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Abstract

The midbrain superior colliculus (SC) generates a rapid saccadic eye movement to a sen-

sory stimulus by recruiting a population of cells in its topographically organized motor map.

Supra-threshold electrical microstimulation in the SC reveals that the site of stimulation pro-

duces a normometric saccade vector with little effect of the stimulation parameters. More-

over, electrically evoked saccades (E-saccades) have kinematic properties that strongly

resemble natural, visual-evoked saccades (V-saccades). These findings support models in

which the saccade vector is determined by a center-of-gravity computation of activated neu-

rons, while its trajectory and kinematics arise from downstream feedback circuits in the

brainstem. Recent single-unit recordings, however, have indicated that the SC population

also specifies instantaneous kinematics. These results support an alternative model, in

which the desired saccade trajectory, including its kinematics, follows from instantaneous

summation of movement effects of all SC spike trains. But how to reconcile this model with

microstimulation results? Although it is thought that microstimulation activates a large popu-

lation of SC neurons, the mechanism through which it arises is unknown. We developed

a spiking neural network model of the SC, in which microstimulation directly activates a

relatively small set of neurons around the electrode tip, which subsequently sets up a large

population response through lateral synaptic interactions. We show that through this mecha-

nism the population drives an E-saccade with near-normal kinematics that are largely inde-

pendent of the stimulation parameters. Only at very low stimulus intensities the network

recruits a population with low firing rates, resulting in abnormally slow saccades.

Author summary

The midbrain Superior Colliculus (SC) is crucial for generating rapid saccadic eye move-

ments. It contains a topographically organized map of visuomotor space, in which a large

population of recruited cells determines the metrics and kinematics of saccades. The

dynamic spike-counting model explains how this population encodes the ensuing eye

movement through linear dynamic summation of the spike-effects of each recruited neu-

ron. Electrical microstimulation in the motor map produces saccades with a vector that

corresponds with the location of the electrode in the map, and with very similar kinematics
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as normal visually-evoked saccades. Although the summation model accounts for the kine-

matics of visually-evoked saccades, it could, so far, not be reconciled with the effects of

microstimulation. Here we modeled the SC motor map with a spiking neural network, in

which cells are connected through tuned local excitatory and global inhibitory synapses.

The network was tuned such that stimulation directly recruits only a small subset of neu-

rons, from which activity rapidly spreads across the motor map to set up a (near-)normal

population. Simulations with this computational model show that this scheme explains the

metrics and kinematics of electrically evoked saccades.

Introduction

High-resolution foveal vision covers only 2% of the visual field. Thus, the visual system has to

gather detailed information about the environment through rapid goal-directed eye move-

ments, called saccades. Saccades reach peak eye velocities well over�1000 deg/s in monkey,

and last for only 40-100 ms, depending on their size. The stereotyped relationships between

saccade amplitude and duration (described by a straight line) and peak eye velocity (a saturat-

ing function) are termed the ‘saccade main sequence’ [1]. The acceleration phase of saccades

has a nearly constant duration for all amplitudes, leading to positively skewed velocity profiles

[2]. In addition, the horizontal and vertical velocity profiles of oblique saccades are coupled,

such that they are scaled versions of each other (through component stretching), and the

resulting saccade trajectories are approximately straight [3]. These kinematic properties all

imply that the saccadic system contains a nonlinearity in its control [3–5]. More recent theo-

ries hold that this nonlinearity reflects an optimization strategy for speed-accuracy trade-off,

which copes with the spatial uncertainty in the retinal periphery, and internal noise in the sen-

sorimotor pathways [6–9].

The neural circuitry responsible for saccade programming and execution extends from the

cerebral cortex to the pons in the brainstem. The midbrain superior colliculus (SC) is the final

common terminal and a major point of convergence of descending saccade related signals,

and it has been hypothesized to specify the vectorial eye-displacement command for down-

stream oculomotor circuitry [10–12]. The SC contains an eye-centered topographic map of

visuomotor space, in which the saccade amplitude is mapped logarithmically along its rostral-

caudal anatomical axis (u, in mm) and saccade direction maps roughly linearly along the

medial-lateral axis (v, in mm; [10]). The afferent map (Eq 1a) and its efferent inverse (Eq 1b)

has been described by [13]:

u ¼ Buln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ AÞ2 þ y2

q

A

0

@

1

A

v ¼ BV arctan
y

xþ A

� �

9
>>>>>>=

>>>>>>;

Afferent mapping ð1aÞ

x ¼ A � exp
u
Bu

cos
v
Bv
� 1

� �

y ¼ A � exp
u
Bu

sin
v
Bv

9
>>>=

>>>;

Efferent mapping ð1bÞ

with parameters Bu�1.4 mm, Bv�1.8 mm/rad, and A�3 deg. Recently, [14] provided
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evidence for an additional anisotropy for upward (v> 0) vs. downward (v< 0) directions,

which would lead to slightly different inverse mapping relations than Eq 1b (see Discussion).

Each saccade is associated with a translation-invariant Gaussian-shaped population within this

map, the center of which corresponds to the saccade vector, (x,y), and a width of σ� 0.5 mm

[13, 15]. It is generally assumed that each recruited neuron, n, in the population encodes a vec-

torial movement contribution to the saccade vector, which is determined by both its anatomi-

cal location within the motor map, (un,vn), and its activity, Fn.

Vector averaging vs. linear summation models

Precisely how individual cells contribute to the saccade is still debated in the literature. Two

competing models have been proposed for decoding the SC population: weighted averaging of

the cell vector contributions ([16–18]; Eq 2a) vs. linear summation ([3, 9, 19]; Eq 2b), respec-

tively, which can be formally described as follows:

SAVG ¼
PN

n¼1
FnMn

PN
n¼1

Fn

ð2aÞ

SSUMðtÞ ¼
XN

n¼1

XKn<t

k¼1

dðt � tn;kÞ �mn ð2bÞ

N is the number of active neurons in the population, Kn< t the number of spikes in the

burst of neuron n up to time t, Fn its mean (or peak) firing rate, and Mn = (xn, yn) is the saccade

vector in the motor map encoded at SC site (un,vn) (Eq 1b).

mn = zMn is the small, fixed vectorial contribution of cell n in the direction of Mn, for each

of its spikes, with z a fixed, small scaling constant that depends on the adopted cell density in

the map and the population size, and δ(t − τk,n) is the k’th spike of neuron n, fired at time τk,n.

The vector-averaging scheme of Eq 2a only specifies the amplitude and direction of the sac-

cade vector, and thus puts the motor map of the SC outside the kinematic control loop of its

trajectory. It assumes that the nonlinear saccade kinematics are generated by the operation of

horizontal and vertical dynamic feedback circuits in the brainstem [16, 20, 21], or cerebellum

[22, 23]. Note also that vector averaging is a nonlinear operation because of the division by the

total population activity.

In contrast, the linear dynamic ensemble-coding model of Eq 2b encodes the full kinemat-

ics of the desired saccade trajectory at the level of the SC motor map through the temporal dis-

tribution of spikes by all cells in the population [9, 19, 24]. As a result, the instantaneous firing

rates of all neurons in the population, usually estimated by their instantaneous spike-density

functions, fn(t), together encode the desired vectorial saccadic velocity profile:

vSaccðtÞ ¼
XN

n¼1

fnðtÞ �mn with fnðtÞ ¼
XSn

k¼1

1

s
ffiffiffiffiffiffi
2p
p � e�

ðt� tk;nÞ
2

2s2 ð3Þ

where Sn is the number of spikes of cell n, with the spikes occurring at times tk,n. The Gaussian

acts as a linear kernel that smooths the discrete spike into a continuous function (e.g., [25]).

Although the models of Eqs 2a and 2b cannot both be right, each is supported by different

lines of evidence. For example, electrical microstimulation produces fixed-vector (E-)saccades

with normal main-sequence kinematics that are insensitive to a large range of stimulation

parameters [10, 15, 26, 27]. If one supposes that electrical stimulation directly activates a large

population of SC cells, and that the firing rates follow the (typically rectangular) stimulation

profile, a vector-averaging scheme with downstream dynamic feedback circuitry readily

Modellling microstimulation in the midbrain superior colliculus
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explains why E-saccades are normal main-sequence, since the center of gravity of the popula-

tion specifies the desired saccade vector only, regardless the firing rates.

