Planckian Axions in String Theory and a Moduli Space Size Con-
jecture 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 A Monodromic Moduli Space via Fluxes . . . . . . . . . . . . . . . 26

2.2.1 KNP vs. Winding Trajectories from Fluxes . . . . . . . . . 26

2.2.2 Brief Interlude Concerning the Action of the Modular Group 28

2.2.3 Flux Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 The Monodromic Moduli Space . . . . . . . . . . . . . . . . 30

2.3 Topology and Geometry of Fundamental Domains of Congruence
Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Size of the Moduli Space . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Winding and KK Modes on the Compact Space . . . . . . . 36

2.4.2 The Restricted Moduli Space . . . . . . . . . . . . . . . . . 39

2.4.3 Estimating the Size of the Restricted Moduli Space . . . . . 41

2.4.4 Suppression of Worldsheet Instantons . . . . . . . . . . . . 46

2.4.5 Statement of the Conjecture . . . . . . . . . . . . . . . . . . 47

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 The Magnetic Weak Gravity Conjecture for Axions 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Naive Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Singular String Spacetimes . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Non-singular String Spacetimes . . . . . . . . . . . . . . . . . . . . 60

3.5 Magnetic string in an Effective Theory with f > MP . . . . . . . . 63

3.5.1 Constructing the Effective String with f > MP . . . . . . . 63

3.5.2 Estimating the String Tension . . . . . . . . . . . . . . . . 67

9



Contents

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Effective 3-form Description of Instantons and Axion Potentials 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 The Physics of Massless and Massive 3-forms . . . . . . . . . . . . 76
4.3 3-form Gauge Theory as Effective Field Theory of Instantons . . . 77

4.3.1 Pure Yang-Mills Theory . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Yang-Mills Theory with Fermions . . . . . . . . . . . . . . . 79
4.3.3 Yang-Mills Theory with Fermions and Yukawa Couplings . 82

4.4 Swampland Constraints on Axions and Fermions . . . . . . . . . . 83
4.4.1 Global Symmetries and Fermion Operators . . . . . . . . . 83
4.4.2 (Too Strong) a Constraint on Axions from the WGC for

3-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.3 A Conjecture on Axion Potentials and Implications for

Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Gravitational Instantons and Fermion Interactions . . . . . . . . . 88
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.A 3-form Gauge Theory . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.A.1 Pure 3-form Gauge Theory . . . . . . . . . . . . . . . . . . 94
4.A.2 3-form Gauge Theory Coupled to a Scalar Field . . . . . . 97

4.B Instantons in Yang-Mills Theory . . . . . . . . . . . . . . . . . . . 100

5 Summary and Outlook 107

10



1 Introduction

The 20th century was an exceptionally fruitful period of time for fundamental
physics, both experimentally and theoretically. From the theoretical point of
view one can barely overestimate the importance of the development of quantum
field theory (QFT) and general relativity (GR). Indeed, the standard model of
particle physics (SM) as well as the ΛCDM model of cosmology are formulated
within the framework of QFT and GR. They correctly describe a large fraction
of observed phenomena on scales ranging from 1026 m, the scale of the observable
universe, down to microscopic scales of 10−20 m, which are probed at the Large
Hadron Collider at CERN. This range covers impressive 46 orders of magnitude.

However, the utility of QFT and GR goes beyond their application in the SM
and ΛCDM model. In a sense they capture the essence of our knowledge about
the most fundamental principles of nature. This is one reason why most of the
current research on physics beyond the SM (BSM) is done in the framework of
QFT and GR. If one is not directly interested in a truly fundamental description
of nature and is ignorant of physics beyond some energy scale Λ, the concept
of effective field theories (EFTs) has proven to be very flexible and powerful to
describe low energy physics. While any QFT that is supposed to be valid at all
energy scales has to be renormalizable in order to be predictive, an EFT is by
definition only meant to be an approximate description of nature which breaks
down beyond a characteristic energy scale Λ, the cutoff. Even though the SM is
in fact renormalizable it is oftentimes only interpreted as an EFT.

The principle of naturalness applied to the electroweak hierarchy problem of
the SM has been the primary guideline in model building for decades [1–3]. This
has led to many different BSM models such as technicolor [4], low-scale super-
symmetry (SUSY) [5], extra dimensions [6, 7], and the little Higgs [8]. However,
with the absence of new BSM particles at the LHC these models are considerably
constraint by experimental data [9] and in particular do not solve the electroweak
hierarchy problem anymore. These negative results have led some theorists to re-
examine the principle of naturalness itself [10–12]. In any case, right now it seems
like the most reliable principles we can refer to in model building are simplicity
and mathematical consistency. This is not much and without good experimental
or theoretical guidance at hand it is very difficult to favor one particular model
over the other if both correctly reproduce experimental data.
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1 Introduction

1.1 String Theory

Besides concrete phenomenological problems there is the more fundamental ques-
tion how QFT and GR can be combined to give a consistent theory of quantum
gravity (QG). One of the best understood and promising candidate theories of
QG is (super-)string theory which is based on the quantum theory of a string
propagating in spacetime. So far five different consistent string theories are known
which are called type I, type IIA, type IIB, heterotic SO(32) and heterotic E8×E8

string theory (see [13–16] for classic introductions to string theory). Consistency
of these theories requires spacetime to have 10 dimensions. Furthermore the five
known string theories are thought to emerge from one single fundamental theory,
called M-theory.

1.1.1 The String Landscape

The fact that string theory lives in nine spatial dimensions obviously contradicts
the fact that we see only three of them. One way to resolve this contradiction is
to assume that the additional six dimensions are compact and so small that we
are not able to observe them with current experiments. The full 10-dimensional
spacetime is then taken to be a direct product M10 = M4 × X6, where M4

is the 4-dimensional spacetime we observe and X6 is a compact 6-dimensional
manifold. There is an extremely large number of possible topologies for X6 each
of which gives rise to a different (metastable) string vacuum and a corresponding
low energy theory in four dimensions. Initial hopes that string theory does not
only provide a unifying framework for QFT and GR but also uniquely gives rise
to the SM at low energies have been quickly upset by this observation.

Nevertheless, there is still the exciting possibility that at least one of the many
topologies gives rise to the SM at low energies. To answer the question whether
this is possible or not theoretical physicists have extensively studied string com-
pactifications on a special type of manifold, so-called Calabi-Yau manifolds, which
have a vanishing Ricci-tensor RMN = 0. Although Calabi-Yau manifolds lead to
phenomenologically attractive 4d EFTs they also have serious problems which
need to be addressed in order to obtain realistic 4d physics. One of these prob-
lems is the presence of many massless or light scalar fields, so-called moduli, which
is in contradiction to fifth force experiments [17] and leads to the cosmological
moduli problem [18–21].

A possible solution to this problem is provided by so-called flux compactifica-
tions. The 10-dimensional EFT of string theory, supergravity, contains general-
ized versions of the electromagnetic field strength Fµν . These generalized field
strengths are p-form field strengths or, equivalently, totally antisymmetric ten-
sor fields Fµ1...µp with p indices and are naturally integrated over p-dimensional
(sub)manifolds. If these (sub)manifolds are homologically non-trivial, so-called
p-cycles, the integral of a p-form field over this p-cycle takes on only quantized
values. This is simply a higher-dimensional version of the Dirac quantization
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1.1 String Theory

condition for magnetic monopoles. In the case of non-zero integral one says that
there is non-trivial p-form flux on the cycle.

Since the compact manifold X6 in general contains many different cycles each
of them can be equipped with different amounts of flux. These fluxes cannot be
chosen completely arbitrary but are subject to the tadpole cancellation condition
which in particular forbids arbitrarily large fluxes. These fluxes introduce a con-
tribution to the 4d energy density which depends on the moduli fields and in this
way generate a potential for them. This procedure is called moduli stabilization
and can solve the phenomenological problems of moduli but also increases the
number of string vacua because each choice of fluxes can give rise to a different
potential for the scalars. For a detailed discussion of flux compactifications see
for example [22,23].

The freedom in the choice of topology and fluxes eventually leads to a vast
number of 4d low energy theories in string theory [23–25]. Although enormous,
this number is thought to be finite and has been estimated to be at least of the
order of 10272000 [26]. The set of all these 4d EFTs is referred to as the string
landscape. Even though the number of relevant stringy 4d EFTs seems to be
finite this does not really improve our situation from a practical point of view.
We know nothing specific about the vast majority of those models and even if
we would, it is obviously completely unfeasible to analyze them all in order to
determine which of them may fit best to experimental observations.

1.1.2 Moduli in String Compactifications

When supergravity is compactified to four dimensions each 10-dimensional phys-
ical degree of freedom gives rise to an infinite tower of Kaluza-Klein (KK) states
and the corresponding fields. Of particular interest are the massless KK zero
modes as they necessarily have to be included in the 4d EFT. Among these are the
moduli fields we have mentioned in the last subsection already and their vacuum
expectation values parametrize the so-called moduli space. Physically, the moduli
space parametrizes all possible vacuum field configurations of the 10-dimensional
fields for a given compact manifold. This is similar to the vacuum expectation
value of Nambu-Goldstone bosons. However, Nambu-Goldstone bosons are pro-
tected by an exact symmetry from quantum effects while the stringy moduli in
general are not. Hence they can receive a non-vanishing potential via pertur-
bative and non-perturbative quantum corrections. SUSY can protect some or
all moduli against such corrections. In the following we discuss two important
types of stringy moduli, axions and geometric moduli, in some more detail. More
exhaustive discussions can be found in [23,27,28].

Let us start with axions which are particularly well-known from the Peccei-
Quinn solution to the strong CP problem. Axions are pseudoscalars with a pertur-
bative shift symmetry and therefore massless at the perturbative level. Often this
continuous shift symmetry is broken by non-perturbative effects to a discrete shift
symmetry. In this case the axion is a periodic field with a purely non-perturbative
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1 Introduction

potential. In string compactifications axions typically arise when p-form gauge
fields Ap are integrated over p-cycles in order to obtain the corresponding 4d scalar
field. Such gauge fields are naturally present in the 10-dimensional EFT of string
theory and transform under a gauge symmetry according to Ap → Ap + dCp−1,
where Cp−1 is some arbitrary (p − 1)-form field. This higher-dimensional gauge
symmetry eventually gives rise to the shift symmetry of the corresponding axion
in four dimensions.

Geometric moduli correspond to certain smooth deformations of the compact
manifold’s metric. More specifically, consider a string compactification on a
Calabi-Yau manifold X6 with metric gMN and Ricci-tensor RMN [g]. By definition
we have RMN = 0. Now consider a smooth deformation δg of the original metric
g such that the resulting metric can be written as g′ = g + δg. Then the geomet-
ric moduli correspond to those deformations δg which satisfy RMN [g + δg] = 0.
That means in particular that the vacuum expectation value of these moduli
parametrize the vacuum solutions of the internal components of the 10d Einstein
equation.

In order to gain some intuition for axions and geometric moduli let us illustrate
them in the example of Einstein-Maxwell theory in five dimensions compactified
on a circle S1. The field content is given by the metric tensor gMN and the
electromagnetic 1-form potential A = AMdx

M with M,N ∈ {0, 1, 2, 3, 4}. In
the 4d EFT each of these fields gives rise to a massless KK state. Among these
massless fields is the Wilson line ϕ =


S1 A of the 5d 1-form potential A. As

mentioned above this 4d scalar inherits a perturbative continuous shift symmetry
ϕ→ ϕ+ const. from the 5d gauge symmetry which reveals its axionic nature.

Next consider the component g44 of the metric tensor. It determines the volume,
i.e. circumference, of the S1 to be 2πR =


S1 dx

4√g44 where R corresponds to
the radius of the S1 which, in general, depends on the 4d coordinates. Thereby
this defines a scalar field R in the 4d EFT which turns out to be massless at tree
level. R is an example for a geometric modulus the vacuum expectation value
of which parametrizes different solutions of the vacuum Einstein equations, in
this case circles of different radii. Since our toy model is not supersymmetric
we expect quantum corrections to provide a potential for R. Indeed the Casimir
energy associated with the circle generates a potential ∼ 1/R4 for R which has
a minimum in the decompactification limit R → ∞ [29]. Such unstable behavior
can be avoided by introducing suitable fluxes on the S1.

1.2 The Swampland Paradigm

We have seen that the string landscape contains extremely many 4d EFTs. This
raises the impression that essentially anything goes and that there is no hope to
definitely answer the question whether the SM is contained in the landscape or not.
From a conceptual point of view, this situation may be improved tremendously
by the swampland paradigm introduced by Vafa in [30]. He pointed out that
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1.2 The Swampland Paradigm

not all EFTs which are consistent from a field theoretical point of view are also
necessarily consistent with QG. Such theories are hence not part of the string
landscape but instead are said to be in the swampland. The motivation for this
picture comes from the observation that all 4d EFTs obtained in string theory
seem to have certain properties in common that can never be violated. Those
properties are frequently called swampland constraints. The intriguing power of
the swampland paradigm is that the corresponding constraints can be formulated
quite generally so that they can be easily checked for any given EFT. In this way
they may give novel guidelines for model building and we will discuss an example
for this in the following paragraphs.

Before we continue to review two important swampland constraints let us add
a word of caution: All of these constraints are speculative and merely conjectures.
Most of the evidence for them is based on examples in string theory. Nonetheless,
if true, they provide new insights into the nature of QG and help distinguishing
promising paths from dead ends in model building.

1.2.1 The Swampland Distance Conjecture

Now we are ready to state the first swampland constraint, the so-called Swamp-
land Distance Conjecture (SDC), as first formulated in [30] and made more precise
in [31]. Consider a given string compactification and the corresponding moduli
space M. Recall that different points in M correspond to different vacuum ex-
pectation values of the moduli fields. The kinetic terms of all moduli can be
compactly written as gij(Φk)∂µΦ

i∂µΦj where i, j, k run over all moduli. If we
interpret the Φi as coordinates on the moduli space, it is given the structure of
a manifold with metric gij(Φk). Consequently, one can calculate the distance
d(p1, p2) between two points p1, p2 ∈ M in the moduli space. In the following
we assume d(p1, p2) to be measured in terms of the Planck mass M4 of the 4-
dimensional EFT. Now, let us consider the EFT at the point p1 ∈ M and denote
its cutoff by Λ. In particular all states within this EFT have masses below Λ.
Then, given another point p2 ∈ M, the SDC states that there is an infinite tower
of massive states appearing in the EFT at p2 with lowest mass of the order of
M4e

−αT for some α > 0 and T > d(p1, p2). Obviously, these states can become
arbitrarily light if p2 is arbitrarily far away from p1. That means, once the lightest
state of the tower becomes lighter then the cutoff Λ, our original EFT we started
with at p1 breaks down because it originally did not include these light states.
In other words, we cannot expect an EFT which is valid at one point in moduli
space to be also valid at all other points in moduli space.

In order to illustrate this conjecture we can go back to the Einstein-Maxwell
theory in five dimensions compactified on a circle. This will give rise to KK states
with masses mKK = n/⟨R⟩ with n ∈ Z and ⟨R⟩ the vacuum expectation value of
the modulus R which corresponds to the radius of the circle. Let us consider the
corresponding 4-dimensional EFT with cutoff Λ ≪ 1/⟨R⟩ such that the massive
KK states are not included in the EFT. The 4-dimensional kinetic term of the
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1 Introduction

modulus R reads (3/2)M2
4 (∂R)

2/R2 where the 4-dimensional Planck mass M4 is
related to the 5-dimensional one according to M2

4 = 2π⟨R⟩M3
5 . From this we can

easily read off the metric on moduli space to be ds2 = (3/2)M2
4 (dR/R)

2.1 Now
the distance between two points in moduli space specified by R1 and R2 > R1

is given by d(R1, R2) =

ds/M4 = (3/2) log(R2/R1). Comparing the lowest KK

mass at R1 and R2 we find mKK(R2)/mKK(R1) = exp[−(2/3)d(R1, R2)]. This
shows that the KK masses become exponentially light compared to our starting
point R1 when we move through the moduli space and our original EFT will
eventually become invalid at points far away from R1 in accordance with the
SDC. In particular the KK tower of states is infinite.

The essential insight that we can draw from this conjecture is that super-
Planckian field ranges, corresponding to large distances in moduli space, are
difficult if not impossible to obtain consistently within EFTs. While the orig-
inal conjecture was formulated mainly with strictly massless moduli in mind it
seems to hold also for massive ones [32] or even for the variation of any field [33]
(see also [34]). Many explicit examples in string theory [35–40] but also more gen-
eral studies [41–45] support this point of view. However, there are also examples
which are in tension with the SDC [46–49] and may require an improvement of
the conjecture.

1.2.2 The Weak Gravity Conjecture

Next let us consider a second important swampland constraint: the Weak Gravity
Conjecture (WGC) [50]. The simplest version of the WGC can be stated as
follows. Consider a U(1) gauge theory that is coupled to gravity. Then there
must exist a charged particle with mass m such that m ≲ gMP where g is the
gauge coupling. Here we have normalized g such that the charge of this particle
is one. This condition ensures that the electric force between two such particles
is larger than the gravitational attraction, hence the name WGC.

Conceptually, the WGC is closely related to the folk theorem that gravity is
incompatible with global continuous symmetries [51–54]. Now, given a local sym-
metry such as in a U(1) gauge theory, naively nothing prevents us from taking the
limit g → 0 and ending up with a global symmetry. Since such a global symmetry
seems to be inconsistent with gravity we expect a general constraint on how small
g can be chosen. Exactly such a constraint is provided by the WGC which bounds
g from below by the mass of charged particles.

Besides the so-called electric form of the WGC, m ≲ gMP, there is a magnetic
counterpart which requires the existence of an unexpected low cutoff Λ which
obeys Λ ≲ gMP. That means, in an EFT with gauged U(1) symmetry we can
come arbitrarily close to a global U(1), g → 0, but only at the expense of a
very low cutoff. One can derive this magnetic WGC from the original electric

1Note that in this formula we no longer view R as a 4d field but instead as a coordinate of the
moduli space. Strictly speaking we hence should write ⟨R⟩ but will stick to R for the sake of
simplicity.
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1.2 The Swampland Paradigm

form by applying it to the monopoles of the U(1) theory. If the mass of the
magnetic monopole ismmag, we can apply the electric WGC to it and findmmag ≲
gmagMP ∼ g−1

el MP, where we used that the magnetic coupling constant gmag and
electric coupling constant gel are related by gmag ∼ g−1

el . On the other hand the
mass of the magnetic monopole is at least as large as the energy stored in its
magnetic field. Formally, this energy is infinite but if we employ a cutoff Λ it
reads mmag ∼ g−2

el Λ which combined with mmag ≲ g−1
el MP gives the magnetic

WGC Λ ≲ gelMP. Alternatively, one can derive this statement by demanding
that the minimally charged magnetic monopole must not be a black hole.

Very importantly, the WGC can be generalized to theories containing p-
dimensional extended objects, i.e. p-branes, instead of charged particles. While
charged particles couple to the electromagnetic 1-form potential A1 according to
WLA1, where WL denotes the particle’s worldline, p-branes naturally couple to
a (p + 1)-form potential Ap+1 via


WSAp+1. WS denotes the worldsheet of the

brane which is the (p+ 1)-dimensional surface in spacetime that is swept out by
the brane, completely analogous to the worldline of particles. The full action of a
theory containing a p-brane coupled with unit charge to a (p+ 1)-form potential
Ap+1 reads

Sp-brane = − 1

2g2p


Fp+2 ∧ ∗Fp+2 − Tp


WS

∗1−

WS

Ap+1 , (1.1)

where Fp+2 = dAp+1 is the field strength and gp is the gauge coupling. Note
that the tension Tp has dimension p + 1 and the gauge coupling has dimension
p+ 2− d/2 if the spacetime dimension is d. Then the generalized WGC reads

Tp ≲ gpM
d/2−1
P , (1.2)

where MP now denotes the d-dimensional Planck mass. Similarly to the original
WGC for U(1) gauge theories this generalized WGC has a magnetic counterpart
which involves the cutoff Λ of the corresponding EFT. It explicitly reads

Λ ≲ (gpMP)
1

p+1 . (1.3)

In the last few years there has been strong activity in the research on the WGC.
It is still missing a rigorous proof, although there have been some attempts towards
such a proof [55–61]. Similarly, the precise formulation of the original conjecture
for U(1)-theories and its generalizations is not clear. Several versions of the WGC
have been discussed and explored in the literature [34, 62–70]. For example, one
uncertain point is whether the condition m ≲ gMP should hold for one particle,
the lightest particle or even for an infinite number of particles. In the latter
case we have to explicitly include the charge Q of each particle since we cannot
simultaneously normalize all charges to one. Then the WGC requiresm ≲ gQMP,
where m is the mass of the particle with charge Q. A lot of this recent activity
has been triggered by the application of the WGC to natural inflation [71–83]
which we will discuss in more detail in the next section.
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1.3 Natural Inflation and Swampland Constraints on
Axions

Early on in the beginning of inflationary model building it has been realized
that generic potentials such as polynomials give rise to a phase of inflation if
the corresponding scalar inflaton field takes on super-Planckian field values [84].
This has the severe disadvantage that higher-dimensional operators in the EFT
become important at such high field values and hence spoil the validity of the
theory [28, 85]. In order to overcome this problem symmetries were used to sup-
press or even completely exclude those higher-dimensional operators. A very
successful model of this type is natural inflation [71]. It employs an axion ϕ
whose perturbative continuous shift symmetry forbids any potential terms and
in particular the dangerous higher-dimensional operators. The potential that is
necessary for inflation to occur is generated non-perturbatively by instantons of
a Yang-Mills sector to which the axion is coupled. It has the well-known form
V (ϕ) = V0e

−S(1− cos(ϕ/f)) +O(e−2S). Here S is the instanton action, f is the
axion decay constant and inflation requires f ≳ MP, i.e. super-Planckian axion
decay constant. In addition we need S ≫ 1 to neglect multi-instanton corrections
to the potential at order O(e−2S).

An interesting experimental prediction of natural inflation is a tensor-to-scalar
ratio r ∼ 0.1 for a scalar spectral index ns = 0.9649 ± 0.0042 as determined
by the PLANCK 2018 data [86]. Primordial gravitational waves associated with
such a large value of r could be observed in the BICEP2 experiment [87]. After
some excitement about a possible detection of these waves corresponding to r ∼
0.2 in 2014 [88], which subsequently has been attributed to dust foreground, no
experimental evidence for r ∼ 0.1 has been found so far. By now the upper
bounds on r provided by the PLANCK and BICEP2 collaborations even have
become so strong that natural inflation is in substantial tension with experimental
data [86,89].

Even though this is discouraging from a phenomenological point of view a lot
of research that has been done on models of natural inflation is valuable beyond
its phenomenology. This is especially true for the application of swampland con-
straints to those models and the associated research on the SDC and WGC in
general. In the following we will explain how natural inflation is related to the
swampland paradigm and how the corresponding constraints can ultimately be
understood as general QG constraints on axions independently of inflation.

When trying to obtain models of natural inflation from string theory it was
realized that the necessary super-Planckian axion decay constants are very diffi-
cult, if not impossible, to obtain in a controlled setting [90]. This conclusion is
supported by the naive application of the WGC to axions. To see this consider the
generalized WGC in (1.2). For d = 4 and p = −1 it applies to a theory of a real
scalar ϕ with field strength dϕ and a perturbative shift symmetry: it is nothing
else than an axion. ϕ naturally couples to (−1)-branes which have a point-like
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1.3 Natural Inflation and Swampland Constraints on Axions

worldsheet. Hence (−1)-branes are simply events in spacetime and can be viewed
as idealized, point-like instantons.

Recall that these two ingredients, an axion coupled to instantons, are exactly
what the natural inflation model consists of. The action of natural inflation is
given by

SNI = −f
2

2


dϕ ∧ ∗dϕ− 1

2g2YM


tr(F2 ∧ ∗F2) +

1

8π2


ϕ tr(F2 ∧ F2) , (1.4)

where f is the axion decay constant as before, F2 is the field strength of a non-
abelian gauge sector, and gYM its coupling constant. Now we would like to com-
pare (1.4) with (1.1) in order to determine g−1 and T−1 in terms of gYM and
f . This is easily done for the first term by identifying ϕ = A0 which implies
g−1 = 1/f .

Comparing the second term is more subtle. The problem is that instantons in
(1.4) are localized field configurations of finite size while they are treated ideal-
ized as point-like objects in (1.1). However, in the absence of arbitrarily large
instantons we can treat the remaining small ones as point-like at sufficiently low
energies. This scenario could be realized, for example, by Higgsing the gauge the-
ory at a high scale such that large instantons are suppressed. In this sense (1.1)
can be understood as the low energy effective action of (1.4). Now let us compare
the second terms in (1.1) and (1.4). For a 1-instanton configuration we denote
the latter by S. The corresponding term in (1.1) reads T−1


WS ∗1. Because the

worldsheet of an (idealized) instanton is a point in spacetime this integral simply
counts the number of instantons and consequently equals one for a 1-instanton
configuration. Thus we conclude T−1 = S.

For completeness let us also briefly discuss the third terms in (1.1) and (1.4).
The integral in (1.1) simply evaluates the axion A0 = ϕ at points in spacetime
where an instanton is located. To coincide with the corresponding term in (1.4),
the expression tr(F2∧F2) must be proportional to a sum of δ-functions which are
centered at the position of the instantons. This is indeed the case in the limit of
vanishing instanton sizes.

Using T−1 = S and g−1 = 1/f in (1.2) yields the constraint fS ≲ MP. We
have seen that S ≫ 1 is necessary to maintain control over the non-perturbative
axion potential. But then fS ≲ MP implies f ≪ MP, i.e. super-Planckian axion
decay constants are forbidden by the WGC in the controlled regime. Thus natural
inflation is naively censored by the WGC.
Besides the WGC it is also possible to apply the SDC to natural inflation. To

do so we make use of the Lyth-bound [91] which relates the tensor-to-scalar ratio
r to the field range ∆ϕ which the inflaton traverses during inflation. It reads

∆ϕ

MP
= O(1)


r

0.01
. (1.5)

Since data favors r ∼ 0.1 [86] for natural inflation we conclude that ∆ϕ ∼ MP

in this case. But the SDC tells us that Planckian field excursion cannot be
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consistently described within a single EFT. Hence natural inflation seems to be
incompatible with the SDC as well.

All of these findings support the idea that natural inflation is in tension with
QG constraints as are formulated within the swampland program. Even though
there are proposals to evade these constraints [92–94], none of them is completely
free of caveats [36, 39, 66, 73, 74, 76, 79–81, 83]. It is hence an important task to
improve the understanding of the SDC and WGC when applied to axions. This is
not only motivated by the relevance of axions for natural inflation but also more
generally by their importance for different proposals for BSM physics such as the
axion solution to the strong CP problem [95–101], dark matter [102–106] (for a
review on axion cosmology see [107]) and string theory [28].

Besides finding a rigorous proof there are two main directions along which one
can attempt to make progress towards a better understanding of the SDC and
WGC for axions. First, there is the example-based approach. Indeed, most of
the evidence in favor of the SDC and WGC is drawn from explicit constructions
in string theory which all seem to obey the two swampland constraints. Alterna-
tively one can try to find explicit counter examples within string theory. Since
string theory is the main motivation for the conjectures this would cast serious
doubt on the validity of the SDC and WGC. One then would have to analyze
whether an improved version of the conjectures holds or one has to drop them
altogether. Second, one can find general arguments for or against the conjectures
independently of string theory. This could be done, for example, by showing that
EFTs which violate the SDC or WGC suffer from some fundamental pathologies.
Evidence found in this way would be complementary to that found in string the-
ory and possibly gives more insight into the underlying principles of swampland
constraints. Furthermore the application of the conjectures to different EFTs can
serve as an important consistency check and may give hints towards the correct
formulation of them.

1.4 Contribution of this Thesis

Motivated by the relevance of axions for natural inflation and their frequent ap-
pearance in many proposals for BSM physics as well as in string theory this thesis
is devoted to the study of the SDC and the WGC applied to axions. In particu-
lar we investigate the question whether axions with significantly super-Planckian
field range are censored by swampland constraints and whether they exist in string
theory. To do so we employ essentially the two approaches described above, i.e. on
the one hand we analyze an explicit example in string theory that contains axions
and on the other hand we study the magnetic WGC for axions from a low energy
perspective. Furthermore we consider axions coupled to Yang-Mills theory which
leads us to speculate about constraints on axion potentials.

