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Abstract 

Fire is a major component of the terrestrial carbon cycle that has been implemented in most 

current global terrestrial ecosystem models (TEMs). Here, we use terrestrial carbon cycle 

observations to characterize the importance of fire regime gradients in the spatial distribution 

of ecosystem functional properties such as carbon allocation, fluxes, and turnover times in the 

tropics. A Bayesian model-data fusion approach is applied to an ecosystem carbon model to 

derive the posterior distribution of corresponding parameters for the tropics from 2000 to 

2015. We perform the model-data fusion procedure twice, i.e. with and without imposing fire. 

Gradient of differences in model parameters and ecosystem properties in response to fire 

emerge between these experiments. For example, mean annual burned fraction correlates 

with an increase in carbon use efficiency and reductions in carbon turnover times. Further, 

our analyses reveal an increased allocation to more fire-resistant tissues in the most 

frequently burned regions. As fire modules are increasingly implemented in global TEMs, we 

recommend that model development includes a representation of the impact of fire on 

ecosystem properties as they may lead to large differences under climate change projections. 
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1 Introduction 

Terrestrial ecosystems offset climate change by capturing and storing 25-30% of 

fossil-fuel emissions of carbon dioxide (Le Quéré et al., 2015), albeit with a large inter-

annual variability that is driven by climate variability and fire disturbance (van der Werf et 

al., 2010; Reichstein et al., 2013). While terrestrial ecosystem models (TEMs) initially 

represented the impact of climate conditions on ecosystem carbon cycling, recent models 

have included the representation of fire (Hantson et al., 2016). These new features range from 

simpler models that use observed fire masks to prescribe burning of steady-state pools (e.g. 

van der Werf et al., 2010) to fully prognostic process-based models that simulate ignition and 

spread as a function of soil moisture (a surrogate for fuel curing), wind speed and lightning 

occurrences (e.g. Lenihan et al., 1998; Thonicke et al., 2010). As large fire-prone savanna 

regions are a major component of the global land carbon inter-annual variability (Poulter et 

al., 2014; Ahlström et al., 2015; Liu et al., 2015), this range of complexity in the 

parameterization of fire-related ecosystem properties (e.g. combustibility, survival strategies) 

may introduce further uncertainty and biases in estimates of the land carbon sink that remains 

to be quantified (Hantson et al., 2016; Rabin et al., 2017; Whitley et al., 2017). 

Ecosystem models often rely on a discrete categorization of the land surface into plant 

functional types (PFTs). Each PFT is associated with a set of space and time-invariant 

parameter values that regulate the ecosystem’s biogeophysical and biogeochemical responses 

to environmental drivers. The spatial distribution of each PFT is based on apriori 

biogeography (e.g. boreal, temperate, tropical), leaf morphology (e.g. broadleaf, needleleaf), 

deciduousness (deciduous or evergreen), photosynthetic pathways (C3 or C4 plants) and tree 

cover fraction, from grasslands to forests (Ustin & Gamon, 2010). The model-specific 

distribution of PFTs is usually created from land cover maps such as the MODIS-derived 

classification (Friedl et al., 2002) to which various levels of aggregation may be applied to 

reflect specific adaptation to climatic conditions (e.g. Harper et al., 2016). For example, 

models that participated in the fifth phase of the Coupled Model Intercomparison Project 

(CMIP5; Taylor et al., 2012), presented by Arora et al. (2013), represented between 5 and 16 

PFTs.  

The PFT approach assumes that model parameters are transferable globally within the 

same PFT (Kuppel et al., 2014). This involves a risk of biases due to possible over-fitting to 

available training datasets (Scheiter et al., 2013) which may not be representative of all 

possible trait values among ecosystems included within the same PFT (Verheijen et al., 2013; 

Scheiter et al., 2013). Indeed, TEM calibration is often performed against eddy-covariance 

tower data (e.g. Kuppel et al., 2014) but the spatial distribution of these datasets means that 

models are better constrained in temperate regions of the northern hemisphere. Another issue 

is that most eddy-covariance towers are installed in fire-free regions or report on fire-free 

periods. Therefore, models calibrated against these data will not be able to represent the 

observed impact of fire on ecosystem functional properties (Bond & Keeley, 2005; Pausas & 

Schwilk, 2012) and limitations on biomass accumulation (Murphy et al., 2014). There is a 

risk of over-fitting data when transferring model parameters from fire-free conditions to 

regions of high fire frequency. Indeed, to our knowledge only few models (e.g. aDGVM: 

Scheiter et al., 2013; LPX: Kelley et al., 2014) represents fire adaptation strategies 

identifiable in the field such as shifts in carbon allocation among plant tissues (Gignoux et al., 

1997) and carbon costs associated with re-sprouting and recovery.  

Introducing spatial variation in some parameters can improve the overall quality of 

large-scale simulations of biomass and productivity, as was demonstrated by Castanho et al., 

(2013) in the Amazon basin. They used in situ observations to derive relationships (i) 
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between net primary productivity (NPP) allocation to leaves and roots and soil sand content 

and (ii) between phosphorus content and maximum carboxylation capacity of RuBisCO. As a 

result, their model was able to reproduce gradients in woody NPP and above-ground biomass 

(AGB) more accurately than using homogeneous parameter values for the whole basin. 