In addition, reversible inactivation of a small part of the SC motor map produces particular

deficits in the metrics of visually-evoked (V-)saccades that may not be readily explained by the

linear summation model of Eq 2b [16]. As the amplitude and direction of a V-saccade to the

center of the lesioned site remain unaffected, saccades to locations around that site are directed

away from the lesion. For example, V-saccades for sites rostral to the lesion undershoot the tar-

get, while V-saccades for sites caudal to the lesion will overshoot the target.

The simple vector-summation model of Eq 2b yields saccades that would always under-

shoot targets, as the lesioned population produces fewer output spikes than under normal con-

trol conditions. However, [9, 19] observed that their estimate of the total number of spikes

from the SC population, was remarkably constant, regardless of saccade amplitude, direction,

or speed. Yet, they also observed that many cells in the normal SC fire some post-saccadic

spikes. They therefore assumed that saccades are actively terminated by a downstream mecha-

nism, whenever the criterion of a fixed number of spikes, NTOT, is reached:

XN

n¼1

XKn

k¼1

dðt � tn;k � NTOT ð4Þ

They demonstrated, by simulating the summation model of Eq 2b with actual recordings from

�150 cells, that by including the criterion of Eq 4 (which constitutes a cut-off nonlinearity in

the model), the pattern of saccadic over- and undershoots to a focal SC lesion can be fully

explained. In addition, the extended summation model of Eqs 2b and 4 also accounts for

weighted averaging of double-target stimulation in the motor map [10, 28, 29]. Moreover,

although the vector-averaging model (Eq 2a) correctly predicts the pattern of saccadic dysme-

trias, it fails to explain the substantial slowing of the lesioned saccades [16]. As this latter obser-

vation is also accounted for by Eqs 2b and 4 [9], it further supports the hypothesis that the SC

population encodes both the saccade-vector, and its kinematics [24].

Electrical microstimulation in SC

Interestingly, electrical microstimulation experiments have also shown that at low current

strengths, just around the threshold, the evoked saccade vectors become smaller and slower

than main sequence [15, 30]. These results do not follow from vector averaging (Eq 2a, which

would always generate the same saccade, but might be predicted by dynamic summation (Eqs

2b and 4), if low-amplitude electrical stimulation were to recruit a smaller number of neurons

at lower firing rates.

However, if supra-threshold microstimulation would produce a large square-pulse popula-

tion profile around the electrode tip (mimicking the profile of the imposed current pulses, as is

typically assumed), the summation model would generate severely distorted saccade-velocity

profiles, which are not observed in experiments. Yet, little is known about the actual activity

profiles in the motor map evoked by electrical microstimulation, as simultaneous multi-elec-

trode recordings in the SC during microstimulation are not available and would be obscured

by the large stimulation artefacts [31].

Under microstimulation, two factors contribute to neuronal activation: (1) direct (feedfor-

ward) current stimulation of cell bodies and axons by the stimulation pulses of the electrode,

and (2) synaptic activation through lateral (feedback) interactions among neurons in the

motor map. How each of these factors contributes to the population activity in the SC is

unknown. It is conceivable, however, that current strength falls off rapidly with distance from

Modellling microstimulation in the midbrain superior colliculus
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the electrode tip (at least by�1/r2), and that hence a relatively small number of SC neurons

would be directly stimulated by the electric field of the electrode.

Indeed, a two-photon imaging study, carried out in cortical tissue from rodents and cat are

V1, showed that microstimulation at physiological current strengths directly activates only a

sparse set of neurons directly around the immediate vicinity of the stimulation site [32]. These

considerations therefore suggest that the major factor in explaining the effects of microstimu-

lation in the SC motor map may be synaptic transmission through lateral excitatory-inhibitory

connections among the cells. Such a functional organization in the SC is supported by anatom-

ical studies [33, 34], by electrophysiological evidence [35–37], and by pharmacological studies

[38].

Spiking neural network model

We recently constructed a biologically plausible, yet simple, spiking neural network model for

ocular gaze-shifts by the SC population to visual targets [39]. This minimalistic (one-dimen-

sional) model with lateral interactions can account for the experimentally observed firing

properties of saccade-related cells in the gaze-motor map [9, 19], by assuming an invariant

spiking input pattern from sources upstream from the motor map (e.g., FEF).

We here extended that simple network model to the full two-dimensional network map

that accounts for microstimulation results over a wide range of stimulation parameters. To

simplify the analysis of the network properties, and to limit the number of independent

parameters that describe the electrical stimulation pulses, we used rectangular current profiles

with different heights (current intensities) and durations. In line with the evidence from previ-

ous work, the network was tuned such that microstimulation provides an initial seed that

directly activates only a small set of SC neurons, which subsequently sets up a large SC popula-

tion activity through lateral synaptic interactions. Our results show that stimulating the net-

work indeed sets up a near-normal population activity profile that generates appropriate

saccadic command signals across the two-dimensional oculomotor range through the linear

dynamic summation mechanism of Eq 2b.

Methods

Log-polar afferent mapping

The afferent mapping function (Eq 1a) translates a target point in visual space to the anatomi-

cal position of the center of the corresponding Gaussian-shaped population in the SC motor

map. It follows a log-polar projection of retinal coordinates onto Cartesian collicular coordi-

nates (Eq 1a; [13]). To allow for a simple 2D matrix representation of the map in our network

model, we simplified the afferent motor map to the complex logarithm:

uðRÞ ¼ Bu � ln ðRÞ and vð�Þ ¼ Bv � �

with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and � ¼ atan

y
x

� � ð5Þ

with Bu = 1 mm and Bv = 1 mm/rad (isotropic map). Thus, the contribution, m, of a single

spike at site (u, v) to the eye movement is computed from the efferent mapping function as:

mx ¼ z exp ðuÞ cos ðvÞ and my ¼ z exp ðuÞ sin ðvÞ ð6Þ

We thus constructed a spiking neural network model as a rectangular grid of 201 x 201

neurons. The network represents the gaze motor-map with 0 < u< 5 mm (i.e., up to

amplitudes of 148 deg), and −π/2 < v< π/2 mm. The network generates saccadic motor

Modellling microstimulation in the midbrain superior colliculus
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commands of different directions and amplitudes into the contralateral visual hemispace

through a spatial-temporal population activity profile. The location of the population in the

motor map determines the direction and amplitude of the saccade target, whereas the tempo-

ral activity profile encodes the eye-movement kinematics, through Eq 2b. As described

below, and in our previous study [39], the eye-movement main-sequence kinematics result

from location-dependent biophysical properties of the neurons within the map, together

with their lateral interconnections.

AdEx neuron model

We investigated the dynamics of the network model numerically through simulations devel-

oped in C++/CUDA [40]. The motor map is represented as a rectangular grid of neurons with

a Mexican hat-type pattern of lateral interactions. The neural activities were simulated by cus-

tom code utilizing dynamic parallelism to accelerate spike propagation on a GPU [41]. The

code was developed and tested on a Tesla K40 with CUDA Toolkit 7.0, Linux Ubuntu 16.04

LTS (repository under https://bitbucket.org/bkasap/sc_microstimulation). Simulations ran

with a time resolution of 0.01 ms. Brute-force search and genetic algorithms, described below,

were used for parameter identification and network tuning since there exists no analytical

solution for the system.

The neurons in the network were described by the adaptive exponential integrate-and-fire

(AdEx) neuron model [42], which accommodates for a variety of bursting dynamics with a

minimum set of free parameters. The AdEx model is a conductance-based integrate-and-fire

model with an exponential membrane potential dependence. It reduces Hodgkin-Huxley’s

model to only two state variables: the membrane potential, V, and an adaptation current, q.

