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Abstract

Background: Sepsis still represents a major health issue, with persistent high morbidity
and mortality rates. Cardiovascular dysfunction occurs frequently during sepsis.
Adrenomedullin has been identified as a key mediator in vascular tone regulation. A non-
neutralizing anti-adrenomedullin antibody, Adrecizumab, may improve haemodynamic
dysfunction during caecal ligation and puncture-induced septic shock in a murine model.
Our objective was to determine the role of Adrecizumab on haemodynamics in a rat
model of sepsis.

Methods: For the induction of sepsis, caecal ligation and puncture were performed in
Wistar male rats. Single blinded administration of Adrecizumab (2mg/kg) or placebo was
injected i.v. 24 h after the surgery, and norepinephrine was infused as the standard of
care. There were > 7 animals per group. Invasive blood pressure and cardiac function (by
echocardiography) were assessed until 3 h after Adrecizumab injection.

Results: A single therapeutic injection of Adrecizumab in septic rats induced rapid
haemodynamic benefits with an increase in systolic blood pressure in septic-
Adrecizumab rats versus untreated-septic rats (p = 0.049). The shortening fraction did
not differ between the untreated-septic and septic-Adrecizumab groups. However,
cardiac output increased during the 3 h after a single dose of Adrecizumab compared
to untreated septic rats (p = 0.006). A single dose of Adrecizumab resulted in similar
haemodynamics to the continuous administration of norepinephrine.
Three hours after a single injection of Adrecizumab, there was no change in the
inflammatory phenotype (TNFα, IL-10) in the hearts of the septic rats. By contrast, 3 h
after a single Adrecizumab injection, free-radical production decreased in the hearts of
septic-Adrecizumab vs untreated septic rats (p < 0.05).

Conclusions: In a rat model of sepsis, a single therapeutic injection of Adrecizumab
rapidly restored haemodynamic parameters and blunted myocardial oxidative stress.
Currently, a proof-of-concept and dose-finding phase II trial (Adrenoss-2) is ongoing in
patients with septic shock and elevated concentrations of circulating bio-adrenomedullin.

Background
Despite advances in resuscitation and infectious disease management, sepsis remains

one of the leading causes of death worldwide [1, 2]. Sepsis is characterized by disturbed
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vascular integrity and the presence of life-threatening organ dysfunction due to a dys-

regulated response of the body to infection [2]. Today, vasopressor therapy is one of

the cornerstones of sepsis treatment; however, vasopressor use does not restore vascu-

lar integrity and could even lead to harmful effects and impair prognosis [3].

Adrenomedullin (ADM), a 52 amino acid peptide hormone [4, 5], has been proposed as

a pivotal mediator of vascular dysfunction in sepsis [6, 7]. On the one hand, ADM can act

as a vasodilator, decrease peripheral vascular resistance, and increase cardiac output [8].

On the other hand, ADM has beneficial effects, as it reduces capillary hyperpermeability

in preclinical studies with models of septic shock [9, 10]. Recently, a model has been pro-

posed that explains these different activities of ADM as a function of its compartmental

localization [11]: in the interstitium, ADM acts on vascular smooth muscle cells to induce

vascular relaxation, whereas in the blood circulation, ADM promotes the stabilization of

the endothelial barrier. The ADM pathway acts through heterodimeric receptor com-

plexes called “ADM receptors”, which are composed of a calcitonin-receptor-like receptor

(CRLR) and receptor activity-modifying proteins (RAMP2 or RAMP3) [12].

In patients with sepsis and septic shock, an elevated plasma concentration of bio-

logically active ADM (bio-ADM) is associated with disease severity and organ dysfunc-

tion, and it is a strong prognosticator for 28-day mortality [13–16]. Of interest and

related to its vascular effects, high plasma concentrations of bio-ADM are correlated

with vasopressor use [13–16].