Similar to this previous study (Castanho et al., 2013), we expect that spatially distributed 

information on ecosystem properties response to fire regimes can improve the representation 

of the carbon cycle in global scale TEMs but corresponding large-scale datasets are not 

readily available. Indeed, unlike leaf properties (Usting and Gamon, 2010), internal processes 

like allocation and transit times (Carvalhais et al., 2014; Bloom et al., 2016) cannot be 

remotely sensed and need to be retrieved through model-data fusion. 

In this study, we seek to overcome this limitation by merging Earth observations of 

the biosphere with a process-based ecosystem model. The aim of this inverse approach is to 

identify spatial variation in ecosystem functional properties that are linked to fire. We focus 

on tropical ecosystems which feature fire-prone regions experiencing largely different 

disturbance regimes as represented by the spatial distribution of mean annual burned fraction 

(MABF; Figure 1) calculated from the Global Fire Emissions Database version 4 (GFED4; 

Giglio et al., 2013), the inverse of the fire return period (Li, 2002). We hypothesise that 

gradients in fire disturbance have significant impacts on the spatial distribution of ecosystem 

properties related to productivity, plant allocation and carbon turnover times (Bond and 

Keeley, 2005). This would point to the need to take the spatial distribution of fire regimes 

into account when introducing complex fire modules into TEMs.  

We use the Carbon Data Model Framework (CARDAMOM; Bloom and Williams, 

2015; Bloom et al., 2016) to characterise the importance of ecosystem response to fire in 

simulations of pantropical carbon dynamics. CARDAMOM is used to retrieve maps of model 

parameters corresponding to ecosystem functional properties and land-atmosphere carbon 

fluxes across the pantropical region in agreement with time series of fire (burned area), 

meteorology and remote-sensing observations of the biosphere. Erb et al. (2016) examined 

the impact of land-use on global biomass turnover and we take a similar approach to perform 

a second experiment that excludes the impact of fire on the biosphere. We thereby derive 

hypothetical maps of potential ecosystem properties and fluxes without fire. Comparing these 

two retrievals (with and without fire) allows us to quantify the influence of fire on terrestrial 

C balance of the pantropical region. Finally, we perform a synthetic climate change 

experiment to assess the impact of including or excluding fire on the sensitivity of terrestrial 

ecosystems to warming and increasing atmospheric CO2.  

2 Materials and Methods 

2.1 CARDAMOM  

CARDAMOM is a model-data fusion tool that constrains an ecosystem model with 

available observational datasets. It consists of two main components described hereafter: a 

terrestrial ecosystem model coupled with a model-data fusion procedure. 

2.1.1 DALEC ecosystem model 

CARDAMOM uses the Data-Assimilation Linked Ecosystem Carbon Model 

(DALEC; Williams et al., 2005; Bloom and Williams, 2015), a model of the terrestrial carbon 

cycle (Figure 2). DALEC calculates Gross Primary Production (GPP) with the Aggregated 

Canopy Model (ACM; Williams et al., 1997). Autotrophic respiration (Ra) is a fixed fraction 

of GPP and fixed fractions of the remaining Net Primary Productivity (NPP) are allocated to 

4 live biomass pools: foliar, labile, wood and fine roots. The labile pool (Clabile) represents a 
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reserve of non-structural carbon that can supplement the allocation to the foliar pool (Cfoliar) 

corresponding to leaf expansion. Leaf growth is controlled by a Growing Season Index (GSI), 

similar to the one introduced by Jolly et al. (2005).  

In our model, GSI is the product of 3 piece-wise linear functions of average daily 

minimum temperature (Tmin), photoperiod, and Vapour Pressure Deficit (VPD). Each of these 

functions returns a value that ranges from 0 (limiting conditions) to 1 (optimal conditions) 

and their shape is controlled by two parameters that correspond to critical values. The value 

of GSI is used to scale the release of Clabile into Cfoliar when environmental conditions are 

good for leaf production. Conversely, the value (1-GSI) is used to scale leaf loss into the litter 

pool (Clitter). First-order kinetics are used to simulate the turnover of fine root C (Croot) into 

Clitter and woody carbon (Cwood) into soil organic matter carbon pool (Csom). Microbial 

decomposition produces heterotrophic respiration (Rh) and the model provides the Net 

Ecosystem Exchange (NEE) as the net biogenic flux of carbon from the land to the 

atmosphere: (calculated as NEE = Ra + Rh – GPP). 

Fire generates carbon emissions from combustion of live and dead C pools (red 

upward arrows in Figure 2) but also accelerates the turnover of live carbon into dead pools 

(red lateral arrows in Figure 2). It is imposed to a fraction of each pixel according to the 

satellite-based GFED4 burned area product (Giglio et al., 2013). Fire-induced emissions and 

mortality fluxes are calculated similarly to van der Werf et al. (2010) with fixed combustion 

resilience and emissions factors of the different carbon pools (Bloom et al., 2016). At each 

time-step t emission factors kp are used to calculate C emissions from each pool p due to fire 

such as  

𝐹𝐸𝑝,𝑡 = 𝐵𝑡 × 𝑘𝑝 × 𝐶𝑝,𝑡  (1) 

where FEp,t is the total fire C emission at time step t, Bt is the GFED4-derived fraction 

of pixel burned, and Cp,t is the C in pool p at time step t. We use the same combustion factors 

as Bloom et al. (2016) for Clabile (0.1), Cfoliar (0.9), Croot (0.1), Cwood (0.1), Clitter (0.5) and Csom 

(0.01) where higher values of kp are used for more flammable C pools. A resilience factor r = 

0.5 is assigned to simulate mortality of live biomass and Clitter transfer to Csom such as 

𝐹𝑀𝑝,𝑡 = 𝐵𝑡 × (1 − 𝑘𝑝) × (1 − 𝑟) × 𝐶𝑝,𝑡  (2)  

where FMp,t is the fire-imposed mortality or litter transfer C flux from pool p. Overall 

fire accelerates vegetation turnover and provides an additional input of dead organic matter in 

Csom. Fire fluxes are used to update pool sizes at each time-step and the Net Biome Exchange 

of C (NBE) is calculated by adding fire C emission fluxes to NEE.  