The temporal dynamics of the system are given by the following differential equations for neu-

ron n:

C
dVn

dt
¼ � gLðVn � ELÞ þ gLZ exp

Vn � VT

Z

� �

� qn þ Iinp;nðtÞ ð7aÞ

tq;n
dqn
dt

¼ aðVn � ELÞ � qn ð7bÞ

where C is the membrane capacitance, gL is the leak conductance,EL is the leak reversal poten-

tial,η is a slope factor, VT is the neural spiking threshold, qn is the adaptation time constant,a is

the sub-threshold adaptation constant, and Iinp,n is the total synaptic input current. In our pre-

vious paper [39] the input-layer of Frontal Eye Field (FEF) neurons had identical biophysical

properties, and only received a fixed external input current, Iinp,n = Iext. In the present simula-

tions, we did not include a FEF input layer, as the electrical stimulation was applied within the

SC motor map as an external current.

Two parameters specify the biophysical properties of the SC neurons: the adaptation time

constant, τq,n (which is assumed to be location dependent), and the synaptic input current,

Iinp,n = Isyn,n + IE (where Isyn,n is a location- and activity-dependent synaptic current, and IE is

the applied microstimulation current). Both variables change systematically with the spatial

location of the cells within the network (rostral to causal). The remaining parameters, C, gL,

EL, η, VT and a, were tuned such that the cells showed neural bursting behavior (see Table 1

for the list and values of all parameters used in the simulations, and Fig 1 for some example

responses).

The AdEx neuron model employs a smooth spike initiation zone between VT and Vpeak,

instead of a strict spiking threshold. Once the membrane potential crosses VT, the exponential

Modellling microstimulation in the midbrain superior colliculus
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term in Eq 7a starts to dominate and the membrane potential can in principle increase without

bound. We applied a practical spiking ceiling threshold at Vpeak = −30 mV for the time-driven

simulations. For each spiking event at time τ, the membrane potential is reset to its resting

potential, Vrst, and the adaptation current, q, is increased by b to implement the spike-triggered

adaptation:

VðtÞ ! Vrst and qðtÞ ! qðtÞ þ b ð8Þ

After rescaling the equations, the neuron model has four free parameters (plus the input cur-

rent) [43]. Two of these parameters characterize the sub-threshold dynamics: the ratio of time

constants, τq/τm (with the membrane time constant τm = C/gL) and the ratio of conductances,

a/gL (a can be interpreted as the stationary adaptation conductance). Furthermore, the resting

potential Vrst and the spike-triggered adaptation parameter b characterize the emerging spik-

ing patterns of the model neurons (regular/irregular spiking, fast/slow spiking, tonic/phasic

bursting, etc.).

Current spread function

We applied electrical stimulation by the input current, centered around the site at [uE, vE],

according to Eq 5. We incorporated an exponential spatial decay of the electric field from the

Table 1. List of all parameters used in the simulations.

Microstimulation parameters

λ 10 mm−1 Spatial decay constant

I0 150 (40-280) pA Intracelluclar current intensity

P(t) I0 (for 0 < t < Ds) Rectangular stimulus pulse

VT 100 (25-250) ms Stimulus duration

Neural parameters

C 600 pF Membrane capacitance

gL 20 nS Leak conductance

EL -53 mV Leak reversal potential

η 2 mV Spike slope factor

VT -50 mV Exponential threshold

Vpeak -30 mV Spiking threshold

Vrst -45 mV Reset potential

a 0 nS Sub-threshold adaptation

b 120 pA Spike-triggered adaptation

τq 10-30 ms Location-dependent adaptation time constant; varies with un
z 5.087 � 10−5 Efferent map mini-vector scaling factor

Synaptic parameters

Ee 0 mV Excitatory reversal potential

Ei -80 mV Inhibitory reversal potential

τexc 5 ms Excitatory conductance decay

τinh 10 ms Inhibitory conductance decay

Mexican-hat Parameters

�wexc 45 pS Excitatory scaling factor

�winh 14 pS Inhibitory scaling factor

σexc 0.4 mm Range of excitatory synapses

σinh 1.2 mm Range of inhibitory synapses

sn 0.0112-0.0147 nS Location-dependent synaptic scaling parameter; varies with un

https://doi.org/10.1371/journal.pcbi.1006522.t001
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tip of the electrode:

IEðu; v; tÞ ¼ I0 � exp ð� l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu � uEÞ
2
þ ðv � vEÞ

2

q

Þ � PðtÞ ð9Þ

with λ (mm−1) a spatial decay constant, I0 the current intensity (in pA), and a rectangular stim-

ulation pulse given by P(t) = 1 for 0< t< DS, and 0 elsewhere. Thus, only a small set of neu-

rons around the stimulation site will be directly activated with this input current (see Results).

Throughout this paper, we used a fixed input current profile (I0 = 150 pA), λ = 10 mm−1 and

DS = 100 ms) except for the final section, where we explore the effect of changing the microsti-

mulation parameters on the resulting saccade. These parameters were determined by the neu-

ral tuning of the AdEx neurons in their bursting regime (see Neural tuning and bursting

mechanism section in Results).

Fig 1. Responses of three SC model neurons to different microstimulation parameters. The three neurons differed in their adaptation time

constants (A: τq = 84.6ms, B: τq = 70.95ms, and C: τq = 52.4ms). Each row shows the membrane potentials, V(t), for the same electrical stimulus, at a

particular intensity (see color code for the different lines, top), and delivered at a particular stimulus duration, DS. Note the clear differences in neuronal

membrane responses. Stimulus timings and durations are indicated above the traces by black lines, ranging from DS = 25 ms (bottom) to DS = 225 ms

(top). Symbols x, o, and +: selected responses, further analyzed in Fig 2.

https://doi.org/10.1371/journal.pcbi.1006522.g001
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For simplicity, we incorporated a single rectangular stimulation pulse, P(t), rather than a

train of narrowly spaced stimulation pulses. A train of pulses would introduce additional

parameters, like pulse height, pulse duration, pulse intervals, pulse polarity, and number of

pulses (stimulus duration), each of which would affect the network response. We have shown

before that the spiking neural network model with AdEx neurons and lateral interactions can

deal with such spiking input patterns [39]. However, varying these different stimulations

parameters would complicate the analysis, and is deemed a topic for future work (see

Discussion). Note also that the AdEx neurons act as ‘leaky integrators’ for membrane poten-

tials below VT. Therefore, a sequence of pulses and a single rectangular pulse yield qualitatively

similar membrane responses.

Remark on the current scale. In SC microstimulation experiments, one typically applies

extracellular currents in the micro-Ampère range (10–50 μA) to evoke a saccade. In our simu-

lations, we instead take the effective intracellularly applied current, which amounts to only a

tiny fraction of the total extracellular current leaving the electrode.

The SC model: Synapses and lateral connections

The total input current for an SC neuron, n, located at (un, vn), is governed by the spiking

activity of surrounding neurons, through conductance-based synapses, and by the externally

applied electrical stimulation input (Eq 9):

Iinp:nðtÞ ¼ gexcn ðtÞðEe � VnðtÞÞ þ ginhn ðtÞðEi � VnðtÞÞ þ IEðun; vn; tÞ ð10Þ

where gexcn and ginhn are excitatory and inhibitory synaptic conductances acting upon neuron

n, Ee and Ei are excitatory and inhibitory reversal potentials respectively. These conductances

increase instantaneously for each presynaptic spike by a factor determined by the synaptic

strength between neurons, and they decay exponentially otherwise, according to:

texp
dgexcn

dt
¼ � gexcn þ texc

XNpop

i

wexc
i;n

X
Ni
spks

s

dðt � ti;sÞ ð11aÞ

texp
dginhn

dt
¼ � ginhn þ tinh

XNpop

i

winh
i;n

X
Ni
spks

s

dðt � ti;sÞ ð11bÞ

with τexc and τinh, the excitatory and inhibitory time constants; wexc
i;n and winh

i;n are the intracolli-

cular excitatory and inhibitory lateral connection strengths between neuron i and n, respec-

tively (Eqs 12a and 12b) and τi,s is the spike timing of the presynaptic SC neurons that project

to neuron n. With conductance-based synaptic connections, spike propagation occurs in a bio-

logically realistic way, since the postsynaptic projection of a presynaptic spike depends on the

instantaneous membrane potential of the postsynaptic neuron. In this way, the state of a neu-

ron determines its susceptibility to presynaptic spikes.