Therefore, modulation of ADM activity could have therapeutic potential during sepsis

to restore haemodynamics and improve clinical outcome [17]. Adrecizumab (HAM 8101)

is a humanized non-neutralizing monoclonal antibody directed against the N-terminus of

ADM that only partially inhibits ADM activity. Adrecizumab i.v. administration leads to

an immediate and substantial increase in plasma ADM concentration, thereby enhancing

the endothelium-stabilizing effect of ADM. Adrecizumab acts by decreasing ADM con-

centration in the interstitium and neutralizing the excess ADM in plasma [18]. In a mouse

model of sepsis (caecal ligation and puncture, CLP), preventive treatment by Adrecizumab

increased survival, while other antibodies directed against different epitopes of ADM

(causing greater or complete inhibition of ADM signalling) did not [18, 19]. In addition,

Adrecizumab preventive treatment led to numerous improvements, including reduced

catecholamine and fluid requirements and improved renal function [20]. The therapeutic

administration of Adrecizumab has not been tested in a preclinical model of sepsis. This

study is the first delayed or therapeutic application of ADZ in a preclinical model.

Given the role of ADM in vasodilation and capillary leakage, the objective of this

work was to explore the haemodynamic, inflammatory, and myocardial oxidative stress

responses to therapeutic treatment with Adrecizumab, which induced partial inhibition

of ADM, in a sepsis model in rats.

We hypothesized that by this treatment, a rapid and sustained beneficial response

could be achieved in septic shock.

Materials and methods
Animals and sepsis model

Two-month-old male Wistar rats weighing 350 to 450 g were obtained from Janvier

(St. Berthevin, France). All experiments were conducted in accordance with the
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National and European Institutes of Health guidelines for the use of laboratory animals

and were approved by the local animal research ethics committee (Lariboisière-Ville-

min, Paris, France) (77-2014-ceea9).

All animals were anesthetized using ketamine hydrochloride (90 mg/kg) and xylazine

(9 mg/kg) intraperitoneally. For the induction of polymicrobial sepsis, CLP was per-

formed as previously described [21]. A ventral midline incision (1 cm) was made to

allow exteriorization of the caecum. The caecum was then ligated just below the ileoce-

cal valve and punctured once with an 18-gauge needle. The abdominal cavity was

closed in two layers, and rats were given fluid resuscitation (3 mL/100 g of body weight

of saline injected subcutaneously). A sham operation was performed by isolating the

caecum without ligation or puncture. An injection of 75 μg/kg of buprenorphine intra-

peritoneally was administered for analgesic purposes in the preoperative period. Pain

was assessed, and if necessary, analgesia was enhanced with an injection of 50 μg/kg of

intraperitoneal buprenorphine.

Twenty-four hours later, rats were split into several groups. CLP animals were

randomized into 5 subgroups given a single-blinded i.v. dose of Adrecizumab (2

mg/kg in 1.5 mL) or placebo (1.5 mL of PBS) through the jugular vein and nor-

epinephrine (NE), for either 30 min or continuously as the standard of care for

haemodynamic management, or not (CLP, CLP-Adrecizumab, CLP-cNE (with con-

tinuous NE), CLP-cNE-Adrecizumab (Adrecizumab + continuous NE), and CLP-NE

(with NE infusion for 30 min)). Norepinephrine was administered at a dose of

1 μg/kg/min. The injection of a 1.5-mL bolus of Adrecizumab or placebo mimicked

a fluid challenge. Then, the rats were given liquid throughout the experiment with

norepinephrine or saline solution.

Among CLP rats (n = 71), 28% died before administration treatment of either Adreci-

zumab or placebo and haemodynamic exploration. There were at least seven rats per

group who underwent haemodynamic exploration and treatment administration (ex-

cept for the CLP group with norepinephrine infusion during only 30 min, n = 4). Sham

animals received neither Adrecizumab nor NE. The experimental protocol is summa-

rized in Fig. 1.