2.1.2 Model-data fusion 

The reduced complexity of the DALEC ecosystem model enables it to perform 

computationally intensive data-assimilation procedures to quantify the uncertainty in the six 

initial pool conditions and 20 process parameters (see Table 1) according to observations. 

CARDAMOM adopts the approach described in Bloom and Williams (2015) and Bloom et 

al. (2016) that combines a Markov Chain Monte Carlo (MCMC) procedure with Ecological 

and Dynamical Constraints (EDCs). The EDCs represent a formulation of the ecological 

common-sense that help constrain inter-dependencies between ecosystem processes (Bloom 

and Williams, 2015). They help reduce the uncertainty in model parameters by dismissing 

simulations that do not satisfy a range of conditions applied to carbon turnover rates, 

allocation ratios and trajectories of carbon pools. For this study, the model-data fusion 

procedure is performed for the pantropics using 5,417 pixels at a 1°×1° spatial resolution 

corresponding to the extent of the above ground biomass map from Avitabile et al. (2016). 
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This dataset blends two previous pantropical biomass maps (Saatchi et al., 2011; Baccini et 

al., 2012) with additional in-situ data and high resolution local maps. Avitabile et al. (2016) 

AGB map yields lower estimates of pantropical AGB stocks and different spatial patterns. 

Most noticeably, it predicts more biomass in the Congo basin, the Guyana shield and South-

East Asia than either of Saatchi et al. (2011) or Baccini et al. (2012) maps. Conversely, 

Avitabile et al. (2016) maps estimates lower biomass in African savannahs and Central 

America.  

In each pixel, the MCMC relies on Bayesian inference to determine the probability 

distribution of a model parameter set x given observations O such as 

𝑝(𝑥|𝑂) ∝ 𝑝(𝑥) × 𝑝(𝑂|𝑥)  (3) 

where p(x) represents the prior probability of a parameter set xi calculated such as 

𝑝(𝑥) = 𝑝𝐸𝐷𝐶(𝑥) × 𝑒
−0.5(

log(𝑓𝑎𝑢𝑡𝑜)−log(0.5)

log(1.2)
)
2

× 𝑒
−0.5(

log(𝐶𝑒𝑓𝑓)−log(17.5)

log(1.2)
)

2

 (4) 

with pEDC(x) representing the prior parameter probability according to 12 EDCs. 

These represent qualitative constraints to estimate realistic allocation parameters, relative 

turnover rates and pool trajectories in agreement with ecological knowledge. We use the 

same EDCs as in Bloom et al. (2016) modified from Bloom and Williams (2015). According 

to equation 4, p(x) also includes a prior value of 0.5 for the autotrophic respiration fraction 

fauto (i.e. a 0.5 ratio of NPP to GPP) and a prior value of 17.5 for the canopy efficiency Ceff, a 

replacement of the nitrogen × nitrogen use efficiency product which scales GPP in ACM. 

These priors and their uncertainty were derived by Bloom et al. (2016) and represent the 

range of fauto reported by DeLucia et al. (2007) and yield global GPP values consistent with 

Beer et al. (2010).  

The likelihood p(O|x) is computed according to the ability of the model to reproduce 

time series of MODIS LAI fluxes and assuming that total biomass (i.e. the sum of Cfoliar, 

Clitter, Croot and Cwood) from Avitabile et al. (2016) and Csom from the Harmonized World Soil 

Database version 1.21 (Food and Agricultural Organization, 2012) are representative of the 

system’s initial pool sizes such as  

 

𝑝(𝑂|𝑥) =

𝑒
−0.5(

log(𝑂𝑇𝐵𝐶)−log(𝑀𝑇𝐵𝐶,0)

log(1.5)
)
2

× 𝑒
−0.5(

log(𝑂𝑠𝑜𝑚)−log(𝑀𝑠𝑜𝑚,0)

log(1.5)
)
2

× 𝑒
−0.5∑ (

log(𝑂𝐿𝐴𝐼,𝑡)−log(𝑀𝐿𝐴𝐼,𝑡)

log(2)
)
2

𝑁
𝑡=1  (5)  

where OTBC and MTBC,0 are the observed and modelled initial total biomass carbon, 

Osom and Msom,0 are the observed and modelled initial soil organic matter carbon stocks and 

OLAI,t and MLAI,t are the observed and modelled LAI at time step t. Both biomass, Csom and 

LAI datasets were re-gridded to the centre of the nearest neighbour 1° × 1° pixel, using an 

area-weighted interpolation for biomass carbon and LAI and the dominant soil type for Csom 

as provided by Exbrayat et al. (2014). We used log-transformed values and uncertainty 

factors as per Bloom et al. (2016). 