We incorporated a Mexican hat-type lateral connection scheme in the model, where the net

synaptic effect is given by the difference between two Gaussians [44]. Accordingly, neurons

were connected with strong short-range excitatory and weak long-range inhibitory synapses,

which implements a dynamic soft winner-take-all (WTA) mechanism: not only one neuron

remains active, but the “winner” affects the temporal activity patterns of the other active neu-

rons. The central neuron governs the population activity, since it is the most active one in the

recruited population. As a result, all recruited neurons exhibit similarly-shaped bursting pro-

files as the central neuron, leading to synchronization of the spike trains within the population

Modellling microstimulation in the midbrain superior colliculus
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[39]. Two Gaussians describe the excitatory and inhibitory connection strengths between colli-

cular neurons as function of their spatial separation:

wexc
i;n ¼ sn � �wexc exp �

jjui � unjj
2

2s2
exc

� �

ð12aÞ

winh
i;n ¼ sn � �winh exp �

jjui � unjj
2

2s2
inh

� �

ð12bÞ

where �wexc > �winh and �sinh > �sexc, and sn is a location-dependent synaptic weight-scaling

parameter, which accounts for the location-dependent change in sensitivity of the neurons

due to the variation in adaptation time constants.

Network tuning

Electrophysiological experiments have indicated that the neural responses are well character-

ized by four principles: (i) a fixed number of spikes for each neuron associated with its pre-

ferred saccade vector Nu,vffi 20 spikes, (ii) a systematic dependence of the neuron’s cumulative

spike count on the saccade vector (dynamic movement field), Nu,v(R, ϕ, t), (iii) scaled and syn-

chronized burst profiles of the neurons in the population, resulting in a high cross-correlation,

Cpop(fn(t), fm(t))� δnm, between the firing rates of recruited neurons, and (iv) a systematic

decrease of the peak firing rate of central neurons in the population, Fpeak, along the rostral-

caudal axis, together with an increase of burst duration, Tburst, and burst skewness, Sburst.
[19] argued that these properties follow from a systematic tuning of the gaze-motor map,

and that they are responsible for the observed saccade kinematics. Here we applied these prin-

ciples to determine a similarity measure between our simulated responses, and the experimen-

tally recorded gaze motor-map features. In our network model, these features emerge from the

interplay between intrinsic biophysical properties of the SC neurons, and the lateral interac-

tions between them.

Distinct biophysical properties. The intrinsic biophysical properties of the neurons were

enforced by systematically varying the adaptation time constant, τq,n, and the synaptic weight-

scaling parameter, sn, in the motor map. Changes in the adaptive properties of the neurons

result in a varying susceptibility to synaptic input. The synaptic weight-scaling parameter cor-

rects for the total input activity. These distinct biophysical properties capture the systematically

changing firing properties of SC cells along the rostral-caudal axis of the motor map, while

keeping a fixed number of spikes for the neurons’ preferred saccades Nu,v(R, ϕ). Following the

brute-force algorithm from our recent paper [39], the location-dependent [τq,n, sn] value pairs

for the neurons were fitted to ensure a fixed number of spikes per neuron under a given micro-

stimulation condition, and the subsequent excitation through lateral interactions (see below,

Eqs 15 and 16). These parameters were first tuned for isolated neurons. The lateral interactions

ensured that the bursting profiles in the population remained scaled versions of each other

and had their peaks synchronized (evidenced from a high cross-correlation, Cpop, between the

burst profiles across the population). The sn values of Eqs 12a and 12b were scaled by the num-

ber of neurons in the population.

Lateral connectivity. The single-unit recordings also suggested that for each saccade the

recruited population size, and hence its total number of spikes, is invariant across the motor

map. The widths of the Mexican-hat connectivity (σexc and σinh) govern the spatial range of a

neuron’s spike influence in the network, and directly affect the size of the neural population.

In our model, these widths were fixed, such that they yielded local excitation and global inhibi-

tion. The connection strengths (�wexc and �winh), on the other hand, affect the spiking behavior

Modellling microstimulation in the midbrain superior colliculus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006522 April 12, 2019 10 / 25

https://doi.org/10.1371/journal.pcbi.1006522


and local network dynamics, as they control how much excitation and inhibition will be

received by each single neuron, and transmitted to others, based on the ongoing activity.

Strong excitation would result in an expansion of the population, whereas a strong inhibition

would fade out the neural activity altogether. Thus, balanced intra-collicular excitation and

inhibition would be required to establish a large, but confined, Gaussian population.

The parameters for the lateral connection strengths were found by a genetic algorithm, as

described in our previous paper (Kasap and Van Opstal, 2017). In the current model we used

eight saccade amplitudes for each generation to calculate the fitness of each selection (selected

as R = [2, 3, 5, 8, 13, 21, 33, 55] deg, and ϕ = 0 deg, to cover equidistant locations on the ros-

tral-to-caudal plane: u = [0.69, 1.08, 1.60, 2.07, 2.56, 3.04, 3.49, 4.00] mm, and v = 0 mm,

respectively).

The genetic algorithm minimized the root-mean squared errors (RMSE) between the spik-

ing network responses and the rate-based model of [45]: from the fitness evaluation for each

generation, we calculated the RMSE between the peak firing rates, Fpeak; the number of elicited

spikes from the central cells in the population, Nu,v(R, ϕ); burst durations, Tburst; and burst

skewness, Sburst. Furthermore, the cross-correlations, Cpop, between all active neurons and the

central cell were included too to ensure that the experimentally observed gaze-motor map

characteristics were taken into account for parameter identification. The fitness function was

defined by a weighted RMSE summation:

Fitness ¼

10� 1 � RMSEðFpeaksÞ

þ10 � RMSEðNu;vðR; �Þ

þ103 � RMSEðCpopÞ

8
>>><

>>>:

ð13Þ

where the weights (0.1, 10, 103) were empirically chosen to cover similar ranges, since the

Fpeaks vary from roughly 430-750 spikes/s, the number of spikes varies between 18 and 22, and

the cross-correlation values are< 1.

Peak firing rates of the central neurons from each population were calculated by convolving

the spike trains with a Gaussian kernel (Eq 3; 8 ms kernel width), to determine spike-density

functions of instantaneous firing rate. RMSE values for Fpeak along the rostral-caudal axis of

the motor map were subsequently tuned by approximating the following relation:

FpeakðrÞ ¼
F0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b � R
p ð14Þ

where F0 = 800 spikes/s and β = 0.07 ms/deg (taken from [45]. The RMSE of the total spike

counts during the burst from the central cells in the population were tuned to Nu,v = 20 spikes,

and was required to be independent of the neuron’s position in the map. Synchrony of the

neural activity within the recruited population was quantified by the RMSE of deviations

for the cross-correlations between the central cell and all other active cells in the recruited

population.

Generating eye movements

Eye movements were generated by the population activity following the linear ensemble-cod-

ing model of Eqs 2b and 3. We applied the two-dimensional efferent motor map of Eq 5. For

any network configuration throughout this paper, the unique scaling factor of the efferent

motor map (z) was calibrated for a horizontal saccade at (x, y) = (21,0) deg. The resulting eye-

displacement vector,~SðtÞ, was calculated from the spike trains by interpolation with a first-

Modellling microstimulation in the midbrain superior colliculus
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order spline to obtain equidistant time samples. The interpolated data were further smoothed

with a Savitzky-Golay filter, to obtain smooth velocity profiles.

Results

Neural tuning and bursting mechanism

Fig 1 shows the membrane potential traces for three model neurons, differing in their adapta-

tion time constants, τq, which were stimulated under different microstimulation paradigms.