Briefly, 24 h after the CLP procedure, rats were anaesthetized with ketamine hydro-

chloride (90 mg/kg) and xylazine (9 mg/kg) [21] and placed in the supine position. Ani-

mals were intubated with a catheter 16 G and ventilated using a rodent ventilator with

respiratory rate = 53.5 × weight−0.26 and tidal volume = 6.2 × weight1.01. In a 400-g rat,

the tidal volume was 2457 μL, and the respiratory rate was 68/min [22].

Rectal temperature was maintained throughout the protocol at 37–37.5 °C by a heat-

ing mat. Catheters were inserted into the left jugular vein to administer antibody or

placebo and into the right carotid artery to monitor blood pressure.

Haemodynamics and cardiac function monitoring

Cardiac function was assessed by transthoracic echocardiographic examination at

baseline and every hour during the next 3 h of the experiment using a GE Health-

care Vivid 7 Ultrasound System equipped with a high-frequency (14 MHz) linear

probe. All examinations were recorded digitally and stored for subsequent offline

analysis as described by Milliez et al. [23].
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Cardiac dimensions and shortening fraction (SF) were determined in the parasternal

long-axis view in M mode of the chest, as described previously [24]. The left ventricular

(LV) shortening fraction, taken as an index of LV systolic performance, was calculated

as follows:

SF ¼ LVED−LVES
LVED

SF, shortening fraction (%); LVED, left ventricle end-diastolic internal diameter (mm);

LVES, left ventricle end systolic diameter (mm).

From the parasternal long-axis B-mode image of the chest allowing measurement of

the pulmonary artery diameter, cardiac output was calculated from the

ultrasound-derived mean blood flow velocity (mBFV) and diameter measurements of

the pulmonary artery according to previously described method [25]. Cardiac output

(mL/min) was calculated as follows:

CO ¼ 60� mBFV � π � Dpa
2

� �2
( ) !

CO, cardiac output (mL/min); mBFV, mean blood flow velocity (cm/s), Dpa, pulmon-

ary artery internal diameter (cm).

Invasive blood pressure (BP) measurements were performed after catheter inser-

tion and every hour during the next 3 h. The right carotid artery was catheterized

by a polyethylene 50 (PE-50) catheter connected to a pressure head placed at the

height of the animal’s heart. Data were recorded by the AcqKnowledge® software

(BIOPAC Systems, Inc. USA).

Fig. 1 Experimentation protocol
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Assessment of organ inflammatory response and oxidative stress

EDTA blood was collected from the left carotid artery at the end of the experiment and

centrifuged at 3500 rpm for 15min at 4 °C, and plasma was stored at − 80 °C until

measurement of several analytes. Bio-ADM was measured as described in [18].

At the end of the protocol, rats were sacrificed, and organs (heart, lung, liver, and left

kidney) were weighed. The heart was transversely divided into two parts. The base was

embedded into Tissue-Tek optimal cutting temperature (OCT) compound (Sakura

Finetek, France) and frozen in liquid nitrogen and stored at − 80 °C until use for dihy-

droethidium (DHE) staining; the other part of the heart was snap-frozen in liquid nitro-

gen for RT-PCR and Western blot analysis.

Other organ specimens (lung, liver, kidney, brain, aorta, and muscle) were collected and

snap-frozen in liquid nitrogen. All samples were stored at − 80 °C until further analysis.

Gene expression analysis

Total RNA was isolated from tissues using the RNeasy Mini Kit® (Qiagen, Courtaboeuf,

France) according to the manufacturer’s instructions and reverse transcribed using

QuantiTect® Reverse Transcription (Qiagen, Courtaboeuf, France). Then, real-time

polymerase chain reaction was performed with a LightCycler 96 system (Roche Diag-

nostics, Meylan, France) using the FastStart Essential DNA Green Master® (Roche Diag-

nostics, Meylan, France). mRNA levels for genes of interest were normalized to that of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), expressed as the relative change

compared with the control samples. The sequences of the primers used are reported in

Additional file 1: Table S1.