 

2.2 Characterising the influence of fire on ecosystem properties 

In order to estimate the impact of fire on ecosystem properties we set up two 

CARDAMOM experiments over all regions covered in Avitabile et al. (2016) biomass map 

(Figure 1). The experiments are performed with a monthly time-step from January 2000 to 
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December 2015 using the ERA-Interim re-analysis climate data (Dee et al., 2011). The first 

experiment, hereafter referred to as FIRE, uses monthly burned area from GFED4 (Giglio et 

al., 2013) to impose fire on ecosystems, while we omit this driver in the second experiment 

(hereafter referred as NOFIRE). Apart from this difference in disturbance drivers, both 

experiments are identical. For each 1° × 1° grid cell, we run three MCMC chains run until 

10,000,000 parameter sets have been accepted. Based on 500 parameter sets from the second 

half of each chain, we re-run the model 1,500 times and derive corresponding time series of 

ecosystem carbon fluxes and pool changes with corresponding confidence intervals. We 

repeat this procedure for the FIRE and NOFIRE experiments independently resulting in the 

retrieval of two unique parameter ensembles for every location (i.e. one with fire and one 

without).  

CARDAMOM performs the data-assimilation procedure in each pixel without any 

prior information on a specific land cover or PFT although such information may exist in the 

data constraints such as MODIS LAI. Therefore, CARDAMOM creates smooth maps of 

process parameters which correspond to ecosystem functional properties (e.g. allocation of 

GPP to plant tissues, turnover rates). The MCMC approach estimates posterior distributions 

of parameter and state variables from which confidence intervals can be sampled.. We 

compare the FIRE and NOFIRE experiments against other datasets. We use GPP estimates 

from FLUXCOM (Tramontana et al., 2016; Jung et al., 2017) that correspond to up-scaled 

measurements from the FLUXNET network of eddy-covariance towers (Baldocchi et al., 

2001; Baldocchi et al. 2014). We use the average of an ensemble of six FLUXCOM GPP 

datasets, each based on a different machine-learning method, to compare with our retrievals. 

While our estimates used GFED4’s burned area as a driver, we compare the magnitude of the 

corresponding C emissions with those reported in GFED4 database, which are based on an 

ecosystem model at steady-state (van der Werf et al., 2010). Finally, we investigate the 

impact of introducing fire drivers on the median, i.e. highest confidence, of our retrievals as 

well as its impact on the uncertainty represented by the 90% confidence interval (CI90). We 

focus on land-atmosphere fluxes, allocation of GPP into vegetation C pools and turnover 

times calculated following Bloom et al. (2016) such as 

 𝑇𝑇𝑝 =
𝐶𝑃

𝐹𝑖𝑛,𝑝−∆𝐶𝑝
  (6) 

where TTp is the turnover time (in years) of C in the p-th pool (Figure 2), Cj is the 

mean pool size, Fin,p is the mean annual input into Cp due to productivity (in plant C pools 

Cfoliar, Clabile, Croot, Cwood), turnover and fire-induced mortality (from plant pools to Clitter and 

Csom) and decomposition (Clitter to Csom) and ΔCp is the mean annual change of Cp. 

3 Results 

3.1 Carbon balance 

Both FIRE and NOFIRE experiments indicate that the pantropics were a net sink 

(negative NBE) of atmospheric carbon during the study period (Table 2). However, the 

apparently similar values of NBE in the two experiments is the result of differences in the 

gross fluxes that are imposed by the representation or omission of fire processes in FIRE and 

NOFIRE experiments, respectively. Indeed, while the sign and magnitude of NBE is similar 

in both experiments, NEE retrieved in the FIRE experiment indicate a stronger net carbon 

uptake (NEE, NBE) from tropical ecosystems than the NOFIRE experiment. 

We compare retrievals with independent gridded estimates of the terrestrial carbon 

balance. FLUXCOM GPP estimates over the study region represent 86.6 Pg C y
-1

, which is 
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about 5% lower than the median of our retrievals (Table 2). We note a tendency for 

CARDAMOM to simulate higher GPP than FLUXCOM at low latitudes, and the opposite at 

mid-latitudes of the southern hemisphere (Figure S1). Nevertheless, FLUXCOM estimates lie 

within the 50% confidence interval reported in Table 2 and there is a good agreement (r = 

0.88; p << 0.001) in the spatial distribution of GPP in both the experiments compared to the 

FLUXCOM estimates.  

We also compare emissions from fire retrieved in the FIRE experiment with estimates 

from the GFED4 database. We retrieve mean annual fire emissions of 1.18 Pg C y
-1

 which is 

7% lower than the GFED4 estimate of 1.27 Pg C y
-1

, although this number lies within the 

50% confidence interval of the retrievals. There are regional differences in the distribution of 

fire emissions between the FIRE experiment and GFED4 emissions. Overall, CARDAMOM 

simulates lower emissions than GFED4 in regions located at the edge of tropical rainforests 

in South America, central Africa and South East Asia (i.e tropical savanna), while it 

simulates higher emissions in semi-arid regions of the Sahel, southern Africa and Australia. 

There is a significant correlation in the spatial distribution of the emissions reported by 

GFED4 emissions and those in the FIRE experiment (r = 0.65; p << 0.001).  

