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Abstract

This thesis details the original experimental investigations of magnetically actuated and

controlled microscopic systems enabling a range of actions at low Reynolds number. From

millimetre-robots and self-propelled swimmers to microfluidic and lab-on-a-chip technol-

ogy applications. The main theme throughout the thesis is that the systems reply on the

interactions between magnetic and elastic components.

Scientists often take inspiration from nature for many aspects of science. Millimetre to

micrometre machines are no exception to this. Nature demonstrates how soft materials can be

used to deform in a manner to create actuation at the microscale in biological environments.

Nature also shows the effectiveness of using beating tails known as flagella and the apparent

enhancements in flow speeds of collective motion.

To begin with, a swimmer comprised of two ferromagnetic particles coupled together

with an elastic link (the two-ferromagnetic particle swimmer), was fabricated. The system

was created to mimic the swimming mechanism seen by eukaryotic cells, in which these

cells rely on morphological changes which allows them to propel resulting in approximate

speeds of up to 2 body lengths per second. The aim of this system was to create a net

motion and control the direction of propagation by manipulating the external magnetic field

parameters. It was shown that the direction of swimming has a dependence on both the

frequency and amplitude of the applied external magnetic field. A key factor discovered was

that the influence of a small bias field, in this case, the Earth’s magnetic field (100 orders

of magnitude smaller than the external magnetic field) resulted in robust control over the



speed (resulting in typical swimming speeds of 4 body lengths per second) and direction of

propulsion.

Following this work, swimmers with a hard ferromagnetic head attached to an elastic tail

(the torque driven ferromagnetic swimmer) were investigated. These systems were created to

be analogous to the beating flagella of many natural microscopic swimmers, two examples

would be sperm cells and chlamydomonas cells. These biological cells have typical speeds of

10s of body lengths per second. The main focus of this investigation was to understand how

the tail length affects the swimming performance. An important observation was that there is

an obvious length tail (5.7 times the head length) at which the swimming speed is maximised

(approximately 13 body lengths per second). The experimental results were compared to a

theoretical model based on three beads, one of which having a fixed magnetic moment and

the other two non-magnetic, connected via elastic filaments. The model shows sufficient

complexity to break time symmetry and create a net motion, giving good agreement with

experiment.

Portable point-of-care systems have the potential to revolutionise medical diagnostics.

Such systems require active pumps with low power (USB powered devices) external triggers.

Due to the wireless and localisation of magnetic fields could possibly allow these portable

point-of-care devices to come to life. The main focus of this investigation was to create

fluid pump systems comprising from the previously investigated two-ferromagnetic particle

swimmer and the torque driven ferromagnetic swimmer. Building on the fact that if a system

can generate a net motion it would also be able to create a net flow. Utilising the geometry

of the systems, it has been demonstrated that a swimmer-based system can become a fluid

pump by restricting the translational motion. The flow structure generated by a pinned

swimmer in different scenarios, such as unrestricted flow around it as well as flow generated

in straight, cross-shaped, Y-shaped and circular channels were investigated. This investigation

xii



demonstrated the feasibility of incorporating the device into a channel and its capability of

acting as a pump, valve and flow splitter.

As well as a single pump system, networks of the previously mentioned pump systems

were fabricated and experimentally investigated. The purpose of this investigation was to

utilise the behaviour of the collective motion. Such networks could also be attached to the

walls or top of the channel to create a less invasive system compared to pump based within

the channel system. The final investigation involved creating collective motion systems

which could mimic the beating of cilia - known as a metachronal wave. Two methods were

used to create an analogous behaviour. The first was using arrays of identical magnetic rotors,

which under the influence of an external magnetic field created two main rotational patterns.

The rotational patterns were shown to be controllable producing useful flow fields at low

Reynolds numbers. The second system relied on the magnetic components having different

fixed magnetisation to create a phase lag between oscillations. The magnetic components

were investigated within a channel and the separation between the components was shown

to be a key parameter for controlling the induced flow. In both cases, a simple model was

produced to help understand the behaviour.