Our goal in Chapter 2 is to find an axion in the moduli space of a concrete
string compactification with as large a field range as possible. Since we are not
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interested in phenomenological applications we can ignore many complications,
such as SUSY-breaking and moduli-stabilization, which one otherwise would have
to address to construct realistic models of, for example, natural inflation. We
consider a very simple compactification of type IIB string theory on a factorizable
6-torus (T2×T2×T2)/Z2 subject to a Z2-identification. For this compactification
all moduli are massless. In particular, several of the moduli are axions which,
however, have only exactly Planckian field range.

This situation can be improved by turning on fluxes on the tori which has
two main effects. First, a potential for the moduli is generated such that only
a complex 2-dimensional subspace of the original moduli space remains flat. In
particular this subspace contains two flat axionic direction. Second, the flux on
the tori reduces the original SL(2,Z) symmetry of these and leave us with so-called
congruence subgroups of SL(2,Z). Surprisingly, this reduced symmetry leads to
an increase in the size of the moduli space. In fact the field range of one of the
axions is enhanced by the a flux number N which is bounded from above by
16 according to a tadpole cancellation condition. Consequently, we successfully
constructed an axion with mildly super-Planckian field range. Given this result
one would naively also expect the whole moduli space to have increased in size by
a factor N . This however is not true because the topology and geometry of the
moduli space is very non-trivial and, in particular, the large axionic direction is
not a geodesic. Instead we find that the size grows only logarithmically with the
flux number.
In the second part of our analysis we examine the moduli space from a 4d low

energy perspective. To do so we introduce the concept of a restricted moduli
space M(Λ) which depends on an energy scale Λ. M(Λ) is defined as the set of
all points in moduli space at which the masses of KK and winding modes, that
occur upon dimensional reduction to four dimensions, are larger than Λ. This
means that a 4d EFT with cutoff Λ is valid only in the restricted moduli space
M(Λ) and breaks down outside due to the appearance of light KK or winding
modes. We can estimate the size of the restricted moduli space to be of the order
of ln(MP/Λ) where MP is the 4-dimensional Planck mass. In contrast to the full
moduli space the size of the restricted moduli space is not affected by the fluxes.

Motivated by our simple example we formulate the following conjecture about
moduli spaces of a general string compactification to four dimensions: Consider
two points in the moduli space which have a distance L as determined by an
appropriate geodesic connecting these two points. Then there exist points on this
geodesic at which the lightest KK or winding mode mass is below or of the order
of MP exp(−αL), with α ∼ O(1). Note that this is very similar to the original
SDC but differs from it by the fact that our conjecture allows for two widely
separated points at which no light KK or winding modes are present but which
instead occur somewhere in between on a geodesic connecting the two points.

In Chapter 3 we analyze the magnetic WGC for axions from a low energy per-
spective. Naively extrapolating (1.3) in four dimensions to axions, i.e. p = −1,
yields Λ = 0 which suggests that EFTs with super-Planckian axion decay con-
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stants, f > MP, and hence super-Planckian axionic field ranges do not exist.
Since this is a strong claim and it is not clear whether (1.3) can be trusted for
p = −1 we study low energy theories with f > MP to see whether something is
fundamentally wrong in such theories. More specifically, recall that the alterna-
tive formulation of the magnetic WGC for U(1) theories was that the magnetic
monopoles must not be black holes. The analogues of magnetic monopoles in a
theory of axions are strings which are magnetically coupled to the axion. Conse-
quently we focus on such strings and the question whether these develop an event
horizon similar to that of a black hole for super-Planckian axion decay constant
f > MP.
It turns out that the spacetime of axionic strings has no event horizon but a

physical singularity at a finite distance from the string axis. For f ≪ MP this
singularity is exponentially far away from the string and may be irrelevant in a
cosmological setting but it definitely does not provide a physical solution of an
isolated string. One can get rid of this singularity at the expense of having a
non-static spacetime as can be shown rigorously in an explicit model that pro-
vides an ultraviolet completion of the axionic string [108, 109]. For f ≲ MP the
spacetime inflates along the string axis only while for f ≫MP inflation occurs in
all directions. This latter situation is known under the name topological inflation.
Unfortunately it is unclear whether such highly non-static strings are allowed by
the magnetic WGC. We are therefore left with a rather inconclusive situation al-
though it seems unlikely that topological inflation should be allowed by the WGC.
This tendency is based on the observation that allowing topological inflation also
in U(1) theories would invalidate certain versions of the corresponding magnetic
WGC which we trust more than the naive axionic counterpart.
In an attempt to circumvent the problems with topological inflation we next

consider a theory that contains two axions with sub-Planckian decay constant and
corresponding strings which are at least minimally well-behaved in the sense that
they only inflate along the string axis. By appropriately gauging the shift symme-
try of these two axions by one and the same 3-form gauge field we end up with a
theory that contains a single effective axion with super-Planckian decay constant.
The corresponding effective string is built out of the two strings of the original
axions which are bound together by domain walls. An estimate of the tension of
this composite string, however, suggests that also in this case topological inflation
will take place or singularities will be present. Thus our gauging approach failed
to construct a well-behaved string with super-Planckian axion decay constant and
our original conclusion that the status of the magnetic WGC for axions is rather
unclear remains.
Finally, we discuss axion potentials and possible QG constraints on it in Chapter

4. The central idea here is that we expect the perturbative axionic shift symmetry
to be broken non-perturbatively in order to satisfy the expected censorship of
global symmetries by QG. As is well known, this is indeed the case for an axion
that is coupled to a Higgsed Yang-Mills theory. Recall that the corresponding
potential has the form V (ϕ) = V0e

−S(1 − cos(ϕ/f)) + O(e−2S). The WGC for
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axions requires fS ≲ MP so that the suppression of the potential due to the
instanton action cannot be arbitrarily strong. Nevertheless, this does not strictly
exclude a non-vanishing axion potential since the prefactor V0 is not constrained
at all.

Indeed, if we couple massless fermions to the Yang-Mills theory or let massive
ones become massless, V0 vanishes and hence also the axion potential. This can
be understood as a consequence of a global symmetry which consists of a shift
in the axion and an anomalous U(1) rotation of the massless fermions. A similar
symmetry occurs for fermions which have no hard mass term but become massive
via Yukawa couplings. In such a theory the axion would be massless as well.
We point out that any fermion operator which explicitly breaks anomalous chiral
rotations also breaks the shift symmetry that ensures a flat axion potential and
hence provides a mechanism by which QG could potentially censor axionic shift
symmetries.

So far we have discussed the breaking of axionic shift symmetries by QG on a
qualitative level. It would, however, be interesting to know more precisely how
strong this breaking of shift symmetries should be. A natural measure for this
strength seems to be the amplitude V0e

−S of the axion potential which must
vanish in the presence of a shift symmetry. Our first, simplest guess, partially
based on the WGC for axions, is V0e

−S ≳ M4
P exp(−MP/f). This, however, can

not be true since N = 2 supergravity has an exactly vanishing potential for axions
and, as the low energy EFT of string theory, is certainly compatible with QG.
Consequently, we should not require a non-vanishing axion potential under all
circumstances.
Our second approach towards a bound on axion potentials makes use of the

effective 3-form description of Higgsed Yang-Mills theory which we discuss in
some length in the first part of Chapter 4. This effective description is also able
to capture the effects of fermions and axions which are coupled to the Yang-Mills
theory. Our idea is then that the application of the WGC for 3-forms to the
effective description may provide bounds on the axion potential. Unfortunately,
it turns out that this method does not lead to any sensible results.
Finally we propose a bound on axion potentials which seems to evade the

problems of the two approaches discussed above. Let µ be the cutoff of the
effective low energy theory that exclusively contains the axion, i.e. in particular
µ = 0 if there are other massless degrees of freedom. Then the axion poten-
tial is bounded from below according to V0e

−S ≳ µ4 exp(−MP/f). In theories
containing fermion operators which generate an axion potential this translates
into a lower bound on the strength of these operators. For example, in the case
of a Higgsed Yang-Mills theory with an axion and fermions of mass m we find
parametrically m ≳ exp(−MP/f)v where v is the Higgs scale.
In the last section of Chapter 4 we study the interesting possibility that grav-

itational instantons generate fermion operators. The underlying mechanism is
completely analogous to how gauge instantons generate so-called ’t Hooft vertices
which are higher-dimensional fermion operators breaking chiral U(1) rotations.
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However, the difficulty is to find an appropriate gravitational instanton that can
be embedded in an asymptotically flat spacetime and has the right topological
properties. We argue that a K3 manifold is a viable candidate for such an instan-
ton. A parametric estimate of the effect of such gravitational instantons reveals
that they are not relevant for phenomenology.
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2 Super-Planckian Axions in String
Theory and a Moduli Space Size
Conjecture

2.1 Introduction

Evidence from string theory (see for example [90]) as well as the SDC and WGC
(cf. Sections 1.2, 1.3 and Chapter 3) suggest that axions with super-Planckian field
ranges are incompatible with QG and reside in the swampland. In this chapter we
challenge this negative conclusion and attempt to construct super-Planckian axion
field spaces in a very simple stringy setting which allows for explicit calculations.
We are not interested in inflation or any other phenomenological application,
which allows us to avoid the problems of realistic string constructions. In addition,
we are not prone to the (possibly model-dependent) backreaction effects which
underlie the bounds obtained in [32, 36]. This increases the chance that any
bounds we find have a generic QG origin.

Thus, our focus are supersymmetric, flat axionic directions such that backreac-
tion plays no role. This is close in spirit to the approach taken in [110]. Here we
choose to work with type IIB string theory compactified on a toroidal orientifold
with supersymmetric 3-form flux. Such a flux generically reduces the dimension
of moduli space. It can also introduce a monodromy (with finite but possibly
large monodromy group) in the remaining flat directions.1 To keep the discussion
focused on the question at hand, we do not address the problem of stabilizing the
remaining moduli. Working out the consequences of our flux choice we find that a
certain 2-dimensional subspace of the full moduli space is enlarged by a factor N ,
where N is a flux number. In this way, to the best of our present understanding,
a super-Planckian flat axionic direction emerges.

However, one should be careful about an interpretation of this in the sense of
a large field space. The key is the geometry of this space. Indeed, the reason
for the extended moduli space is the reduced modular invariance of tori with

1Monodromies also arise in flux compactifications on Calabi-Yau manifolds and have been
discussed in the context of moduli dynamics and tunneling in the string landscape, see
e.g. [111–114]. In these works monodromy transformations connect points with different
values of the scalar potential or isolated vacua. By contrast, we study monodromy transfor-
mations between points on a periodic flat direction, enlarging the periodicity of the latter.
Note also that, following the recent literature on inflation, we use the term monodromy for
the breaking of a periodicity by flux, not for the large diffeomorphism required to make the
original periodicity manifest.
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fluxes as compared to tori without flux. The resulting moduli space is given by a
fundamental domain of so-called congruence subgroups of SL(2,Z). Together with
the proper metric, this space is a Riemann surface of a certain genus, with locally
hyperbolic geometry, with a number of conical singularities and with singular
cusps or throats. The natural way to measure distances between two points in
this space is via geodesics. However, the long axionic trajectories advertised above
are very far from being geodesics. Two points on such an axionic trajectory may
have an ‘axionic’ distance ∼ N , with N our potentially large flux number. Yet
their geodesic distance is only ∼ ln(N). More generally the geodesic distance
between any two points is bounded by an expression of order ln(MP/Λ), where Λ
is the cutoff below which the 4-dimensional effective theory is valid.

We try to formalize these findings in terms of two conjectures which are re-
lated to but also distinctly different from the well-known SDC and recent vari-
ants [30, 31, 33, 34]. Consider the moduli space of a generic 4-dimensional field
theory with cutoff Λ. Then we conjecture that the absolute size of the moduli
space, as measured by the appropriately defined diameter, scales as ln(MP/Λ).
Alternatively, we may focus on the full moduli space of a certain string compact-
ification. Pick two points in this moduli space which are connected by a geodesic
with length L. Then we claim that there exist points on this geodesic at which
the lightest KK or winding mode mass is smaller or of the order of exp(−αL),
with α ∼ O(1).

At first sight all of this might suggest that long and in particular long axionic
trajectories are not realizable in 4-dimensional effective field theories with high
cutoff. However, recall that we have found a long axionic direction. The fact
that this direction was not a geodesic may be irrelevant if one is able to construct
an appropriate potential that forces the field onto this long trajectory.2 Thus, it
appears that the question of large-field inflation requires knowledge beyond the
WGC and SDC.

2.2 A Monodromic Moduli Space via Fluxes

2.2.1 KNP vs. Winding Trajectories from Fluxes

We want to construct a long axionic direction in the moduli space of a supersym-
metric compactification of type IIB string theory as a long winding trajectory in
a compact field space. This is the Kim-Nilles-Peloso (KNP) mechanism [92], but
in our case the winding trajectory will arise due to 3-form fluxes rather than the
instanton potential employed in [92]. The idea is as follows. Consider a theory
with two axions φ1 and φ2 with small and, for simplicity, equal periodicity given

2Recently, a model of inflation has been proposed in which the hyperbolic geometry of field
space is essential [115] (see also [116]). It would be interesting to see whether this can be
realized in our setting. Such models have also been discussed in [117,118] (see also [119–123]).
In particular it has been pointed out therein that compatibility with observation may be
achieved without stabilizing all scalar fields except for the inflaton itself.
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φ1

φ2

f

f

Figure 2.1: Winding flat direction of total length ∼ Nf (shown for N = 5).

by the axion decay constant f . Even though this field space is small one can
generate a long trajectory by having a potential for the axions that has a mini-
mum at φ1 = Nφ2 for a large integer N . Now, the remaining flat direction has
a periodicity of

√
N2 + 1f which is much larger than the original f for large N

(see Fig. 2.1). This is the KNP-mechanism.

We choose to work in a simple setup of toroidal orientifolds. Thus we take as
the compact space X6 = T6/Z2 = (T2

1 × T2
2 × T2

3)/Z2, i.e. a factorisable 6-torus
subject to a Z2 identification. By turning on 3-form fluxes on the tori we will
show how one can generate a superpotential of the form [124–127]

W = (Mτ1 −Nτ2)(τ − τ3) , (2.1)

where τ = C0 + ie−ϕ is the axio-dilaton, τi with i = 1, 2, 3 are the complex
structure moduli of the three 2-tori and M,N are integers (flux numbers). For
the following analysis it will be useful to label the real and imaginary components
of τ and τi and we hence define

τ = C0 + ie−ϕ = c+ is , (2.2)

τi = Re τi + i Im τi = ui + ivi . (2.3)

Throughout this work we will refer to the real parts c = Re τ and ui = Re τi as
‘axionic’ directions due to their associated shift symmetries.3

3In the case of c the shift symmetry arises from the SL(2,Z) symmetry of type IIB string theory
and persists beyond toroidal orientifold compactifications. The shift symmetries in ui orig-
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Without loss of generality we can take vi > 0. A minimum of the scalar
potential is determined by the conditions DIW = 0 and W = 0, where I runs
over all moduli. This corresponds to the supersymmetric vacuum with τ3 = τ and
Mτ1 = Nτ2. Note that the minimum is not a unique point in field space, as there
are several flat directions. First, let us consider only one particular flat direction
in the (u1, u2) field space, defined by

ψ ≡Mu1 −Nu2 = 0 (2.4)

and all other moduli fixed. Our main focus is whether this direction can be long
enough such that we can traverse a trans-Planckian distance.

Naively, it may seem that there is no bound to this flat direction. If we increase
u1 we simply have to increase u2 accordingly to keep ψ = 0. Of course, as
suggested by Fig. 2.1, we will return to the same geometrical situation after a
certain distance. But it is at first sight not obvious whether the flux configuration
on the torus has changed.

To study this in detail, recall u1 and u2 are the real parts of τ1 and τ2, which
are the complex structure moduli of two tori. Further recall that the complex
structure moduli sector exhibits a modular symmetry: All tori whose complex
structure moduli are related by an SL(2,Z) transformation are equivalent. Thus,
if we wish to limit ourselves to physically inequivalent configurations, we have to
limit the range of τ1 and τ2 to the fundamental domain of SL(2,Z). Accordingly,
u1 and u2 are constrained to be in the corresponding fundamental domain.

However, the situation becomes more complicated in the presence of 3-form
fluxes. Since these are 3-forms on the tori, a modular transformation on them
will also induce a transformation of the fluxes. In the following, we show how
this leads to a monodromic, i.e. enlarged, moduli space and to a long but finite
axionic direction.

2.2.2 Brief Interlude Concerning the Action of the Modular Group

Before we explain how to arrive at a superpotential (2.1) and how the moduli space
is extended we need to set up some elementary notation concerning SL(2,Z) and
gauge redundancies of tori. Let a torus be defined as the complex plane modded
out by some lattice,

C/spanZ(ey, ex) . (2.5)

Coordinates y ∈ [0, 1) and x ∈ [0, 1) are introduced by

z = (y, x) ·

ey
ex


. (2.6)

inate from the SL(2,Z) modular symmetries of the compactification tori. For more general
compactifications on Calabi-Yau 3-folds, shift symmetries in the complex structure moduli
sector are typically broken, but this breaking becomes increasingly weak when approaching
large complex structure.
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For example, with ey = τ , ex = 1 we have

z = (y, x) ·

τ
1


= x+ τy . (2.7)

More generally, the same torus is described by

z = (y, x)R−1R


τ
1


= e′xx

′ + e′yy
′ ≡ e′x (x

′ + τ ′y′) , (2.8)

with

R =


a b
c d


∈ SL(2,Z) , τ ′ ≡

e′y
e′x

=
aτ + b

cτ + d
≡ R(τ) (2.9)

and 
y′

x′


= R−1T


y
x


. (2.10)

For our following analysis it will be important that, by the above logic, the com-
ponents of any 1-form

ω = ωidξ
i with dξi =


dy
dx


(2.11)

transform according to
ω′
i = Ri

jωj . (2.12)

2.2.3 Flux Choice

Let us briefly describe how we can arrive at a superpotential of the form (2.1)
from flux compactifications in toroidal orientifolds. Here and in the following we
will set (2π)2α′ = 1 where

√
α′ = ls is the string length. The superpotential is

the Gukov-Vafa-Witten superpotential, which can be written as

W =


X6

Ω3 ∧G3 , (2.13)

where

Ω3 = dz1 ∧ dz2 ∧ dz3 (2.14)

= (dx1 + τ1dy1) ∧ (dx2 + τ2dy2) ∧ (dx3 + τ3dy3) ,

G3 = F3 − τH3 ,

and (yi, xi) are the coordinates on the ith torus. For completeness, let us also
record the Kähler potential

K = − ln (−i(τ − τ̄))− 2 lnV − ln


−i

X6

Ω3 ∧ Ω3


= − ln (−i(τ − τ̄))− 2 lnV − ln (i(τ1 − τ̄1)(τ2 − τ̄2)(τ3 − τ̄3)) . (2.15)
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2 Super-Planckian Axions in String Theory and a Moduli Space Size Conjecture

The superpotential in (2.1) then arises for the following choice for the 3-form
fluxes:4

F3 = (+M dx1 ∧ dy2 −N dy1 ∧ dx2) ∧ dx3 , (2.16)

H3 = (−M dx1 ∧ dy2 +N dy1 ∧ dx2) ∧ dy3 . (2.17)

Note that this can also be written more compactly as F3 = +A ∧ dx3 and H3 =
−A∧dy3, where we introduced the 2-form A which is only supported on the first
two tori:

A = Aij dξ
i
1 ∧ dξj2 with ξi1 =


y1
x1


and ξi2 =


y2
x2


. (2.18)

The essential part of the explicit flux information is encoded in the matrix

(Aij) = A =


0 −N
M 0


. (2.19)

This flux choice enforces Mτ1 = Nτ2 and τ3 = τ . We will ignore τ and τ3 and
focus on the restricted 2-dimensional moduli space resulting from τ1 and τ2. It
can be parametrized, for example, by τ1 alone.
There is a constraint on the values of N and M coming from the D3 tadpole

cancellation condition. It reads

ND3 +
1

2


X6

H3 ∧ F3 =
1

4
NO3 , (2.20)

where ND3 is the number of D3-branes and NO3 is the number of O3-planes. For
the toroidal orientifold T6/Z2 one finds 64 fixed points corresponding to 64 O3-
planes. The flux contribution for our ansatz (2.17) can be calculated as


X6
H3 ∧

F3 = 2MN . We thus arrive at the constraint:

MN ≤ 16 , (2.21)

where the maximal value of 16 is attained for ND3 = 0.

2.2.4 The Monodromic Moduli Space

Let us now return to the question of the size of moduli spaces in the presence of
flux. Given our superpotential (2.1) the minimum atW = 0 exhibits two complex
flat directions defined by τ − τ3 = 0 and Mτ1 −Nτ2 = 0. Here we will focus on
the latter.
As noted before, we can restrict attention to τ1. Naively, one expects it to take

values e.g. in the canonical fundamental domain. We will immediately see that,
in the presence of fluxes, this is not any more true. Consider an arbitrary τ1 and
a flux configuration determined by the matrix A. Now, while keeping A fixed,

4Note that odd flux numbers M and N imply the existence of further ‘exotic’ O3 planes [124].
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move τ1 in the upper complex half plane to any other τ ′1 that is related to τ1 by
a modular transformation, i.e.

τ1 = R1(τ
′
1) =

aτ ′1 + b

cτ ′1 + d
(2.22)

for some R1 ∈ SL(2,Z). Then the (F3, H3) fluxes also transform non-trivially due
to the transformation properties of the matrix Aij :

Aij → A′
ij = (R1)i

kAkj . (2.23)

Therefore, although τ1 and τ ′1 are related by a modular transformation and the
corresponding two tori are identical, the whole physical configuration may be dif-
ferent due to different values of the fluxes given by (2.23). However, it is possible
that this non-trivial transformation of the fluxes can be undone by a transforma-
tion acting on the second index, associated with a modular transformation of the
second torus. For this, one must require that an SL(2,Z) matrix R2 exists such
that

A′′ = R1AR
T
2 = A . (2.24)

The condition for this to be possible is that the matrix A−1R−1
1 A is in SL(2,Z),

RT
2 = A−1R−1

1 A =


a cN/M

bM/N d


∈ SL(2,Z) . (2.25)

Restricting our attention to the case where M and N have no common divisors,
b must be a multiple of N and c a multiple of M .

An important consistency check is to verify that, after performing the trans-
formations above, we still satisfy the vacuum condition Mτ ′1 = Nτ ′2. Indeed, one
easily calculates

Nτ ′2 = N
aτ2 + bM/N

cNτ2/M + d
=Mτ ′1 , (2.26)

where we used Mτ1 = Nτ2.
In the special case ofM = 1, the only restriction on R1 is that b is a multiple of

N . This means that the ‘smallest’ transformation of τ1, defining the periodicity
of its real part, takes the form

R1 =


1 N
0 1


. (2.27)

But this is exactly what we expected: The width of the fundamental domain is
not unity, e.g. Re τ1 ∈ (−1/2, 1/2), but has been extended to N , such that we can
choose e.g. Re τ1 ∈ (−N/2, N/2). Fig. 2.2 shows such an extended fundamental
domain for N = 5, calculated with the program ‘fundomain’ by H. Verrill [128].
Since this is the only feature of interest for us we set M = 1 throughout the rest
of this chapter.
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2 Super-Planckian Axions in String Theory and a Moduli Space Size Conjecture

Figure 2.2: A fundamental domain of the congruence subgroup Γ0(5) as a subset
of the upper complex half plane is shown. The central strip with-
out the ‘triangle’ touching the real axis corresponds to the standard
fundamental domain of the complex structure modulus of a torus.

Using the Kähler potential (2.15) one can determine the metric in moduli space
restricted to τ1 and τ2:

ds2 =
dτ1dτ1

4(Im τ1)2
+

dτ2dτ2
4(Im τ2)2

. (2.28)

Evaluating this in the vacuum τ1 = Nτ2 parametrized by τ1 one finds

ds2 =
dτ1dτ1

2(Im τ1)2
. (2.29)

We are now in a position to calculate the length of the flat direction defined in
(2.4). Our result is

L =

 N/2

−N/2

du1√
2 Im τ1

=
N√

2 Im τ1
. (2.30)

Note that the value of N is bounded by a tadpole constraint such that N = 16
is the largest allowed value. Saturating this bound and setting Im τ1 = 1 we find
L = 8

√
2 for the length of the flat direction. To summarize, it appears that we

have succeeded in generating a super-Planckian flat axionic direction.

2.3 Topology and Geometry of Fundamental Domains of
Congruence Subgroups

The transformations described by Eq. (2.25) constitute so-called congruence sub-
groups of SL(2,Z). We have already shown the fundamental domain of such a
subgroup for the case M = 1 and N = 5, denoted by Γ0(5) in Fig. 2.2. We can
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Figure 2.3: The lower part of the fundamental domain of the congruence sub-
group Γ0(7) is shown. Appropriate identifications of the boundaries
are indicated [128].

explicitly see the enlarged field space for Imτ1 > 1 in the direction parallel to the
real axis. The vertical boundaries on the left and right of the fundamental do-
main are identified as is the case for the standard fundamental domain of SL(2,Z).
However, the identifications in the bottom are much more subtle. Fig. 2.3 shows
the lower fundamental domain of Γ0(7) with the appropriate identifications indi-
cated [128].

Recall the metric on the moduli space of one torus (see e.g. (2.28)),

ds2 =
du2 + dv2

4v2
, (2.31)

where u is identified with the real and v with the imaginary part of the relevant
complex structure modulus. This metric is the natural metric on the space of all
tori with fixed volume. The upper complex half plane equipped with this met-
ric is the hyperbolic plane. Fundamental domains of SL(2,Z) and its congruence
subgroups can therefore be viewed as subsets of this plane (with appropriate iden-
tifications of boundaries). They can have different topologies (non-trivial genus),
cusps and conical singularities [129]. A qualitative picture of such a Riemann
surface is shown in Fig. 2.4. The throats in the picture correspond to the cusps
in the fundamental domain where it extends to the real axis. Also, the point at
infinity in the complex half plane gives rise to such a throat. As one can see in
Fig. 2.5 for the congruence subgroup Γ0(12), there may be several of these cusps.
The picture also clearly shows the widened fundamental domain, now by a factor
12, compared to the fundamental domain of a torus.

Let us now discuss the potentially long axionic directions corresponding to
lines of Im τ1 = const. Using the metric (2.31) we see that the length of these
lines increases with decreasing Im τ1. However, the smallest value of Im τ1 that
allows for a straight unbroken line is Im τ1 = 1. This is a direct consequence of the
complicated structure of the fundamental domain at Im τ1 < 1. We have already
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2 Super-Planckian Axions in String Theory and a Moduli Space Size Conjecture

Figure 2.4: A qualitative picture of a fundamental domain of a congruence sub-
group as a Riemann surface. The throats correspond to the cusps of
the fundamental domain together with the point at infinity.

Figure 2.5: A fundamental domain of the congruence subgroup Γ0(12) with several
cusps is shown.

calculated the periodicity of this axionic direction to be N/
√
2. In our setting

a tadpole condition bounds N by 16 from above which therefore quantifies the
maximal length of these axionic directions. We expect that corresponding lengths
in more involved compactification on Calabi-Yau manifolds in the large complex
structure limit surpass this significantly.

So far this sounds very encouraging. However, as long as there is no potential
for τ1, straight lines defined by Im τ1 = const. are by no means the most natural
paths connecting two points on this line. In fact they are not geodesics with
respect to the proper metric (2.31) on moduli space, i.e. there exist shorter paths.
It is therefore somewhat arbitrary to declare these non-geodesic paths to be long
since one can always generate long paths by means of a detour.