3.2 Impact of fire on ecosystem properties 

Clear differences in the spatial distribution of ecosystem properties emerge between 

the FIRE and NOFIRE simulations. In most locations, annual GPP is higher in the FIRE 

simulations compared to the NOFIRE simulations (Figure 3a). This difference is exacerbated 

in areas where MABF is large, leading to differences up to 0.1 kg C m
-2

 y
-1

 (Figure 3a), or a 

6% increase of GPP in the FIRE experiment compared to the NOFIRE experiment where 

MABF is >10%. The increase in retrieved GPP in FIRE is accompanied by a decrease in Reco 

(Figure 3b). The reduction of Reco in FIRE compared to NOFIRE follows a trend with MABF 

(Figure 3b) and it decreases by about 5% in areas where MABF is >10%. We do not identify 

a change in the uncertainty of the GPP and Reco retrievals as represented by the width of the 

CI90 (Figure 3c and 3d).  

Similar to GPP, imposing fire disturbances led FIRE retrievals to estimate stronger 

pantropical NPP than in NOFIRE retrievals (Table 2). The distribution of the increase in NPP 

follows a pattern similar to the increase in GPP. Compared to the NOFIRE simulations, 

places with the highest MABF exhibit the strongest increase in median NPP (Figure 4a) in 

the FIRE simulation that is on average 10% where MABF is >10%. The higher NPP in the 

FIRE experiment is due to higher GPP, lower Ra (Table 2) and an increase in carbon-use 

efficiency (CUE, NPP/GPP; Figure 4b and 4c). The increase in CUE in the FIRE simulation 

is stronger in regions where the MABF is high (Figure 4b and 4c). CUE is on average 4% 

higher in the FIRE simulation than in the NOFIRE simulation where MABF is >10%. 

Additional to the increase in CUE, imposing fire leads to changes in NPP allocation, with 

shift toward a smaller fraction of NPP allocated to photosynthetic C pools (i.e. foliar and 

labile pools; Figure 4b) and, conversely, a bigger fraction of NPP allocated to structural C 

pools (i.e. wood and root pools; Figure 4c). The magnitude of the changes in NPP allocation 

patterns is relative to MABF. In places where it is >10%, FIRE retrievals allocate on average 

an 8% smaller fraction of NPP to photosynthetic C pools, and a 22% greater fraction to 

structural C pools.  

FIRE simulations estimate a biomass of 300.2 (232.0 / 391.2) Pg C in the study area, 

which is 2.5% lower than the corresponding estimate of 307.4 (236.7 / 402.4) Pg C in 

NOFIRE simulations. While the difference is marginal at the pantropical scale, we note that 

there is a tendency for a reduction in vegetation biomass in regions where fire regime is 
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intense (Figure 5a and 5c), particularly in central Africa and Australia. This is accompanied 

by a reduction in uncertainty that follows the same tendency (Figure 5b and 5d). On average, 

in regions where MABF is >10% the median biomass retrieved in the FIRE experiment is 

16% lower than that in NOFIRE while the corresponding uncertainty shrinks by 29%. This 

occurs despite using the same prior for biomass derived from Avitabile et al. (2016) in both 

experiments (Figure S3). For the whole pantropics the median NOFIRE retrievals of biomass 

are in better agreement (Figure S3b; rmse ≈ 0.389 kg C m
-2

) with the prior than the FIRE 

retrievals (Figure S3a; rmse ≈ 0.477 kg C m
-2

). Furthermore, the difference between FIRE 

retrievals and observations from Avitabile et al. (2016) grows for greater MABF (Figure S3a) 

while NOFIRE retrievals are comparable to the prior from Avitabile et al. (2016) across the 

whole pantropics (Figure S3b).  

The increase in NPP and reduction of biomass lead retrieved vegetation carbon transit 

times to be shorter in the FIRE experiment compared to the NOFIRE experiment (Figure 6a) 

especially in regions where MABF is large (Figure 6c). Over the whole pantropical region 

imposing fire leads to an area-weighted 7% acceleration of vegetation carbon cycling 

corresponding to a shortening of area-weighted transit time from 8.5 years to 7.9 years. It 

drives a 3% shortening of highest confidence average ecosystem carbon transit times shifting 

from 38.9 years in NOFIRE to 37.6 years in FIRE. However, the spatial distribution of these 

differences is heterogeneous and matches regions where MABF is the highest, especially 

southern Africa and northern Australia (Figure 6a). In places where MABF is >10%, the area-

weighted median vegetation carbon turnover time retrieved by CARDAMOM is 32% shorter 

in the FIRE simulations compared to the NOFIRE simulations. This tendency toward a 

reduction of the vegetation carbon turnover times in frequently burned pixels is mirrored by a 

reduction in the uncertainty of the retrievals (Figure 6b and 6d). Compared to the NOFIRE 

experiment, the uncertainty in the FIRE retrievals of vegetation carbon turnover time, 

measured as the width of the 90% confidence interval, is reduced by 7% over the whole 

pantropical regions. However, similarly to the median retrievals, the main impact is seen in 

regions with a high frequency of fire, and a mean reduction of the uncertainty by 48% in 

pixels where MABF > 10% (Figure 6d). 