Finally, a selection of preliminary investigations into possible applications were conducted

experimentally. These investigations included, measuring the effective surface viscosity of

lipid monolayers, created cell growth microchannels, as well as systems which could be

used for blood plasma separation. The properties of lipid monolayers vary with the surface

density, resulting on distinct phase transitions. Slight differences in the molecular lattice are

often accompanied by significant changes in the surface viscosity and elasticity. The idea

was to use a swimmer as a reporter of the monolayer viscosity, resulting in a less invasive

method compared to current techniques to monitor monolayer viscosity, for example torsion

pendulums and channel viscometers. The reported effective surface viscosity closely matched

the typical Langmuir trough measurements (with a systematic shift of approximately 17
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Angstrom2/molecule). The blood plasma separation preliminary work shows the previously

investigated two-ferromagnetic particle swimmer mixing a typical volume (100 µm) blood

sample with a buffer solution in 21 seconds. The system was also able to create locations with

a high population of red blood cells. This resulted in a separation between the blood plasma

and red blood cells. Two other preliminary results of future investigations were presented;

the collective motion of free swimmers, and the fabrication of ribbon-like structures with

fixed magnetic moment patterns.
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Chapter 1

Introduction

1.1 Micro-scaled systems

Controllable swimming devices are miniature devices that can range in size from micrometres

(µm) to centimetres (cm). They promise the ability to access small spaces at the micro-scale

and manipulate micro/nano-scaled objects, such as within micro-channels (for example fluid

sample testing), as well as the human body. Furthermore, due to the nature of their size,

multiple devices could be manufactured and large numbers of devices can work synergistically

to produce multi-functionalities.

The idea of having such devices has always been a human dream; Richard Feynman

speculated that it would be possible to create tiny machines that could perform simple surgical

operations [3]. The concept also inspired science fiction films such as Fantastic Voyage

(1966) and Innerspace (1987).

Despite the long standing vision to fabricate these devices, experimental realisation has

met several challenges. Similar to their macroscopic counterparts these miniature devices

require energy to move. Usual methods used by macro-scale devices - such as single hinged

systems like oars - are not particularly useful for micro-scaled devices due to the nature of

fluid at this scale [4]. Numerous mechanisms to propel such devices have been proposed,
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such as: chemical, acoustic [5], light [6], electric [7], and magnetic [8–10]. Each of these of

these methods come with their advantages, but are held back by practical disadvantages.

1.2 Applications and challenges

Micro-scaled swimming devices have been shown to have great potential to be used in

various fields, from basic components in lab-on-a-chip technology to transportation devices

in targeted drug delivery [11]. These artificially created devices are expected to revolu-

tionise general practices in medicine and medical diagnostics, microfluidic technology, and

biophysical applications.

In biomedical applications, such as targeted cell therapy, the devices must be small

enough to enter the human body, as well as be bio-compatible with the cells and tissues.

Additionally, they must be able to be controlled and tracked in a fashion safe for the human

body. Finally, they would need to be functionalised to carry drugs to specific area and interact

with the targeted cells. Therefore, a large number of factors need to be taken into account

when creating such devices.

In other non-biomedical applications, the devices are required to be cost effective and

mass producible. Additionally, they must be reliable when used for microfluidic pump

technology, providing robust control over the microfluidic system. Finally, for lab-on-a-chip

on-site diagnostics, the system would be required to be transportable and disposable.

There are several challenges to address in order for the devices to achieve their full poten-

tial for the desired applications. Suitable methods in micro-fabrication must be identified,

since traditional machining methods are insufficient to produce such devices at the desired

scale. Another key challenge which must be addressed is how to power these micro-scaled

devices, in such a way that is bio-compatible and efficient at the micro-scale. Additionally,

when the devices are at the micro-scale, the inertial force associated with swimming be-
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comes negligible and the motion is dominated by the drag force of the liquid, resulting in

conventional reciprocal methods of propagation to be inadequate.

1.3 Outline

The actuation of this systems using low strength magnetic fields (< 5 mT) is a promising

source not only because the energy can be supplied remotely, but is safe for humans as current

medical practices use fields up to 7 T, for example magnetic resonance imaging (MRI) [12].