It turns out that geodesics of the hyperbolic plane are given by lines of constant
Re τ1 and arcs of circles with their center on the real axis (see Fig. 2.6). Let us
calculate the length of these geodesics. We start with the straight lines of constant

34
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real part and consider only a segment of one of these lines starting at Im τ1 = a
and ending at Im τ1 = b. The length is given by

L =

 b

a

dy

2y
=

1

2
ln


b

a


. (2.32)

This is the well-known logarithmic behavior of proper field displacements in mod-
uli space. Now let us calculate the length of an arc of a circle with radius R which
starts at a polar angle α and ends at an angle β. The center of this circle may be
located anywhere on the real axis. Parameterizing this path by the polar angle
one finds

L =

 β

α
dφ

R

2R sin(φ)
=

1

2
ln


tan(β/2)

tan(α/2)


=

1

2
ln


1/ sin(β)− 1/ tan(β)

1/ sin(α)− 1/ tan(α)


.

(2.33)
For a symmetric arc with β = π − α this can be simplified to

L =
1

2
ln


1 + cos(α)

1− cos(α)


. (2.34)

Using this formula, we now consider deformations of our long axionic trajectory
and determine how short it can become. Indeed, Fig. 2.6 shows the long, closed
axionic trajectory as a horizontal line connecting the point −N/2 + i with the
(equivalent) point N/2 + i. It can be deformed to the arc, also shown in the
figure, which again connects this fixed point with itself. For large N and hence
small α the result is approximately L ≈

√
2 ln(N/2), which is clearly much less

than our naive expectation in (2.30), which grew linearly with N .5 The upshot is
that even if we manage to construct models with large N and hence long axionic
directions, we have to be very cautious about the question to which extent these
represent large proper distances between points in field space.

One can understand this property pictorially by embedding a section of one of
the throats in Euclidean 3-dimensional space (see Fig. 2.7). Note that the axionic
direction is the periodic direction around the throat. The shape of the throat is
essentially the reason why a simple closed circle around it does not provide the
shortest path connecting a point to itself. Instead, we can minimize the length
of this circle by pushing it upwards where the circumference of the throat with
respect to the embedding space is smaller.

In summary, in spite of the possible N -fold widening of one or several throats
by the flux, the field space increases only logarithmically with N .

2.4 Size of the Moduli Space

In the following we want to analyze our model from a 4-dimensional point of view.
The idea is to consider the 4d EFT that describes the physics of our model at

5Compared to (2.34) this expression for L contains an additional factor
√
2 in order to take the

contribution from τ2 to the length into account, see also (2.28) and (2.29). In the following
we will tacitly include this factor in expressions for lengths when appropriate.
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Re τ1

Im τ1

−N
2

N
2

1

a

b

απ − β

Figure 2.6: The two types of geodesics of the hyperbolic plane are shown: a ver-
tical line and a semi-circle. The segments of these of which the length
is calculated in the main text are drawn with thick lines. The shaded
region at the bottom corresponds to the region where the fundamental
domains of Γ0(N) are in general very complicated (see also Figs. 2.3
and 2.5).

energy scales smaller than a cutoff Λ, and to determine the regions of moduli
space where this theory is valid, i.e. where KK- and winding modes are heavier
than the cutoff scale. Once this region has been determined we will introduce a
quantitative measure for the size of this region and formulate a conjecture about
the dependence of this size on the cutoff.

2.4.1 Winding and KK Modes on the Compact Space

Consider the ith of our three tori with complex structure modulus τi. In (2.5) we
have introduced the basis vectors ei,x = 1 and ei,y = τi spanning the corresponding
lattice in the complex plane. So far, no information concerning the volume is
provided. By multiplying ei,x and ei,y by a factor


Vi/Im τi we obtain the basis

vectors for a lattice corresponding to a torus with volume Vi:


Vi

Im τi
and


Vi

Im τi
τi . (2.35)
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Figure 2.7: The embedding of a throat in 3-dimensional Euclidean space qualita-
tively shows why a circle around the throat is not the shortest periodic
path given a fixed starting point.

These vectors determine the mass mW of the winding modes on this torus via the
formula6

mW(nx, ny) =
1

2πα′


Vi

Im τi
|nxei,x + nyei,y| = 2π


Vi

Im τi
|nx + nyτi| (2.36)

with integers nx and ny. In the last step we used that in our units ls = 2π
√
α′ = 1.

Analogously, the dual lattice is spanned by the vectors

i√
Vi Im τi

and
−i√
Vi Im τi

τi , (2.37)

and determines the masses mKK of the KK modes on the torus according to

mKK(nx, ny) = 2π
1√

Vi Im τi
|nx − nyτi| , (2.38)

with, again, integers nx and ny. Substituting ny → −ny shows that the masses
of KK and winding modes differ only by a factor Vi.

We achieve equality at the self-dual point Vi = 1. This is a convenient choice
as it simplifies the analysis regarding the effects of KK and winding modes on
the cutoff of the theory. However, for Vi = 1 certain 1-cycles in the geometry
will necessarily become sub-stringy over large regions of the moduli space of τi.
In this case, unsuppressed instantons can arise if a string worldsheet or D-brane
wraps cycles with sub-stringy volume. They may correct the 4d action, e.g. the
Kähler metric. Similarly, light 4d states (particles, strings etc.) can arise from
string worldsheets or branes wrapped on small cycles. This may also lead to

6The prefactor (2πα′)−1 comes from the Nambu-Goto action SNG = (2πα′)−1

WS

.
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corrections or affect the value of the cutoff of the effective 4d theory. A complete
analysis of the cutoff of the effective theory thus has to take into account KK
modes, winding modes as well as instantons and other light states. For a simpler
presentation, we will disentangle this as follows. First, in this section we will
proceed with the study of the effects of KK and winding modes, working at the
self-dual point Vi = 1 for simplicity, but ignoring all other corrections and light
states. Then we will remove any extra light states and unsuppressed instantons by
increasing the volumes Vi such that no sub-stringy cycles remain. As this will also
affect the masses of KK and winding modes we will need to modify the analysis
of this section, which we will explain in section 2.4.4. It will turn out that this
modification is technically straightforward. Having laid out our strategy, we now
continue with the analysis for Vi = 1.

Now we need to know the mass of the lightest winding mode on the ith torus,
denoted by mW,i, which is equivalent to finding the shortest vector of the lattice
spanned by the basis (2.35).7 This problem is in general not solvable analytically
and we will only provide an estimate. First of all, we can apply Minkowski’s
theorem to this 2-dimensional lattice which will give an upper bound for the
length of the shortest lattice vector. According to our choice Vi = 1, the area of
the parallelogram which is spanned by the basis (2.35) is equal to unity.8 Then
the theorem states that any convex subset of C that is symmetric with respect to
the origin and has a volume larger than four contains a non-zero lattice point. If
we choose this subset to be a disk, we can conclude that the shortest lattice vector
can not be longer than the radius of this disk. This implies an upper bound of
order one for all three tori.

However, there are regions in moduli space in which the true length of the
shortest lattice vector is orders of magnitude smaller and we would vastly over-
estimate the part of moduli space where the low energy EFT is valid. We can
improve this situation by analyzing two special regions in which we can find a
much better estimate for the length of the shortest lattice vector.

Consider first Im τi ≥ 1. We have to minimize (n+mRe τi)
2 + (mIm τi)

2 with
n,m ∈ Z. For m ̸= 0, this is larger than unity. For m = 0 the minimum is
clearly one, realized by the vector (1, 0). The corresponding physical length is
1/

√
Im τi = mW,i/(2π).

Second, focus on |Re τi| ≤ Im τi ≪ 1. This always holds at the bottom of the
central cusp of the fundamental domain of, for example, τ1 (see Fig. 2.5). Once
again we need to minimize (n +mRe τi)

2 + (mIm τi)
2. For n ̸= 0 the minimum

is unity, obtained for n = 1 and m = 0. If n = 0, the shortest lattice vector is
simply τi, the length of which is smaller than unity. The corresponding physical
length is |τi|/

√
Im τi ∼

√
Im τi ≪ 1, giving rise to mW,i = 2π

√
Im τi.

In fact, we can extend this result for i = 1 to all the other cusps in the funda-

7In the following we will only talk about winding modes which in our setting have the same
masses as the KK modes. In particular we have mW,i = mKK,i.

8Note that this volume is independent of the choice of basis.

38



2.4 Size of the Moduli Space

mental domain of τ1. Note that, in principle, we can distinguish the cusps due to
the flux. However, right now we are only concerned with a pure lattice property,
namely the shortest lattice vector, which does not depend on the rest of the phys-
ical situation. We can therefore safely ignore the fluxes. This allows us to use the
original full modular invariance of the torus to shift all the cusps onto the central
one. The result mW,1 = 2π

√
Im τ1 is hence not only valid in the central cusp but

also in all the others.
Our complete result for the smallest winding mode mass therefore reads

mW,i ∼


2π/

√
Im τi, for Im τi ≥ 1

2π
√
Im τi, for Re τi + n ≤ Im τi ≪ 1

2π, else

, (2.39)

where the integer n is chosen such that Re τi + n ∈ (−1/2, 1/2].

2.4.2 The Restricted Moduli Space

Now we fix the cutoff scale Λ with respect to which we want winding modes (and
KK modes) to be heavy, i.e. mW,i > Λ for all i. This condition is only satisfied
on a subset of the moduli space which depends on Λ. We call this subset the
restricted moduli space M(Λ) in the following. More precisely, since we take the
4-dimensional point of view, we fix the ratio of the cutoff and the 4-dimensional
Planck scale MP,

ϵ ≡ Λ

MP
, (2.40)

where in our units MP =
√
4πg−1

s and gs is the string coupling.9 In the following
we we will restrict ourselves to gs < 1 in order to stay in the perturbative regime.
The monodromic moduli space is parametrized by {τi} with the vacuum condition
imposed and restricted to the appropriate fundamental domains. The next step
will now be to determine the region in moduli space that is compatible with the
condition mW,i > Λ for all i, i.e. the restricted moduli space M(Λ).

Let us start by considering τ3 which is just equal to the axio-dilaton τ according
to the vacuum conditions (2.1). The condition gs < 1 is then equivalent to
Im τ3 = Im τ > 1. According to (2.39) we need to impose

Λ = ϵMP = ϵ
√
4πIm τ <

2π√
Im τ

, (2.41)

where we used τ = τ3 and Im τ > 1. This gives a bound Im τ < (π2/ϵ)2/3 for the
axio-dilaton. Taking into account the appropriate moduli space metric, this is of
course consistent with the expected logarithmic growth of moduli space size with
1/ϵ. Indeed, we did not try to create long trajectories in the τ3/τ -part of moduli
space. To simplify our analysis, we will set Im τ = Im τ3 = 1 from now on. In

9This is due to our choice Vi = 1.
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this way, we are certain that no light KK or winding modes arise from extreme
values of τ and τ3.

Next consider τ1 and τ2. The vacuum condition for M = 1 reads τ1 = Nτ2. We
choose τ1 to parametrize the flat directions. Consider first the region defined
by Im τ1 ≥ 1. The lightest mode on the first torus in this region has mass
2π/

√
Im τ1 according to (2.39). Requiring Λ < 2π/

√
Im τ1 gives Im τ1 < (2π/Λ)2.

The resulting bound on the fundamental domain in the complex τ1-plane can be
visualized as a horizontal line coming down from infinity as we increase Λ (see
Figs. 2.8 and 2.9).

Now let us focus on the lower part of the moduli space, i.e. Im τ1 < 1 and in
particular on the cusps located near the real axis (see Fig. 2.5). If we go far enough
down the cusp we will always satisfy |Re τ1| ≤ Im τ1 (possibly after an integer shift
along Re τ1) all the way to the singularity at the real axis. In fact, this condition
covers most of the fundamental domain in the regime Im τ1 < 1 and we will
therefore take the resulting constraint on the moduli space to be valid throughout
this region. From (2.39) we can read off the lightest winding mass coming from the
first torus to be 2π

√
Im τ1 which leads to the bound Im τ1 > (Λ/(2π))2. Similarly

to the previously derived bound one can think of this as a horizontal line which
now rises from the bottom of the cusps as we increase Λ. Our final picture of the
restricted moduli space is sketched in Fig. 2.8 and Fig. 2.9.

In the previous analysis we have glossed over a subtlety which we want to
comment on in the following. So far we have ignored possible bounds coming
from the second torus in the last two paragraphs. Now we argue that such bounds
do not generically occur throughout the fundamental domain. Ignoring these
additional but non-generic constraints will finally lead to an overestimation of the
size of M(Λ).

Let us concentrate on the region defined by |Re τ1| ≤ Im τ1 < N . Then the
vacuum condition τ1 = Nτ2 obviously implies |Re τ2| ≤ Im τ2 < 1. According to
(2.39) we expect the lightest winding mass from the second torus to be 2π

√
Im τ2 =

2π

Im τ1/N . In order to compare this with the corresponding winding masses

of the first torus we need to differentiate between two cases.

First focus on Im τ2 < 1/N , i.e. Im τ1 < 1. The lightest winding mode on the
first torus is then 2π

√
Im τ1. This is heavier than the winding mode on the second

torus which therefore provides the strongest bound on the moduli space. Second,
consider 1/N ≤ Im τ2 ≤ 1 or equivalently 1 ≤ Im τ1 ≤ N . For Im τ1 <

√
N the

lightest winding mode on the second torus is in fact lighter than the corresponding
mode on the first torus, which has a mass 2π

√
Im τ1. Consequently, the second

torus would provide the most important bound on the moduli space in the regime
|Re τ1| ≤ Im τ1 <

√
N .

However, the above region covers only the central cusp and a finite part of
the upper region of the fundamental domain of τ1 which does not comprise a
substantial part thereof.10 The corresponding additional bound can hence not be

10One might be tempted to extend the validity of this bound to all cusps by using the shift
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considered generic and may be safely omitted from our parametric analysis.

2.4.3 Estimating the Size of the Restricted Moduli Space

Now we introduce a quantitative measure for the size of the restricted moduli
space M(Λ). Since we are interested in distances in field space we may try to use
the standard mathematical notion of the diameter. For a Riemannian manifold,
in our case M(Λ), it is defined as

diam(M(Λ)) ≡ sup
p1,p2∈M(Λ)

inf
γ
Lγ(p1, p2) , (2.42)

where the infimum is taken over all curves γ that connect the points p1 and
p2 and Lγ(p1, p2) denotes the length of the corresponding path. The quantity
d(p1, p2) ≡ infγ Lγ(p1, p2) is the usual notion of distance between two points.11 It
is in particular extremal and the corresponding curve must hence be a geodesic.
Note that an alternative measure for the size of M(Λ) is its volume which, how-
ever, we will not consider in the following.

The technical task now is to estimate the diameter of M(Λ). For the unre-
stricted moduli space M(0) it is obvious that points, e.g. in two different throats,
can have an arbitrarily large distance, see Fig. 2.4. This is due to the fact that
the throats are infinitely long. Now consider M(Λ) with a small Λ. We will see
in a moment that the technical condition is Λ < 4π/

√
N . In this case, Fig. 2.8

applies. Here we explicitly see that the bounds cut the infinitely long throats.
The most widely separated points are still two points in different throats, now
pushed up the throat as far as allowed by the bounds.

We have to take two cases into account. Remember that the point at infinity
in the τ1-plane as well as the cusps at the bottom of the fundamental domain
correspond to throats. Connecting a point A1 in the upper throat to a point A2

in one of the throats at the bottom yields a potentially long geodesic which is
drawn in Fig. 2.8 as a vertical line. The length of this geodesic is, according to
(2.32), given by

d(A1, A2) = 2
√
2 ln


2π

Λ


. (2.43)

The second possibility is to consider two pointsB1 andB2 which lie in two different
cusps, i.e. in two throats at the bottom of the fundamental domain. They are
connected by an arc-shaped geodesic as shown in Fig. 2.8. Using (2.34) the length
d(B1, B2) of this path can be estimated by

d(B1, B2) = 2
√
2 ln


2π

Λ


+
√
2 ln


N

2


, (2.44)

symmetry of the second torus as was done in the last subsection for the first. The following
argument shows why this is not possible: Consider a point in one of the cusps other than the
central one. Then we have |Re τ1| > Im τ1 and hence also |Re τ2| > Im τ2. Now, in contrast
to τ1, it is not possible to shift τ2 such that |Re τ2| ≤ Im τ2 holds because we already have
|Re τ2| ≤ 1/2 (remember that |Re τ1| ≤ N/2).

11We will see below that in our physical situation this requires adjustment.
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Re τ1

Im τ1

−N
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N
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1
Λ
2π
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B1 B2

A1

A2

C2

C1

Figure 2.8: The constraints on the moduli space for Λ < 4π/
√
N are shown.

This picture must be superposed with an appropriate fundamental
domain of the congruence subgroup Γ0(N) in order to explicitly see
the restricted moduli space. The gray shaded region is excluded by
the lower and upper bounds given by (Λ/(2π))2 and (2π/Λ)2. In the
text we calculate the length of the paths shown.

which is clearly larger than d(A1, A2). Hence we conclude that for Λ < 4π/
√
N

the diameter of the moduli space is bounded by 2
√
2 ln(2π/Λ) +

√
2 ln(N/2).

Note that, in principle, the distance between the two points lying in different
cusps may actually be smaller than this. It is conceivable that, due to the compli-
cated topology of the central part of M(Λ), a shortcut between the two throats
exists which has a length much below 2

√
2 ln(2π/Λ)+

√
2 ln(N/2). However, tak-

ing (2.43) into account, the diameter of moduli space can not be smaller than
2
√
2 ln(2π/Λ).

Next consider Λ ≥ 4π/
√
N . This situation is depicted in Fig. (2.9). The formula

for the distance between A1 and A2 remains the same as in the previous discussion.
However, in the figure one can see that the upper bound cuts part of the arc-
shaped geodesic between B1 and B2. It is therefore not a path that determines the
distance between its two endpoints any more. Instead, according to our original
definition of distance, we must deform it in such a way that it lies completely
within M(Λ) and has minimal length. This procedure will, however, lead to an
increased distance between the points B1 and B2 because any deformation of this
geodesic will increase its length. From a physical point of view this behavior
is contrary to our expectation that diam(M(Λ)) is a monotonically decreasing
function of Λ. In the following we present two different meaningful modification
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2

Figure 2.9: The constraints on the moduli space for Λ ≥ 4π/
√
N are shown. The

gray shaded region is excluded by the lower and upper bounds given
by (Λ/(2π))2 and (2π/Λ)2. The upper bound cuts off a part of the
arc-shaped geodesic connecting B1 with B2.

of our definition of distance that are free of this drawback.
Note first that the 4d field theory with cutoff Λ breaks down at the boundary

of M(Λ). Let us take the four-dimensional point of view and assume that, also
outside this boundary, a meaningful 4d physical theory exists. In general, it ceases
to be a local field theory and we are unable to make definite statements about the
geometry of a corresponding larger moduli space. The most conservative approach
is then to assume that all unknown distances are zero, in particular, that all pairs
of boundary points have zero distance.

This idea can be made mathematically more rigorous. We know that M(Λ)
is a subset of the full moduli space M(0). However, this may be only one of
many manifolds of which M(Λ) could in principle be a subset. Let us denote
by Ω(Λ) the set of all manifolds M such that M(Λ) ⊂ M as a metric manifold.
One can think of Ω(Λ) as parameterizing our ignorance about the true M(0) as
a four-dimensional observer constrained by Λ. Our proposal for a new definition
of a distance d∗(p1, p2) between points p1, p2 ∈ M(Λ) is

d∗(p1, p2) ≡ inf
M∈Ω(Λ)

dM(p1, p2) , (2.45)

where dM is the usual distance on M and points in M(Λ) may be identified with
points in M via an appropriate injection i : M(Λ) → M. We expect that points
at the boundary of M(Λ) are arbitrarily close in an appropriate M ∈ Ω(Λ) which
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2 Super-Planckian Axions in String Theory and a Moduli Space Size Conjecture

leads to the procedure of effectively compactifying all boundary points of M(Λ)
to a single point, as was described in the previous paragraph.
In the foregoing discussion we motivated the definition of d∗ by assuming that

M(Λ) is part of a larger and more complete moduli space. Now we want to take
the more radical point of view that, as 4d observers constrained by Λ, we are not
allowed to venture outside the boundary even in principle. It may then be natural
to work with a distance

d#(p1, p2) ≡


d(p1, p2), if p1 and p2 are connected by a geodesic

undefined, else
, (2.46)

i.e. to assume that points which are not connected by a geodesic that completely
lies withinM(Λ) do not have a well-defined distance and are treated as completely
unrelated. In a sense this definition of distance is much simpler and straightfor-
ward than our first proposal. The diameter of a general M(Λ), however, does not
necessarily have to be a monotonically decreasing function of Λ with this definition
of distance, although this problem does not arise in our concrete example.
Now that we have discussed two different modified definitions of distance that

are better suited to the problem at hand than the usual definition, we have to
re-examine the analysis we have already worked out for Λ < 4π/

√
N . The main

difference between d and d∗ is that all boundary points are identified to a single
point if we use the latter. In particular, this implies that e.g. a point at the upper
and a point at the lower boundary in Fig. 2.8 have zero distance. Therefore points
at different boundaries are no longer good candidates for a large distance.
Instead, potentially large distances can be achieved between points C1 and

C2 (see Fig. 2.8). These are connected by the dashed arc-shaped geodesic as
well as by the two dashed vertical geodesics and the boundary. Altogether these
three different paths build a closed curve on which C1 and C2 lie. The maximal
distance d∗(C1, C2) is achieved if the length of the arc-shaped geodesic equals the
sum of the lengths of the two vertical lines and at the same time is maximized.
Since the analytic solution of this optimization problem is rather cumbersome, we
give a qualitative discussion in three different parametric regimes: 2π/Λ ≫ N/2,
N/2 ≫ 2π/Λ ≫

√
N/2 , and

√
N/2 ≫ 2π/Λ. We expect the result to capture

the essential behavior of diam∗(M(Λ)).12

Let us start in the regime 2π/Λ ≫ N/2. Then the contribution to the length
of the arc-shaped geodesic due to its horizontal extension is completely negligible
compared to the vertical direction (cf. (2.44)). Therefore, the length of the closed
dashed path is to good accuracy given by 2

√
2 ln(2π/Λ) where we have only taken

the vertical direction into account. At the optimum, C1 and C2 divide the path
in two equally long parts such that their distance is

d∗(C1, C2) =
√
2 ln


2π

Λ


for

2π

Λ
≫ N

2
. (2.47)

12diam∗ and diam# are defined as in (2.42) but using d∗ and d#, respectively, as the distance
instead of d.
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As we increase Λ the contribution of the horizontal direction to the arc-shaped
path becomes more and more important. According to (2.44), it can be estimated
by

√
2 ln(N/2), such that it starts to dominate at 2π/Λ ∼ N/2. Hence, in the

regime N/2 ≫ 2π/Λ ≫
√
N/2, the distance d∗(C1, C2) is dominated by the length

∼
√
2 ln(N/2) of the arc-shaped path. In this regime, the vertical positions of C1

and C2 keep adjusting as Λ grows such that the vertical path maintains the same
length.

The next qualitative change occurs when Λ has increased so much that
√
N/2 ∼

2π/Λ. Now the arc-shaped geodesic is cut by the upper bound and is hence no
longer available in the competition with the vertical path. The vertical positions
of C1 and C2 have by now moved to Im τ1 = 1, where they will stay from now on.
Their distance is determined by the corresponding vertical geodesics connecting
them to the lower and upper boundary respectively. Thus, in the new regime√
N/2 ≫ 2π/Λ, this distance is 2

√
2 ln(2π/Λ). Combining the three regimes we

have

diam∗(M(Λ)) ∼


√
2 ln


2π
Λ


for Λ ≪ 4π/N√

2 ln

N
2


for 4π/N ≪ Λ ≪ 4π/

√
N

2
√
2 ln


2π
Λ


for Λ ≫ 4π/

√
N

. (2.48)

Finally we have to repeat this analysis for d#. For Λ < 4π/
√
N our

original analysis remains valid and the diameter of M(Λ) is estimated by
diam#(M(Λ)) = 2

√
2 ln(2π/Λ) +

√
2 ln(N/2). Once Λ ≥ 4π/

√
N the arc-shaped

geodesic is cut into two parts and the points B1 and B2 are no longer connected
by a geodesic (see Fig. 2.9). Widely separated points that have a well-defined
distance are now given by B1 and B′

2 which are connected by the path shown in
Fig. 2.9. Similarly to our original discussion this path provides an upper bound
for the distance of the two points. In particular, the radius of the arc-shaped
part is equal to (2π/Λ)2. With (2.34) we calculate the length of this path to be
2
√
2 ln(2π/Λ) + 2

√
2 ln(

√
2π/Λ). Hence, the diameter of M(Λ) reads

diam#(M(Λ)) ∼

2
√
2 ln


2π
Λ


+
√
2 ln


N
2


for Λ < 4π√

N

2
√
2 ln


2π
Λ


+ 2

√
2 ln


2
√
2π
Λ


for Λ ≥ 4π√

N

. (2.49)

Summarizing, we have found that the diameter of the restricted moduli space
M(Λ) is estimated by ln(1/Λ) if we ignore order one pre-factors. Remarkably,
this was found independently for two different definitions of distance. This is
exactly the logarithmic behavior known from the SDC. However, in our case we
have a statement about the absolute size of the restricted moduli space instead
of a statement about the relative size of KK and winding mode masses at two
different points with a given distance.

Before formulating our conjecture let us return to the problem of sub-stringy
cycles. The analysis so far has been performed at the self-dual point with all
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2 Super-Planckian Axions in String Theory and a Moduli Space Size Conjecture

torus volumes chosen to be Vi = 1. As a result we cannot avoid cycles with sub-
stringy volumes which in turn gives rise to unsuppressed contributions from both
worldsheet and brane instantons. To arrive at a robust result for the diameter
of M(Λ) these effects need to be accounted for. This is the subject of the next
section.

2.4.4 Suppression of Worldsheet Instantons

So far we have neglected the effect of worldsheet and brane instantons on our
discussion of the size of moduli space. To ensure that we can safely ignore in-
stanton effects, we need to arrange for the geometry not to possess any cycles
with sub-stringy volumes. All cycles have to be super-stringy (which is equivalent
to requiring that all winding masses are larger than 2π). Most importantly, this
can always be achieved by increasing the torus volumes Vi sufficiently. Here we
analyze how this will affect the size of the moduli space.
Let us first consider the third torus. Recall that we have set Im τ3 = 1 such

that V3 = 1 suffices according to (2.35) to make both cycles of T 2
3 have exactly

string length. However, for the first torus we have to increase the volume V1 to
ensure that both cycles on T 2

1 are super-stringy. In particular, we require

V1 =


Im τ1, for Im τ1 ≥ 1 ,

1/Im τ1, for Im τ1 < 1 .
(2.50)

Now let us turn to torus T 2
2 . At the end of Section 2.4.2 we have argued that

the winding masses coming from the second torus are generically larger than the
ones from T 2

1 . The argument was made for V1,2 = 1 but remains true for the
more general situation V1 = V2, as is evident from (2.39). Therefore, by choosing
V2 = V1 with V1 given by (2.50), we find that mW,2 > 2π. This ensures that both
cycles on T 2

2 are super-stringy, at least generically. With these choices for the
volumes Vi no sub-stringy cycles remain and instantons can be safely ignored.
There are two points in the analysis in Sections 2.4.1, 2.4.2 and 2.4.3 that need

to be modified because of our different choice of volumes. First of all, as we
have increased the winding masses beyond the self dual point we also decreased
the masses of KK modes accordingly. Hence the KK modes now give rise to the
stronger constraints on the validity of the 4d effective theory. Inserting a factor
1/

√
V1 in (2.39) with V1 as in (2.50) we find for the smallest KK mass

mKK,1 ∼


2π/Im τ1, for Im τ1 ≥ 1

2πIm τ1, for Re τ1 + n ≤ Im τ1 ≪ 1

2π, else

. (2.51)

Demanding mKK,1 > Λ we find that the horizontal lines in Figs. 2.8 and 2.9
are no longer at (Λ/(2π))2 and (2π/Λ)2 but at Λ/(2π) and 2π/Λ, respectively.
Consequently, all expressions regarding the size of the moduli space have to be
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modified by substituting (Λ/(2π))2 → Λ/(2π). Note that this replacement does
not change the formulae for the diameter significantly since the cutoff Λ always
appears within a logarithm.