4 Discussion 

We have retrieved the modern terrestrial carbon cycle in the pantropics using two 

alternative model versions that include or omit fire processes imposed by observations of 

burned area (Giglio et al., 2013). We note that both experiments yield similar results in 

pantropical GPP. Still, we note that pantropical GPP increases in the FIRE experiment which 

is mostly due to an increase in regions with larger MABF (Figure 3a) where growth and 

recovery are stimulated even in places where LAI may have been largely reduced. Higher 

productivity in retrievals that include fire may seem counter-intuitive as it is a globally 

significant consumer but these results were not unexpected considering several aspects of the 

inverse model-data fusion approach we adopted. For example, GPP is constrained through the 

assimilation of the same LAI time series in the ACM model (Williams et al., 1997) and the 

use of the same prior value for the parameter Ceff (Table 1; Bloom et al., 2016) in both 

experiments. Therefore, both retrievals yield similar values but productivity is higher in FIRE 

to offset LAI losses due to fire. In both experiments the highest confidence estimates agree 

that the pantropical regions have acted as a sink of atmospheric CO2 of 1.7 Pg C y
-1

 in the 

FIRE experiment and 1.9 Pg C y
-1

 in the NOFIRE experiment. These comparable estimates 

are due to a stronger biogenic sink (i.e. more negative NEE; Table 2) in the FIRE experiment 

that is partially offset by fire emissions. The similarity between NBE retrievals obtained with 

and without prescription of fire can be attributed to the use of the same biomass and soil 
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carbon constraints with corresponding EDCs designed to limit the drift of carbon pools. 

Overall, similarities in the simulated pantropical carbon balance were expected but the 

inverse model-data fusion approach highlights differences in inner dynamics imposed by the 

addition or omission of fire disturbances. 

Compared to GFED4 the FIRE experiment yields systematically higher emissions in 

semi-arid regions, and conversely less in more humid regions. Differences in fire emissions 

between the FIRE experiment and the GFED4 estimates (Figure S2) may arise from 

differences in the way fire is imposed, and carbon stocks and associated combustion factors 

at the time fire occurs. The GFED4 (van der Werf et al., 2010) fire C loss approach 

distinguishes between herbaceous, forest and peat fires and sub-grid scales, which effectively 

introduces spatially-explicit patterns in the GFED combustion factors. In contrast, DALEC 

combustion factors are assumed to be constant throughout the tropics while observational 

studies indicate they may vary spatially and temporally (Russell-Smith et al. 2009). This 

current limitation in DALEC could lead to relatively higher fire C emissions in grid-cells 

comprised of both forest, savanna and grassland ecosystems, but where fires predominantly 

occur within the savanna and grassland regions (Giglio et al., 2013). Furthermore, van der 

Werf et al. (2010) limit the soil C loss to 50cm in biomass burning regions, while 

CARDAMOM soil pool depth is not resolved. It points to a possible overestimation of 

emissions from DALEC as controlled fire experiments indicate that low intensity fires do not 

have significant impacts on soil processes in frequently burned savannas of South America 

(Pinto et al., 2002), southern Africa (Zepp et al., 1996) and Australia (Livesley et al., 2011). 

Differences between CARDAMOM and GFED, as well as the wide range of combustion 

factor estimates across tropical ecosystems (Ward et al., 1997; Carvalho et al., 2001; van 

Leeuwen et al., 2014, amongst many others) highlight that further efforts are needed to 

establish the sensitivity of our results to prescribed fire combustion factors. Following this 

study, developments of DALEC will address this aspect by dynamically linking combustion 

factors to the ecosystem water balance, assuming higher combustibility under dry conditions. 

Additional drivers like fire radiative power (Freeborn et al., 2014) could also be used to 

constrain combustion completeness.  

Another notable difference between GFED and CARDAMOM fire emissions is that 

the assimilated biomass map values (Avitabile et al., 2016) – which exhibit the effects of past 

deforestation – constrain the initial carbon pools: in contrast, GFED4 estimates rely on a 

model brought to equilibrium by recycling modern climate and fire burned area data (van der 

Werf et al., 2010). Therefore, our estimates have less fuel to burn in these areas and that 

partially explains the systematically lower emissions simulated by CARDAMOM in the wet 

tropics at the edge of the rainforests (Figure S2). We note that the uncertainty in 

CARDAMOM’s estimates may be seen as a current limitation, but we are confident that the 

future availability of high frequency remotely-sensed biomass data (e.g. Le Toan et al., 2011) 

will help improve its ability to estimate the state and dynamics of the terrestrial carbon cycle 

as shown with site-scale experiments (Smallman et al., 2017).  

The impact of fire on land-atmosphere carbon fluxes and transit times is reflected by 

changes in plant allocation patterns between NOFIRE and FIRE simulations. For more 

frequently burned ecosystems, there was an increased allocation of NPP to structural C (i.e. 

Cwood and Croots; Figure 4c) at the expense of photosynthetic C (i.e. Cfoliar and Clabile; Figure 

4b). This model behaviour is similar to the increased allocation of carbon to fire resistant bark 

after imposing fire in the experiment reported by Scheiter et al. (2013) and observations of 

Lawes et al. (2011a) on fire resistance conferred by bark thickness. Comparing retrievals 

from the FIRE and NOFIRE experiments, we note a strong influence of fire on ecosystem 

fluxes and functional properties. At the pantropical scale, feedbacks between fire and 
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biogenic processes in the FIRE experiment maintain a carbon balance similar to the NOFIRE 

experiment. This is explained by the interplay between adjusted allocation and turnover rates 

that increase the capacity of plants to store C (NEE in Table 2) and high levels of 

sequestration post-fire recovery in the corresponding experiments. Regional differences 

between the FIRE and NOFIRE experiment indicate a coupling of higher productivity, higher 

CUE and allocation to resistant plant parts with more intense fire regimes (Figure 4). We note 

a shortening in vegetation and ecosystem C transit times when imposing fire, clearly linked to 

disturbance and resulting C losses followed by rapid regrowth associated with the modelled 

increase in GPP in intensely burned regions (Figure 3).  