The aim of this thesis is to fabricate and investigate magnetically controlled bio-inspired

systems capable of generating propulsion and manipulating fluids. Such systems include

low Reynolds numbers swimmers and pumps, as well as collective motion and networks

of swimmers to create magnetically controlled membranes. Possible applications of the

described systems include using a swimmer as a reporter for effective surface viscosity.

This effective surface viscosity measurement could be useful for detecting phase changes in

monolayer films. The pump systems could be used for portable point-of-care sample mixing.

Such samples could include the mixing of a blood sample with the buffer solution used for

medical diagnostics. Following this chapter, a historical background is presented introducing

fluid mechanics, along with a review of relevant work on low Reynolds number swimmers,

pumps and membranes. Chapter 3 goes on to explain specific experimental methods used

throughout the work presented in this thesis. In addition, the fabrication and data analysis

tools are also outlined.

Chapter 4 focuses on the fabrication and investigation of two simple bio-inspired magnetic

swimmers. The first is a two-ferromagnetic particle swimmer mimicking the deformation of

an eukaryotic cell and the second is a single-ferromagnetic particle swimmer mimicking the

bending of a flagellum, analogous to sperm cells or bacteria. In both cases, the swimmers

are controlled by an external homogeneous magnetic field, however the two systems rely

on different magnetic and elastic interactions. The two-ferromagnetic particle swimmer
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relies on the dipolar interaction between two ferromagnetic particles (one ferromagnetically

hard and the other ferromagnetically soft). In addition to this interaction, the device also

experienced a magnetic torque. The single-ferromagnetic particle swimmer only relies on

the induced magnetic torque, coupling this with an elastic tail the created bending produced

non-reciprocal motion.

Chapter 5 focuses on utilising the controllability of the swimming systems shown in

Chapter 4 into fluid pumps and mixers, as well as the fabrication of magnetic materials

comprising of interacting networks. The fluid pumps based on the swimmer systems consist

of tethering the swimmers in a way allowing the manipulation of various parameters of

fluid flow. As well as single pump systems, the fabrication and performance of networks

of the previously mentioned systems, are presented. These structures effectively produce

magneto-elastic membranes. The focus of the membranes was to integrate the behaviour

of the single-ferromagnetic particle systems and create a structure comprising of multiple

interacting components. The structure was proposed as a less invasive system which could

be used with lab-on-a-chip technology.

Chapter 6 focuses on the fabrication and investigation of collective motion systems. These

collective motion systems consist of rotating magnetic rotors and/or rudders which isolated

would not produce a net motion. However, collectively would create motion analogues to

cilia. Cilia beat with a phase lag with their neighbours, a phenomenon which is known as the

metachronal wave. Such systems are shown to have interesting rotational patterns/regimes,

which by changing the effectiveness of the dipole-dipole interaction, could extracted from a

group of magnetic units.

Finally, Chapter 7 is dedicated to future investigations related to the presented work.

This chapter includes ideas and preliminary work on the collective motion of free swimmers

and the interacting swimming patterns and novel methods to detect the phase changes in

lipid monolayers. Further investigations also include creating applications for the two-
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ferromagnetic particle fluid pump system for controlling cell growth within a microchannel

and producing blood plasma separation. Finally, the fabrication of a ribbon-like membrane

structure is presented, which could be used as a fluid pump or to be built into a microchannel.

The actuation method for this system is controlled now the magnetisation of the structure.
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Chapter 2

Background

2.1 Fluid mechanics

Micro-scaled swimmers show promise for a number of applications in both medical and

biological fields. In all the desired applications, micro-scaled swimmers will interact with a

surrounding fluid. Therefore, it is important to study the environment that these swimmers

reside in, to understand how they move. The basic physics of locomotion changes in the

transition from the macro-scale to the micro-scale, thus it is important to understand which

effects dominates; viscous or inertial. To gain an understanding of the limitations of motion

at the micro-scale, it is useful to first derivate the equations commonly used within fluid

dynamics [13].