Protein analysis

For Western blot analysis, tissues were homogenized in cell lysis buffer (50 mM Tris

HCl at pH 7.4, 1 mM EDTA, and 150mM NaCl). After centrifugation, soluble proteins

were quantified using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific,

Courtaboeuf, France). Proteins (30 μg) were separated on 10–12% SDS-PAGE gels and

transferred onto nitrocellulose membranes (Protan, Paris, France). Blots were probed

overnight at 4 °C with the following primary antibodies directed against the following:

phosphorylated and total Akt (Ser473) (1:1000; #9271 and #9272; Cell Signaling,

Ozyme, France), p62 (1:1000; ab56416; Abcam, UK), HIF1α (1:1000; PAI 16601;

Thermo Scientific, MA, USA), and GAPDH (1:5000; Millipore, Molsheim, France).

Blots were incubated with goat anti-rabbit (1:5000; Sigma-Aldrich) or sheep anti-mouse

peroxidase-conjugated antibodies (1:10,000; GE Healthcare) for 1 h at room

temperature. Chemiluminescent signals (ECL Plus; GE Healthcare) were recorded using

an LAS 3000 system (Fuji, Courbevoie, France) and were quantified using MultiGauge

V2.02 software (Fuji).

The results are expressed as arbitrary units (AU) obtained from the ratio between the

densitometric units of the protein under study and the GAPDH densitometric value.

Histological and histochemical analyses

Seven micrometer cross-sections were stained with haematoxylin and eosin and exam-

ined by bright-field microscopy at × 20 magnification.
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Cardiac cryostat cross-sections (7 μm) of the ventricles were incubated with dihy-

droethidium (DHE; Sigma-Aldrich) (37 μM) for 30 min in a dark humidified chamber

[26]. Acquisition of fluorescent images of ethidium bromide with a Leica fluorescence

microscope was performed under identical settings regardless of the block tissue. The

stained area was measured with IPLab software and is expressed as a percentage of area

of interest (% of ROI).

Statistical analysis

Data are presented as the mean ± SEM. Statistical analysis was performed using Graph-

Pad Prism version 5.0 (GraphPad Software Inc., San Diego, CA, USA). Comparison be-

tween groups was performed by two-way ANOVA or a Kruskal-Wallis test followed by

Dunn’s multiple comparison test as appropriate. The Mann-Whitney test was used to

compare baseline haemodynamic parameters. A p value < 0.05 was considered statisti-

cally significant.

Results
At the time of haemodynamic resuscitation, clinical signs of sepsis (reduced motor ac-

tivity, lethargy, shivering, piloerection, and hunched posture) were only present in CLP

rats as expected. Furthermore, post-mortem examination of the abdominal cavity of all

CLP rats showed varying degrees of peritonitis with a grey-black dilated caecum and

purulent and malodorous peritoneal fluid. There was no difference in the heart, lung,

liver, and left kidney weights between sham and CLP rats (Additional file 2: Table S2).

Benefits of Adrecizumab on haemodynamics

Before initiation of haemodynamic resuscitation, all CLP rats presented with altered

haemodynamics, including a markedly lower mean BP (68 ± 2 vs 88 ± 3mmHg, p <

0.0001) and a marked increase in cardiac output (0.160 ± 0.005 vs 0.133 ± 0.008 mL/

min, p = 0.018), compared to sham rats (Additional file 3: Figure S1). In untreated CLP

rats, haemodynamics remained altered during the 3 h of experimentation (Fig. 2).

A single dose of Adrecizumab (CLP-Adrecizumab rats) without norepinephrine rap-

idly increased systolic blood pressure (p = 0.049 vs untreated CLP). Adrecizumab injec-

tion also tended to improve diastolic and mean blood pressures and LV shortening

fraction, although these did not reach statistical significance due to a possible type 2

error (Fig. 2).

In addition, cardiac output significantly increased during the 3 h after single-dose ad-

ministration of Adrecizumab compared to that of untreated CLP rats (p = 0.006, Fig. 2).

Sham rats were bradycardic compared to CLP rats (p = 0.024, Fig. 2).