The electrical stimulus strength increased from a low amplitude (I0 = 50 pA; light blue traces)

to a high intensity (I0 = 250 pA, dark-blue traces), for stimulation durations between 25 and

225 ms. Note that for these different microstimulation regimes, the burst onsets and burst

shapes (i.e., the instantaneous firing rates) could differ, even when the number of elicited

spikes would be the same. These responses illustrate how the biophysical properties of the neu-

rons affected their bursting behavior.

First, the neuron could respond after the stimulation had terminated. Such a feature, as

well as the bursting behavior, is only captured by more complex spiking neuron models. Even

when the input current amplitude cannot drive a neuron rapidly to its first spike to initialize

the burst (light traces), it suffices if the neuron’s membrane potential crosses a certain thresh-

old (VT in the AdEx neuron). The neuron can then elicit a spike after the stimulation is over

(visible for stimulation durations < 75 ms).

Second, the stimulation amplitude determines the response onset: as the amplitude

increases, the first spike occurs earlier. Such a behavior is to be expected, since the neuron

model acts as an integrator [30]; higher input currents thus drive a neuron faster to its spiking

threshold.

Third, the different neurons respond differently to long stimulation trains (> 175 ms).

While the neuron with a longer adaptation time constant (τq = 84.6 ms; Fig 1A) responds with

repetitive bursts of 4 to 5 spikes, separated by a silent period, the faster recovering neuron

(τq = 52.4 ms; Fig 1C) elicits more and more spikes after the initial burst, especially for the

higher current amplitudes (dark traces).

Interestingly, the neurons with the intermediate (Fig 1B) and short (Fig 1C) adaptation

time constants switch between different bursting behaviors as the current amplitude increases

along with longer stimulation durations. Regular short bursts with silent periods in between

result from the slow decay of the adaptation current, which acts on the membrane potential as

an inhibitory current. Hence, the adaptation time constant determines how fast a neuron will

recover after each spike in a burst. Therefore, the strongly adapting neuron with a long will

require more input current to elicit another spike (Fig 1A and 1B for stimulation duration

>175 ms), and thus after the fourth spike in the burst, the adaptation current is already high

enough to break the bursting cycle. The fast recovering neuron (Fig 1C, short τq) continues its

burst with more spikes (dark traces at longer durations (B, C).

A phase plot of the instantaneous adaptation current vs. the membrane potential provides a

graphical analysis of the effects of changing the neural parameters, the current input, and the

initial state, on the evolution of the dynamical system. Fig 2 shows a number of phase-trajecto-

ries for the Adex model, for the parameters used in the simulations of the SC motor map. Null-

clines illustrate the boundaries of the vector fields in the AdEx neuron’s phase plane. The V-

nullcline (Vnull; i.e., dV/dt = 0 for Eq 7a) and the q-nullcline (qnull; i.e., dq/dt = 0 for Eq 7b) are

shown as gray lines. Fixed points of the system lie at the intersections of these nullclines. A sta-

ble fixed point of the system is found at [-53 mV, 0 nA]. In all subfigures that is the starting

point of the trajectories, and the state variables of the neurons will converge to this stable fixed

point in the absence of input.
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The q-nullcline follows a linear trajectory, whereas the V-nullcline represents a convex

function because of the superposition of two V-dependent parts. For V< VT, the exponential

term can be omitted and the linear V dependence will have a slope of gL. For V> VT, the expo-

nential term will dominate with a sharp increase as V increases. When a neuron receives input,

the V-nullcline shifts upward by as much as the current density, and the response of the neu-

ron follows a trajectory on the phase plane toward the spiking threshold. The blue trajectories

show the evolution of the state variables for three neurons with different τq values, and stimu-

lated at different current strengths. The horizontal arrows show the membrane potential in the

spike initiation zone, V> VT. Spikes occur when the membrane potential overcomes the spik-

ing threshold, V> Vthr. After a spike, the membrane potential is reset, and the adaptation

current is increased by b (Eq 7). The spiking threshold, Vthr, and the reset potential, Vrst, are

indicated by the vertical dashed lines. With each spike, the adaptive current increases more

and once it reaches values above the V-nullcline, the adaptive current is high enough to sup-

press the neuron from continued bursting, and hyperpolarizes.

In Fig 2A, the phase trajectory crosses values over Vnull = 150 pA after 5 spikes. Due to

the hyperpolarization, the membrane potential starts to drop. The phase plot shows that the

microstimulation is finished when the membrane potential decreases to -58 mV, and the

smooth trajectory is seen disrupted. In Fig 2B, there is a second burst cycle since the microsti-

mulation duration is much longer. After the first burst cycle crosses Vnull + 200 pA with 6

spikes (arrows are placed closer to Vthr), neuron follows the trajectory to the spike initiation

zone for a second burst cycle with 5 spikes. The end of the microstimulation coincides with the

second burst cycle and afterwards the membrane potential decreases fast due to the high adap-

tive current acting on the neuron. In Fig 2C, the neuron gets stuck in its first cycle and contin-

ues spiking repetitively. This pattern is due to the fast decay of the adaptive current, which

drops by more than b after each spike. Therefore, the neuron would continue spiking repeti-

tively, as long as the current is applied.

The neurons in the network were tuned to respond with a fixed number of spikes in a burst

cycle (as in Fig 2A). This initial burst sets up a large population activity through the lateral con-

nections. Vnull fluctuates for each neuron with the network dynamics, depending on the input

from other neurons in the population. Microstimulation parameters were chosen such that

the central neuron of the population would respond with a burst cycle of 4-5 spikes (typically,

DS = 100 ms, and I0 = 150 pA), independent of the biophysical properties of the neuron. To

Fig 2. Bursting mechanism of the AdEx neuron model. Phase plots of V(t) vs. q(t) of the neural dynamics of the same three neurons of Fig 1.

Biophysical parameters of the neurons were selected for their bursting responses to a ramp stimulus, with varying current amplitude and durations

(traces are marked in Fig 1); the order of spike occurences is denoted next to the traces in the spike initiation zone): A: a burst with 5 spikes (x); B: two

burst cycles with 6 and 5 spikes (o); C: a burst cycle with more than 13 spikes (+).

https://doi.org/10.1371/journal.pcbi.1006522.g002

Modellling microstimulation in the midbrain superior colliculus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006522 April 12, 2019 13 / 25

https://doi.org/10.1371/journal.pcbi.1006522.g002
https://doi.org/10.1371/journal.pcbi.1006522


that end, the adaptation time constant, τq,n, and the synaptic weight-scaling parameter, sn, for

each neuron were determined by applying a fifth order polynomial fit to produce a fixed num-

ber of spikes (N = 20) for self-exciting neurons:

sn ¼ ð8:808 � 10� 9 � t5
q;n � 3:280 � 10� 6 � t4

q;n

þ4:855 � 10� 4 � t3
q;n � 3:607 � 10� 2 � t2

q;n

þ1:383 � tq;n � 8:396Þ � 10� 3

ð15Þ

The self-excitation mimics the population activity, since the central cell’s burst profile is

representative for the entire population activity, due to burst synchronization across the active

neurons. The adaptive time constant, τq.n, varied from 100-30 ms in a linear way with the ana-

tomical rostral-caudal location of the neurons, according to:

tq;n ¼ 100 � 14 � un with un 2 ½0; 5� mm ð16Þ

Microstimulation without lateral interactions

The current density drops rapidly with distance from the microelectrode tip, as given by the

current spread function (Eq 9, with λ = 10 mm−1, DS = 100 ms, and I0 = 150 pA). Fig 3A illus-

trates this decay of current density on the motor map surface. The pulsed input current is pre-

sented onto the collicular surface at a site corresponding to the visual image point (u(R), v(ϕ)

in Eq 5; Fig 3B and 3C). Microstimulation directly activated only a small set of neurons within

a 250 μm radius. Fig 3B and 3C shows the number of spikes elicited by the activated neurons

in the absence of intra-collicular lateral interactions. Each activated neuron elicited only 4-6

spikes within a given input duration range, regardless the electrode’s location. These spikes

arose from the initial bursting regime of the neurons until the adaptation current built up with

repetitive spikes that canceled the microstimulation input (see Fig 2). The input amplitude

affected the response delay of the neurons between stimulation onset and their first spike.