At a microscopic scale, a fluid comprises of many individual molecules and the physical

properties (for example: density, and velocity) are non-uniform - due to the fluctuating

Brownian motion. However, it is convenient to describe fluids as a continuum, i.e. not to

take this molecular detail into account. This assumption breaks down only when the mean

free path of the molecules (the average distance travelled by a fluid particle between two

successive collisions) becomes the same order of magnitude as the typical characteristic

lengths of the problem (for example gas flow in the atmosphere). At this level the fluid is
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considered as a collection of fluid elements containing a large number of molecules. One can

assign a locally averaged density ρ(x, t) to an element at point x. One can also define a local

bulk flow velocity u(x, t).

Consider a volume V bounded by a given surface S. The mass inside the volume will be

given by
∫

V ρdV . So, the rate of decrease of mass in V is

− d
dt

∫
V

ρdV =−
∫

V

dρ

dt
dV. (2.1)

If mass is conserved in the system, Equation 2.1 must equal the total rate of mass flux

out of V . The rate of outward mass flux across a element dS is ρu ·dS. Integrating over the

whole surface will give the rate of mass flux out of V

∫
S

ρu ·dS =
∫

V
∇ · (ρu)dV. (2.2)

For the mass to be conserved everywhere, Equations 2.1 and 2.2 must be equal for any

volume, so finally arriving at the continuity equation:

dρ

dt
+∇ · (ρu) = 0. (2.3)

For an incompressible Newtonian fluid, ρ is constant, independent of space and time. Thus,

the continuity equation may be written as

∇ ·u = 0. (2.4)

To derive a similar relationship for the conservation of momentum; consider a volume

V bounded by a material surface S which moves with the flow. For any physical quantity

q = q(x, t), there are two different types of time derivatives. The first is given by ∂q/∂ t,

which is the rate of change of q at a particular point, which is fixed in space. The second
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derivative (Dq/Dt) is described as rate of change of q in a given element of fluid as it moves

along a trajectory x = x(t). This time derivative is known as the material derivative

Dq
Dt

=
d
dt

q(x(t),y(t),z(t), t)

=
∂q
∂ t

+
dx
dt

∂q
∂x

+
dy
dt

∂q
∂y

+
dz
dt

∂q
∂ z

=
∂q
∂ t

+u
∂q
∂x

+ v
∂q
∂y

+w
∂q
∂ z

=
∂q
∂ t

+u ·∇q.

(2.5)

Now the volume V will have a momentum given by
∫

V dV ρu. Using this momentum and

Equation 2.5, the rate of change of the momentum can be given by

d
dt

∫
V

dV ρu =
∫

V
dV ρ

Du
Dt

. (2.6)

This must be equal to the net force on an element. Two types of forces act on a fluid: body

forces - that act on the whole mass at the centre of mass (e.g. gravity, ρgdV ), and surface

forces - that act on the boundaries. For any element, the net effects due to interactions with

other elements acts as a thin surface layer. This forms the stress tensor Ti j, defined with the

force exerted per unit area across a surface element dS = n̂dS, f = Ti j · n̂. In Ti j the i-direction

is normal to the surface, and j-direction is which the stress acts on - i and j can equal 1, 2,

and 3. Thus, the total net force acting on the fluid can be taken as

∫
V

dV ρg+
∫

S
Ti j ·dS =

∫
V

dV (ρg+∇ ·Ti j). (2.7)

Finally, by using Newton’s second law and equating equations 2.6 and 2.7 the equation

known as the Cauchy equation is found

ρ
Du
Dt

= ρg+∇ ·Ti j. (2.8)
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Similar to the continuity equation (Equation 2.4), the incompressible restrictions can be

applied to the Cauchy equation. At this point, it is possible to take the stress tensor as

Ti j =−Pδi j +µ

(
∂u j

∂xi
+

∂ui

∂x j

)
, (2.9)

where P is pressure, µ is the dynamic viscosity of the fluid, and δi j is the Kronecker delta.

The dynamics viscosity is the measure of a fluid’s resistance to flow when an external force is

applied. The viscosity of a fluid can also be described using the kinematic viscosity, ν = µ/ρ .