Furthermore we should take into account that V1,2 are no longer constant and
therefore contribute to the distance traversed in moduli space as we vary τ1.
Indeed, we have so far discussed distances in a submanifold of moduli space defined
by fixing the Vi and τ3 and only varying τ1 = Nτ2. By contrast, we now have to
consider a submanifold which is non-trivially embedded in the product of Kähler
and complex structure moduli spaces as sketched in Fig. 2.10. The contribution
to the metric on this submanifold due to the displacement of Kähler moduli can
be calculated from the corresponding Kähler potential. For the Kähler moduli
sector this is given by

K = − ln


1

8
(T1 + T̄1)(T2 + T̄2)(T3 + T̄3)


+ . . . , with Re(T1) = V2V3 , etc.

(2.52)
Using this and (2.50) we find for the metric of the subset of the full moduli space
parametrized by τ1:

ds2 = 2
dτ1dτ1
(Im τ1)2

. (2.53)

In our original and simplified analysis the metric (cf. (2.29)) was smaller by a
factor four with the corresponding distances smaller by a factor of two. Recall
that the replacement (Λ/(2π))2 → Λ/(2π) introduced a factor 1/2 in those terms
in (2.49) which involve a logarithm of Λ. This factor is canceled by the additional
factor two from the new metric, such that the sole net effect is the substitution
lnN → 2 lnN plus non-logarithmic terms. Thus, the introduction of variable
volumes does not change our final formulae (2.49) for the diameter of the moduli
space significantly.

2.4.5 Statement of the Conjecture

Moduli Space Size Conjecture 1 Consider a 4d field theory with cutoff Λ.
The diameter of the corresponding moduli space (as defined in section 2.4.3) is
then of the order ∼ ln(1/Λ).

This formulation is very natural if one is interested in long flat directions in
moduli space in the absence of potentials. For example, if one is interested in
EFTs for large-field inflation, this theory must be valid at least at the energy
scale of inflation given by H. Our conjecture implies then that flat directions
have at most lengths of the order ln(1/H). Note that this statement is true
only in the absence of potentials and it therefore does not automatically rule out
models of large-field inflation with too large H.

Another conjecture which is closer to the original SDC is:
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Im τ1

V1,2

1

1

Figure 2.10: The dashed line corresponds to the submanifold of moduli space that
is parametrized by τ1 for constant torus volumes Vi. Letting the vol-
umes Vi depend on τ1 as in (2.50) gives rise to a different submanifold
denoted by the solid line. Distances within this submanifold can be
calculated by considering the contributions from both the metric on
complex structure and Kähler moduli space.

Moduli Space Size Conjecture 2 Consider the moduli space of a string theory
compactification to four dimensions. Consider two points in this space with a
distance L determined by a certain geodesic. Then there exist points on this
geodesic at which the lightest KK or winding mode mass is below or of the order
exp(−αL), with α ∼ O(1).

A subtle but practically important difference to the SDC is the following: Ac-
cording to our conjecture it is possible to have two points in moduli space which
have a large distance and, at the same time, KK and winding modes of the same,
high masses. The low-mass or low cutoff situation occurs somewhere in between.
This is in particular what happens for points separated in the axionic coordinate
(i.e. Re τ in our explicit model). The lowest cutoff will be experienced at a point
along the geodesic connecting the two points, and not at either the beginning or
endpoint.

2.5 Conclusions

In this chapter we examined the possibility of trans-Planckian field spaces for com-
plex structure moduli in string compactifications employing toroidal orientifolds.
The main observation is that by a suitable choice of 3-form fluxes, a certain combi-
nation of moduli is lifted, such that the remaining complex flat direction exhibits
an enlarged fundamental domain compared to the canonical fundamental domain
of a complex structure modulus of a torus. We refer to this as a monodromic
moduli space.
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2.5 Conclusions

Mathematically, this moduli space corresponds to the fundamental domain of
a congruence subgroup of SL(2,Z). One important observation is that the funda-
mental domain of such a congruence subgroup is typically widened compared to
the canonical fundamental domain of SL(2,Z). This widening takes the form

Re τ ∈ [−1
2 ,

1
2 ] −→ Re τ ∈ [−N

2 ,
N
2 ] , (2.54)

where τ is a complex structure modulus and N is an integer set by flux numbers.

We proceeded by examining whether a monodromic moduli space may allow
for trans-Planckian field displacements. First we note that ‘axionic’ trajectories,
i.e. trajectories with Im τ =const., can become large to the extent that N can.
(The tadpole constraint on 3-form fluxes implies N ≤ 16 in our toy model.) But
second we also note that for any two points on such a long (non-geodesic) trajec-
tory much shorter connections exist. They correspond to arcs in the hyperbolic
plane and their length scales only as lnN . Moreover, we can restrict our mod-
uli space by demanding that no winding or KK modes appear below a certain
cutoff Λ. It then turns out that an appropriately defined maximal distance be-
tween points on an axionic trajectory is not only bounded by lnN but also by
ln(1/Λ). This is reminiscent of the logarithmic limitations of field ranges due
to backreaction observed in [32], but here a related phenomenon arises for flat
directions.

While we made our observations in a simple string compactification based on
a toroidal orientifold, we expect them to hold more widely. To be specific, mon-
odromies also exist in flux compactifications on Calabi-Yau (CY) manifolds, an
observation that has been exploited to study moduli dynamics and tunneling be-
tween different vacua in the string landscape, see e.g. [111–114]. In our context,
the key point is that CY moduli spaces have large complex structure points, anal-
ogous to the point at imaginary infinity in the torus fundamental domain. The
simplest example is (T2)3, where we are dealing with the direct product of three of
the familiar throat-like geometries. In general, the geometry near the large com-
plex structure point of a CY is much more complicated, but it always includes
‘axionic’ directions which characterize short paths around such points. These
paths are periodic if one allows for identifications using large diffeomorphisms of
the CY. We expect that this periodicity can be enlarged by an appropriate flux
choice, analogously to our torus orientifold example. We also expect that the
resulting long axionic trajectories will be very far from geodesics, with shortcuts
similar to our arcs in the hyperbolic plane. Thus, the qualitative structure of a
monodromic moduli space of a CY with 3-form flux should be similar to what we
found in this chapter. In the context of inflation, discussions of the moduli space
at large complex structure appeared e.g. in [126,130–133]; for recent progress con-
cerning global CY moduli spaces see [134]; for recent work on moduli spaces of
CY 4-folds see [135].

The above motivates two conjectures which are related, but distinct from the
various forms of the Swampland Conjecture [30,31,33,34]. Given the moduli space
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of a generic 4d field theory with cutoff Λ, we conjecture that the absolute size of
the moduli space, as measured by the appropriately defined diameter, scales as
ln(1/Λ). Alternatively, we may focus on the full moduli space of a certain string
compactification. Pick two points in this moduli space which are connected by a
minimal geodesic with length L. Then we claim that there exist points on this
geodesic at which the lightest KK or winding mode mass is smaller or of the order
of exp(−αL), with α ∼ O(1).

One of the key findings of this chapter is that our construction allows for trans-
Planckian ‘axionic’ directions which, however, are not geodesics. In particular, a
trajectory along Re τ for fixed Im τ = 1 is a periodic direction with period N/

√
2.

This can be moderately trans-Planckian despite the tadpole constraint on N . The
upshot is that if it were possible to stabilize Im τ without completely destroying
the structure of the monodromic moduli space, our construction may constitute
the first step towards a theory of a trans-Planckian axion.
This is relevant for cosmology where one open question is the compatibility of

large-field inflation with QG. It has been suggested that large-field inflation can
in principle be embedded in the complex structure moduli sector of string theory
compactifications [78, 130–133, 136], as long as there exists a trans-Planckian ax-
ionic direction. We suggest that monodromic moduli spaces may be a promising
starting point for the construction of such models.
However, there are also obstacles to be overcome: To stabilize Im τ , we require

contributions to the potential which may interfere with the proposed simple struc-
ture of the monodromic moduli space. Both for this stabilization and to construct
a more realistic model of cosmology and particle physics, it is necessary to move
beyond simple toroidal orientifolds. While, as noted above, we expect the general
structure of the corresponding monodromic moduli spaces of CYs to be similar,
the details are far from clear. For example, symmetry structures replacing the
modular group and instanton-type (in the mirror dual language) corrections which
lift ‘axionic’ directions non-perturbatively have to be studied.
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3 The Magnetic Weak Gravity
Conjecture for Axions

3.1 Introduction

As discussed in Section 1.2 the WGC [50] provides a condition for identifying low
EFTs which do not permit a ultraviolet (UV) completion and should hence be
assigned to the swampland [30, 31]. In its original form, the WGC is a state-
ment regarding the electric and magnetic particle content of a U(1) gauge theory
coupled to gravity. It can be extended to encompass theories with a gauge group
consisting of multiple U(1) factors [62] and with charged p-branes rather than just
particles [50, 63, 76]. A particularly interesting extension of the WGC is that to
(−1)-branes. The resulting WGC for axions and instantons potentially constrains
natural inflation in the field space of one or multiple axions [72–81,137].

In fact, the WGC can be given in its magnetic and electric form, which are a
priori two independent statements. The magnetic WGC arises from requiring the
minimally charged magnetic object not to be a black hole or black brane. It can
be phrased as a an upper bound for the UV cutoff of the theory. To be specific,
for a (p+1)-form gauge theory in d dimensions with electrically charged p-branes
the magnetic WGC requires

Λ ≲


geM

d
2
−1

P

 1
p+1

, (3.1)

where ge is the coupling constant of the electric theory. For the case of a theory
with particles (p = 0) in four dimensions this reduces to the well-known statement
Λ ≲ geMP.

In this chapter we will focus on the magnetic WGC for axions, i.e. p = −1.
Naively taking p = −1 in (3.1) we find that the exponent diverges. In four
dimensions the electric coupling is given by ge = 1/f where f is the axion decay
constant determining the axion period. The r.h. side of (3.1) involves (MP/f)
raised to a diverging power. Clearly, for f < MP this gives no constraint on the
cutoff. By contrast, for f > MP the inequality implies Λ → 0, i.e. the theory
simply does not exist. As f > MP is necessary for large-field inflation, this would
imply that the magnetic WGC censors large-field axion inflation.

In what follows, we want to go beyond this simple estimate and develop a
more rigorous argument based on the magnetic WGC. As the magnetic WGC is
concerned with the existence and the properties of magnetically charged objects,
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we will study these objects in detail. For an electric theory of instantons coupled
to an axion, the corresponding magnetic object is a string coupled to a 2-form
field. Thus, in this work, we will study (cosmic) string solutions in a theory
with f > MP explicitly (see also [138] for related work). We take the following
statement as the preliminary definition of the magnetic WGC for axions: For the
magnetic WGC to be satisfied we require the minimally charged (cosmic) string
to exist as a field-theoretic object. The task is hence to examine whether string
solutions for f > MP suffer from any pathologies. Our most promising candidates
will be topological inflation and and a composite string à la [67,139].

We begin by analyzing the static spacetime solution of the exterior of an axionic
string [140] (see [53, 54, 141] for discussions related to such strings from a string
theory perspective). There are two problems which put the existence of this object
in doubt for f > MP.

• There is a singularity at a finite distance from the string core. This sin-
gularity even persists for f < MP, but would then be exponentially far
away.

• For f > MP the deficit angle around the string is always negative. This
makes it impossible to attach such a spacetime to that of a proper UV
completion of the string core since we expect this to be locally flat at the
string’s center. In contrast, for f < MP there would have been a finite
region with a positive deficit angle as expected in the vicinity of a string.

Hence, the static string solution [140] does not seem to exist for f > MP and thus
does not provide us with the magnetic object required for satisfying the WGC.
The problem of the singularity at a finite distance can be resolved by consid-

ering a string solution with a dynamical spacetime [108, 109]. Interestingly, this
dynamical solution exists for f > MP up to a maximal value fmax which lies in
the range 6 ≤ f2max/M

2
P ≤ 12. However, it remains questionable whether the dy-

namical solution can be interpreted as a string for f > MP. Instead, for f > MP

the Hubble length becomes comparable to the size of the string core leading to
an expansion of the defect in all directions. This is known as topological infla-
tion [142, 143]. It then remains to be checked whether this solution can play the
role of a bona fide string for an observer outside the inflating core.
However, accepting topological inflation as a UV completion leads to further

puzzles. Topological inflation can also arise in 1-form theories where the inflating
defect is a magnetic monopole. For example, consider the theory giving rise
to such monopoles used by Linde in [142]. This is an SU(2) Yang-Mills theory
which is broken down to U(1) by an adjoint scalar. Let g ≪ 1 be the gauge
coupling, λ the scalar field self-coupling, and v the symmetry breaking vacuum
expectation value. The size of the magnetic monopole is given by the maximum
of the two length scales (gv)−1 and (

√
λv)−1 where gv is the gauge boson mass

and
√
λv is the scalar mass. The corresponding cutoff scale Λ of the monopole

is min{gv,
√
λv}. Let us try to make Λ as large as possible while keeping the

52



3.1 Introduction

theory under control, i.e. let us make sure that energy densities remain sub-
Planckian. We must therefore ensure that λv4 ≤M4

P. This optimization problem
is solved by

√
λ = g and v = MP/

√
g. The resulting cutoff Λ =

√
gMP is sub-

Planckian but exceeds the WGC bound gMP. Since v > MP, the corresponding
solution will inflate. If we accept this as the UV completion of the minimally
charged monopole required by the WGC, the argument for the low cutoff, Λ ∼
gMP, is lost. Indeed, the cutoff explicitly found above is higher. One is then
left with the unsatisfactory situation that topological inflation ensures that the
magnetic WGC remains satisfied in axion theories, while for 1-form theories it
would allow for an explicit violation. This can be avoided by slightly strengthening
the requirement underlying the magnetic WGC. Note that besides the inflating
monopole solution a minimally charged black hole monopole still exists in our
setting. If the correct formulation of the magnetic WGC is that no minimal
magnetic monopole should be a black hole, the above situation remains forbidden.
One might then be tempted to conclude that topological inflation resides in the
swampland.

Thus, having studied both static and dynamical string solutions, our analysis
leaves us with the following results:

• If topologically inflating spacetimes are acceptable as the magnetic objects
required by the WGC, then f > MP cannot be ruled out in the present
approach.

• By contrast, if topologically inflating spacetimes are not accepted as mag-
netically charged objects of axion models, we have good reason to believe
that f > MP is forbidden. Such a viewpoint can be argued from the fact
that the relevant solutions are non-static or from the presence of a horizon.
The conclusion concerning large f would then be as negative as in the naive
approach mentioned in the beginning.

Last, we turn to axion theories with feff > MP which admit a UV completion in
terms of a theory of two axions with f1,2 < MP [92,144,145]. As suggested in [78]
using a stringy example, a particularly promising way to realize the required wind-
ing trajectory is through 3-form gauging [146] (for applications of this approach
in the context of axion monodromy inflation see [147, 148]).1As f1,2 < MP, the
corresponding magnetic objects exist and avoid the problems mentioned above.
Following [67, 139], one can then identify a string solution as bound state of the
strings of the original two axions connected by domain walls. This object is then
checked explicitly for possible pathologies.
One observation is that the tension of this effective string becomes super-

Planckian if f > MP. The tension can be estimated as Teff ∼ f2eff and hence
one leaves the regime of weak gravity backreaction once feff is sufficiently large.
A modestly super-Planckian feff may be possible, but this will depend on the

1This corresponds to the familiar Stückelberg mechanism in the 1-form case and can be used
to obtain a small effective gauge coupling [67].

53



3 The Magnetic Weak Gravity Conjecture for Axions

precise numerical factors. Our finding is consistent with the previous results for
explicit string solutions. Static string solutions for parametrically large f do not
seem to exist. Dynamical solutions are possible, but we have to leave their detailed
study in this particular case to future work. While they may be similar to topo-
logical inflation, they could equally produce a singularity or exhibit a completely
different, unexpected behavior.

3.2 Naive Estimates

The magnetic WGC follows from the requirement that the minimally charged
magnetic object of a U(1) gauge theory is not a black hole. The mass M of
a monopole in four dimensions can be estimated by its field energy, leading to
M ∼ g2mΛ, where gm denotes the magnetic coupling constant and Λ is a cutoff
that determines the radius of the core. The electric coupling constant is related
to gm by ge ∼ g−1

m . If the core radius is larger than the Schwarzschild radius,
the monopole is not a black hole. The corresponding formula is Λ−1 ≥M/M2

P ∼
g−2
e Λ/M2

P, implying Λ ≲ geMP.

This easily generalizes to an ‘electric’ (p+1)-form gauge theory with ‘magnetic’
(d−p−4)-branes in d dimensions. The electric coupling constant ge of this system
has mass dimension p+2− d/2 and the magnetic coupling is gm ∼ g−1

e . The field
energy of the magnetic (d − p − 4)-brane is proportional to g2m and therefore,
analogously to the monopole case, we can estimate the tension by

T ∼ g2mΛ
p+1, (3.2)

using dimensional analysis. On the other hand, the tension of a black brane is
proportional to the inverse coupling constant κ−2

d =Md−2
P of gravity. Hence

TBH ∼Md−2
P Rp+1

S , (3.3)

where RS is the Schwarzschild radius. According to the magnetic WGC we need
to impose Λ−1 ≥ RS. Expressing RS through TBH and using TBH ∼ T gives

Λ ≲ (g2eM
d−2
P )

1
2(p+1) . (3.4)

We find it particularly intuitive to rewrite this in terms of the ‘characteristic
energy scale’ or ‘strong coupling scale’ Λe of the electric gauge theory, defined by

g2e = Λ
2(p+2)−d
e . One finds

Λ

MP
≲


Mp

Λe

 d−2(p+2)
2(p+1)

. (3.5)

If 2(p + 2) − d < 0, the gauge theory is infrared-free and Λe is its intrinsic UV
cutoff. For small enough coupling, the energy scale Λe exceeds MP and naively
MP would now be the cutoff of the theory. However, if p + 1 > 0, the magnetic
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E

0

MP naive cutoff

Λe strong coupling

Λ WGC cutoff

Figure 3.1: Cutoff scales of a weakly coupled gauge theory in the presence of
gravity.

WGC (3.5) predicts a cutoff that is smaller than the Planck mass. This situation
is sketched in Fig. 3.1. The condition p+1 > 0 can be rewritten as dco > 2, where
dco ≡ p+ 3 is the co-dimension of the magnetic brane.

If dco = 2 the picture in Fig. 3.1 applies but in an extreme case: The exponent
in (3.5) diverges and, in the weakly coupled case Λe > MP, the cutoff Λ vanishes.
Such a situation might be interpreted by saying that the theory does not exist, in
other words, the weakly coupled case is forbidden. This occurs for example for the
string (p = −1) in four dimensions where the magnetic coupling constant is given
by the axion decay constant f = gm. Weak coupling corresponds to f > MP in
this case, which should hence be impossible to realize. In the following we want
to check this statement by trying to explicitly construct a string with f > MP in
four dimensions.

Before doing so, let us perform a very rough calculation in order to gain some
intuition for what one can expect from a more detailed analysis. The field energy
density of the string is ρ ∼ f2/r2. This gives

T ∼
 2π

0
dφ

 Λ−1
IR

Λ−1
UV

rdrρ ∼ f2ln(
ΛUV

ΛIR
), (3.6)

where we had to introduce two cutoff scales ΛUV and ΛIR in order to render
the contribution to the string tension finite. Let us now discuss the inclusion
of gravity. The static vacuum solution of Einstein’s equations with cylindrical
symmetry has a deficit angle ∆ϕ in the plane perpendicular to the symmetry
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axis, i.e. it describes a cone:

ds2 = −dt2 + dz2 + dr2 + r2(1− ∆ϕ

2π
)2dθ2. (3.7)

This is the exterior spacetime of a string without charge [149] and

∆ϕ =
T

M2
P

. (3.8)

For T ≳ M2
P, i.e. ∆ϕ ≳ 2π, this spacetime breaks down (see [150–152] and in

particular [153] for a good review). Therefore, since (3.6) indicates that T ≳ f2,
one can expect that corresponding axionic string spacetimes do not exist.

In fact, one can say more: Imagine that the field of the charged string is switched
off at a distance R from the string. The corresponding total tension of this
configuration is estimated by (3.6), where the upper integration limit is now given
by R. At distances r > R the vacuum solution (3.7) describes this spacetime, with
deficit angle given by (3.8). Now, repeating this argument for another radius
R′ > R one immediately sees that the corresponding deficit angle is larger than
that for R. We therefore see that the deficit angle of the spacetime of a charged
string is not constant but grows with the distance to the string. Thus, one expects
a spacetime which is locally conical but eventually breaks down when ∆ϕ > 2π.
Due to the logarithmic behavior, this breakdown happens at exponentially large
distance for f ≲MP. By contrast, it occurs instantaneously if f ≳Mp.

3.3 Singular String Spacetimes

The first exact solution of the Einstein equations for the exterior of an axionic
string was given by Cohen and Kaplan (CK) [140]:

ds2 =
u

u0
(−dt2 + dz2) + γ2

u0
u

1/2
exp


u20 − u2

u0


(du2 + dθ2). (3.9)

Here γ is an integration constant with the dimensions of length, u0 is related to the
axion decay constant2 by u0 ≡ 2M2

P/f
2, and 0 ≤ θ < 2π. In these coordinates u =

∞ corresponds to the singular center of the string. At u = 0, which corresponds to
a cylindrical surface concentric with the string, one encounters another singularity.
Both singularities are physical, as testified by the Kretschmann scalar

K = RµνρσRµνρσ =
exp


2
u0
(u2 − u20)


4γ4u3u30

(32u4 − 8u0u
2 + 3u20), (3.10)

2We use a slightly different normalization of the axion decay constant, hence the presence of
an additional factor 2 compared to the original paper.
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u− u+ u

ϕ(u)

2π

π

0 2 4

f ≈ 1.56MP

f ≈ 0.71MP

Figure 3.2: The angle ϕ defined in (3.12) is shown as a function of the coordinate
u for f ≈ 0.71MP (u0 ≈ 4) and f ≈ 1.56MP (u0 ≈ 0.83). The shaded
green area indicates the coordinate and angle range where one can
visualize the space locally as conical, with a positive deficit angle (for
f ≈ 0.71MP). u = 0 corresponds to the outer singularity while the
string center sits at u = ∞. The right intersection point of the blue
and black dashed line at u = u+ is roughly the core radius. For
f ≈ 1.56MP the angle is always larger than 2π.

which diverges at these points. The proper distance between the outer singularity
and the center is finite and reads

rmax = γeu0/2
u0
2

5/8
Γ


3

8


. (3.11)

For small f this distance is exponentially large and might not be physically rele-
vant, e.g. in a cosmological setting. However, for f ≳ MP one expects problems
and we will discuss this momentarily.

In order to gain some intuition for the CK spacetime we note that the region
between u+du and u at t, z = const. describes an annulus. Its geometry approxi-
mates a piece of a cone and we find it convenient to denote the angle of the lateral
surface3 of this cone by ϕ(u). In other words, 2π−ϕ(u) is its deficit angle. A more
formal definition is as follows: Consider a closed curve defined by t, z, u = const.

3By this we mean the central angle of the corresponding circular segment.
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3 The Magnetic Weak Gravity Conjecture for Axions

and parametrized by the coordinate θ. We can determine the tangent vector v
to this curve at θ = 0 and parallel transport it along the curve until we reach
θ = 2π, which is of course our starting point. Then calculate the angle between
the parallel transported tangent vector v′ and v. This angle is ϕ(u). It turns out
that ϕ = dC/dr, where C is the proper circumference and r the proper radial
distance. For the CK spacetime we find

ϕ(u) =
dC

dr
= 2π


1

4u
+

u

u0


. (3.12)

For f <
√
2MP there is an interval of u where ϕ(u) is increasing with u and

smaller than 2π. Recall that increasing u corresponds to decreasing distance to
the string center (see Fig. 3.2). This is exactly the behavior we naively argued
for at the end of Section 3.2. However, the angle is not bounded from above and
there exist regions where it exceeds the critical value 2π. To be specific, we find
ϕ > 2π for u < u− and u > u+ where

u± =
u0
2


1±


1− 1

u0


. (3.13)

For u0 ≫ 1 one obtains u+ ≈ u0 and u− ≈ 1/4. We also see that for u0 < 1
(which corresponds to f >

√
2MP ) the expressions u± become complex and the

angle is strictly greater than 2π throughout the spacetime. We will come back
to this point when assessing the existence of the CK solution. In any case, the
minimum angle is reached at u =

√
u0/2 and is given by ϕmin = 2π/

√
u0. This is

illustrated in Fig. 3.2.
We are now in a position to address the question under which circumstances the

CK solution can be trusted and corresponds to a physically acceptable geometry.
For example, we should discard solutions where curvature invariants are super-
Planckian everywhere. Thus a necessary condition for an acceptable solution is
that there exist regions where the Kretschmann scalar K is sub-Planckian.4 The
minimal requirement for this to be possible is that K is sub-Planckian at its
minimum. This minimum lies at u ≈ √

u0/2 and we arrive at the constraint

γ ≳
1

MP

e−u0/2

u
5/8
0

. (3.14)

For f ≲MP the right-hand-side of this inequality is exponentially suppressed and
hence a wide range of γ gives rise to a weakly curved spacetime. However, also for
f ≳ MP the choice of a sufficiently large γ will ensure the existence of a weakly
curved region of the CK spacetime. Eq. (3.14) also ensures that the radial size
(3.11) of the spacetime obeys rmax ≳M−1

P . From the explicit form (3.10) of K we
see that we can make the region of small curvature between the inner and outer

4Here we use the Kretschmann scalar instead of the scalar curvature R since K > R2 for all u.
In particular, R does not have a singularity at u = 0 while K does.
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singularity always as large as desired by choosing γ large enough. Pictorially, by
increasing γ we ‘stretch’ the spacetime in the radial direction and thereby flatten
its geometry.

Another criterion for deciding which solutions to trust employs the angle ϕ.
Although we are primarily interested in f ≳MP let us examine for completeness
first f ≤

√
2MP, i.e. u0 ≥ 1. For an uncharged string we saw in Section 3.2 that the

deficit angle is growing with the tension, i.e. the corresponding angle ϕ decreases.
By this we argued that the angle of the spacetime of a global string should decrease
with the distance to the string center, which turned out to be correct at least
far away from the outer singularity. This motivates us to conjecture that this
behavior persists in every UV completion of the core. Additionally, in order to
avoid a conical singularity at the string center we expect every UV completion to
satisfy ϕ(∞) = 2π. Combining this with our conjecture we can conclude that the
angle of any UV completion does not exceed 2π.

Such a UV completion must somehow be matched onto the exterior CK space-
time at the core radius. Our upper bound on the angle in the core implies a lower
bound for the core radius: ucore ≤ u+. Recall that u+ corresponds to the point
where the angle would exceed 2π when approaching the string core, as indicated
by the dashed line in Figure 3.2. For f ≤

√
2MP we find u+ ∼ u0 and hence

ucore ≲ u0. Expressing this in the radial proper distance one finds rcore ≳ γ. The
core radius can only take this minimal value if the Kretschmann scalar at u ∼ u0
is sub-Planckian, which yields a lower bound on γ: γ ≳ f/M2

P.
5 Altogether, there

is no fundamental obstacle to the existence of a UV completion of the string core
for f ≤

√
2MP .

The situation is completely different for f >
√
2MP, i.e. u0 < 1. In this case

we have ϕ > 2π for all u. It is then not clear at all how the CK solution could
be matched with a UV completion of the core. A possible conclusion is that a
UV completion does not exist and hence the whole solution should be discarded.
Recall that our main motivation is to gain a better understanding of the magnetic
WGC for axions where the magnetically charged objects are given by strings. Our
analysis in this section can thus be summarized as follows. For f >

√
2MP the

CK string does not give rise to a trustworthy solution which could correspond to
the magnetic object in the WGC for axions. This implies that either there are no
string solutions for f >

√
2MP, or string solutions exist but are not of CK type.

We will explore the latter possibility in the next section. Note, however, that this
conclusion crucially depends on the validity of our conjectured condition on the
angle of UV completions. This may well be too strong a requirement and if not
true, CK solutions with f >

√
2MP might after all exist. For example, one may

think of a higher dimensional UV completion, where the requirement ϕ(∞) = 2π
makes no sense.