Thus, in the model these small neuronal subsets generated only a brief pulse signal that is sup-

posed to set up the entire population activity through lateral connections.

Including lateral interactions

We next tested the collicular network response to the same microstimulation parameters as in

Fig 3, while including the lateral interactions. Fig 4A–4C shows the recruited neural population

Fig 3. Spatial properties of input current and neural response. (A) Input stimulus of 150 pA (100 ms), is presented to the network around the vicinity

of the tip of the electrode. Current amplitude drops exponentially with distance from the tip location at 0 with λ = 10mm−1 in every direction on the

collicular map. (B,C) Spike counts of neurons activated by microstimulation, without including lateral connections in the motor map. The gaze-motor

map is stimulated at the corresponding locations prescribed by the logarithmic afferent mapping function (B: R = 5˚, ϕ = 0˚;C: R = 31˚, ϕ = 30˚).

https://doi.org/10.1371/journal.pcbi.1006522.g003
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at the rostral stimulation site. Clearly, the number of recruited neurons had increased

substantially as a result of the network dynamics. The diameter of the circular population

extended to about 1 mm in the motor map. In addition, the cumulative activity elicited by the

central cells had now increased from about 5 to 20 spikes. Fig 4B shows the neuronal bursts

(top spike patterns) from a number of selected cells in the population, together with the associ-

ated spike-density functions. The peak firing rate of the central cells was close to 700 spikes/s

and dropped in a regular fashion with distance from the population center. Note also that the

cells near the fringes of the population were recruited slightly later than the central cells, but

that their peak firing rates were reached nearly simultaneously. Moreover, the bursts all

appeared to have the same shape. Fig 4C shows the saccade that was elicited by this neural pop-

ulation, together with its velocity profile. The saccade had an amplitude of 5 deg, reaching a

peak velocity of about 200 deg/s.

Fig 4D–4F shows the results for stimulation at the more caudal location in the motor map,

yielding an oblique saccade with an amplitude of 31 deg. The size of the resulting population

activity is very similar to that of the rostral population, and also the number of spikes elicited

by the cells is the same. The peak firing rates of the neurons, however, were markedly lower,

reaching a maximum of about 450 spikes/s. As a result, the burst durations increased accord-

ingly, from about 50 ms at the rostral site, to more than 70 ms at the caudal site. Note that the

saccade reached a much higher peak velocity (about 900 deg/s) than the smaller saccade in Fig

4C, but its duration was prolonged. Note also that the horizontal and vertical velocity profiles

were scaled versions, indicating a straight saccade trajectory.

Fig 4. Population dynamics in the gaze-motor map and eye kinematics. (A,D) Spike counts from the gaze-motor map represents the recruited

population to microstimulation with lateral interactions. Peak firing rates of the cells decrease with distance from the population center. (B,E) Temporal

burst profiles of the recruited neurons (taken at 0.1 mm intervals from the central neuron) portray synchronized population activity, here shown along

the rostral-caudal direction in the map. Burst durations increase, but the total number of spikes from the population remains the same. (C,F) Emerging

eye displacements and eye velocity profiles, generated by the linear dynamic ensemble-coding model (Eqs 2b and 3). Horizontal (green), vertical

(yellow), and vectorial (purple) eye-displacement traces.

https://doi.org/10.1371/journal.pcbi.1006522.g004
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In Fig 5 we quantified the collicular bursts in response to microstimulation at different sites

along the rostral-caudal axis in the motor map. Fig 5A shows how the evoked collicular bursts

of the central cells in the population systematically reduce their peak firing rates, and increase

their duration, as the microelectrode moves from rostral (R = 2 deg) to caudal sites (R = 31

deg). In Fig 5B we show three major relationships for the bursts of the central cells in the popu-

lation, for saccade amplitudes between 2 and 65 deg: the peak firing rate (green) drops from

about 750 spikes/s to 300 spikes/s, burst duration (purple) increases from about 40 ms to 125

ms, whereas the number of spikes in the burst (light green) remains constant at N = 20 spikes.

These burst properties, which are due to a precise tuning of the biophysical cell parameters,

underlie the kinematic main-sequence properties of saccadic eye movements [19, 39, 45].

Properties of electrically evoked eye movements

Fig 6A shows the amplitudes and directions of 45 elicited saccades across the 2D oculomotor

range (stimulation parameters: I0 = 120 pA, DS = 100 ms). We avoided stimulating near the

vertical meridian, as our model included only the left SC motor map (e.g., [15]), and stimula-

tion at very caudal sites (R> 40 deg), where edge effects of the finite motor map would lead to

truncation of the elicited population at the caudal end. Crosses indicate the coordinates of the

corresponding motor map locations where stimulation took place; blue dots give the coordi-

nates of the evoked saccade vectors. There is a close correspondence between the motor map

coordinates and the elicited saccade vectors. Only for the most caudal sites the saccade vectors

tended to show a slight undershoot. We have not attempted to compensate for these minor

effects, e.g. by including heuristic changes to the efferent mapping function. The panels of Fig

6B and 6C show the evoked saccades for the nine stimulation sites along the horizontal merid-

ian. Note that the saccade duration increased with the saccade amplitude, and that the peak

eye velocity showed a less than linear increase with saccade size.

Fig 7 presents three examples of saccade position and velocity traces for stimulation at sites

encoding three different directions, but with a fixed amplitude of R = 21 deg. The elicited

track-velocity profiles are direction-independent. Panels Fig 7B and 7C also indicate the

behavior of the horizontal and vertical saccade components. As these are precisely synchro-

nized with the saccade vector, the ensuing saccade trajectories are straight (not shown).

Fig 5. Central cell firing properties. (A) Spike trains and burst profiles for the central neurons of different populations (electrode tip positioned at

R = 2, 7, 11, 15, 21 and 31 deg). (B) Peak firing rates (dark green), number of spikes from the central cells (light green), and the durations of the central

cell bursts (purple) for different neural populations between R = 2 and 65 deg. Note that the number of spikes for the central cell is constant at about 20

spikes throughout the motor map, while the peak firing rate at caudal sites drops to barely 50% of the rostral stimulation site. Note also that the

durations of the central cell bursts increase monotonically with the movement amplitude.

https://doi.org/10.1371/journal.pcbi.1006522.g005
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The main-sequence behavior of the model’s E-saccades is quantified in Fig 8. Fig 8A shows

the nonlinear amplitude vs. peak eye-velocity relationship, described by the following saturat-

ing exponential function:

vpeak ¼ 1172 � ð1 � exp ð� 0:04 � RÞÞ deg=s ð17Þ

From Fig 8B, the straight-line amplitude-duration relation was approximated to

Dsacc ¼ 28:7þ 1:1 � R ms ð18Þ

Fig 6. Saccade endpoints, eye displacement and eye velocity. (A) Saccade endpoints for stimulation at different sites in the motor map. The scaling

parameter of the SC motor map was tuned for a 21 deg horizontal saccade (red circle). (B) Eye displacement traces for horizontal saccades (ϕ = 0 deg)

[movement amplitudes are highlighted by the thin horizontal lines]. (C) Saccadic eye velocity profiles for the corresponding position traces in B. Note

the clear increase in saccade duration, and the associated saturation of peak eye velocity as function of saccade amplitude.

https://doi.org/10.1371/journal.pcbi.1006522.g006

Fig 7. Eye-displacement traces and saccadic eye velocity profiles for three directions (ϕ = 0, 30, 60 deg). (A, B, C) with the same amplitude of R = 21

deg. (purple: total vectorial displacement/velocity, green: horizontal, yellow: vertical saccade component).

https://doi.org/10.1371/journal.pcbi.1006522.g007
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These main-sequence relations were combined into a single, characteristic linear relationship

that captures all saccades, normal and slow (Fig 8C) by:

vpeak � Dsacc ¼ 1:72 � R deg ð19Þ

All three relations correspond well to the normal main-sequence properties, as have been

reported for monkey and human saccades (e.g., [2]).