The kinematic viscosity is the measure of the resistive flow of a fluid under the weight of

gravity. Notably, the stress tensor is symmetric, i.e. Ti j = Tji, meaning the tensor reduces to

six unique equations.

By substituting Equation 2.9 into Equation 2.8, for the case of constant viscosity µ

ρ
Du
Dt

=−∂P
∂xi

+µ
∂

∂x j

(
∂u j

∂xi
+

∂ui

∂x j

)
+ρg

=−∂P
∂xi

+µ
∂

∂xi

(
∂u j

∂x j

)
+µ

∂ 2ui

∂x2
j
+ρg.

(2.10)

As the fluid is incompressible, it can be stated that ∂u j/∂x j = ∇ ·u = 0, thus Equation 2.10

becomes

ρ
Du
Dt

=−∇P+µ∇
2u+ρg. (2.11)

This is known as the Navier-Stokes equation, which was derived by Claude-Louis Navier in

1822 and later worked on by George Gabriel Stokes in 1845 [14]. Using Equation 2.5, the

system as the rate of change of velocity of a given point can be described as

ρ
∂u
∂ t

+ρ(u ·∇u) =−∇P+µ∇
2u+ρg. (2.12)
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It is useful to convert the Navier-Strokes equation to a non-dimensional form. By

defining the appropriate scales for length L, flow velocity U , and time L/U , the following

dimensionless variables can be stated

x∗ =
x
L
, ∇

∗ = L∇, u∗ =
u
U
, t∗ =

Ut
L
, P∗ =

PL
µU

.

There are two ways of non-dimensionalisation pressure, here P∗ is defined for dominant

viscous effects i.e. creeping flows. If the dynamic effects were assumed to be dominant i.e.

high velocity flows, P∗ = P/ρU2.

Using the defined dimensionless variables, the terms of the Navier-Stokes equation

(Equation 2.12) become

ρ
∂u
∂ t

=
ρU2

L
∂u∗

∂ t∗
, ρ(u ·∇u) =

ρU2

L
(u∗ ·∇∗u∗),

∇P =
µU
L2 (∇∗P∗), µ∇

2u =
µU
L2 (∇∗2u∗),

thus - assuming the absence of gravitational effects - the Navier-Stokes equation can be stated

as

ρUL
µ

[
∂u∗

∂ t∗
+(u∗ ·∇∗u∗)

]
=−∇

∗P∗+∇
∗2u∗. (2.13)

Finally, introducing the dimensionless number known as the Reynolds number (Re), the

non-dimensionalised Navier-Stokes becomes

[
∂u∗

∂ t∗
+(u∗ ·∇∗u∗)

]
Re =−∇

∗P∗+∇
∗2u∗. (2.14)

The Reynolds number (Re) was introduced by George Gabriel Stokes in 1851 and

popularised by Osborne Reynolds in 1883. The quantity is defined by the ratio between the
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inertial and viscous forces when an object moves through a fluid. The Reynolds number can

be expressed in terms of the dynamics viscosity µ as well as the kinematic viscosity ν

Re =
ρUL

µ
=

UL
ν

. (2.15)

There are generally two main divisions which describe fluid flow. The first is for the when

Re ≫ 1, this regime is called the inviscid flow (also known as Euler flow). In this regime, the

viscous friction can be neglected. As a result, in this limiting case Equation 2.12 - assuming

the absence of gravitational effects - would become

ρ
∂u
∂ t

+ρ(u ·∇u)+∇P = 0. (2.16)

This is known as the Euler equation. Assuming an inviscid flow is useful for simplifying

many fluid dynamics problems, in which the viscous forces are insignificant. Some examples

include ocean currents and the flow around an airplane wing.

Another condition that leads to the elimination of the viscous force is when ∇2u = 0, and

results in an inviscid flow arrangement. Such flows are found in vortex-like structures and

may be key in the formation of tornadoes and tropical cyclones.