Independently of this, even for f ≤
√
2MP, one cannot accept this spacetime

as physical due to the naked singularity in the exterior. It may however describe

5This lower bound is stronger than (3.14) for f ≲ MP.
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part of a cosmological spacetime or of a large string loop.

3.4 Non-singular String Spacetimes

It turns out that it is possible to find a string spacetime which is not plagued
by any physical singularity. Indeed, this can be done by allowing for a time-
dependent metric and was first investigated by Gregory [108]. This analysis uses
a UV completion of the axion model that is given by a complex scalar field Φ the
phase of which plays the role of the axion:6

L = −1

2
|∂Φ|2 − λ

4
(|Φ|2 − f2)2. (3.15)

The vacuum manifold is S1 and gives rise to the string solutions we are interested
in. Note that, although the metric depends on time, the field configuration is
chosen to be static in Gregory’s calculation, i.e. the string has a constant width.

Let us describe the properties of this solution in more detail. Firstly, Gregory
is able to show that the metric takes the form

ds2 = eA(r)(−dt2 + cosh2(

b0t)dz

2) + dr2 + C2(r)dθ2, (3.16)

where b0 > 0 is a constant, and which in fact exhibits no singularities. We see
that the spacetime of the string expands along the direction of the string while
radial and angular metric components have no time-dependence. Furthermore,
Gregory proves that this spacetime has a cosmological event horizon at finite
proper distance from the string. This horizon encompasses the string and allows
light to exit this interior space while it is not possible for physical objects to enter
it from the exterior.

This event horizon moves inwards as f increases. Therefore, the question arises
what happens if the horizon enters the string core. Using analytic arguments,
Gregory and Santos [109] show that the string solution ceases to exist for f > fmax

with 6 ≤ f2max/M
2
P ≤ 12. We see two possible solutions that are left in the regime

of parametrically large f : First, Φ = 0 together with a de Sitter metric is a
classical solution. We discard it because of its instability. But second, and this
will be the focus of the rest of this section, there is topological inflation.

Topological inflation has been invented independently by Linde and Vilenkin
[142, 143] and occurs for topological defects whose width is comparable to the
Hubble radius defined by the energy density in their core. Since the fields within
the defects are at positive potential one expects the spacetime to be similar to de
Sitter there. Hence, the defect expands exponentially in all directions.

Let us apply the above mentioned condition for topological inflation to the
string. In order to do this assume that the UV completion of the axion is given

6In contrast to Gregory, we have canonically normalized the complex phase of Φ.
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by the potential (3.15). The axion is given by φ ≡ arg(Φ) and the cutoff of the
model is set by the mass of the radial scalar |Φ|:

Λ2 ∼ m2
|Φ| ∼ λf2 . (3.17)

By balancing the gradient and potential energy density in the string core,

λf4
!∼ (f/R)2 , (3.18)

the radius of the core is seen to be

R ∼ 1√
λ f

∼ 1

m|Φ|
. (3.19)

This also fixes the tension by integrating either gradient or potential energy den-
sity over the transverse section of the core:

T ∼ λf4R2 ∼ (f/R)2R2 ∼ f2 . (3.20)

In fact, we see that the last result does not depend on the precise UV completion
since it can be derived more generally: Simply assume that, to realize a UV
completion, the S1 field space parametrized by φ is embedded in a flat field space
(in our case the R2 parametrized by Φ) with canonical Euclidean metric. It is
then clear that the field must cross a distance ∼ f in the string core of size ∼ R.
This implies a gradient energy density ∼ (f/R)2 and hence T ∼ f2, without any
reference to the scalar potential and λ.

Using this we can also state the condition for topological inflation to occur
independently of the concrete potential. Let V0 be the potential energy within
the string which would be V0 = (λ/4)f4 in the above example. Now, balancing
the gradient energy density with the potential energy density leads to the estimate
R ∼ f/

√
V0. The Hubble radius corresponding to the potential energy is given

by H−1
0 ∼ MP/

√
V0. Then, finally, the condition R ≳ H−1

0 implies f ≳ MP

which perfectly agrees with Gregory’s result. Note, however, that our estimate
has been derived without specifying the potential of the complex scalar explicitly.
Only the embedding of the vacuum manifold S1 into the field space R2 of the UV
completion was assumed.

In [154] the model of Gregory was analyzed numerically for a general time-
dependent metric and also allowing for time-dependent field configurations. It was
found that a topological inflation scenario shows up for f ≳ 0.23 ·

√
2 ·

√
8πMP ≈

1.63MP.
7 The spacetime structure of the analogue situation for a global monopole

has been analyzed in [155]. We expect this analysis to reflect at least the qual-
itative features of the string case. The main result is the presence of a horizon

7The string spacetime structure has also been studied numerically in [138]. The authors have in
particular studied models with f < MP and cosmic string solutions with multiple windings.
They conclude that in such situations the outside observer can see a full trans-Planckian field
cycle under certain conditions.
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inflating region

Figure 3.3: Embedding of a 2-dimensional slice of the spacetime for an inflating
global monopole in Euclidean 3-space. The upper part of the ‘balloon’
contains the inflating region.

encompassing the monopole core that is analogous to the horizon in Gregory’s
string spacetime, i.e. it is not possible to cross the horizon from the exterior while
the opposite direction poses no problems. This horizon is the spacelike boundary
of the inner inflating region. In fact, any observer that sits within this boundary
will be expelled out of this region at some time as the monopole scalar field rolls
down its potential and eventually oscillates about its minimum. These outer re-
gions with the oscillating scalar field correspond to a matter dominated spacetime.
During the evolution of the monopole the spacetime develops an inflating ‘bal-
loon’ which is connected by a throat to the exterior spacetime (cf. Fig. 3.3). For
an observer it is possible to enter the throat as it contains not only the inflating
region but also a matter dominated part.

Let us summarize what we have found so far. For f ≲ MP there exist non-
singular string spacetimes the metric of which is time-dependent while the field
configuration is static. Such solutions are not available for f ≳ MP. Instead,
topological inflation becomes a possible scenario. However, the field providing
the UV completion of the axion then becomes time-dependent.

Naively, one might want the magnetically charged object, i.e. the string, to be
static, at least in the sense that the field profile is static. According to this the
spacetime found by Gregory is a well behaved UV completion of the string for
f ≲ MP. Whether topological inflation is a viable UV completion of the string
is an interesting open question. In any case, from the spacetime structure point
of view it seems to be perfectly well behaved and is hence a UV completion of
a string with f ≳ MP. Note however, that in both topological inflation and
Gregory’s solution a horizon is present which encompasses the string core and,
contrary to the black hole horizon, shields the core from the exterior.
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3.5 Magnetic string in an Effective Theory with f > MP

In the following we present another candidate UV completion for a magnetic
string with f > MP. To be specific, the theory of an axion with f > MP will be
understood as an effective theory, which can be obtained from a more fundamental
theory of two (or more) axions with sub-Planckian decay constants. Following
[67, 139], we then proceed to construct an effective string with f > MP out of
the strings present in the more fundamental theory and examine it for potential
pathologies.

3.5.1 Constructing the Effective String with f > MP

We begin by recalling the UV completion of the last section:

L = −1

2
|∂Φ|2 − λ

4
(|Φ|2 − f2)2 . (3.21)

Now consider the sum of two such Lagrangians, where we expand around the
vacuum |Φ1| = f1, |Φ2| = f2. The axionic part can be written as:

L = −f
2
1

2
(∂φ1)

2 − f22
2
(∂φ2)

2 + · · · . (3.22)

For simplicity, we will take f1 = f2 = f from now on. Famously, even if f ≪MP ,
an effective axion with large decay constant can be obtained [92]. The main idea
behind [92] is to design a potential on the T2-field space parametrized by {φ1, φ2}
which forces the field onto a winding trajectory, e.g.

φ1 = Nφ2 , (3.23)

with N ≫ 1 (cf. [144] and Fig. 3.4). The desired potential can be viewed as
arising from an appropriate combination of instantonic terms.

As suggested in [78], a winding trajectory can alternatively be realized by an
appropriate flux choice. This corresponds to making the orthogonal combination
of axions massive by gauging à la Dvali [146] (see also [147, 148]). This method
can be viewed as a way of avoiding the 0-form WGC in the low energy effective
theory, as discussed more explicitly in [67] in the 1-form context. As we will now
see in detail, the flux of winding inflation [78] is indeed the axion analogue of the
EFT approach of [67] for avoiding the magnetic WGC for vectors. However, we
will also see that its success is more ambiguous than in the vector case.

Recall first the more familiar case of gauging of a shift-symmetric scalar by a
1-form8

L = −f
2

2
|dφ|2 → L = −f

2

2
|dφ+A1|2 . (3.24)

8In fact, this has also been used inflationary model building in [156]
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φ1

φ2

2π

2π

Figure 3.4: Winding effective field space of total length ∼ Nf (shown for N = 5).

Equivalently, with F1 = dφ, this reads

L = −f
2

2
|F1|2 → L = −f

2

2
|F1 +A1|2 . (3.25)

By analogy, we can write down the Lagrangian of a 3-form/(−1)-form theory as

LKS = − 1

2g2
|F0|2 , (3.26)

where F0 is a dimensionless field strength, quantized in units of 2π. The coupling
constant g has mass dimension (−2). Then, in analogy to (3.25), we gauge this
theory according to

LKS = − 1

2g2
|F0|2 → LKS = − 1

2g2
|F0 + φ|2 . (3.27)

In other words, we simply add our 0-form potential to the field strength in the
kinetic term of the ungauged model. This is just a simplified version of the idea
in [146], which in the context of inflation is also known as the ‘Kaloper-Sorbo’
approach to axion monodromies [147,148]. Indeed, we simply skipped the detour
via the 2-form theory dual to the axion.

In our context, it is interesting to gauge the combination φ1 − Nφ2, i.e. we
consider the model defined by

L = −f
2

2
(∂φ1)

2 − f2

2
(∂φ2)

2 − 1

2g2
|F0 + φ1 −Nφ2|2 + · · · . (3.28)
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2π

0

φ1

F0

F0 − 2π

Figure 3.5: The string type 1 is shown with one domain wall attached to it. The
jump of F0 across the wall is indicated.

In addition, we include the various charged objects (two types of strings and one
type of domain wall) and, if desired, the UV completion of the axions discussed
above. For definiteness, we focus on the background with F0 = 0. Clearly, the
field space of the effective axion is the submanifold of T2 specified by the equation
φ2 = φ1/N (cf. Fig. 3.4).
Let us make a brief detour to explain what happens at the conceptual level:

Originally, we have a field space parameterized as {φ1, φ2}, with the discrete sym-
metry group Z2 (shifts by 2π {m,n}) being gauged. The F0 theory is unrelated.
Then, we associate with any of the Z2 shifts a particular transformation of F0, in
our case

F0 → F0 − 2π(m−Nn) . (3.29)

One could say that we picked a group homomorphism from Z2 to the proposed
Z symmetry of F0. Now, |F0|2 is not an invariant Lagrangian any more, but
(3.28) provides the appropriately modified, invariant version. This Lagrangian
necessarily couples the F0 theory with the {φ1, φ2} theory.
To continue, let us introduce the alternative field basis

ψ = Nφ1 + φ2 (3.30)

χ = φ1 −Nφ2 , (3.31)

such that

L = − f2

2(N2 + 1)


(∂ψ)2 + (∂χ)2


− 1

2g2
|F0 + χ|2 + · · · . (3.32)

We identify ψ as the effective low energy axion which is a periodic field with decay
constant f

√
N2 + 1. By contrast, χ is massive and, in addition, closed loops in

the field space of χ are only possible at the expense of passing a domain wall of
the F0 theory.

Let us make this last point about domain walls more explicit. For this purpose
recall that a string is present whenever the axion follows a closed loop in its field
space. Since we have two axions here, φ1 and φ2, we also have two different species
of strings, called string type 1 and 2 from now on. For example, integrating the

65
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field strength dφ1 along a closed path in space which encompasses a string we
must have 

dφ1 = 2π. (3.33)

If this loop does not contain an additional string of type 2 the corresponding
integral of φ2 vanishes. Therefore, we have the general relation

dφi = 2πNi i = 1, 2 , (3.34)

where Ni denotes the effective number of strings of type i that lie within the
closed integration path. Similarly, a domain wall is defined by the set of points
in spacetime at which the value of F0 jumps by an amount that is determined by
the unit of quantization of F0, in our case 2π. Combining these facts with the
gauging procedure described above we find a relation between strings and domain
walls, which we will describe below.
Consider a single string of type 1 embedded in a background of constant F0.

Going once around this string in space corresponds to starting with a value φ1 = 0
at some point P and finally reaching φ1 = 2π when closing the path in space at P
again. Since there is no string of type 2 present, φ2 takes on the same value when
we return to P . Continuity demands this to be the same field configuration up
to gauge equivalence. In order to identify the final configuration (φ1 = 2π) with
the initial one (φ1 = 0) we can perform a gauge transformation φ1 → φ1 − 2π.
However, according to (3.29), this necessarily implies a shift F0 → F0+2π which is
not the same field configuration we had in the beginning. To make this consistent
there has to exist a domain wall attached to the type 1 string such that F0 →
F0−2π when one crosses this wall while circumnavigating the string (cf. Fig. 3.5).
Then the above gauge transformation gives us back the initial field configuration.
We can repeat the argument for a string of type 2. The result is that a type 2
string must be attached to N domain walls as indicated in Fig. 3.6. This follows
straightforwardly from the gauge transformation of F0 (3.29).9

We are now in a position to build an effective string out of strings of type 1
and 2 connected by domain walls. This construction is parallel to the procedures
in [67,139]. In particular, take one string of type 2 and attach one string type 1 to
each free end of the N domain walls that come with the string type 2 (cf. Fig. 3.7).
We observe that the orientation of the domain walls automatically fits the shifts
in F0 as discussed for the two types of strings separately. The resulting object
is a string that is uncharged under the massive field χ in the sense that χ → χ
when going once around it. Similarly we have ψ → ψ + 2π(N2 + 1). Hence, the
effective string just constructed is the string corresponding to the axion ψ of the
low energy theory with decay constant feff = f

√
N2 + 1. The massive axion χ is

not visible outside this effective string, i.e. at low energies.
The important point for us is that this object corresponds to a microscopic

construction of a string for f > MP. In the following we wish to examine whether

9A similar situation with strings ending on monopoles occurs in models of semilocal strings [157].
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2π

0

φ2

F0 − 2π

F0

F0 + 2π

F0 + 4π

Figure 3.6: The string type 2 is shown with N domain walls attached to it. The
jumps of F0 across the walls are indicated.

this effective string can exist as a field-theoretical object. For example, we will
only trust this object without gravitational backreaction if the effective string
tension is sub-Planckian, i.e. Teff ≲ M2

P. At the same time, we have seen in
the previous sections that string solutions with f > MP can at most exist as
dynamical solutions giving rise to topological inflation. Hence, we also wish to
determine to what extent our effective string is consistent with these previous
findings.

3.5.2 Estimating the String Tension

Let us therefore estimate the tension of the effective string. All in all, there are
three contributions to this:

• The tension of the individual elementary strings contained in the effective
string.

• The tension generated by the mutual interaction of the elementary strings.

• The tension due to the domain walls.

Elementary strings have tensions f2 which sum up to a total of (N+1)f2 ∼ f2eff/N .
This can be kept sub-Planckian by choosing N large enough (for fixed feff) and
hence poses no problem for us.
Next consider the mutual interaction of the elementary strings. This contribu-

tion is very complicated to determine as it depends on the detailed configuration
of the N + 1 elementary strings connected by N domain walls. However, one
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2π

0

φ2

F0 − 2π
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F0 + 2π

F0 + 4π
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0
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Figure 3.7: The unique combination of the building blocks given by string type
1 and 2 gives rise to an urchin-like structure shown in this figure
consisting of one central string of type 2 connected to N strings of
type 1 by N domain walls. The orientation of the axions and the
jumps of F0 are shown.

can make the following approximation: Let R denote the radius of the effective
string. The average density of strings in the cross section of the effective string
is given by ∼ N/R2. This corresponds to an average distance ∼ R/

√
N between

single strings. For large N this is certainly much smaller than the size R of the
effective string and it is reasonable to describe the elementary string distribution
in terms of a continuous charge density ϱ, i.e. the charge per cross section area.
In addition, one certainly expects the N strings of type 1 to arrange themselves
approximately symmetrically around the single string of type 2. Hence, in the
continuum limit, we argue that the charge density depends only on the distance
r from the center of the effective string and we can write ϱ = ϱ(r). This density
is of course normalized by the charge of the effective string, i.e. 2π

0
dφ

 R

0
rdrϱ(r) = N + 1. (3.35)
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3.5 Magnetic string in an Effective Theory with f > MP

Define

Q(r) =

 2π

0
dφ

 r

0
r′dr′ϱ(r′) (3.36)

to be the string charge contained in a cylinder of radius r centered on the in-
ner type 2 string. The norm of the field strength of such a charge distribution at
radius r is given by Q(r)/r, while the surrounding charge does not generate a con-
tribution to the field, which is completely analogous to classical Electrodynamics.
Exterior to our effective string, i.e. for r > R, we have of course Q(r) = N + 1.
The correct r-dependence of ϱ might be calculated by balancing the forces on
a elementary string at distance r from the center due to the attached domain
wall and the field of all string charge contained in the cylinder of radius r. The
repulsive force per length between two strings having positive charges n1 and n2
respectively is given by 2πn1n2f

2/r with r being the distance between them. The
attractive fore per length between a string type 1 and the central string type 2
due to the connecting domain wall is given by the tension W of the domain wall.
With this information we can write down the balance equation for the forces,

W ∼ Q(r)f2

r
, (3.37)

which results in Q(r) ∼ Wr/f2. The normalization Q(R) = N + 1 determines
the string radius R as

R ∼ Nf2/W. (3.38)

Now we can calculate the effective tension due to the mutual interaction of the
elementary strings. It is given by integrating the energy density over the cross
section of the effective string, i.e. 2π

0
dφ

 R

0
rdr

f2

2

Q(r)2

r2
∼ N2f2 ∼ f2eff. (3.39)

This shows that the effective tension generically becomes super-Planckian if feff
is chosen super-Planckian.

Finally, we determine the contribution of the tension of the domain walls. The
tension due to one domain wall is ∼ RW . Collecting the contribution of each wall
in the effective string gives a tension ∼ NRW .

In addition to this inherent domain wall tension, there is another contribution
due to the excitation of the massive field when crossing a domain wall. From
(3.32) we see that χ = −F0 in the vacuum. Since a domain wall is accompanied
by a jump in F0, it is not possible for χ to stay at the potential minimum and it is
hence excited when crossing a domain wall. This is an additional contribution to
the tension of the domain wall and can be estimated as follows. Consider a domain
wall at a point far away from any strings that may be attached to it. Then, the
translational symmetry tangent to the wall implies that the massive field depends
only on the direction orthogonal to the wall, the coordinate of which may be
chosen to be x. Let the background field be F0 = F− for x < 0 and F0 = F+
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3 The Magnetic Weak Gravity Conjecture for Axions

for x > 0 and define ∆F0 = F+ − F− = 2π, as appropriate for a single domain
wall. Far away from the wall we want the massive field χ to occupy the vacuum,
i.e. we demand limx→−∞ χ(x) = −F− and limx→+∞ χ(x) = −F+. The equations
of motion for the Lagrangian (3.32) with these boundary conditions are solved by

χ(x) =


−πeαx − F− for x < 0

πe−αx − F+ for x ≥ 0
, (3.40)

where α =
√
N2 + 1/(gf). The typical width of this field profile is given by α−1.

The field profile is expected to be modified if one approaches the string at the
end of the wall to a distance of less than α−1. This should be irrelevant to our
calculation if the typical wall length R obeys R≫ α−1. Since the deviation from
the background F0 is always O(1) the potential energy density of the above field
configuration is∼ g−2. Integrating this over the field profile with typical width α−1

yields a contribution Wχ ∼ f/(gN) to the tension of the domain wall. Thus, the
overall contribution to the tension of the effective string reads ∼ (NW +f/g)R ∼
(NW + feff/(Ng))R. Using the expression (3.38)10 for the radius R we find ∼ f2eff
for the total domain wall contribution to the string tension, which is the same as
for the contribution from the mutual string interaction.

We are therefore forced to conclude that the existence of strings with super-
Planckian charge and sub-Planckian tension is very questionable. Even if we had
found that it is possible, we were faced with the problem of the badly behaving
spacetime of such a string when including gravity. This was extensively discussed
in the previous two sections. There we presented the work of Gregory who argued
that abandoning the requirement of a static metric allows for a topological infla-
tion scenario for strings with super-Planckian charge. Hence, Saraswat’s method
for constructing effective charged objects allowed us to find a possible UV comple-
tion of topological inflation in terms of a composite string with super-Planckian
charge.

3.6 Conclusions

The two standard arguments against super-Planckian axion decay constants, f ≳
MP, are the loss of control over instantonic corrections (the electric WGC) and
problems with stringy realizations. In this chapter, we have tried to argue for
the same conclusion using the magnetic WGC, i.e. the requirement that a dual
charged object (a string) exists in the effective theory.

First, we wrote down the general formula for the cutoff resulting from the
magnetic WGC and attempted an extrapolation to the naively singular case of
axions. This suggests that f ≳MP should be forbidden.

Second, we examined explicit string solutions with f ≳MP, looking for possible
inconsistencies. Static solutions of this type (the CK spacetime of an axionic

10Note that now we have to use the full domain wall tension given by W +Wχ in this formula.
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charged string) are singular in both the UV and the infrared. Accepting the
infrared problems as a special feature of infinitely extended strings in general
relativity, the crucial question is whether the UV problems can be cured by an
appropriate UV completion. We argued that smooth, 4d UV completions can
not lead to negative deficit angles and showed that this excludes static string
spacetimes with f ≳ MP. Super-Planckian axion decay constants would then be
ruled out.

We then relaxed the requirement of time-independence in two steps. First, one
can allow for a time-dependent metric while the field configuration should still
be static, i.e. the string width is fixed. Such solutions, found by Gregory, can be
singularity-free in the infrared and have a smooth UV completion. They possess
a horizon encompassing the string core. However, they exist only for f ≲MP.

Next, we considered admitting general time-dependent field configurations. In
this case, the set-up of topological inflation provides a UV completion of the
string, even for f ≳ MP. In fact, topological inflation requires super-Planckian
f . We argued that the corresponding spacetime has a horizon, similar to that of
Gegory’s spacetime for f ≲ MP. There are two reasons why one might want to
reject topological inflation as a string solution in the sense of the magnetic WGC:
One is the time-dependence which one could consider unnatural for an object
that is supposed to be the analogue of a magnetic monopole. The second is the
presence of a horizon (although the latter is very different from the black hole
horizon potentially hiding a magnetic monopole). However, consistency would
then force us to reject Gregory’s solution for f ≲MP as well, such that no string
solution is acceptable at all. In other words: If we demand that string solutions
with f ≲MP exist, we cannot use the horizon as an argument against topological
inflation. The interpretation of these observations remains open.

Finally, we tried to apply Saraswat’s recent observation [67] that certain low
energy effective theories can avoid the collapse of the minimally charged monopole
to a black hole, even though they violate the WGC. We considered theories with
two sub-Planckian axions and two types of strings. At low energies such mod-
els can have one effective super-Planckian axion coupled to one effective string.
However, in contrast to the gauge theory case, the tension of this string remains
super-Planckian. Although we do not provide an exact solution of this system
including gravity, the previously discussed properties of string spacetimes suggest
very strongly that time dependence will be an unavoidable feature. But it may
be, that this time-dependence is restricted to the metric while corresponding field
configurations remain static, as is the case in Gregory’s solution. It would be
important to understand this in detail.

The decisive question whether the magnetic WGC rules out super-Planckian f
depends on the precise definition of what a minimally charged object is allowed
to be. In this context, it may be crucial to understand the gravitational dynamics
of the composite effective string introduced above.
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4 Effective 3-form Description of
Instantons and Axion Potentials

4.1 Introduction

In this chapter, we investigate the effective description of gauge or gravitational
instantons via 3-form gauge theories and in particular study the effect of fermions
on this effective theory. Furthermore, we discuss the role of fermionic operators in
the context of axionic shift symmetries. Such global shift symmetries are expected
to be in the swampland and we propose a lower bound on axion masses to quantify
how strong these symmetries should be broken.

Gauge theories of 3-form potentials have been discussed since a long time [158].
It is also well-known that the Chern-Simons 3-form of a non-abelian gauge theory
transforms under the non-abelian gauge transformation exactly like a fundamental
3-form gauge potential [159]. A similar argument can be made for gravity. Taking
this seriously, one can use the 3-form gauge theory as an effective description of
Yang-Mills (YM) theory at low energies. This has been discussed in [160] in the
context of chiral perturbation theory of QCD and more generally in [161–163].

Our first, simple, technical point in this chapter is to apply this description
to the case of a Higgsed YM theory at energies below the symmetry breaking
scale. In this regime, the instanton gas is dilute and a quantitatively controlled
analysis is possible. As a result, the effective 3-form gauge theory description can
be rigorously established as long as the source term θ (used for probing the theory
through the coupling θ tr(FF̃ )) is small. We will rely on this controlled model of
a dilute instanton gas and its 3-form description in what follows.

An aspect which we are particularly interested in is the 3-form description of
YM theories with instantons and massless fermions [161–163]. Especially the
idea that this may imply fermion condensates independently of confinement and
that small fermion masses may be generated through gravitational instantons are
intriguing.

A crucial assumption for this line of reasoning is that the effective 3-form de-
scription of YM theory with massless fermions includes a massless pseudoscalar.
Indeed, in QCD this is the familiar η′ meson. This scalar may be dualized into a
2-form which then gauges the effective 3-form and makes it massive [146]. As a
result, one obtains a very reasonable effective description for how fermions remove
instanton effects. However, as we point out, a different option arises in our case
of a Higgsed YM system: Light fermions suppress the gauge coupling of the ef-
fective 3-form, completely decoupling it in the massless limit. This interpretation
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4 Effective 3-form Description of Instantons and Axion Potentials

is supported, in our calculable setting, by the fact that no evidence of the mass-
less scalar can be found. Thus, the effective description of how fermions remove
instanton effects may change depending on the diluteness of the gas.

We go on to study Higgsed YM theories which are coupled to an axion. Gauge
instantons then generically induce an axion-potential ∝ e−S where S denotes the
instanton action. According to the WGC for axions, S is bounded from above
as S ≲ MP/f with the axion decay constant f [50]. However, a priori the WGC
does not make a claim about the overall size of the axion potential. Thus, the
potential could be small because e−S comes with a small prefactor [72,164–166].
Such a situation arises in the presence of light fermions with massm because the

prefactor scales as (m/v)Nf , with v the Higgs scale and Nf the number of flavors.
Obviously, for m → 0 the potential vanishes identically and a global symmetry
involving a shift in the axion and anomalous U(1) rotations of fermions emerges.
This is inconsistent with QG expectations [51–54]. A similar phenomenon can be
observed in a model in which the fermions remain heavy at all times. This can
be achieved by providing a mass for them via Yukawa couplings in addition to
the hard mass terms. Again, once the hard masses are taken to zero, the axion
potential vanishes due to the emergence of a global symmetry. This shows that the
problematic feature of the theory is not massless fermions but really the presence
of a global symmetry. Note also that in this second model one can render the
axion massless without changing the infrared (IR) degrees of freedom.
One could restore consistency with QG by simply claiming that flat axions

reside in the swampland and thereby exclude such models. However, there is a
counterexample in string theory. N = 2 supergravity indeed contains a flat axion
and obviously is not in the swampland. This motivates us to conjecture that the
dangerous global symmetries described above are ultimately broken by appro-
priate fermion operators such as explicit mass terms or even higher-dimensional
operators.
Ultimately we are interested to find a general lower bound on axion potentials

which quantifies to which extent an approximate global axionic shift symmetry
is compatible with QG. To do so we try to derive such a bound by applying the
WGC to the effective 3-form description of YM theory coupled to an axion. The
magnetic version of the WGC for 3-forms bounds the cutoff µ of the 3-form theory
according to µ ≲ (Λ2MP)

1/3 where Λ2 denotes the 3-form gauge coupling. As long
as the effective 3-form theory is valid only for small θ, its cutoff is given by Λ and
no constraint arises from the WGC.
We argue for the existence of an improved 3-form description which is valid

beyond θ ≪ 1. This enhanced range of validity allows for a cutoff which can
be larger than Λ and is given by the mass scale of the lightest massive degrees
of freedom in the UV, for example the mass of light fermions or the Higgs sale.
In contrast to the original 3-form description, this new 3-form theory is severely
constrained by the WGC. For example, it would parametrically constrain the
Higgs scale v of Higgsed YM models with gauge coupling g according to v ≲
MP exp(−1/g2). This would put weakly coupled YM theories which are Higgsed
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at a high scale into the swampland. We feel that this is too strong a statement to
be taken seriously and conclude that the WGC for 3-forms is at best only valid
for the canonical quadratic 3-form theory.