Importantly, the main-sequence behavior of E-saccades was largely insensitive to the

applied current strength as soon as it exceeded the stimulation threshold. This feature of the

model is illustrated in Fig 9, which shows E-saccade peak eye-velocity as function of current

strength for a fixed stimulation duration of DS = 100 ms (Fig 9A). The stimulation was applied

at three different sites on the horizontal meridian (corresponding to R = 15, 21 and 31 deg).

Below I0 = 80 pA no movement was elicited, but around the threshold, between 90-120 pA,

stimulation evoked slow eye movements, which eventually yielded the final amplitude (Fig

9B). Immediately above the threshold at 130-140 pA, the evoked movement amplitudes and

velocities reached their final, site-specific size (Fig 9A and 9B), which did not change with cur-

rent strength over the full range between 140-220 pA. The associated peak eye velocity fol-

lowed a similar current-dependent behavior for changes in stimulus duration (at a fixed

current strength of 150 pA; Fig 9C). Thus, the quantity that determines evoked saccade initia-

tion is the total amount of current (current amplitude times duration; e.g., [30]).

Fig 8. Nonlinear main-sequence behavior of the model. Shown for stimulation at 16 sites along the horizontal meridian of the motor map. (A)

Saturating amplitude-peak eye velocity relation. (B) A straight-line increase of saccade duration with amplitude. (C) Saccade amplitude and the product

of peak eye velocity and saccade duration, Vpk � D, are linearly related with slope, k = 1.7.

https://doi.org/10.1371/journal.pcbi.1006522.g008

Fig 9. Effect of stimulation parameters. (A) Peak eye velocity as function of current strength for stimulation at a site corresponding to R = 15 (light),

21 (medium) and 31 (dark) deg, for 100 ms stimulation duration. Beyond the threshold at 140 pA, the evoked eye velocity is virtually independent of the

stimulation current. (B) Total eye displacement as function of microstimulation strength for stimulation at a site corresponding to R = 15 (light), 21

(medium) and 31 (dark) deg for 100 ms stimulation duration. Beyond the threshold at 90 pA, the total eye displacement is independent of the

stimulation current. (C) Peak eye velocity as a function of microstimulation duration from the same locations at a fixed stimulation strength of 150 pA.

https://doi.org/10.1371/journal.pcbi.1006522.g009
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Discussion

Summary

The simple linear ensemble-coding model of Eq 2b [9, 45, 46] seems inconsistent with the

results of microstimulation, when it is assumed that (i) the rectangular stimulation input pro-

file directly dictates the firing patterns of the neural population in the motor map, and (ii) that

the neurons are independent, without synaptic interactions.

We here argued that these assumptions are neither supported by experimental observation,

nor do they incorporate the possibility that a major factor determining the recruitment of SC

neurons is caused by synaptic transmission within the motor map, rather than by direct activa-

tion through the electrode’s electric field. We implemented circular-symmetric, Mexican-hat

like interactions in a spiking neural network model of the SC motor map and assumed that the

current profile from the electrode rapidly decreased with distance from the electrode tip (Fig

3A). As a consequence, only neurons in the direct vicinity of the electrode were activated by

the external electric field (Fig 3B and 3C; [31, 32]).

Once neurons were recruited by the stimulation pulse, however, local excitatory synaptic

transmission among nearby cells rapidly spread the activation to create a neural activity pattern

which, within 10-15 ms, was dictated by the bursting dynamics of the most active central cells in

the population (Fig 4). As a result, all cells yielded their peak firing rates at the same time, and

the burst shapes of the cells within the population were highly correlated. Similar response fea-

tures have been reported for natural, sensory-evoked saccadic eye movements [19], and it was

argued this high level of neuronal synchronization ensures an optimally strong input to the

brainstem saccadic burst generator to accelerate the eye with the maximally possible innervation.

Note that the evoked population activity does not grow without limit, but ceases automati-

cally, both in its spatial extent, and in its bursting behavior, while the inhibitory currents acting

on the neurons accumulate during the stimulation pulse. These currents are due to the synap-

tic far-range lateral inhibition, and to each neuron’s own adaptive current. Thus, once the

network is perturbed by an excitatory input current, the SC will set up a bursting population

activity, without the need of an external comparator, or external feedback by a resettable inte-

grator. Indeed, the adaptive current functionally acts as a putative ‘spike counter’ at the single

neuron level. With this spiking neural network model, we thus offer an alternative framework

for the oculomotor system, in which the SC motor map not only provides a spatial signal for

the saccade vector, but also the instantaneous eye-movement kinematics, through the temporal

organization of its burst profiles.

Network tuning

The site-dependent tuning of the biophysical parameters of the AdEx neurons, in particular

their adaptive time constants and lateral-interaction weightings specified by Eqs 15 and 16,

caused the peak firing rates of the cells to drop systematically along the rostral-to-caudal axis,

while keeping the total number of spikes constant (Fig 5). As a result, the saccade kinematics

followed the nonlinear main-sequence properties that are observed for normal (visually-

evoked) saccadic eye movements (Figs 6–8). In addition, the long-range weak inhibition

ensured that the size of the population remained fixed to about 1.0 mm in diameter, and

resulted to be largely independent of the applied current strength and the current-pulse dura-

tion (Fig 9).

The lateral excitatory-inhibitory synaptic interactions ensured three important aspects of

collicular firing patterns that underlie the saccade trajectories and their kinematics: (i) they set

up a large, but limited, population of cells in which the total activity (quantified by the number
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of spikes elicited by the recruited cells) can be described by a circular-symmetric Gaussian

with a width (standard deviation) of approximately 0.5 mm (Fig 4A and 4D), (ii) the temporal

firing patterns of the central cells (their peak firing rate, burst shape, and burst duration) solely

depend on the location in the motor map (Eq 14), but the number of evoked spikes remains

invariant across the map, and for a wide range of electrical stimulation parameters (Fig 5), and

(iii) already within the first couple of spikes, the recruited neurons all became synchronized

throughout the population, in which the most active cells (those in the center) determined the

spike-density profiles of all the others (Fig 4B and 4E).

Here we described the consequences of this model on the ensuing kinematics and metrics

of E-saccades as function of the electrical stimulation parameters. We showed that the network

could be tuned such that stimulation at an intensity of 150 pA and a total input current dura-

tion of DS = 100 ms, sets up a large population of activated neurons, in which the firing rates

resembled the activity patterns as measured under natural visual stimulation conditions. As a

result, the kinematics of the evoked saccades faithfully followed the nonlinear main-sequence

relations of normal, visually evoked saccades (Fig 8). Importantly, above threshold the saccade

properties were unaffected by the electrical stimulation parameters (Fig 9).

Network normalization

Only close to the stimulation threshold, the evoked activity remained much lower than for

supra-threshold stimulation currents, leading to excessively slow eye movements, that started

at a longer latency with respect to stimulation onset. Similar results have been demonstrated in

microstimulation experiments (e.g. [15, 30]. The saccade peak eye velocity of the model sac-

cades followed a psychometric curve as function of the amount of applied current (Fig 9). We

found that the kinematics of the evoked eye movements at near-threshold microstimulation

were much slower than main sequence (Fig 9). Although this property is readily predicted by

the linear summation model (Eq 2b), it does not follow from center-of-gravity computational

schemes (like Eq 2a), in which the activity patterns themselves are immaterial for the evoked

saccade kinematics.

Conceptually, the lateral interactions serve to normalize the population activity. Therefore,

the total number of spikes emanating from the SC population remains invariant across the

motor map, and to a large range of (sensory or electrical) stimulation parameters at any given

site. The nonlinear saturation criterion of Eq 4 is thus automatically implemented through the

intrinsic organization of the SC network dynamics, and do not seem to require an additional

downstream ‘spike-counting’ mechanism in order to terminate the saccade response, e.g. dur-

ing synchronous double stimulation at different collicular sites (see, e.g. [28]).