During the protocol, restoration of systolic blood pressure and improvement in

cardiac output were similar in CLP rats receiving continuous NE infusion and

those receiving a single dose of Adrecizumab (Additional file 4: Figure S2). Fur-

thermore, the addition of a single injection of Adrecizumab to continuous NE infu-

sion had a similar effect as NE on haemodynamic parameters and did not lead to

further unwanted vasoconstriction. Additional file 4: Figure S2 shows haemo-

dynamic parameters measured 24 h after sepsis induction by CLP and 120 min after

a single injection of Adrecizumab or placebo.
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Of note, short-term (30 min) administration of NE only transiently improved haemo-

dynamics, and parameters either returned to baseline values (e.g., cardiac output and

heart rate) or worsened (e.g., blood pressure) compared to baseline after stopping NE

infusion (Fig. 2).

Adrecizumab and metabolic changes in sepsis

Concerning circulating bio-ADM, levels were low in sham animals (14.6 ± 2.1 pg/mL),

while a strong elevation was observed in untreated CLP rats (289.7 ± 42.2 pg/mL, p <

0.05 vs sham; Fig. 3). Administration of Adrecizumab further increased plasma

bio-ADM concentration (1193 ± 349.8 pg/mL, p < 0.05 vs sham; Fig. 3).

Myocardial and lung ADM levels were increased in the untreated CLP vs sham groups

(heart 2.17 ± 0.4 vs 0.9 ± 0.1, p < 0.05; lung 29.1 ± 3.1 vs 13.4 ± 2.2, p < 0.05; Fig. 3) and

remained high 3 h after single Adrecizumab injection (heart 2.64 ± 0.6, p < 0.05 vs sham;

lung 28.1 ± 3.6, p < 0.05 vs sham). In contrast, adrenal expression of ADM decreased in both

untreated CLP and CLP-Adrecizumab rats versus sham rats (respectively 2.57 ± 0.6, 1.58 ±

0.3 vs 7.67 ± 1.9, p < 0.05). No change in ADM expression was observed in the lung.

Expression of the ADM receptor components CRLR and RAMP2 was by far highest

in the lung, 50–100-fold higher than in the heart, kidneys, and adrenals. Myocardial

and kidney expression of CRLR was increased in the untreated CLP vs sham groups

(heart 1.11 ± 0.1 vs 0.54 ± 0.1, p < 0.05; kidney 2.08 ± 0.5 vs 0.51 ± 0.1, p < 0.05; Fig. 3)

and remained high 3 h after single Adrecizumab injection (heart 1.14 ± 0.2, p < 0.05 vs

sham; kidney 1.42 ± 0.2, p < 0.05 vs sham). In contrast, adrenal expression of CRLR de-

creased significantly in the CLP-Adrecizumab vs sham groups (0.36 ± 0.06 vs 0.74 ±

0.11, p < 0.05) and non-significantly in the untreated CLP group (0.42 ± 04). No change

in CRLR expression was observed in the lung.

Myocardial and kidney expression of RAMP 2 was increased in the untreated CLP

group vs the sham group (heart 2.12 ± 0.5 vs 0.89 ± 0.2, p < 0.05; kidney 5.42 ± 0.8 vs

0.71 ± 0.1, p < 0.05; Fig. 3) and remained high 3 h after single Adrecizumab injection

Fig. 2 Haemodynamic parameters after sepsis induction, until 3 h after the injection of Adrecizumab or
placebo. Haemodynamic parameters measured 24 h after sepsis induction by CLP and then 60, 120, and
180min after the injection of Adrecizumab or placebo. CLP rats are represented by the black line, CLP-
Adrecizumab rats by the red line, and CLP-NE rats by the grey line. Two-way ANOVA was used. *p < 0.05
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(heart 1.77 ± 0.3, ns vs sham; kidney 6.14 ± 1.1, p < 0.05 vs sham). No change in RAMP

2 expression was observed in the lung and adrenals.