The second main division is the case where the Reynolds number is very small (i.e. Re

≪ 1). In this regime the viscous friction dominates and is known as Stokes flow (or creeping

flow). This regime is the typical situation for flows where the fluid velocities are very slow,

viscosities are larger, or the length scales associated with the flow are small. Some examples

of these creeping flows include the swimming of microorganisms, and the flow of lava. This

viscous dominated regime will be the focus of the systems presented in this thesis.
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2.1.1 Life at low Reynolds numbers

Typically, living micro-organisms live in the low Reynolds number regime (Re ∼ 1×10−3).

This is due to the Reynolds number scaling by scale, not only viscosity. For example, take

a 1 mm particle, assuming it could self-propel at 1 mm s−1. If this particle was propelling

through water (µ = 1 mPa s) the Reynolds number would be Re = 1, therefore not in the low

Reynolds number regime. However, if the fluid was switched to Glycerol (µ = 1.4×10−3 Pa

s), the Reynolds number would now become Re = 1×10−3).

Therefore, one can mimic the low Reynolds number environment which a micro-organism

lives in by creating a millimetre device and using a high viscosity fluid. In this regime the

viscous forces dominate the flow, thus any dynamic contribution of the system can be

disregarded, and the Navier-Stokes equation (Equation 2.14) reduces to

∇
∗P∗ = ∇

∗2u∗. (2.17)

This is known as the Stokes equation. Such a system with a very low Reynolds number

results in the inertia of a body being completely negligible. Thus, the movement of a body

depends only on the instantaneous force acting on it and not the velocity it previously

had. Since Equation 2.17 is linear, hence all flows are in the ’creeping flow’ limit and are

kinematically reversible. This means that if a fluid element is displaced by a forward stroke

motion and subsequently displaced by the mirror reverse stroke, the fluid will return to its

original position at the end of one swimming cycle, with zero net fluid motion.

For an organism to propel in this regime, the body requires a motion which can break time

symmetry. Such a situation is best explained by Edward M. Purcell in the 1977 paper entitled

“Life at Low Reynolds Number”, in which he introduced the scallop theorem [4]. According

to Purcell, a scallop cannot propel itself in viscous liquids by opening its shell slowly and

closing quickly – the strategy that works perfectly in water. In a low Reynolds number
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environment, the scallop has only one degree of freedom and is confined by reciprocal

motion. Thus, a ’microscopic scallop’ attempting to swim in water will fail.

The theorem states that to achieve propulsion in a low Re environment, a swimmer must

deform its shape in such a way that would make it variant under time-reversal. The simplest

system that could propel at a low Reynolds number would comprise of two hinges, thus

offering two degrees of freedom, that beat out of phase. Figure 2.1 shows a schematic of

such a swimmer for which, the two paddles of the swimmer can move with angles θ1 and θ2

relative to the hinges. For the case where the arms moves in sync (θ1 =−θ2, Figure 2.1b) the

swimmer is bound by reciprocal motion. Figure 2.1b shows that in configurational space for

the configuration RARBRC, the motion is completely symmetric. This can be shown with a

simple comparison of forces. If ξi is let to be a constant (for simplicity) for either the paddles

or the body, the drag forces (between configuration RA and RB) can be defined as

FPAD = ξPAD(vPAD −uBOD), (2.18)

FBOD = ξBODuBOD, (2.19)

where vPAD is the velocity of the paddles, and uBOD is the velocity of the body. Assuming

that the forces are balanced and the displacement is ∆x = uBODt

∆x = vPAD

(
ξPAD

ξPAD +ξBOD

)
t. (2.20)

In the reverse motion (between configuration RB and RC), using the same analysis

∆x′ = v′PAD

(
ξPAD

ξPAD +ξBOD

)
t ′. (2.21)
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In reciprocal motion, the paddles will return to their original location, so vPADt = v′PADt ′

∆x′ = u′BODt ′ = v′PAD

(
ξPAD

ξPAD +ξBOD

)
t ′ = vPAD

(
ξPAD

ξPAD +ξBOD

)
t. (2.22)

Equation 2.22 shows that ∆x′ = ∆x, therefore with this configurational sequence, there will

be no net motion.