Since our WGC-approach failed we propose a bound on the generic axion poten-
tial V (ϕ) = −V0e−S cosϕ based just on the requirement of simplicity and consis-
tency with examples we have considered so far, in particular N = 2 supergravity,
and the WGC for axions. Our proposal is

V0e
−S ≳ µ4 exp(−MP/f) , (4.1)

where f denotes the axion decay constant and µ is the cutoff of the low energy
theory that describes exclusively the axion. From this one can easily derive a
bound on the axion mass mϕ:

mϕ ≳
µ

f
exp


−MP

f


µ . (4.2)

We have already mentioned that we expect global axionic shift symmetries to
be broken by appropriate fermion operators which then contribute to the axion
potential. If the corresponding fermions are not massless, we can use our proposed
bound on axion potentials to quantify the strength of such fermion operators. We
do so for the mass terms of fermions in Higgsed YM theory with and without
additional mass contributions from Yukawa couplings. In both cases we obtain
for the fermion mass m parametrically

m ≳ exp


−MP

f


v , (4.3)

with the caveat that in the case without Yukawa couplings this holds only for
more than four fermion flavors.

Finally, we argue for the possibility of gravity-induced fermion interactions
via gravitational instantons. To appreciate our argument, recall that the axial
U(1) symmetry of gauged massless fermions is anomalously broken according to
∂µJ

µ
5 ∝ tr(FF̃ ), where Jµ

5 is the axial U(1) current. In the presence of gauge
instantons, the spacetime integral of the topological density tr(FF̃ ) is non-trivial.
This implies the existence of an effective fermion interaction that explicitly breaks
the axial U(1). This instanton-induced fermion interaction, also called ’t Hooft
interaction, can be determined explicitly in the dilute gas approximation [167,168].

The same logic can be applied to pure gravity. There we have ∂µJ
µ
5 ∝ tr(RR̃)

with the right hand side being a gravitational topological term. To the best of
our knowledge, K3 is the only compact manifold non-trivially contributing to this
term [169, 170]. We describe how a K3 manifold can be glued into flat R4, such
that it can be considered a local fluctuation of it. This is analogous to the localized
field strength of a gauge instanton and also implies the gravitational analogues
of ’t Hooft fermion interactions. Using the dilute gas approximation we naively
estimate the strength of these interactions and find that the associated energy
scale is, in the case of the SM, larger than 1016 GeV. We therefore conclude that
they are phenomenologically irrelevant.
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4.2 The Physics of Massless and Massive 3-forms

In this section we collect some results about 3-form gauge theories [158–161]
(see Appendix 4.A for details and derivations). In particular, we argue for the
equivalence with the dual (−1)-form description. We also show how the force
between domain walls can be used to follow the transition between Coulomb and
Higgs phase. This quantifies features discussed in [146].

The free theory is defined by the Euclidean action

SE[A3, θ] =


M4


1

2Λ4
F4 ∧ ∗F4 − iθF4


, (4.4)

where F4 = dA3 is the field strength, Λ2 is the gauge coupling, and M4 is the 4d
Riemannian manifold on which the theory lives. If M4 is compact, the F4-flux on
it is quantized and one can dualize the partition function based on (4.4) in terms
of a sum over discrete values of F0 = ∗F4/Λ

2. Explicitly,

Z[θ] =


DA3 exp(−SE [A3, θ]) = C


n

exp


−Λ4

2


M4

(θ + 2πn)2 ∗ 1

, (4.5)

where C is a normalization constant. This partition function is invariant under
the shift θ → θ + 2π and we can hence view θ as a periodic variable which takes
values in the range [−π, π). Using this we conclude that for constant θ the term
with n = 0 corresponds to the lowest energy state. In the limit M4 → R4 this is
the only one that contributes:

Z[θ] ∝ exp


−Λ4

2


θ2 ∗ 1


. (4.6)

We also note that, for compact space and noncompact (Euclidean) time, i.e. for
M4 = R ×M3, the theory clearly represents a non-trivial quantum mechanical
system: The fundamental degree of freedom can be characterized by


M3

A3.
This system corresponds to a quantum particle on a circle. From now on we will,
however, take M4 = R4 for simplicity.

Let us now introduce Cartesian coordinates (x, y, z, t) and choose the source θ
such that it represents two parallel domain walls localized at x = a and x = b > a:

θ(x) =


θ1 for x ≤ a

θ2 for a < x < b

θ1 for b ≤ x

. (4.7)

They are subject to a force per unit area,

f (a) = −f (b) = Λ4

2
(θ22 − θ21) , (4.8)
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which is independent of the distance b − a. This is expected since one has no
propagating degrees of freedom. Instead, the force is due to a constant background
field strength F4 which is different between the walls and outside.

Next we consider the coupling of a dynamical scalar ϕ with mass m to the
3-form:

SE[A3, ϕ, θ] =


M4


1

2Λ4
F4 ∧ ∗F4 − i(θ + ϕ)F4 +

f2

2
dϕ ∧ ∗dϕ+

1

2
m2f2ϕ2 ∗ 1


.

(4.9)
Here f determines the normalization of ϕ. If m = 0, one may take the scalar
to be periodic such that f becomes its axion decay constant. The action above
is then dual to the situation where a 2-form is gauged by a 3-form as discussed
in [146].1 For us, m is a convenient parameter to switch this gauging on and off.2

Integrating out A3 gives

Z[θ] ∝


Dϕ exp

−

M4


Λ4

2
(ϕ+ θ)2 ∗ 1 + f2

2
dϕ ∧ ∗dϕ+

1

2
m2f2ϕ2 ∗ 1


(4.10)

which, upon carrying out the ϕ integration, simplifies to

Z[θ] ∝ exp


−Λ4

2


M4

θ(x)
□−m2

□−M2
θ(x) ∗ 1


(4.11)

with M2 = m2 + Λ4/f2. Also the force per area is altered:

f (a) = −f (b) = Λ4

2


m2

M2
(θ22 − θ21) +


1− m2

M2


(θ2 − θ1)

2e−M(b−a)


. (4.12)

The additional term exponentially decays with the distance of the two domain
walls and indicates the presence of a propagating degree of freedom with mass
M . The effect of the constant background field strength is also still present, but
it is now suppressed by m2/M2. At m = 0, the 3-form theory is Higgsed and this
long-distance effect disappears.

4.3 3-form Gauge Theory as Effective Field Theory of
Instantons

In the late 70s it has been noted that YM theory always contains a 3-form C3

that inherits a corresponding gauge transformation, C3 → C3 + dΩ2, from the
original non-abelian gauge symmetry. It therefore can be considered a proper

1 This is the gauge-field-theoretic description [147,148] of axion monodromy inflation [94,171],
recently revived in the context of F -term axion monodromy [130,172,173].

2 Note that a non-zero m may even be made consistent with a fundamentally axionic nature of
ϕ: All one needs is to interpret the effect of the gauging by a further 3-form (which has been
integrated out) as an effective monodromy or mass parameter.
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gauge 3-form [159]. More recently it was argued that this 3-form may provide an
alternative description of the Peccei-Quinn solution of the strong CP problem in
terms of a 3-form which gauges the axionic shift symmetry [146]. This logic and
its implications have been developed further in [161].

In this section we want to analyze the relation between YM theory and 3-form
gauge theory more systematically. To do so we focus on the calculable case of a
weakly coupled Higgsed YM theory such that we can employ the dilute instanton
gas approximation in our computations. We find that the instanton induced
correction to the vacuum energy can be effectively described by a pure 3-form
gauge theory at small θ-angle and below the Higgs scale. Adding light fermions
to the YM theory destroys this correspondence only at subleading order in the
exponential of the instanton action, so that the 3-form description remains valid
below the fermion masses.
In [161] a similar theory has been considered but with the non-abelian gauge

theory unbroken and not necessarily weakly coupled. It was argued that there
may be a bosonic bound state of fermions in the limit of vanishing fermion mass.
However, in our case we cannot find evidence for such bound states. Instead
we observe that 3-form gauge theory is an EFT of a theory that contains only
fermions which are subject to a special type of interaction, so-called ’t Hooft
interactions.

4.3.1 Pure Yang-Mills Theory

Let us first consider pure YM theory with Euclidean action

SE[A1, θ] =

 
1

2g2
tr(F2 ∧ ∗F2)−

iθ

8π2
tr(F2 ∧ F2)


, (4.13)

where A1 is the Lie-algebra-valued gauge potential and F2 = dA1. As is well
known, tr(F2 ∧ F2)/(8π

2) is a total derivative, i.e. it can be written as the exterior
derivative of a 3-form C3. This is the proper 3-form gauge potential mentioned
in the introduction to this section [159]. g denotes the gauge coupling and θ is
again an arbitrary external source. For θ = const. we may identify it with the
usual θ-parameter of YM theory. In order to be able to deal with this theory
computationally we assume the gauge symmetry to be broken spontaneously at
a scale v and take the running gauge coupling to be small at this scale: g(v) ≪
1. All instantons larger than v−1 are then cut off and the dilute instanton gas
approximation is valid. In this case one can integrate out the gauge field and
obtains the partition function

Z[θ] ∝ exp


2Kv4e−S


d4x cos θ


, (4.14)

where S = 8π2/g(v)2 denotes the instanton action and K ∝ S4 (see Appendix
4.B for details). For small θ this reduces to

Z[θ] ∝ exp


−Kv4e−S


d4x θ2


, (4.15)
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which is exactly the same as (4.6) for the pure 3-form gauge theory if we set

Λ4 = 2Kv4e−S . (4.16)

By comparing the actions (4.4) and (4.13) we see that θ generates the same
correlation functions for F4 in the 3-form gauge theory as for tr(F2 ∧ F2)/(8π

2)
in the gauge theory. Also the forces on domain walls will obviously be the same.
Hence we have established the pure 3-form gauge theory as an EFT of Higgsed
YM theory at energies below the symmetry breaking scale v.

4.3.2 Yang-Mills Theory with Fermions

Comparison at the 1-instanton Level

Next we add fermions with mass m to the Higgsed YM theory. For simplicity we
add only one fermion field in the fundamental representation of the gauge group
which is captured by the action3

SE[A1, ψ, θ] =

 
1

2g2
tr(F2 ∧ ∗F2)−

iθ

8π2
tr(F2 ∧ F2) + ψ(γ̂µD̂µ +m)ψ ∗ 1


,

(4.17)
where D̂µ is the Euclidean covariant derivative and γ̂µ are matrices in spinor space
satisfying the Euclidean version of the Clifford algebra, {γ̂µ, γ̂ν} = 2δµν .

As in Subsection 4.3.1 we would like to integrate out all dynamical fields to
obtain the corresponding effective action describing the vacuum of the theory.
If m ≫ v, we can first integrate out the fermions in an instanton background
which will give an effective action for the gauge field that has additional terms
suppressed by powers of v/m [174]. Ignoring these small corrections we are left
with a pure gauge theory, i.e. for m ≫ v we can ignore the fermions at scales
below v and the analysis presented in Subsection 4.3.1 applies.

However, for light fermions, i.e.m ≲ v, we have to take them into account prop-
erly. To do so, we integrate out the gauge field first and find the effective action
for the fermions in a background of a dilute instanton gas. The corresponding cal-
culation has been done by ’t Hooft [167,168] and leads to the following partition
function:

Z[θ] =


DψDψ exp


−

d4x


ψ(γ̂µ∂µ +m)ψ

+κve−S(ψPLψe
iθ + ψPRψe

−iθ)


. (4.18)

κ is some constant and PL/R is the left- and right-handed projection operator,
respectively. Note that the instanton induced 2-fermion interaction corresponds
to the well-known ’t Hooft determinant for one flavor and is suppressed by the

3For the sake of simplicity we have not included the Higgs sector in the action which is, never-
theless, always implicitly assumed to be present.
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instanton action via e−S . In the process of integrating out the fermions these
interactions will give rise to loop corrections to the effective action which are
suppressed by powers of e−S and correspond to many-instanton effects. Therefore
it is possible to view the effective action as a power series in this suppression factor.
For now let us ignore these loop corrections and calculate the partition function

to leading order in e−S , i.e. at the 1-instanton level, which can be done exactly
[167]. The result is

Z[θ] ∝ exp


2K ′v4

m

v
e−S


d4x cos θ


(4.19)

and reduces to

Z[θ] ∝ exp


−K ′v4

m

v
e−S


d4x θ2


(4.20)

for small θ. Fortunately, this exactly coincides with (4.15) up to a suppression
factor m/v and therefore we can once again apply the logic of Subsection 4.3.1 to
conclude that, at leading order in e−S , Higgsed YM theory with a light fermion
is at energies below the fermion mass m effectively described by a 3-form gauge
theory (4.4) with

Λ4 = 2K ′v4
m

v
e−S . (4.21)

For the sake of completeness let us let us also give the corresponding result for
Nf fermion flavors with mass m (cf. Appendix 4.B):

Λ4 = 2K ′v4
m
v

Nf

e−S . (4.22)

This shows that in the limit of massless fermions, m → 0, the 3-form gauge
coupling Λ2 vanishes or, in other words, the 3-form becomes non-dynamical. At
the same time, the cutoff of the effective 3-form theory goes to zero of course.
This consistently reproduces the fact that the θ-parameter of YM theory becomes
unphysical and instantons are suppressed in the presence of massless fermions.
Let us give an intermediate summary and make an observation which we find

interesting: We are considering a YM theory that is Higgsed at a scale v and
contains light fermions of mass m below v. We may assume m ≪ v, such that
an EFT at scale µ with m ≪ µ ≪ v can be defined. In this EFT, the massive
gauge bosons have been integrated out such that we are dealing with a purely
fermionic theory. In addition to the kinetic and mass term, these fermions are
subject to the famous, instanton-induced ’t Hooft interaction. Next, we may also
integrate out the fermions (at the 1-instanton level) to obtain the EFT relevant
at scales below m. We argued that this is a massless 3-form gauge theory. The
only assumptions were small θ and that higher-order corrections in e−S do not
modify (4.20) significantly. The interesting implication of this is that the low-
energy limit of a fermion theory with ’t Hooft interactions is provided by a 3-
form theory. Note that this 3-form has a priori nothing to do with the 3-form
C3 ∝ tr(dA ∧A+A ∧A ∧A) present in the original YM theory.
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Multi-instanton Effects

Let us now have a look at the next-to-leading order corrections due to the instan-
ton induced fermion interaction in order to check whether they spoil the validity
of the effective 3-form description already below the naive cutoff scale m. In
particular we calculate the corrections to the force between two domain walls in
Appendix 4.B. We find

f (a) = −f (b) = · · ·+ 2κ2v4
m
v
e−S

2
−


d3p

(2π)3
1

ω3
p

(θ22 − θ21)

+


d3p

(2π)3
1

ωpm2
e−2ωp(b−a)(θ2 − θ1)

2


+O

m
v
e−S

3
, (4.23)

where the dots . . . denote the leading order contribution (4.8) with (4.21). The
first term in the brackets is logarithmically divergent. It corrects the leading or-
der result and hence contributes to the gauge coupling Λ2 of the effective 3-form
theory. Physically we expect this to renormalize the fermion mass m such that
(4.21) remains true when used with the appropriate renormalized mass. The sec-
ond term, however, is finite and contains a non-trivial dependence on the distance
between the domain walls.

We can rewrite this second term in terms of the modified Bessel function K1 of
the second kind:

d3p

(2π)3
1

ωpm2
e−2ωp(b−a) =

1

2π2
K1(2m(b− a))

2m(b− a)
. (4.24)

For very small distances, m(b−a) ≪ 1, as well as very large distances, m(b−a) ≫
1, this can be approximated as

1

2π2
K1(2m(b− a))

2m(b− a)
=

1
2π2

1
(2m(b−a))2

+O(1) for m(b− a) ≪ 1
1

(4πm(b−a))3/2
+O


1

(m(b−a))2


e−2m(b−a) for m(b− a) ≫ 1

. (4.25)

Note that in the limitm→ 0 the force becomes exactly proportional to 1/(b−a)2.4
Let us now consider the regime m(b − a) ≫ 1 in which we naively expect the 3-
form description and the 1-instanton approximation to be valid. Indeed, in this
regime (4.25) is exponentially suppressed compared to the leading term (4.8) with
(4.21). They become comparable only in the other regime m(b− a) ≪ 1 at

b− a ∼ S2

√
mve−S

.5 (4.26)

4In this limit one must not forget about the factor m2 in front of the bracket in (4.23).
5Here we used the expression (4.100) for K′.
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This is self-consistent because in the weak coupling regime S ≫ 1 and therefore,
using (4.26),

m(b− a) ∼ S2


m

v
e−S ≪ 1 . (4.27)

Consequently, the 3-form description is always valid up to the fermion mass m.

In the presence of an emergent massive bosonic degree of freedom we would
expect a purely exponential contribution to the force while a massless bosonic
degree of freedom would lead to a constant term. Neither of this is the case for
the force in (4.24). Hence, we conclude that there is no sign for the presence of
some emergent bosonic degree of freedom and the subleading corrections to the
force are really due to the exchange of multiple fermions according to the ’t Hooft
interaction in (4.18).

There is, however, a possible loophole to our conclusion that no bosonic degree
of freedom is present. In the general case of Nf flavors the ’t Hooft interaction
is a 2Nf-fermion interaction and we therefore have a Nambu-Jona-Lasinio type
effective theory for the fermions [175, 176]. For such theories it has been shown
that non-perturbatively generated masses for the fermions and bosonic bound
states of fermions are present at large enough coupling g [177,178]. In particular
this is what is thought to be happening in QCD and leads to chiral symmetry
breaking. However, we have constrained ourselves to the small coupling regime,
g ≪ 1, so that this possibility is not relevant for us.

4.3.3 Yang-Mills Theory with Fermions and Yukawa Couplings

So far we have seen that Higgsed YM theory with light fermions, i.e. lighter than
the Higgs scale, can effectively be described by a 3-form theory,

L =
1

2Λ4
(∗F4)

2 + θ(∗F4) , (4.28)

at scales below the fermion mass m and with Λ4 ∼ (m/v)Nfv4. This means in
particular that this description completely breaks down in the limit m→ 0.

Now we consider a Higgsed SU(2) gauge theory with gauge coupling g and which
is Higgsed by the vacuum expectation value of a scalar doublet H with ⟨HT⟩ =
v(0, 1). Furthermore, we add Weyl fermions in the following representations: two
SU(2) doublets Q1,2 and four singlets χi with i ∈ {1, 2, 3, 4}. We generate masses
via Yukawa couplings

LY = y1H
†Q1χ1 + y2ϵαβH

αQβ
1χ2 + y3H

†Q2χ3 + y4ϵαβH
αQβ

2χ4 , (4.29)

where α, β are SU(2) indices. For simplicity we choose the Yukawa coupling
constants yi = 1 such that the fermions obtain masses of the order of the Higgs
scale v. Finally we add an explicit mass term

LM =MϵαβQ
α
1Q

β
2 . (4.30)
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It is crucial to note that whatever value M has, the fermion masses will always
be at least v due to the Yukawa couplings. Consider a U(1) transformation ac-
cording to which Q1,2 → eiαQ1,2 and χi → e−iαχi. This U(1) is anomalous with
respect to SU(2) and explicitly broken by the mass term LM . Thus the SU(2) θ-
parameter is physical and below the Higgs scale the theory is effectively described
by a 3-form theory like (4.28). The cutoff of this effective theory is given by m.

Let us consider how the effective 3-form description is affected by the parameter
M . For M = 0 the anomalous U(1) can be used to rotate away the SU(2) θ-
parameter. It is hence unphysical. However, in the effective 3-form description θ
is still physical which seems to be a contradiction. Furthermore, for all M > 0
there is no reason for the 3-form description to break down. In particular its
cutoff v is independent of the value of M . So how can the two points M = v and
M = 0 be smoothly connected to each other in the effective 3-form description?

A reasonable and simple answer is that the 3-form decouples in the limitM → 0.
By this we mean that Λ2 = Λ2(M) such that Λ2(0) = 0. In this way the 3-form
is unable to generate a potential for the θ-parameter and makes it effectively
unphysical. Hence consistency with the UV theory is restored. We expect that
the coupling constant Λ2 of the 3-form theory must be proportional to some
positive power of M . Its role is analogous to that of the fermion masses in our
original model without Yukawa couplings. In the following we will assume that
this analogy can be taken literally and Λ2(M) is given by (4.21) with m = M .
Note also that the decoupling of the 3-form is due to the change of a parameter
of the UV theory and takes place without changing the degrees of freedom in the
IR.

4.4 Swampland Constraints on Axions and Fermions

4.4.1 Global Symmetries and Fermion Operators

Axions have by definition a perturbative global shift symmetry. If this symmetry
were exact also at the non-perturbative level, it would violate the QG censorship
of global symmetries. We therefore expect this symmetry to be broken by non-
perturbative effects in a consistent theory.

Indeed, this is realized if the axion couples to a (Higgsed) YM theory with Nf

massive gauged Dirac fermions. In the following we will refer to such a model
as the light-fermion-scenario in contrast to the heavy-fermion-scenario explained
in Subsection 4.3.3. This terminology is supposed to stress the fact that the
fermions in the model presented in Subsection 4.3.3 remain always massive due
to the Yukawa couplings. The Lagrangian of the light-fermion-scenario reads

L = − 1

4g2
tr(FµνF

µν)+

Nf
i=1

ψi(i /D−mi)ψi−
1

2
f2(∂ϕ)2− iϕ

16π2
tr(FµνF̃

µν) , 6 (4.31)

6We have suppressed the Higgs sector here.
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where ϕ denotes the axion and f its decay constant. Now the shift symmetry is
non-perturbatively broken by instantons which induce an effective potential for
the axion at low energies (below the Higgs scale).

If at least one of the fermions becomes massless the Lagrangian becomes in-
variant under the transformation ψi → eiαγ5ψi and ϕ → ϕ − 2α, where ψi is the
massless fermion. Since this symmetry contains a shift in the axion and is exact
at the quantum level, we conclude that the axion potential must vanish in the
presence of a massless fermion.7 This can be viewed as a simple symmetry argu-
ment for a technical result of the instanton calculus. However, as we will discuss
later on, we expect such a theory to be constrained due to the QG censorship of
global symmetries [51–54].

Let us now consider the heavy-fermion-scenario of Subsection 4.3.3. It consists
of a Higgsed SU(2) YM theory with two Weyl fermion doublets Q1, Q2 and four
Weyl singlets χ1, χ2, χ3, χ4. These eight Weyl fermions are given a mass via
the Higgs mechanism such that we end up with four massive Dirac fermions.
Furthermore, we add an explicit mass term MϵαβQ

α
1Q

β
2 . If we couple an axion

to this theory, instantons will generate an effective axion potential. In the limit
M → 0 the theory becomes invariant under an exact global symmetry with the
transformation law Q1,2 → eiαQ1,2, χi → e−iαχi and ϕ→ ϕ−2α. Similarly to the
light-fermion-scenario we can conclude from this that the axion potential must
vanish in the limit M → 0. The existence of this global symmetry is again in
conflict with QG.

At first sight the two examples given above may look very similar. Here we
would like to point out an important difference. In both theories the axion po-
tential becomes zero in the limit of a vanishing mass parameter. While in the
light-fermion-scenario this results in the presence of a truly massless fermion, in
the heavy-fermion-scenario all fermions remain massive in the limit M → 0 due
to the Yukawa couplings. In particular, in the former case the axion potential
vanishes only at the expense of changing the IR degrees of freedom by introduc-
ing massless fermions while in the latter case those degrees of freedom are fixed
for all values of M .

We have seen that both examples have a global symmetry which eventually
allows for the presence of an exactly massless axion. One may argue that those
two theories are simply incompatible with QG and hence reside in the swampland.
However, a similar situation arises in N = 2 supergravity which contains an
axion with an exactly flat potential [179]. Nevertheless, we expect higher fermion
interaction terms to break this symmetry explicitly and thereby make the theory
consistent with QG again. Similarly, such additional fermion interactions could
be used to make our two scenarios consistent with QG, too.

Motivated by this we conjecture that such additional fermion interactions are

7Strictly speaking we do not have an exact global symmetry here because of the chiral grav-
itational anomaly. However, this effect is severely suppressed, as we will discuss in the
next section, and can be eliminated by adding an appropriate number of ungauged massless
fermions.
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mandatory for fermions without a hard mass term in the presence of axions in
order to prevent the existence of a global symmetry. This is a non-trivial statement
and we find it interesting how the exclusion of a global axionic shift symmetry
imposes constraints on fermion interactions. One could ask whether a minimal
strength of these interactions can be inferred on general grounds and in the next
subsection we attempt to do so by conjecturing a constraint on axion potentials.

4.4.2 (Too Strong) a Constraint on Axions from the WGC for 3-forms

Let us now bring back in the 3-form description of our two models. So far we have
discussed the effective 3-form description of Higgsed YM theory without axions
in Section 4.3. However, according to (4.10) the axion is easily accommodated by
replacing the source θ by the axion field ϕ and adding a corresponding kinetic term
for it. Then we immediately see that the axion mass m2

ϕ is given by m2
ϕ = Λ4/f2.

That means, whenever a global symmetry of the full UV theory forbids an effective
axion potential, the effective 3-form description must decouple as Λ2 = 0 (cf.
Subsection 4.3.3) is required for a vanishing potential. This is exactly what we
observe in the case of a Higgsed YM theory in the limit of massless fermions and
what we still expect to happen once Yukawa couplings have been introduced as in
the heavy-fermion-scenario. More generally, the 3-form gauge coupling Λ2 should
always be proportional to a symmetry-breaking parameter of the UV theory.

The idea is now to apply the WGC to the effective 3-form description of YM
theory and thereby derive a constraint on the 3-form gauge coupling and hence
also on the axion potential. Let us start by stating the two versions of the WGC
for 3-forms. The electric WGC for 3-forms requires the existence of domain walls
which naturally couple to the 3-form and whose tension T is bounded from above
according to

T ≲ Λ2MP , (4.32)

where Λ2 is the 3-form gauge coupling [50]. As long as the cutoff of the 3-form
theory is below (Λ2MP)

1/3 this bound has no consequences because the theory
breaks down before the presence of such heavy domain walls is required by the
WGC. On the other hand, if the cutoff is larger than (Λ2MP)

1/3 and domain walls
are not part of the theory, such a theory is forbidden by the WGC. The magnetic
version of the WGC for 3-forms simply bounds the cutoff µ from above according
to

µ ≲ (Λ2MP)
1/3 , (4.33)

which is exactly the condition for the electric WGC to be satisfied without the
presence of a light domain wall.

In order to apply the WGC to our effective 3-form theory of Higgsed YM
theories we need to discuss the cutoff of this effective theory in some detail. In
Section 4.3 we have found that the effective 3-form description of Higgsed YM
theory is naively valid up to the Higgs scale v while the presence of light fermions
with masses m ≲ v reduce this cutoff down to m. If these fermions acquire their
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masses via order one Yukawa couplings, the cutoff stays at v. However, we have
ignored a caveat in the corresponding argument which we would like to point
out now. Recall from Section 4.2 that the energy density of the 3-form theory is
given by ϵ = Λ4θ2/2. Furthermore, the effective 3-form description is only valid
for θ ≪ 1 and thus breaks down at energy densities corresponding to θ ∼ 1,
i.e. ϵ ∼ Λ4. Therefore the actual cutoff µ of the EFT is µ ∼ Λ. Using this new
cutoff we find (Λ2MP)

1/3 ≳ Λ ∼ µ which means that the theory always perfectly
satisfies both the magnetic and electric WGC.