Regarding myocardial inflammatory markers, the expression of the proinflammatory

marker TNFα, the anti-inflammatory marker IL-10 and CD68, a marker of macrophage

activation, were all increased in CLP rats. Myocardial levels of these markers were not

altered in CLP-Adrecizumab rats. Moreover, myocardial BNP mRNA was upregulated

in untreated CLP rats and remained high in CLP-Adrecizumab. In addition, p62, an in-

flammatory marker, increased in the hearts of untreated CLP and CLP-Adrecizumab

rats compared with that in the sham rats (Fig. 4). Additional file 5: Figure S3 also shows

that myocardial BNP mRNA was upregulated in the CLP group and remained high in

the CLP-Adrecizumab group.

Figure 4 shows that the Akt phosphorylation level, a myocardial survival pathway,

was markedly increased in the myocardium of CLP-Adrecizumab rats 24 h after the on-

set of sepsis (p < 0.05).

Concerning myocardial oxidative stress, the CLP-induced a 10-fold elevation of DHE

that was blunted in CLP-Adrecizumab rats (p < 0.05) (Fig. 5).

Discussion
The present study showed that a single therapeutic injection of Adrecizumab in septic

rats induced rapid haemodynamic benefits and a marked reduction in myocardial oxi-

dative stress. Indeed, antibodies directed against ADM, an endogenous vasodilator pep-

tide, had similar haemodynamics to continuous administration of norepinephrine.

Our study demonstrated that in a model of sepsis, a single injection of Adrecizumab

rapidly restored blood pressure and cardiac output. ADM has been proposed to be one

of the pivotal mediators of vascular dysfunction in sepsis. In patients resuscitated for

Fig. 3 Effect of Adrecizumab on the adrenomedullin pathway. a Adrenomedullin plasma level (pg / mL). b–
d Expression of adrenomedullin (ADM) mRNA and its receptors (CRLR, RAMP 1 and 2) in the heart, lungs,
kidneys, and adrenals. These measurements were performed 3 h after the Adrecizumab injection and 24 h
after the induction of sepsis. Kruskal-Wallis test followed by Dunn’s multiple comparison test was used. *p <
0.05 and ***p < 0.001
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sepsis or septic shock, the plasma bio-ADM level was always related to prognosis [13].

The highest concentration of bio-ADM was associated with the need for vasoconstric-

tors. As recently described, circulating bio-ADM easily diffuses from the lumen of the

vessels to the interstitium to act on vascular smooth muscle cells and reduce vascular

tone [11]. Adrecizumab was described to improve blood pressure when given as pre-

ventive therapy before induction of sepsis [20]. Herein, we showed that a single injec-

tion of Adrecizumab restored blood pressure 24 h after induction of peritonitis and

septic shock in rats. The early benefit of a single injection of Adrecizumab on blood

Fig. 4 Activation of the survival pathway in septic rats treated with Adrecizumab. Western blot analyses of
cardiac P-Akt/Akt and p62. Kruskal-Wallis test followed by Dunn’s multiple comparison test was
used. *p < 0.05

Fig. 5 Adrecizumab decreases ROS production. Adrecizumab decreased ROS production in the septic
myocardium within 3 h. Dihydroethidium (DHE; Sigma-Aldrich) staining was used to evaluate the in situ
levels of superoxide anion in the myocardium. Data are expressed as a percentage of region of interest
(percent of ROI). Kruskal-Wallis test followed by Dunn’s multiple comparison test was used. *p < 0.05
and ***p < 0.001
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pressure (Fig. 2) was likely related to the rapid binding of Adrecizumab to plasma

bio-ADM, hence preventing its diffusion to the interstitium.

Our study further showed that a single therapeutic injection of Adrecizumab was as-

sociated with a sustained improvement in cardiac output in septic rats. This is the first

demonstration that Adrecizumab, likely acting as a scavenger of circulating bio-ADM,

not only improves blood pressure but also improves systemic perfusion. Improvement

in cardiac output might be related, at least partially, to the higher heart rate after single

administration of Adrecizumab. The data also indicated that Adrecizumab improved

the left ventricular shortening fraction, though not significantly, in septic rats.