If the swimmer was to use the configurational sequence shown in the Figure 2.1c, where

the paddles move out of phase from each other, there will be a net motion produced. This

is shown in the configurational space, via a loop - as there is an asymmetry in the motion.

The asymmetry shown produces non-reciprocal motion and propels the swimmer to the right

(visualised with an arrow), for as long as it moves through the configuration shown.

Many biological organisms adapted these rules by using intricate ways of deforming their

bodies, an example of this is the Eutreptiella [15]. Another biological organisms use cilia and

rotating flagella [16, 17] to self-propel. Figure 2.2 shows schematics of real micro-organisms

that propel themselves at these low Reynolds numbers. Escherichia coli (E. coli) use multiple

flagella oriented along the cells body to propel along the cells long axis, achieved by rotation

of the flagella and bunching of the filaments together.

2.1.2 Propulsion mechanisms of micro-scaled swimmers

There has been a great amount of interest in adapting such mechanisms for the construction

of artificial micro-scale devices that can propel in these environments. Such devices promise

a number of potential applications such as the transportation and delivery of drugs or cells

[18–20] and active pumps in microfluidic technology [21–23].

Since the inspiring work by E. Purcell [4] there have been large variety of models

proposing different mechanisms for time-irreversible motion. This also includes a number of

experimental prototypes.
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Fig. 2.1 The two hinge swimmer proposed by E. Purcell [4]. (a) Shows the two dimensions
in configurational space, θ1 and θ2. (b) For the configurational sequence RARBRC, there will
be no net displacement after one cycle. (c) For the configurational sequence NANBNCNDNE,
there will be a net displacement after one cycle. The closed loop in configurational space is
shown by red arrows. The direction of propagation for this configuration is shown.
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2.1 Fluid mechanics

Fig. 2.2 Scale drawings of various bacteria. (a) Escherichia coli. Approximately six filaments
on the sides of the cell form a bundle at one end of the bacteria propelling the cell moving
in unison. (b) Chromatium okenii. Approximately forty filaments arise at one end of the
bacteria. (c) Spirillum volutans. Shown swimming from left to right, the body is helical and
has approximately twenty-five filaments at each end of the bacteria, those on the right are in
the “head” configuration. Figure adapted from [17]

Kinematics

One simple low Reynolds number swimmer was proposed based on Purcell’s original idea

[4] (Figure 2.1) which consisted of three identical spheres that were linked by a rod [24].

It was shown that the swimmer would propel by manipulating the separation between the

spheres in a particular sequence of 4 motions. Starting from the initial condition shown in

2.3a, motion starts with (1) the left arm increases in length, (2) the right arm decreases in

length. Following this (3) the left arm decreases in length and finally to return to the initial

configuration (4) the right arm increases in length. By completing one cycle it is shown that

the central sphere has moved a distance ∆xa.

A similar swimmer consisting of a pair of spheres that change their volumes and mutual

distance has been shown theoretically to propel at low Reynolds numbers [25]. When one

sphere expands it acts as a source pushing away the shrinking sphere – which acts as a pull –

thus giving the swimmer the name “Pushmepullyou”. It was shown that the “Pushmepullyou”

(Figure 2.3b) was more intuitive – due to its simpler design – and more efficient than the

three linked spheres - as ∆xb > ∆xa [25].
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Fig. 2.3 Schematic diagram of the simple three sphere swimmer and the “Pushmepullyou”.
In both cases, the sequence starts from the top image to the bottom. One complete cycle of
the proposed swimmer, showing non-reciprocal motion. (1) The left arm increases in length.
(2) The right arm decreases in length. (3) The left arm decreases in length, and finally (4) the
right arm extends back to its original length. By completing one cycle it is shown that the
central sphere has moved a distance ∆xa. Figure adapted from [24]. (b) Schematic diagram
showing five snapshots of the “Pushmepullyou” swimming stroke. After a full cycle the
swimmer has returned to its original configuration but has been displaced to the right, with a
distance ∆xb. Figure adapted from [25].