The last paragraph showed that the effective 3-form description of instantons
breaks down at a scale set by the 3-form gauge coupling Λ2. In particular this
cutoff can be much lower than naively expected. Consider for example the heavy-
fermion-scenario. In this theory the 3-form gauge coupling Λ can be made arbi-
trarily small by choosing the parameter M appropriately. In particular we can
choose it such that we have a cutoff µ ∼ Λ ≪ v, where v is the Higgs scale as
usual. On the other hand, there are no new degrees of freedom in the theory
below the Higgs scale. Hence, there should be an effective theory that is valid in
the energy range between µ ∼ Λ and v and contains the same degrees of freedom
as the original effective 3-form theory.

In order to get rid of the constraint θ ≪ 1 we would like to find a 3-form theory
with action S[F4,Λ

2] such that it reproduces the full partition function (4.14),
i.e. 

DA3 exp


−S[F4,Λ

2]− i


θF4


∝ exp


Λ4


d4x cos θ


, (4.34)

with Λ2 satisfying (4.16) or (4.21), depending on whether we include fermions
or not. Although we cannot determine the explicit form of S[F4,Λ

2], the above
formula implicitly defines it and thereby also defines the effective 3-form theory
we are looking for. In general S[F4,Λ

2] can be a very complicated functional.
For example, from the instanton calculus we expect exp(−S[F4,Λ

2]) to have non-
trivial support only at F4-configurations which are δ-function-localized at certain
points, each contributing one unit to


F4 ∈ Z.

Now we can use this improved effective 3-form theory and apply the WGC to
it. According to (4.33) the 3-form gauge coupling must obey Λ2 ≳ (µ/MP)µ

2.
This turns out to be an extremely strong statement. To see this consider for
example a simple Higgsed YM theory with Higgs scale given by v. As usual the
corresponding effective 3-form theory has a gauge coupling Λ4 = v4e−S and cutoff
µ = v. (4.33) then implies

v ≲ exp


−4π2

g2


MP (4.35)

where g is the gauge coupling constant of the YM theory evaluated at the scale v
and we have used the relation S = 8π2/g2. This would imply that weakly coupled
YM theories can only be spontaneously broken at exponentially low scales. Even
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though this is a valid result we think that it is too strong as there is naively no
good reason why such a scenario should not be realizable in string theory.

Therefore we discard (4.33) and conclude that the application of the WGC to
the effective 3-form description of Higgsed YM theory leads to peculiar results.
On the other hand, as we have discussed above, the WGC applied to the 3-form
theory with the conservative estimate µ ∼ Λ for the cutoff µ is satisfied. From
this we conclude that, if the WGC for 3-forms has any regime of validity at all, it
can only be applied to canonical 3-form theories with the standard action given
by (4.4).

4.4.3 A Conjecture on Axion Potentials and Implications for Fermions

Given our failed attempt to use the WGC for 3-forms to constrain axion potentials
we now instead try to find a reasonable conjecture for a bound on the axion po-
tential in the following. In general we expect the non-perturbative axion potential
to be of the form

V (ϕ) = −V0e−S cosϕ+O

e−2S


. (4.36)

We would like to find a lower bound on the amplitude of this potential. A first
step into this direction is the WGC for axions which constrains the action S
according to S ≲ MP/f , i.e. V0e

−S ≳ V0e
−MP/f [50]. However, as long as V0 is

completely free this does not provide a hard bound on the potential. Very naively
one could conjecture that V0e

−S ≳M4
Pe

−MP/f but this, again, is too strong since
the axion potential in N = 2 supergravity vanishes exactly and therefore provides
a counterexample in the landscape.

How can we reconcile a vanishing axion potential in SUSY moduli space and, at
the same time, a lower bound on it? A possible answer is that the bound depends
on the cutoff of the effective axion theory such that it vanishes for zero cutoff.
We therefore propose the following bound on axion potentials as a conjecture:

V0e
−S ≳ µ4 exp


−MP

f


, (4.37)

where µ is the cutoff of the low energy theory that exclusively contains the axion.
The corresponding bound on the axion mass is

mϕ ≳
µ

f
exp


−MP

2f


µ . (4.38)

Note that this lower bound obeys (µ/f)e−MP/(2f)µ < (µ/MP)µ and is therefore
smaller than the cutoff µ for all f . Hence our constraint on the axion mass is
always consistent with the effective axion theory itself.

Now let us discuss the implications of this bound for the two scenarios discussed
so far. Let us start by considering the light-fermion-scenario with Nf fermions of
mass m and an axion as defined by (4.31). The cutoff of the EFT of the axion is
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given by µ = m. In order to satisfy (4.37) the fermion mass has to be bounded
from below according to

m ≳ Θ(Nf − 4) exp


− 1

Nf − 4


MP

f
− S


v ≳ Θ(Nf − 4) exp


−MP

f


v (4.39)

where we have used (4.22) to determine V0 in (4.37) and Θ denotes the Heaviside
step function. Consequently the fermion mass is only restricted for Nf > 4. For
Nf ≤ 4 an exactly flat axion potential is possible at the expense of massless
fermions. In this case the degrees of freedom in the IR change and there exists no
low energy theory that contains only the axion. As already discussed in Subsection
4.4.1, such a theory has a global symmetry consisting of a shift in the axion and
an anomalous U(1) rotation of fermions. We therefore expect additional fermion
interactions to be present that break this symmetry. Unfortunately we are not
able to constrain these fermion operators quantitatively. The constraint (4.38) on
the axion mass reads

mϕ ≳
m

f
exp


−MP

2f


m. (4.40)

Next consider the heavy-fermion-scenario. To be more general consider the Nf-
fold duplicates version of the model we have discussed so far such that we have
Nf explicit mass terms with mass M . With µ = v (4.37) implies

M ≳ exp


− 1

Nf


MP

f
− S


v ≳ exp


−MP

f


v (4.41)

which is very similar but stronger than what we have found in the last paragraph.
Finally (4.38) reads in this case

mϕ ≳
v

f
exp


−MP

2f


v . (4.42)

This procedure could also be used to constrain other fermion operator that breaks
a global symmetry which protects the axion potential.

4.5 Gravitational Instantons and Fermion Interactions

In the last section we have argued that QG may break axionic shift symmetries
via certain fermion operators which explicitly break an anomalous chiral U(1)
symmetry. Certain types of gravitational instantons may generate such fermion
operators as we will discuss in the following.
Consider YM theory with Nf massless Dirac fermions ψi, 1 ≤ i ≤ Nf, in the

fundamental representation of the gauge symmetry and field strength Fµν . This
theory has an axial U(1)A symmetry on the classical level which is anomalously
broken by instantons at the quantum level [174]. As a result, the corresponding
current Jµ

5 of the symmetry is not conserved:

∂µJ
µ
5 = − Nf

8π2
tr(FµνF̃

µν) (4.43)

88



4.5 Gravitational Instantons and Fermion Interactions

with F̃µν = (1/2)ϵµνρσF
ρσ and

Jµ
5 =

N
i=1

ψiγ
µγ5ψi . (4.44)

By recalling that instantons are topologically non-trivial field configurations,
obeying

1

16π2


d4xtr(FµνF̃

µν) = n ∈ Z , (4.45)

we can conclude that

−2nNf = − Nf

8π2


d4xtr(FµνF̃

µν) =


d4x∂µJ

µ
5

=

 +∞

−∞
dt
∂

∂t


d3xJ0

5

= Q5(t = +∞)−Q5(t = −∞) . (4.46)

This shows that the axial charge Q5 must change by −2Nf along a single in-
stanton event. Since the Q5 counts the number of right-handed minus the num-
ber of left-handed fermions, an instanton must convert Nf right-handed fermions
into Nf left-handed fermions.8 Hence we conclude that instantons induce a 2Nf-
fermion interaction that explicitly breaks the axial U(1)A symmetry. These are
the well-known ’t Hooft interactions and they can be explicitly calculated. In
particular, it turns out that the vectorial U(1)V and the chiral flavor symme-
try SU(N)V × SU(N)A are left unbroken by the interaction. Simply by using
this symmetry breaking pattern we can construct the flavor structure of the ’t
Hooft vertex. To do so we define the U(1)V-invariant matrix Ψij = ψRiψLj with
ψL/R = PL/Rψ. With this quantity we can construct exactly one interaction that
is invariant under the chiral flavor symmetry, namely detΨ. We can not fix the
color index structure by this line of reasoning but it will not be relevant for us
anyway.

Having discussed the YM case let us now turn to gravity. There we also have
a chiral anomaly [180,181] given by

∂µJ
µ
5 = − Nf

192π2
RµνρσR̃

µνρσ , (4.47)

where Rµνρσ is the Riemann tensor and R̃µνρσ = (1/2)ϵµναβR
αβ
ρσ. Note that now

Nf counts the total number of massless Dirac fermion species. Furthermore, the
K3 manifold is the only compact manifold for which the right hand side of (4.47)
is non-zero [169,170], namely

1

48π2


K3
d4xRµνρσR̃

µνρσ = 16 . (4.48)

8To conclude this we have to use the fact that the sum of right- and left-handed fermions is
conserved.
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As in the case of gauge instantons this result depends exclusively on the topology
of K3 and can in fact be derived by the Atiyah-Singer index theorem [182]. The
topological nature of this relation will be important for us in the following.

Although K3 is not a solution of the Einstein equations, it may nevertheless
contribute to the path integral as a quantum fluctuation of spacetime [169, 183].
Because K3 is exactly flat there is hope that such a contribution is not completely
suppressed by its action. However, in order to treat K3 as a fluctuation we need to
find a way to glue it into flat spacetime, R4. In fact, this can be done quiet easily
by cutting small 4-dimensional balls out of K3 and R4 and gluing these together
via a wormhole-like throat. Sections of this throat are topologically S3. The
resulting manifold is of course not a K3 anymore and has changed its topology.
Therefore one may be worried whether the topological relation (4.48) still holds
for the new manifold. In the following we argue why there is no problem.
Let us start with K3 that is glued onto an S4 instead of R4 as described above.

This manifold is topologically still a K3 and has no boundary. Hence (4.48)
remains true. In the next step we split the anomaly integral into three parts,
corresponding to the S4, the wormhole and the original K3 contribution:

1

48π2


d4xRµνρσR̃

µνρσ = AS4 +AWH +AK3 . (4.49)

But the metrics on S4 and on the wormhole have RµνρσR̃
µνρσ = 0 locally and

hence also AS4 = 0 = AWH. Now delete a point from the S4 which gives R4

but certainly does not change the integral AS4 . Hence we can conclude that a
K3 glued into a flat region indeed gives a contribution to the anomaly integral.
Finally, this allows us to conclude, similarly to the gauge instanton case, that
a K3 fluctuation is, according to (4.47) and (4.48), accompanied by a change of
the axial charge ∆Q5 = −4Nf. Hence K3 must induce an effective 4Nf-fermion
interaction which, again for symmetry reasons, is of the form (detΨ)2. Note that
this is the highest dimensional fermion operator that is possible in a theory with
Nf Dirac fermions.
Now we would like to estimate the amplitude for a K3 fluctuation by evaluating

the contributions of K3 to the path integral of Euclidean QG. To do so we need
to integrate over all metrics of an asymptotically flat spacetime that contains one
K3 fluctuation. The asymptotic R4 is of course flat and does not contribute to the
action. K3 is Ricci flat as well and hence we only have to deal with the wormhole
metric. There is a simple way to estimate the action of the wormhole. Let ρ−1 be
the typical curvature scale of it. Then, by dimensional analysis, its action must
be of the order SWH ∼ ρ2M2

P.
Next we determine the general form of the pre-exponential factor of the K3

amplitude. Note that the Atiyah-Singer index theorem tells us that the Dirac
operator has at least two normalizable zero-modes in a K3 background. In the
following we assume that there are exactly two zero modes. Hence, the K3 am-
plitude vanishes in the presence of massless fermions, perfectly analogous to the
case of gauge instantons. However, if the fermions have a small mass m, they will
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contribute a factor m2Nf to the amplitude. Dimensional analysis then fixes the
amplitude for a K3 fluctuation of size ρ to occur in a spacetime volume d4x as

d4x dρm2Nfρ2Nf−5f(ρMP)e
−ρ2M2

P . (4.50)

Here the function f parametrizes our ignorance about the true ρ-dependence of
the integration measure. In particular we expect f to be polynomial so that large
fluctuations are always exponentially suppressed.

In order to calculate the K3 density we assume f = 1 and integrate (4.50) over
ρ to obtain

nK3 ∼
 ∞

1/Λ
dρm2Nfρ2Nf−5e−ρ2M2

P =
1

2
M4

P


m

MP

2Nf

Γ


Nf − 2,

M2
P

Λ2


, (4.51)

where Γ(s, x) =
∞
x ts−1e−tdt is the upper incomplete Γ-function and Λ cuts off

small K3 fluctuations which we do not trust anymore. We leave the precise value
of Λ unspecified but it is certainly below the QG scaleMp. Let us ask whether we
can treat all K3 fluctuation with size ≳ Λ−1 as a dilute gas, i.e. we want to check
the relation nK3 ≪ ρ−4

c where ρc is some characteristic size of K3 fluctuations.
Defining ρc to maximize the integrand in (4.51) one obtains ρ−1

c ∼ MP/
√
Nf for

Nf ≫ 1. All fluctuations larger than this are exponentially suppressed. Using
Γ(s, x) ≤ Γ(s) = (s− 1)! ≤ (s− 1)s−1 for positive integer s we find the following
sufficient condition for a dilute gas:

Nf
m

MP
≪ 1 . (4.52)

For the Standard Model with Nf < 100 and m < 1TeV this is safely satisfied.
Having established the dilute gas approximation for K3 fluctuations we are

now ready to estimate the strength of the induced fermion interaction (detΨ)2 by
simply repeating the calculation of the effective action of gauge instantons as de-
scribed in Appendix 4.B. Since in this calculation the fermions are not integrated
out no factor of the fermion mass can arise in front of the effective interaction.
Therefore, we can use dimensional analysis to find

Lint ∼
 ∞

1/Λ
dρ ρ6Nf−5e−ρ2M2

P(detΨ)2 =
1

2
M4

PΓ


3Nf − 2,

M2
P

Λ2


(detΨ)2

M6Nf
P

.9

(4.53)
The typical scale µ of this interaction is

µ =
MP

Γ(3Nf − 2,M2
P/Λ

2)1/(6Nf−4)
. (4.54)

For Nf ≫ 1 we can estimate µ by µ ≳ MP/
√
Nf which gives µ ≳ 1017 GeV

for the Standard Model. For Λ = MP we find µ ≈ 1017 GeV. Even if this

9In principle we should have added an unknown function g(ρMP) to the integrand here, similarly
to the f in (4.50).
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interaction indeed exists, it is extremely suppressed and in foreseeable future of
no phenomenological relevance. Furthermore, it would be interesting to determine
whether these interactions may contribute to effective potentials of axions. If this
the axion couples to gravity via the topological term (4.49), this does not seem
to be the case for symmetry reasons. However, a detailed discussion is needed to
answer this question properly.

4.6 Conclusions

In the first part of this chapter we have studied the effective 3-form description
of instantons. To do so we coupled both theories to an external source θ and
calculated the respective partition function and forces on domain walls which we
modeled by a spatially varying θ. While this calculation can be done exactly in
the 3-form theory, for the gauge instantons one needs to employ the dilute gas
approximation. This restricts the range of applicability to weakly coupled Higgsed
YM theories. We found that the partition functions and forces agree for small
values of the external source θ and an appropriately chosen 3-form gauge coupling
constant Λ2. This shows that 3-form theories indeed are EFTs of Higgsed YM
theories for small θ. We expect this correspondence to hold also for gravitational
instantons.

With the same method we analyzed the effect of gauged fermions on the effective
3-form description. It turned out that they simply alter the expression for the
gauge coupling Λ2 of the effective 3-form theory by a factor proportional to their
mass. This implies that massless fermions decouple the effective 3-form theory
which is consistent with the fact that they completely suppress isolated gauge
instantons. Recently, it has been argued that the effective 3-form description of
YM theory with massless fermions could potentially contain a massless bosonic
degree of freedom [161,163]. While this is the case in a confining theory like QCD
with an η′ pseudoscalar, we are not able to find evidence for this in the case of a
Higgsed YM theory.

A careful analysis of the cutoff µ of the effective 3-form theory revealed that
the restriction to θ ≪ 1 implies it to be given by the 3-form gauge coupling Λ2

according to µ ∼ Λ. In fact this can be much lower than the naive cutoff which,
for example, is given by the lowest fermion mass or the Higgs scale. Nevertheless,
we argued that there must exist an effective 3-form theory which is valid beyond
this low cutoff Λ and in particular does not break down at θ ∼ 1. Unfortunately,
we have not been able to explicitly determine this improved 3-form theory but it
would be important to do so in order to improve our understanding of the effective
3-form description of instantons and extend its range of validity.

After having discussed the effective 3-form description of instantons, we consid-
ered axionic shift symmetries in the second part of this chapter. Ultimately, we
expect such global symmetries to be broken due to quantum gravitational effects.
Intuitively, this should manifest itself in terms of a non-vanishing potential and
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mass for the axion. It is an interesting question whether there is a quantitative
bound on how small axion masses can be.

First of all, it is easy to come up with a seemingly innocuous example for a
vanishing axion potential. We just have to couple an axion to Higgsed YM theory
with massless fermions as discussed in the first part of this chapter. In this theory
the axion is exactly massless. The same is true if the fermions obtain a mass via
Yukawa couplings but lack a hard mass term. In both cases we identified a global
symmetry, that involves a shift in the axion and anomalous U(1) rotations of the
fermions, as the reason for the vanishing axion potential. This motivated us to
conjecture that such theories should contain certain possibly higher-dimensional
fermion operators which break this symmetry and generate a mass for the axion.
In this case a lower bound on axion masses could be used to constrain such
operators.

However, we found that a strict censorship of massless axions can not be true
because N = 2 supergravity is a counterexample in the string landscape. A less
restrictive constraint on axions which is consistent with this observation is the
following: Let m̃ϕ(µ) be the lower bound on the axion mass as a function of the
cutoff µ of the low energy effective theory of the axion. In particular we require
this effective theory to exclusively contain the axion. Hence, if there are any other
massless degrees of freedom in the theory, the cutoff µ is zero. Then, in order
to restore consistency with N = 2 supergravity, we require m̃ϕ(µ = 0) = 0. It
remains to determine the actual form m̃ϕ(µ).

In a first attempt to do so we applied the WGC to the effective 3-form de-
scription of Higgsed YM theory with an axion and fermions. Unfortunately, this
approach turned out to be unsuccessful. Using the standard 3-form theory, as
discussed in the first part of this chapter, we are not able to derive any constraint
since the theory trivially satisfies the WGC. The reason for this is the low cutoff
of the theory which is given by the 3-form coupling constant Λ. This restriction
can be dropped if we assume that a modified 3-form theory exists whose cutoff is
not Λ but given by the naive cutoff scale which, in our examples, are light fermion
masses or the Higgs scale. However, using this theory we found that the resulting
constraint on axion masses and the associated YM theory are too strong to be
taken seriously.
Based on simplicity, the examples we have considered so far, and the WGC for

axions we finally proposed the following bound on axion masses mϕ:

mϕ ≳
µ

f
exp


−MP

2f


µ . (4.55)

Here f is the axion decay constant and µ the cutoff of the low energy axion theory.
Since in YM theory instantons and fermions determine the non-perturbatively
generated axion mass, we were able to use this bound to obtain a constraint on
fermion masses m which parametrically takes the form

m ≳ exp


−MP

f


v , (4.56)
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where v denotes the Higgs scale of the YM theory.

There are at least two promising directions to make progress with this conjec-
ture in the future. First of all, it is important to test it in a variety of stringy
constructions. In particular, it would be interesting to understand how exactly
the axion in N = 2 supergravity remains massless and determine which role SUSY
plays in this context. Second, one can take our bound for granted and explore
possible phenomenological implications. Especially constraints on certain fermion
operators which break axionic shift symmetries could be studied in different mod-
els.

Finally, in the last section we briefly discussed the possibility of fermion oper-
ators which are generated by gravitational instantons. These operators are the
analogues of the so-called ’t Hooft interactions in YM theory. We argued that
K3 instantons seem to be the only gravitational instantons capable of inducing
those interactions. A rough estimate of the strength of these operators showed
that they are severely suppressed and not relevant for phenomenology. It would
be interesting to see whether K3 instantons with fluxes have a similar effect and
how axions are affected by such fermion operators.

4.A 3-form Gauge Theory

4.A.1 Pure 3-form Gauge Theory

The free theory of a 3-form gauge potential A3 is defined by the Euclidean action

SE[A3, θ] =


M4

1

2Λ4
F4 ∧ ∗F4 − i


M4

θF4 , (4.57)

where F4 = dA3 is the field strength associated to A3 and θ is an external source.
Λ2 corresponds to the coupling constant andM4 is the 4-dimensional Riemannian
manifold on which the gauge theory lives. In the following we takeM4 = S1×M3

with M3 having finite volume and no boundary unless otherwise stated. The
corresponding (thermal) partition function is

Z[θ] =


DA3e

−SE[A3,θ] . (4.58)

We have normalized F4 such that the Dirac quantization condition reads

M4

F4 =
n ∈ Z. Making use of this quantization condition we can rewrite the partition
function as

Z[θ] =


D(∗F4)


n

δ


M4

F4 − n


e−SE[F4,θ] , (4.59)

where now we view F4 as an independent integration variable and treat the action
as a functional of F4. After rewriting δ(


M4

F4 − n) =

dχ/(2π) exp(iχ(


M4

F4 −
n)), performing the F4-integral and using the identity


n exp(iχn) = 2π


n δ(χ−
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2πn) we find for the partition function

Z[θ] = C

n

exp


−Λ4

2


M4

(θ + 2πn)2 ∗ 1

, (4.60)

with C being a possibly infinite constant.

In order to understand this theory physically let us consider the partition func-
tion Z[θ] in the limit of constant θ. Then

Z[θ] = C

n

exp


−Λ4βV

2
(θ + 2πn)2


, (4.61)

where β is the circumference of S1 and V denotes the volume of M3. This is the
partition function of a theory with infinitely many orthogonal energy eigenstates
labeled by all integers n and with energy given by En = Λ4V/2(θ + 2πn)2. From
the form of Z[θ] it is clear that the theory is invariant under the shift θ → θ+2π.
Hence it is sufficient to consider only θ ∈ [−π, π).10 For this choice the vacuum
energy is given by E0. For V → ∞ only the vacuum state remains while all other
energy eigenstates disappear due to their exponential suppression relative to the
vacuum. In the following we will only keep the vacuum state as we are primarily
interested in the limit V → ∞.

The partition function for infinite volume and arbitrary θ(x) reads

Z[θ] = C exp


−Λ4

2


M4

θ2 ∗ 1

. (4.62)

From this we easily read off the energy density

ϵ =
Λ4

2
θ2 (4.63)

and calculate the vacuum expectation value of ∗F4:

⟨∗F4⟩ =
1

iZ[θ]

δZ[θ]

δθ
= iΛ4θ . (4.64)

We also find for the correlator of ∗F4

⟨∗F4(x) ∗ F4(0)⟩ = Λ4δ(x) . (4.65)

The appearance of the δ-function in the correlator and the fact that the vacuum
expectation value exactly follows the external source shows that the field strength
is a purely local object that does not propagate any degree of freedom through
spacetime.

10Note that for θ = −π there are two degenerate energy eigenstates. We will ignore this subtlety
in the following.
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So far we have seen that the 3-form theory in the large volume limit V → ∞
has only one energy eigenstate, the vacuum, and lacks any propagating degrees
of freedom. Therefore, one may be tempted to conclude that the theory does not
contain any dynamics. This is not true as we will explain now. As is well known,
the gauge potential A3 naturally couples to the worldsheet (WS) of a domain
wall via


WSA3. Alternatively we may write this as


M4

A3 ∧ J1 where J1 is the
conserved current of the domain wall. After integration by parts we see that the
source term


M4

θF4 is exactly of this form with J1 = dθ. In the following we
will choose an appropriate θ(x) that describes two domain walls and calculate the
force that acts on them. It turns out that this force is not zero and therefore the
theory is not trivial.

For simplicity we will choose M3 to be R3 with coordinates (x, y, z). We would
like to describe two domain walls defined by x = a and x = b. Assuming a < b
this is realized by the choice

θ(x) =


θ1 for x ≤ a

θ2 for a < x < b

θ1 for b ≤ x

(4.66)

with θ1, θ2 ∈ [−π, π). The force on the domain wall is simply the negative deriva-
tive of the energy associated to this configuration with respect to the position of
the domain wall. However, this force is going to be infinite due to the domain
walls being infinitely extended. Hence, the proper quantity to determine is the
force per area. To do so we consider a cylinder with base area A and place it such
that its base is parallel to the domain walls and it is centered at x = a, i.e. at the
first domain wall. Now we calculate the change ∆E in the energy residing in the
cylinder due to a small change ∆a > 0 in the position of the first domain wall.
Using (4.63) we find ∆E = A∆a(Λ2/2)(θ21 − θ22). Since this expression is linear in
A and ∆a we can immediately read off the force per area acting on the domain
walls at a and b, respectively,

f (a) = −f (b) = Λ4

2
(θ22 − θ21) . (4.67)

Note that the forces do not depend on the distance between the domain walls.
In fact, they do not depend on spatial coordinates at all and are constant through-
out space. This shows that there is always a force acting on them, even if we would
push one domain wall out to infinity. Therefore the force is not due to the in-
teraction between the walls but only due to the interaction of the walls with the
field strength F4. The situation is somewhat analogous to an electric charge in a
constant electric field although this analogy is not perfect as the background field
strength ⟨∗F4⟩ is not spatially constant.
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4.A.2 3-form Gauge Theory Coupled to a Scalar Field

Now we extend the 3-form theory by introducing a scalar field ϕ with mass m
that couples to F4 according to the new action

SE[A3, ϕ, θ] =


M4

1

2Λ4
F4 ∧ ∗F4 +


M4

f2

2
dϕ ∧ ∗dϕ

+


M4

1

2
m2f2ϕ2 ∗ 1− i


M4

(θ + ϕ)F4 , (4.68)

where f determines the normalization of ϕ. This theory is special for m = 0 since
in that case it is dual to a 2-form theory that is gauged by A3. The dual action
reads

S̃E[A3, B2] =


M4

1

2Λ4
F4 ∧ ∗F4 +

1

2f2


M4

(dB2 −A3) ∧ ∗(dB2 −A3) (4.69)

which can be easily checked by dualization under the path integral. This action
is invariant under the simultaneous transformations B2 → B2 + Ω2 and A3 →
A3 + dΩ2 for an arbitrary 2-form Ω2. It realizes the Stückelberg mechanism for
A3, i.e. the gauge symmetry is spontaneously broken by the vacuum B2 = const.
such that only a massive A3 is left. In the following we want to argue that on the
ϕ-side of the duality this symmetry breaking can be possibly understood as an
effect of the (quantum) dynamics of the massless ϕ.
Let us make this argument for a more familiar example. Consider the following

action:

S̃E[A1, φ] =


1

2e2
F2 ∧ ∗F2 +


v2

2
(dφ−A1) ∧ ∗(dφ−A1) . (4.70)

This action realizes the Stückelberg mechanism for a 1-form gauge potential A1.
If we embedded this theory in a Higgs theory, v would be the vacuum expectation
value of the Higgs field. Hence we expect the gauge symmetry to be restored in
the vacuum for v = 0 which indeed is the case as is clear by inspection of the
action.

Next let us have a look at the dual action which reads

SE[A1, B2] =


1

2e2
F2 ∧ ∗F2 +


1

2v2
dB2 ∧ ∗dB2 − i


B2 ∧ F2 . (4.71)

Since B2 does not transform under the gauge symmetry of A1 its classical vacuum
configuration B2 = const. does not break it. Let us inspect the case v = 0 for
which the spontaneous symmetry breaking is turned off. In this case the dynamics
of the field B2 is frozen and it effectively acts as a source for F2. This observation
suggests that the dynamics of B2 is ultimately responsible for the spontaneous
symmetry breaking. Note also that the duality of (4.70) and (4.71) breaks down
whenB2 is massive. Hence this property ofB2 seems to be crucial for the dynamics
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behind the spontaneous symmetry breaking. All of these observations carry over
to the theories defined by (4.68) and (4.69).