The reduction of biomass (Figure 5) for higher MABF agrees with aDGVM model 

simulations of fire suppression over African savannas (Scheiter and Higgins, 2009) and fire 

management for northern Australia (Scheiter et al., 2015) as well as worldwide observations 

from in-situ fire exclusion experiments (Tilman et al., 2000; Higgins et al., 2007). 

Furthermore, the larger decrease in biomass from the NOFIRE to the FIRE simulations is in 

agreement with observations that indicated a negative correlation between fire frequency and 

biomass in Australian tropical savannas for example (Williams et al., 1999; Russell-Smith et 

al., 2003; Murphy et al., 2014). There is also an increase in differences between prior biomass 

information and values retrieved in the FIRE experiment as MABF increases (Figure S3). 

The lack of agreement between our retrievals and prior biomass data indicates that relevance 

of pan-tropical biomass maps for model benchmarking in fire-prone regions needs to be 

evaluated. 

Clear shifts in CUE and plant carbon allocation in response to fire emerge between 

the FIRE and NOFIRE experiments (Figure 4). CUE increases in fire-prone regions already 

capable of high GPP (Figure 3), which results in higher NPP (Figure 4a) and thus providing 

more carbon available to  drive re-sprouting and/or coppicing and stand regeneration post fire 

(Beringer et al. 2007). Ecosystems with higher MABF invest less in ‘easily burned tissues’ 

(i.e. leaves; Figure 4b) and more in fire resistant tissues (i.e. woody C in our model; Figure 

4c). Such a resistance strategy is evident in woody vegetation in fire-prone ecosystems of 

Australian (Clarke et al., 2015, Lawes et al. 2011b) and African savannas (Gignoux et al., 

1997; Nefabas and Gambiza, 2007) and also emerges from individual-based modelling 

(Scheiter et al., 2013). Indeed, allocating carbon to less flammable plant pools results in a 

reduction of fuel loads and an increase in survival chances (Clarke et al., 2013). The capacity 

for CARDAMOM to retrieve parameter sets representing shifts in ecosystem properties in 

response to changes in MABF leads to reduced uncertainty of retrieved ecosystem stocks and 

turnover times (Figure 5 and 6) although few outliers exhibit the opposite behavior in regions 

of the Sahel where MABF is between 20% and 50%. While we do not investigate this aspect 

further we suspect that it might come from the mix of natural and managed fires in this 

region. In every other places, fire strongly constrains ecosystem carbon pathways and 

turnover processes during the assimilation procedure.  

Our large-scale results are in agreement with field observations of the influence of fire 

on ecosystem functional properties (Pausas and Schwilk, 2011). While our approach is 

currently focused on the tropics, we expect similar relationships to emerge in temperate and 

boreal ecosystems. However, the lack of availability of a wall-to-wall biomass maps in extra-

tropical regions currently limits the applicability of our approach. A similar investigation will 

be made possible by the upcoming launch of the Global Ecosystem Dynamics Investigation 

(GEDI; Stavros et al., 2017) which should provide a global biomass map in 2020. The 

parameter and transit time maps (Figures 3-6) indicate that fire spatially influences ecosystem 

functioning properties crossing boundaries between PFT maps used in classical TEMs. While 

PFT maps are subject to criticism, we acknowledge that they offer a trade-off between model 
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precision and computational costs. Therefore, for next generation TEMs to rely on distributed 

trait maps, further studies are required on fire-climates interactions with ecosystem 

parameters. For example, separating evergreen broadleaf ecosystems into two different 

tropical and temperate PFTs and updating parameter values to match with observational 

datasets of traits values (Kattge et al., 2011) has recently led to improvements in the JULES 

model (Clark et al., 2011; Harper et al., 2016). An option to mirror this approach with respect 

to fire dynamics could be to further categorize PFTs based on the distribution of fire regimes 

(Archibald et al., 2013; Whitley et al.; 2017). For example, Archibald et al. (2013) have 

identified five global syndromes of fires regimes, or pyromes, based on remotely-sensed 

information of their frequency, intensity and size. They showed that the spatial distribution of 

pyromes resulted from complex interactions between biome types, local climate and human 

activities, all of which may change in a warmer world. 

5 Conclusions 

We have used the CARDAMOM model-data fusion system to retrieve continuous 

parameter maps related to C cycling for the DALEC ecosystem model at one degree spatial 

resolution for the whole pantropics. Our coarse resolution results reveal shifts in CUE, 

allocation and biomass that are in agreement with field observations of the impact of fire, or 

of its exclusion, on ecosystem properties. The model-data fusion procedure retrieved shorter 

turnover times of carbon in vegetation and ecosystems when fire processes were represented. 

We attribute this acceleration of the turnover to an increase in NPP, driven by higher CUE, 

and lower biomass stocks. Additionally, there is a shift toward more allocation to fire 

resistant plant tissues. We note that the magnitude of differences imposed by fire gradually 

increases with MABF while the corresponding uncertainties shrink, indicating that fire 

processes imposed a strong constraint on retrieved properties. Finally, the synthetic climate 

sensitivity test we perform indicates non-trivial differences in the sensitivity of ecosystems to 

future climate change when fire disturbances were included in the model-data fusion. As 

prognostic fire is a process that is increasingly implemented in TEMs our results highlight the 

need to better represent ecosystem response to fire.  
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Table 1. DALEC-GSI model parameter description and ranges allowed in the MCMC. 