In septic shock patients, haemodynamics, especially blood pressure, is usually re-

stored by continuous administration of vasopressors such as catecholamine, vasopres-

sin, or angiotensin [27]. In the present study, we restored blood pressure and improved

cardiac output with a single administration of Adrecizumab at levels similar to continu-

ous administration of norepinephrine. This novel approach might be safer as it avoids

the long-lasting administration of vasopressors, which is possibly associated with dele-

terious effects on outcome [3]. Therefore, norepinephrine substitution by Adrecizumab

might be of interest. Our data showed that the Adrecizumab benefits on blood pressure

at a dose of 2 mg/kg might be smaller after 2 h, although the benefits on cardiac output

appeared to be maintained. Further studies should be conducted at higher doses and

with increased animal monitoring to avoid the bias of potential hyporesponsiveness to

catecholamines and to assess the long-term effect of Adrecizumab. Hence, the present

preclinical work confirms and extends the short-term safety and efficacy profile of the

non-neutralizing ADM-binding antibody Adrecizumab in line with the improved renal

function and survival previously described [18, 19]. These results led to the pursuit of

this programme in human septic patients. Adrecizumab is still under investigation. A

phase 2 trial, AdrenOSS-2, started in December 2017 to assess the safety and efficacy

of a single injection of Adrecizumab (2 or 4 mg/kg) in patients with septic shock (NCT

03085758). The AdrenOSS-2 trial is one of the first personalized medicine trials in sep-

tic shock patients. Patient selection is guided not only by clinical parameters but also

by biomarker-guided measurements of circulating biologically active ADM concentra-

tions at admission. Adrecizumab will be given only to patients who need it.

The source of ADM in plasma includes production by many cells, including endothe-

lial cells, vascular smooth muscle cells, monocytes, renal parenchymal cells, and macro-

phages. Studies on rat endothelial cells have shown that ADM is not stored but rather

constitutively produced and that endothelial cells secrete ADM at a higher rate than

vascular smooth muscle cells [18]. Our data confirmed that rats treated with Adrecizu-

mab have an increase in plasma ADM [18].

Regarding CRLR, RAMP-2, and ADM expression in various tissues, our data confirmed

that the ADM pathway is highly present in the lungs compared to other organs, including

the heart, kidney, and adrenal glands [28, 29]. Twenty-four hours of peritonitis and septic

shock induced changes in the ADM pathway, with greater expression of ADM in the

heart and lung and of CRLR and RAMP 2 in the heart and kidney. In adrenals, where

ADM was first described [4], sepsis decreased ADM and CRLR expression. The single in-

jection of Adrecizumab had no effect on the ADM pathway. Most studies refer to “ADM

receptors” without specifying which receptor is specifically activated. Therefore, we fo-

cused only on the ADM receptor composed of CRLR and RAMP 2.
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Peritonitis and septic shock upregulated inflammation and survival pathways in the

heart and in other organs. These changes were unaffected as early as 3 h after a single

Adrecizumab injection. The observation time was likely too short to see any significant

changes in the ADM pathway and tissue inflammation, and a longer observation period

is needed. In contrast, single Adrecizumab injection succeeded in rapidly and markedly

reducing myocardial oxidative stress. The mechanisms of Adrecizumab’s benefits on

tissue oxidative stress are not fully understood, although the antiapoptotic and antioxi-

dative properties previously described might be involved [11, 18]. The improvement in

myocardial function may also be related to the Adrecizumab-induced marked reduction

in myocardial oxidative stress. The latter is known to improve both systolic and dia-

stolic function that might contribute to the sustained benefit in cardiac output follow-

ing a single administration of Adrecizumab in septic rats [30, 31].

Conclusion
Therapeutic treatment with the ADM-binding antibody Adrecizumab improves

short-term haemodynamic parameters and attenuates myocardial oxidative stress in rat

polymicrobial sepsis. Currently, a proof-of-concept and dose-finding phase II trial is on-

going in patients with septic shock and elevated concentrations of circulating bio-ADM.
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