Let us go back to the generic case with arbitrary m and calculate the partition
function of the theory. The A3-integration can be carried out as before which
leads to

Z[θ] = C


Dϕ exp


−

M4

Λ4

2
(ϕ+ θ)2 ∗ 1

−

M4

f2

2
dϕ ∧ ∗dϕ−


M4

1

2
m2f2ϕ2 ∗ 1


. (4.72)

This path integral is Gaussian in ϕ and we can therefore simply use the classical
equation of motion,

□ϕ =M2ϕ+ (M2 −m2)θ (4.73)

with M2 = m2 + Λ4/f2, to find the formal result

Z[θ] = C ′ exp


−Λ4

2


M4

θ(x)
□−m2

□−M2
θ(x) ∗ 1


. (4.74)

For f → ∞, i.e.M → m, this reduces, up to constant factors, to (4.62) as it should
be. The vacuum expectation value and correlator of ∗F4 are now calculated to be

⟨∗F4⟩ = iΛ4 □−m2

□−M2
θ (4.75)

and

⟨∗F4(x) ∗ F4(0)⟩ = Λ4 □−m2

□−M2
δ(x) . (4.76)

From the pole structure of the correlator we infer the presence of a massive degree
of freedom with mass M which continues to exist even for m = 0. In fact this
is not surprising as we have seen that for m = 0 a Stückelberg mechanism is at
work in the dual description.
Instead of using the formal expression (4.74) to determine the force on domain

walls we explicitly use a solution to the equation of motion with θ as defined in
(4.66). This solution can be written as

ϕ(x) =


1− m2

M2


×


θ1−θ2

2 (eM(x−a) − eM(x−b))− θ1 for x ≤ a

− θ1−θ2
2 (eM(x−b) + e−M(x−a))− θ2 for a < x < b

θ1−θ2
2 (e−M(x−b) − e−M(x−a))− θ1 for b ≤ x

.

(4.77)
Matching the solutions in the different regimes to each other at the boundary
and demanding ϕ to be constant at x → ±∞ fixes all six integration constants
uniquely. Upon using the equation of motion (4.73) the action in (4.74) can be
rewritten as 

M4

Λ4

2
θ(x)(ϕ(x) + θ(x)) ∗ 1 . (4.78)
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4.A 3-form Gauge Theory

The integrand of this action is the energy density in the presence of the two domain
walls. In order to appreciate its structure it is helpful to explicitly calculate it:

ϵ(x) =

Λ4

2
×


m2

M2 θ
2
1 +


1− m2

M2


θ1

θ1−θ2
2 (eM(x−a) − eM(x−b)) for x ≤ a

m2

M2 θ
2
2 −


1− m2

M2


θ2

θ1−θ2
2 (eM(x−b) + e−M(x−a)) for a < x < b

m2

M2 θ
2
1 +


1− m2

M2


θ1

θ1−θ2
2 (e−M(x−b) − e−M(x−a)) for b ≤ x

.

(4.79)

We clearly see that the first term equals the energy density (4.63) of the pure
3-form theory corrected by a factor m2/M2. The effect of this part of the energy
density on the force per area is hence exactly as we have calculated in (4.67)
but with the additional factor m2/M2. Now consider the second term in (4.79).
We would like to repeat the computation of the change in energy within a given
cylinder as we have done in Subsection 4.A.1. However, this time the energy
density changes at arbitrarily large distances from the domain walls if we move
them around. Hence, we have to use an infinitely extended cylinder. The total
energy within such a cylinder with base area A, ignoring the first term in (4.79)
we have discussed already, is

E = A
Λ4

2


1− m2

M2


1

M
(θ1 − θ2)

2(1− e−M(b−a)) . (4.80)

Taking the negative derivative with respect to a, dividing by A and combing with
the contribution from the first term in (4.79) gives for the total force density

f (a) = −f (b) = Λ4

2


m2

M2
(θ22 − θ21) +


1− m2

M2


(θ2 − θ1)

2e−M(b−a)


(4.81)

Let us compare this result with (4.67). We have again a constant contribution
in (4.12) which is suppressed by the factor (m/M)2 compared to (4.67) and a new
second term that exponentially falls off with the distance between the domain
walls. Note that this exponential fall-off is exactly what we could have anticipated
from the presence of a massive degree of freedom with mass M . While the first
contribution to the force is due to the interaction of the domain walls with the
background field strength, the second exponential term represents an interaction
between the two domain walls due to a massive scalar field. In the limit f → ∞,
i.e. in the decoupling limit of ϕ, (4.81) reduces to (4.67) as it should be. Form = 0
the constant part of the force disappears while the second essentially remains
unaffected. This can be intuitively understood by observing from (4.75) that the
background field strength vanishes for m = 0 and constant θ. Hence there is no
field strength the domain walls can interact with anymore and the corresponding
force becomes zero. On the other hand, as already explained above, even though
m = 0 there is a massive scalar present which is why the second contribution to
the force remains.
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4 Effective 3-form Description of Instantons and Axion Potentials

4.B Instantons in Yang-Mills Theory

In this appendix we collect some well known results about gauge instantons. A
good reference is for example [174]. An SU(N) gauge theory is described by the
Euclidean action

SE[A1, θ] =


1

2g2
tr(F2 ∧ ∗F2)−

iθ

8π2
tr(F2 ∧ F2) , (4.82)

where A1 is the Lie-algebra-valued gauge potential and F2 = dA1. g denotes the
gauge coupling and θ can in principle be an external source that depends on space.
Here we assume the topology of space to be simply R4. An instanton corresponds
to a topologically non-trivial field configuration AI

1 which minimizes the action
and has the properties

SE[A
I
1, θ] =

8π2

g2
− iθ . (4.83)

The instanton configuration AI
1 has 4N moduli, four for the instanton location,

one for its size and the rest for the orientation in group space. The contribution
of an instanton with a given size ρ and location x to the partition function reads

d4xdρ

ρ5
C(N)f(g(ρ), N)eiθ , (4.84)

where

f(g(ρ), N) =


8π2

g2(ρ)

2N

exp


− 8π2

g2(ρ)


(4.85)

and
8π2

g2(ρ)
=

8π2

g2(ρ0)
− 11

3
N ln


ρ

ρ0


+O


g2(ρ0) ln


ρ

ρ0


(4.86)

takes into account the running of the coupling with the instanton size ρ. ρ0 is an
arbitrary reference scale. Furthermore, we have

C(N) =
C1

(N − 1)!(N − 2)!
e−C2N (4.87)

with C1 and C2 being order one numerical constants. Besides the instanton there
is also an anti-instanton configuration AA

1 with

SE[A
A
1 , θ] =

8π2

g2
+ iθ (4.88)

and the corresponding contribution to the partition function is

d4xdρ

ρ5
C(N)f(g(ρ), N)e−iθ . (4.89)

In the following we will use the abbreviation S = 8π2/g2(ρ0).
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Next we would like to determine the full contribution of instantons to the
partition function. This can be done in the dilute gas approximation in which all
instantons are considered point-like. Such an approximation is only valid if the
density of instantons in space is small compared to their maximal size, i.e. if there
is no overlap between them. However, in principle we have to integrate (4.84) over
all ρ and hence take into account instantons of all sizes. In fact the contribution of
large instantons, which are problematic for the dilute gas approximation, diverges.
Indeed, inserting (4.86) into (4.84) reveals that the integrand of the ρ-integration
is given by ρ11N/3−5. The exponent is positive for any N ≥ 2 which renders the
integral IR divergent. Hence, the dilute gas approximation is not applicable in a
pure non-abelian gauge theory.
Fortunately, this problem can be avoided by introducing a scalar field that

breaks the gauge symmetry spontaneously with its vacuum expectation value v
and gives a mass to the gauge field. In this case the contribution to the parti-
tion function involves an additional factor ∼ e−(ρv)2 so that large instantons are
exponentially suppressed and the ρ-integral becomes finite. Now, performing the
ρ-integration in (4.84) with the exponential suppression factor, dividing by d4x,
and ignoring the phase eiθ gives for the instanton density at leading order

n = Kv4e−S , (4.90)

where we have chosen ρ0 = 1/v and

K ∼ C(N)S2NΓ


11

6
N − 2


(4.91)

The size of the instantons is now effectively cut off at ρ ∼ 1/v and therefore, as
long as Ke−S ≪ 111, the dilute gas approximation is valid. In particular, the
cutoff of the resulting effective theory is given by v as we will treat everything (in
particular instantons) smaller than 1/v as point-like.

Now we are in a position to sum the contribution of all possible ways to place
instantons and anti-instantons in spacetime and find

Z[θ] =

∞
n,n=0

1

n!n!

n
k=1


d4xkKv

4e−Seiθ
 n

k=1


d4xkKv

4e−Se−iθ


= exp(2Ke−S


d4xv4 cos θ)) . (4.92)

In the next step we consider YM theory with Nf Dirac fermions of mass m in
the fundamental representation of SU(N). The corresponding action is12

SE[A1, ψ, θ] =


1

2g2
tr(F2∧∗F2)−

iθ

8π2
tr(F2∧F2)+

Nf
i=1

ψi(γ̂µD̂µ+m)ψi∗1 , (4.93)

11This can always be achieved by choosing the gauge coupling small at the symmetry breaking
scale.

12For the sake of simplicity we have not included the Higgs sector in the action which is, never-
theless, always implicitly assumed to be present.
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4 Effective 3-form Description of Instantons and Axion Potentials

where D̂µ is the Euclidean covariant derivative and γ̂µ are matrices in spinor space
satisfying the Euclidean version of the Clifford algebra, {γ̂µ, γ̂ν} = 2δµν .

Once again we would like to obtain an effective action that is valid below the
scale v. If m ≫ v, we can first integrate out the fermions in an instanton back-
ground which will give an effective action for the gauge field that has additional
terms suppressed by powers of v/m. Ignoring these small corrections we are left
with a pure gauge theory, i.e. for v ≪ m we can simply ignore the fermions at
scales below v and the analysis presented at the beginning of this section applies.

For fermions which are light, i.e. m ≲ v, we can no longer simply integrate
them out but have to take them into account properly. For later use let us
define the operator-valued matrix Ψij(x) = ψi(x)PLψj(x) where PL,R denotes the
left-handed and right-handed chirality projector, respectively. We would like to
integrate out the gauge field and find the effective action for the fermions in a
background of a dilute instanton gas. The corresponding calculation has been
done by ’t Hooft [167] (see also [168]). In particular he showed that the partition
function corresponding to the action (4.93) in an instanton background gives rise
to the same fermion propagators as the partition function

DψDψ exp


−

d4x

Nf
i=1

ψi(γ̂µ∂µ +m)ψi



× d4zdρ

ρ5
C ′(N,Nf)f(g(ρ), N)eiθρ3NfdetΨ , (4.94)

where z and ρ denote position and size of the instanton, C ′ depends on N and
Nf and, most importantly, the running coupling now includes a contribution due
to the fermions:

8π2

g2(ρ)
=

8π2

g2(ρ0)
+


2

3
Nf −

11

3
N


ln


ρ

ρ0


+O


g2(ρ0) ln


ρ

ρ0


. (4.95)

Note that the color-structure of the operator detΨ is in general non-trivial but
has been suppressed by our simplified notation. In the following the details of
this will not be relevant for us but they can be found for example in [167,184].
The contribution of an anti-instanton at the same position and of the same

size is the complex conjugate of (4.94). Now we can perform the ρ-integration in
(4.94) and sum the instanton and anti-instanton contribution as in (4.92) to get
the following partition function for the fermions

Z[θ] =


DψDψ exp


−

d4x


Nf
i=1

ψi(γ̂µ∂µ +m)ψi (4.96)

+κv4−3Nfe−S(detΨeiθ + (detΨ)†e−iθ)


,

with

κ ∼ C ′(N,Nf)S
2NΓ


11

6
N +

7

6
Nf − 2


. (4.97)
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4.B Instantons in Yang-Mills Theory

From this we see explicitly that integrating out the gauge fields yields effective
fermion interactions, also called ’t Hooft interactions, which in the case of one
flavor reduce to a simple mass term that explicitly reads

Lmass = κve−S(ψPLψe
iθ + ψPRψe

−iθ) . (4.98)

Next we would like to determine the vacuum expectation value of ⟨tr(F ∧ F )⟩.
To do so we need to integrate out the fermions in (4.96) to obtain an explicit
expression for the partition function Z as a functional of θ. The result can be
organized in a series expansion in the small quantity e−S where terms of order
(e−S)n correspond to n-instanton contributions. If one is only interested in the
leading term of this expansion, one can skip the derivation of the effective action
(4.96) and instead directly integrate out gauge fields and fermions in (4.93) in one
step.

This calculation has also been done by ’t Hooft [167] and the result differs from
that without fermions only by an additional factor (ρm)Nf in the instanton contri-
bution (4.84) and the proper running coupling as stated in (4.95). Furthermore,
the constant C(N) in (4.84) is changed by a factor ∼ eNf and hence also depends
on Nf now. Note that the negative contribution −(2/3)Nf from the running cou-
pling to the exponent of ρ is over-compensated by the factor (ρm)Nf so that the
ρ-integration remains UV finite for all values of Nf.

After repeating the familiar steps of summing all instanton contributions we
find

Z[θ] = exp


2V K ′e−S

m
v

Nf

v4 cos θ


(4.99)

with

K ′ ∼ C(N,Nf)S
2NΓ


11

6
N +

1

6
Nf − 2


. (4.100)

Remember that the exponent of this formula is only exact up to order e−S as
we have ignored multi-instanton contributions. Compared to the theory without
or with heavy fermions, (4.92), we essentially get a suppression factor (m/v)Nf .
With this formula it is easy to calculate

⟨tr(F2 ∧ F2)⟩ =
1

iZ[θ]

1

V

∂Z[θ]

∂θ
= 16π2iK ′e−Sv4

m
v

Nf

θ (4.101)

for small θ and formally infinite volume V of the 4-dimensional Euclidean space.
We observe that the vacuum expectation value vanishes for m = 0. This is of
course the well-known result that massless fermions screen the topological sus-
ceptibility of non-abelian gauge theories. Ultimately, this is due to the fact that
massless fermions render θ unphysical.

Having discussed massless fermions in some detail, let us go back to the effective
theory of fermions with cutoff v and partition function (4.96). Similarly to the
discussion of the 3-form gauge theory in Appendix 4.A we now want to introduce
domain walls via the external source θ and calculate the forces acting on them.
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4 Effective 3-form Description of Instantons and Axion Potentials

We have seen that instantons induce 2Nf-fermion interactions. This implies
that fermions can be exchanged between two distinct instantons and hence induce
interactions between them. This effect should contribute to the force between do-
main walls. In order to understand this better we can calculate the vacuum energy
E0 in the presence of two domain walls, as defined by (4.66), in perturbation the-
ory. For simplicity we consider the case Nf = 1 for which the instanton-induced
fermion interaction is just a correction to the mass term. We organize our calcu-
lation as an expansion in two small parameters. First we assume θ to be small
and keep only terms up to quadratic order in the interaction term in (4.96) which
gives the following interaction Lagrangian

Lint = ṽψ


1− iγ5θ −

1

2
θ2

ψ , (4.102)

where we have introduced ṽ = κve−S . Our final result, the force on the domain
walls, will be given up to quadratic order in θ as well. Second, there is a factor e−S

in front of the instanton induced interaction term in (4.102) which is a measure
for the interaction strength. This is a small quantity and therefore we use it as our
second expansion parameter. Recall that each instanton comes with this factor
and hence we can view terms of order (e−S)n as an n-instanton effect. We will
include contributions up to order (e−S)2.
There are two vacuum diagrams that contribute to the ground energy at second

order in our expansion parameter e−S . The sum of these is

E0 = −2ṽL3


2


d4p

(2π)4
m

p2 +m2
+ ṽ


d3p

(2π)3
p2

ω3
p


+ 2ṽL2


d4p

(2π)4
m

p2 +m2
− ṽ


d3p

(2π)3
m2

ω3
p


((L− (b− a))θ21 + (b− a)θ22)

− ṽ2L2


d3p

(2π)3
1

ω2
p


e−2ωp(b−a) − 1


(θ2 − θ1)

2 . (4.103)

Here, as usual, ωp =

m2 + p2 and L3 is the formally infinite spatial volume.

Except for the integral in the last line all momentum integrals are divergent but
let us ignore this issue for a moment and proceed to calculate the force acting on
the domain walls. Differentiating (4.103) with respect to a, dividing by L2 and
multiplying by −1 gives the force density acting on the domain wall at a:

f (a) = 2ṽ


d4p

(2π)4
m

p2 +m2
− ṽ


d3p

(2π)3
m2

ω3
p


(θ22 − θ21)

+ 2ṽ2


d3p

(2π)3
1

ωp
e−2ωp(b−a)(θ2 − θ1)

2 . (4.104)

The first line of this expression still contains divergent integrals. We expect
these to contribute to the renormalization of the fermion mass m. In (4.99) we
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4.B Instantons in Yang-Mills Theory

already gave the result for the partition function with its exponent exact to linear
order in e−S . Hence, the term linear in e−S , i.e. linear in ṽ, in (4.104) must coincide
with the force calculated from (4.99) for consistency. The second term in the first
line of (4.104) provides a higher order correction to this. However, we also find a
completely new contribution to the force at the 2-instanton level proportional to
(θ1 − θ2)

2. This new term is exponentially suppressed in the distance of the two
domain walls. Form = 0 the exponential suppression vanishes and the momentum
integral can be performed exactly: The result is a Coulomb force law, i.e. it is
proportional to (b− a)−2.
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5 Summary and Outlook

In this thesis we have studied QG constraints on axions as imposed by two so-
called swampland constraints: the SDC and the WGC. Naively, they forbid super-
Planckian field ranges and give certain non-trivial constraints on axion potentials.
Since these conclusions, and in particular the SDC and WGC themselves, lack a
rigorous proof and given their potential phenomenological importance, we tried
to shed some light on SDC and WGC for axions by analyzing them via different
approaches and in different setups such as string theory or EFT. Some of the
central questions we considered while doing so are:

(1) Is it possible to construct explicit counterexamples to the SDC and WGC
for axions in string theory?

(2) Can one obtain natural inflation from string theory?

(3) What is, if any, the correct formulation of the magnetic WGC for axions?

(4) What kind of pathologies does the violation of the magnetic WGC for axions
imply for the theory at hand?

(5) How does QG constrain axion potentials?

In the following we summarize our main results.

We start with Question (1) which is equivalent to whether it is possible to
have super-Planckian axion field ranges in string theory. Indeed, in Chapter
2 we were able to construct mildly super-Planckian axion field ranges in the
moduli space of a very simple toroidal compactification of type IIB string theory.
The essential ingredient of this model is a flux-induced reduction of the toroidal
symmetry SL(2,Z) which enhances the axion periodicity to super-Planckian values
by a factor of the flux number. A tadpole cancellation condition bounds this
enhancement from above.

Although we have succeeded in constructing a super-Planckian axionic direc-
tion, the true, geodesic distance between points on this trajectory grows only
logarithmically with the flux number. This is due to the fact that the axionic
direction is not a geodesic from the point of view of the full moduli space. Moti-
vated by this observation we analyzed the model from a 4d low energy perspective
and find that the corresponding EFT breaks down once one tries to traverse large
field distances. This breakdown is due to a KK tower of states which becomes
light at large field distances and is very similar to what the SDC requires.
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The model described above obviously has two important drawbacks. On the one
hand the achieved axionic field range is only mildly super-Planckian so that one
can not definitely exclude that parametrically large field ranges are still unfeasible
in string theory. Although it is plausible that more complicated compactifications
may evade the bound on the axionic field range imposed by the tadpole cancella-
tion condition, an explicit proof of this is missing. On the other hand, we have not
tried to build a realistic model of natural inflation which would include moduli
stabilization in general and in particular the generation of a potential that keeps
the axion on its long trajectory and provides a small mass for it so that slow-roll
inflation can take place.
In Chapter 3 we analyzed the magnetic WGC for axions in some detail from

a low energy perspective. A naive extrapolation of the original magnetic WGC
for charged particles suggests that the corresponding axionic version strictly for-
bids super-Planckian axion decay constants. An alternative formulation forbids
the existence of black strings which are the analogues of black holes. Now the
question is whether these two formulations are really equivalent and, even more
importantly, what the correct formulation is.
To answer these questions we studied well-known solutions of strings which are

charged under the axion field. Since strings have co-dimension two in four space-
time dimensions we certainly expect strong gravitational backreaction. Indeed,
such strings have either physical singularities at a finite distance from the string
core or give rise to a non-static inflating spacetime. While sub-Planckian axion
decay constants admit at least a static field configuration this is no longer true
for super-Planckian decay constants. Instead such strings give rise to topological
inflation. A black string in the sense of the presence of an event horizon similar
to that of a black hole does not seem to exist.
In the absence of a black string it is not clear what the magnetic WGC for axions

should look like. The central question is whether topological inflation poses any
fundamental problem for the theory and should hence be forbidden. In this case
the magnetic WGC for axions would forbid super-Planckian decay constants as
naively expected. Alternatively, accepting topological inflation as a proper UV
completion of axionic strings would lead to inconsistencies with the WGC for
charged particles. We therefore tend to prefer the WGC to censor topological
inflation and hence super-Planckian axion decay constants. However, a decisive
conclusion remains elusive.
By considering composite strings we tried to avoid topological inflation for

super-Planckian decay constants but a very naive and approximate analysis sug-
gests that this does not work. A quantitative understanding of the dynamics and
the gravitational backreaction of such composite strings would help to make this
conclusion more rigorous.
In Chapter 4 we discussed the axion potential in Yang-Mills theory and pointed

out the well-known fact that massless fermions will make this potential exactly
flat. This can be traced back to the emergence of a global symmetry involving
a shift in the axion and an anomalous U(1) rotation of the fermions. A similar
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situation is encountered when the fermions remain massive via Yukawa couplings
but are lacking a hard mass term. From a quantum gravitational point of view
such theories with a global symmetry are presumably in the swampland.

We conjectured that these global symmetries are generically broken by higher-
dimensional fermion operators which in particular break the anomalous U(1)
transformation explicitly. Furthermore, since axion potentials can only be non-
vanishing if the axionic shift symmetry is broken, we proposed a lower bound on
axion potentials in order to provide a more quantitative measure for how strongly
the shift symmetry is expected to be broken by quantum gravitational effects.
Note, however, that our bound does not exclude vanishing axion potentials but
they are possible in the presence of other massless degrees of freedom as is real-
ized for example in N = 2 supergravity. In such cases we expect the axionic shift
symmetry to be broken by the additional massless degree of freedom. We also
showed that such a bound on axion potentials can be used to infer a correspond-
ing bound on hard fermion masses. More generally, this procedure should provide
constraints on any fermion operator that breaks the shift symmetry of an axion.

In addition we considered K3 manifolds as gravitational instantons and argued
that they generate fermion interactions. These interactions are the analogues of
the well-known ’t Hooft interactions which are induced by SU(N) gauge instantons
and turn out to be extremely feeble as they are suppressed by almost the Planck
scale.

Besides the discussion of axionic shift symmetries and fermion operators we
examined the effective 3-form description of instantons and in particular studied
the effect of fermions on this description. We found that fermions without a hard
mass term decouple the effective 3-form, i.e. the 3-form gauge coupling vanishes
in such a scenario.

After having summarized the results of this thesis let us finally put them in
relation to the general status of the research on swampland constraints. First,
recall that a large portion of the recently increased interest in swampland con-
straints such as the WGC or SDC was due to the possibility to apply them to
models of large field inflation such as natural inflation. Since models of large field
inflation predict a large and hence potentially observable tensor-to-scalar ratio
this was particularly interesting and exciting: If the swampland conjectures are
indeed correct, large field models would have been the first phenomenologically
relevant theories that are directly constrained by string theory.

Unfortunately, by now the upper bound on the tensor-to-scalar ratio has become
so strong that large field inflation is already in quite some tension with experi-
mental data. Consequently, much of the original motivation to study swampland
constraints in general and constraints on axions and large field ranges in par-
ticular is lost. It is, nevertheless, interesting and worthwhile to further explore
the swampland paradigm in order to gain a better understanding of string the-
ory and quantum gravity, even though its phenomenological relevance may have
decreased.
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One of the most urgent and seemingly most difficult problems in the research
on swampland constraints is to provide rigorous proofs for the swampland con-
jectures. There are several attempts to provide such a proof for the WGC but
there are contradictory results. All of them are based on certain assumptions and
are valid only in special settings [55–61]. It is extremely important to put the
conjectures on firm ground as soon as possible. As long as this task has not been
accomplished, all results obtained from the conjectures can not be fully trusted
and it is questionable how useful it is to pursue more and more consequences of
so far very speculative conjectures.
In this thesis we have seen that, based on examples from string theory and EFT,

it is difficult to obtain a clear picture of swampland constraints, in particular of
those on axions. On the one hand, we have found evidence that super-Planckian
axion decay constants may be problematic in EFTs and verified a SDC-like prop-
erty of an explicit moduli space. These findings support the WGC for axions and
the SDC. On the other hand, we were also able to construct an axion with super-
Planckian field range which is in tension with the WGC for axions. The status
of these conjectures is therefore very inconclusive and calls for a more rigorous
treatment. Furthermore, even if all or at least some of the conjectures are true, it
is not clear whether they necessarily give constraints in the phenomenologically
relevant IR of a theory. These doubts are raised by the observation that a UV
theory that obeys the WGC for charged particles can give rise to an IR theory
that violates it [67].
Nevertheless, we would like to point out a few promising directions for future

research. First of all one can try to explicitly construct super-Planckian axions
in different stringy settings and improve the constructions we have obtained in
Chapter 2. Indeed, recently there has been substantial progress in this direction.
In [49] an axion with parametrically large field range has been realized very ex-
plicitly in the EFT of a type IIB compactification with fluxes using the idea of a
winding trajectory [78,92] in the field space of two or more axions. The problem
of moduli stabilization has been addressed therein and a potential that keeps the
axion on its long trajectory could be constructed. This strongly suggests that
parametrically large axion field ranges are indeed possible in string theory. How-
ever, realizing inflation in this scenario is more demanding than just having a
large axion field range but the authors express some hope that inflation may be
realizable in a small parameter range.
Furthermore, in Chapter 3, we identified composite strings as a possible loop-

hole to topological inflation and the associated problems with super-Planckian
axion decay constants. Estimates of the tension of such strings suggest that they
will lead so topological inflation but a more detailed analysis of the dynamics of
composite strings could be performed in future work in order to make this dis-
cussion more reliable. The fact that there seems to be evidence for axions with
clearly super-Planckian field range in string theory (cf. Chapter 2) is of course in
tension with the preliminary conclusions of Chapter 3 that super-Planckian axion
decay constants are potentially problematic in EFT. It would be interesting to

110



see how the stringy examples with super-Planckian axion decay constants evade
the problems with axionic strings.

We have stressed that many swampland constraints are speculative and evi-
dence in favor of them is often based on examples in string theory and not so
much on general arguments. A reasonable strategy to make progress in the re-
search on swampland constraints may therefore be to concentrate on the best
established ones, in particular the censorship of global symmetries. Indeed, re-
cently this has been proven in a very special setting using holography [185, 186].
Motivated by this it seems to be particularly promising to study axionic shift
symmetries and their relation to axion potentials, which is what we have done in
Chapter 4.

Based on Chapter 4 the following directions for further research could be fol-
lowed in order to improve our understanding of axion potentials and QG con-
straints. We did a first step towards identifying possible mechanisms by which
QG could break axionic shift symmetries when we discussed gravitational instan-
tons. This discussion could be extended by considering instantons with fluxes.
Moreover we encountered an exactly flat axion in N = 2 SUGRA although we
expect the axionic shift symmetry to be broken in this stringy example. It would
be important to understand how these two observations are compatible with each
other in detail. Finally, it is worthwhile to explore the consequences of our pro-
posed bound on axion potentials in phenomenologically relevant theories such as
models of the QCD axion or axion dark matter.
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