 

 

Parameter  Name Range 

fauto Autotrophic respiration fraction of GPP 0.3 – 0.7  

flab Fraction of GPP allocated to labile C pool  0.01 – 0.5  

ffol Fraction of GPP allocated to foliage 0.01 – 0.5 

froot Fraction of GPP allocated to fine roots 0.01 – 0.5 

θlab labile C turnover rate 10
-5

 – 10
-1

 d
-1

 

θfol foliar C turnover rate 10
-6

 – 10
-1

 d
-1

 

θroo fine roots C turnover rate 10
-4

 – 10
-2

 d
-1

  

θwoo wood C turnover rate 2.5 × 10
-5

 – 10
-3

 d
-1

 

θlit litter C turnover rate 10
-4

 – 10
-2

 d
-1

 

θsom soil organic matter C turnover rate 10
-7

 – 10
-3

 d
-1

 

θmin litter mineralization rate 10
-5

 – 10
-2

 d
-1

 

Θ temperature dependence exponent factor affecting 

litter and soil organic C turnover times 

0.018 – 0.08  

ceff canopy efficiency parameter 10 – 100  

clma leaf carbon mass per area 10 – 400 g C m
-2

 

VPDmin optimal VPD for leaf production 1 – 5500 Pa 

VPDmax optimal VPD for leaf senescence 1 – 5500 Pa  

Tmnmin limiting Tmn for phenology 225 – 330 K 

Tmnmax optimal Tmn for phenology 225 – 330 K 

Photomin limiting photoperiod for phenology 3600 – 82800 s d
-1

 

Photomax optimal photoperiod for phenology 3600 – 82800 s d
-1
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Table 2. The terrestrial carbon budget of the pantropics retrieved in the FIRE and NOFIRE 

experiments during 2000-2015. We present mean annual values and the uncertainty across 

the 50% confidence range assuming spatial correlation between uncertainties in all pixels. All 

values are in Pg C y
-1

, rounded to the
 
first decimal. Negative values of NEE and NBE denote 

a net C uptake from the atmosphere. 

 

 

Fluxes FIRE: median (25
th

 / 75
th

 

percentiles)
a
 

NOFIRE: median (25
th

 / 75
th

 

percentiles) 

GPP 91.5 (83.5 /100.8) 91.3 (83.3 / 100.2) 

Ra 47.4 (40.8 / 55.2) 47.5 (40.9 / 55.3) 

NPP (GPP-Ra) 43.3 (36.8 / 50.7) 42.9 (36.4 / 50.1) 

Rh 40.2 (33.1 / 48.5) 40.9 (33.7 / 49.1) 

NEE (-NPP+Rh) -2.9 (-6.7 / 1.0) -1.9 (-5.5 / 1.9) 

Fire emissions
b
 1.2 (0.9 / 1.5)  -  

NBE (NEE+Fire) -1.7 (-5.4 / 2.2) -1.9 (-5.5 / 1.9) 
a
We assume spatial correlation between uncertainties in all pixels: the median, 25

th
 and 75

th
 

percentiles represents the area-weighted aggregate of all pixels’ median, 25
th

 and 75
th

 

percentiles. 
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Figure 1. Mean annual burned fraction (%) derived from the GFED4 monthly database over 

2000-2015 (Giglio et al., 2013). Data is represented for the study regions where equal amount 

of data were available to constrain CARDAMOM. 
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Figure 2. Schematic of the DALEC model. Green arrows represent biogenic fluxes between 

carbon pools. The build up of leaves from labile carbon (Clabile) is controlled by a Growing 

Season Index (GSI). Red arrows represent fire emissions (FE) and fire mortality (FM) fluxes 

which are calculated following equation 1 and 2 respectively. 
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Figure 3. Impact of introducing fire on retrieved mean annual fluxes of GPP (a, c) and Reco 

(b, d). The top row represents the absolute difference in the retrieved median values and the 

bottom row represents the relative difference in the spread of the CI90. 
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Figure 4. Difference in (a) retrieved NPP and biomass, (b) retrieved CUE and allocation of 

NPP to photosynthetic C and (c) retrieved CUE and allocation of NPP to structural C 

between the FIRE and NOFIRE experiments. Errors bars represent the 50% confidence 

interval of retrieved medians. 
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Figure 5. Ratio of total biomass carbon between FIRE and NOFIRE experiments. Ratio of 

median values (a) and ratio of the width of the 90% confidence interval CI90 (b) are 

presented. Panels (c) and (d) present the distribution of the information in maps (a) and (b) as 

a function of the mean annual burned fraction in each pixel, respectively. Boxes represent 

median and inter-quartiles while whiskers represent the 5
th

 and 95
th

 percentiles. 
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Figure 6. Ratio of vegetation carbon turnover times between FIRE and NOFIRE 

experiments. Ratio of median values (a) and ratio of the width of the 90% confidence interval 

CI90 (b) are presented. Panels (c) and (d) present the distribution of the information in maps 

(a) and (b) as a function of the mean annual burned fraction in each pixel, respectively. Boxes 

represent median and inter-quartiles while whiskers represent the 5
th

 and 95
th

 percentiles. 
 

 

 