Although other network architectures, relying e.g. on presynaptic inhibition across the den-

dritic tree, have been proposed to accomplish normalization of the population activity and vec-

tor averaging [28, 45, 47–49], substantial anatomical evidence in the oculomotor system to

support such nonlinear mechanisms is lacking. We here showed, however, that simple linear

summation of the effective synaptic inputs at the cell’s membrane, which is a well-recognized

physiological mechanism of basic neuronal functioning, can implement the normalization

when it is combined with excitatory-inhibitory communication among the neurons within the

same, topographically organized structure. Such a simple mechanism could suffice to ensure

(nearly) invariant gaze-motor commands across a wide range of competing neuronal inputs.

Further supporting evidence

Our model predicts near-normal activity profiles within the SC during microstimulation (Figs

4–6), and hence near-normal recruitment of the downstream brainstem circuits. Although
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simultaneous recordings in the SC during microstimulation are lacking, [50] described record-

ings from neural populations in the downstream brainstem burst generators (EBNs) and

omnipause neurons (OPNs) during SC microstimulation. Their results indicated normal dis-

charge patterns for OPNs and EBNs, and indistinguishable movement kinematics for stimula-

tion-evoked and volitional saccades [51]. These results are nicely in line with the predictions

or our model (Figs 8 and 9), at least for suprathreshold stimulation levels [26].

Future work

The two-dimensional extension of our model is a substantial improvement over our earlier

one-dimensional spiking neural network model [39]. It can account for a much wider variety

of neurophysiological phenomena. Yet, we have not attempted to mimic every experimental

result of microstimulation. A few aspects in our model have not been incorporated yet, or

some of its results seem to deviate slightly from experimental observations, which we briefly

summarize here.

First, although the network output is invariant across a wide variety of stimulation parame-

ters, and evoked saccade kinematics drop markedly around the threshold (Fig 9), the present

model did not produce small-amplitude, slow movements near the stimulation threshold. This

behavior has sometimes been observed for near-threshold stimulation intensities [15, 30]. In

our model, the saccade amplitude behaved as an all-or-nothing phenomenon (Fig 9B), which

is caused by the strong intrinsic mechanisms that keep the number of spikes of the central

cells fixed. Although we have not tested different parameter sets at length, we conjecture that a

major factor that is lacking in the current model is the presence of intrinsic noise in the param-

eters and neuronal dynamics that would allow some variability of the evoked responses for

small inputs. When near the threshold the elicited number of spikes starts to fluctuate, and

becomes less than the cell’s maximum, the evoked saccades will become smaller (and slower)

too. Such near-threshold responses would also explain the truncated saccades generated when

stimulation train durations are shortened [26].

Second, although the main-sequence relations of the model’s E-saccades (Eqs 17 and 19)

faithfully capture the major kinematic properties of normal eye movements, the shape of the

evoked saccade velocity profiles were not as skewed as seen for visually-evoked saccades. As a

result, the peak velocity is not reached at a fixed acceleration period, but at a moment that

slightly increased with the evoked saccade amplitude (Fig 6C). We have not attempted to

remediate this slight discrepancy, which in part depends on the applied spike-density kernels

(here: Gaussian, with width σ = 8 ms, Eq 3), and in part on the biophysical tuning parameters

of the AdEx neurons. However, it should also be noted that a detailed quantification of E-sac-

cade velocity profiles, beyond the regular main-sequence parametrizations [15, 30], is not

available in the published literature. It is therefore not known to what extent E-saccade velocity

profiles and V-saccade velocity profiles are really the same or might slightly differ in particular

details.

Third, as explained in Methods, the electrical stimulation inputs were described by simple

rectangular pulses, rather than by a train of short-duration stimulation spikes, in which case

also the pulse intervals, pulse durations, pulse heights, and the stimulation frequency would all

play a role in the evoked E-saccades [26, 30]. We deemed exploring the potential results corre-

sponding to these different current patterns as falling beyond the scope of this study, which

merely concentrated on the proof-of-principle that large changes in the input for the proposed

architecture of a spiking neural network led to largely invariant results. Note, however, that in

our previous paper [39] the presumed input from FEF cells to the SC motor map did indeed

provide individual spike trains to affect the SC-cells. We there demonstrated that the optimal
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network parameters could be found with the same genetic algorithm for such spiky input pat-

terns, as applied here (Eq 13). The small differences in neuronal tuning parameters for the 1D

model with FEF input, compared to the 2D model tuned to electrical pulse input, are mostly

due to these fundamentally different input dynamics.

Fourth, [14] recently reported an asymmetric, anisotropic representation in the afferent

mapping for the upper vs. lower visual hemi-fields, that would explain kinematic differences

between upward vs. downward saccades. The underlying mechanism for this anisotropy is not

yet clear. For example, it could result from (i) differences in lateral interaction strengths for up

vs. down, thus creating different population profiles in the SC; (ii) differences in cell density

along the medial-lateral SC coordinate, or (iii) systematic differences in the efferent projection

strengths from medial-lateral SC neurons to the up- and down burst generators. In principle,

our model could accommodate an anisotropic organization for upward vs. downward saccades

by incorporating parametric changes at any of these levels. Here, we focused on a simple

scheme, in which the SC was taken fully isotropic (Eqs 5 and 6), and the horizontal/vertical

burst-generating circuits in the brainstem, including the horizontal/vertical ocular plants,

were taken identical [9]. This ensured perfectly straight saccade trajectories in all directions,

with homogeneous main-sequence properties, due to a full cross-coupling between the hori-

zontal and vertical movement components (‘component stretching’; see Fig 7).

Any change in this organization (e.g. more realistic eye-position related differences in the

oculomotor plants, or different gains and delays in the up- vs. down vs. horizontal burst gener-

ators) will cause saccade trajectories to become curved, and direction and eye-position depen-

dent, and may be made to resemble more closely the idiosyncratic differences observed in

measured oblique saccades (e.g. [5]). Although an interesting topic, working out these many

different factors, however, falls beyond the scope of this paper.

Fifth, double-stimulation experiments at different sites within the SC motor map have

shown that the resulting saccade vector appears a weighted average between the saccades

evoked at the individual sites [10, 27]. In the present paper, we have not implemented double

stimulation, although an earlier study had indicated that Mexican-hat connectivity profiles in

the motor map effectively embed the necessary competition between sites to result in effective

weighted averaging [28]. In a follow-up study, we recently explored the spatial-temporal

dynamics of our model to double stimulation at different sites, and at different stimulus

strengths [52]. Indeed, double stimulation results in weighted-averaged saccade responses,

even when the SC activity is decoded by a dynamic linear-ensemble coding scheme, and with-

out the need to implement an explicit cut-off on the total spike count, like in Eq 4. Thus, our

SC scheme with excitatory-inhibitory interactions results to automatically normalize the total

activity within the SC motor map (see also above). Hence, double stimulation results do not

support the vector averaging scheme per se, as they can be explained by linear summation, in

combination with intracollicular interactions, as well.

Finally, close inspection of the burst profiles in Fig 1 (showing stimulation results for single,

isolated neurons) suggests that prolonged stimulation at sufficient current intensities could in

principle generate multiple bursts of activity in the SC cells. For example, the top-left trace

(I0 = 250 pA, DS = 225 ms) shows a burst of 6 spikes, followed by a second burst of 5 spikes

about 150 ms later. In principle, each of these bursts could be part of its own saccade, provided

that the total network dynamics (including the lateral interactions) would preserve these prop-

erties. Indeed, the literature has shown that prolonged stimulation can lead to a series of eye

movements of decreasing amplitude in the same direction (a so-called ‘staircase’ of saccades;

[10, 50, 51]). Here we haven’t tested our network for its potential to generate staircases, as we

limited the stimulation durations to 250 ms. We suspect that the inhibitory currents and neu-

ral recovery may have to be balanced better to allow the prolonged input current to overcome
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the dynamic inhibition. Yet, although our network was not a priori designed for these stair-

cases, their occurrence would be an interesting emerging property of the model.
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