Chemical propellers

The first type of experimental prototypes discussed will be micro-scale swimmers that are

powered by a chemical reaction between the swimmer itself and the surrounding medium.

The chemical reactions typically use hydrogen peroxide (H2O2). During this reaction oxygen

is produced on the surface of the swimmer providing the driving force for propulsion through

the medium. One type of swimmers proposed were striped platinum/gold (Pt/Au) nano-rods

[26–28] (∼ 370 nm in diameter and ∼ 1 µm long). The platinum was used because it is an

active catalyst for the decomposition of H2O2, and gold is not. Although these swimmers

displayed movement (2 – 10 body lengths per second), the direction of motion was subject to

random fluctuations due to the nature of the chemical reaction. An example of the trajectories

of such devices is shown in Figure 2.4a.
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Another example of chemically propelled swimmers are known as Janus spheres [29, 30];

typically polystyrene spheres (with a diameter of µms), coated one side with platinum. At

short time scales (compared to the rotational diffusion time) the propulsion of the spheres

was directed with speed in the µm s−1 range, but at longer time scales the trajectories became

randomised. An example of the trajectories of such Janus spheres is shown in Figure 2.4b.

The random propulsion direction can lead to difficulties in applications, such a precise

drug transport and delivery. The main issue with chemical reaction powered swimmers is

that they required H2O2, which is toxic to the human body, thus any bio-medical application

would not be feasible.

Fig. 2.4 Trajectory plots of two different types of catalytic swimmers. (a) Trajectory of three
platinum/gold rods in 2.5% aqueous hydrogen peroxide. The axes show x and y position
in µm, the inset shows a schematic of the catalytic rod. Figure adapted from [26]. (b)
Trajectories of the control microsphere (polystyrene only) and half platinum coated micro-
spheres, for different concentrations of hydrogen peroxide. The inset shows a schematic of
the catalytic Janus sphere. Figure adapted from [30].

More recently, a range of chemical propellers which rely on non-hazardous levels of

H2O2 or even complete alternatives to H2O2 have been investigated to varying levels of

success [31, 11]. Hollow Pt-coated Janus particles (diameters of 8 µm) have been shown

to be able to propel at concentrations as long as 0.1% H2O2 [32]. As well as these hollow

Janus particles, nano-scaled particles (diameters < 100 nm) have been shown to propel at
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concentrations lower than 3% [33]. Water-based bubble-propelled micro-motors were first

shown in 2012 [34]. These Janus devices comprised of a titanium half and an aluminium-

gallium (Al-Ga) half. When submerged in water the Al-Ga section would react and hydrogen

bubbles were created, resulting in speeds of up to 150 body lengths per second.

Other examples of fuel alternatives include glucose and urea. However, these fuels also

come with their drawbacks related to the required concentrations, as well as much lower

velocities compared to other stated chemicals [35–37]. Other alternatives include the use for

materials such as zinc or manganese. These materials decompose in acidic environments,

thus making them ideal for operating inside the stomach or other environments where the pH

level is below 7 [38–42].

Ultrasound driven propellers

Acoustic energy has been used for many applications such as detecting objects and measuring

distances, as well as diagnostic sonography. Ultrasonic acoustic waves are an interesting

method of propelling micro-scaled swimmers, as high frequency sound waves – in particularly

in the MHz regime – are known to have minimal effects on biological systems [43, 44]. One

pioneer in this field used pulsed or continuous ultrasound to propel micro-scaled metallic

rods [45, 46]. It was shown that ultrasound standing waves in the MHz range, could levitate,

propel (at speeds of ∼ 200 µm s−1), rotate, align, and assemble gold (Au) and gold-ruthenium

(AuRu) segmented micro-rods (2 µm long and 330 nm diameter). A plausible mechanism

for the directional motion of the micro-rods is based on the asymmetric shape of the rods,

leading to an asymmetric distribution of the acoustic pressure (Figure 2.5). These systems

are appealing due to the apparent lack of limitations other than the directionality. A common

approach with ultrasound devices is to use the ultrasound as the propulsion device and use a

magnetic material in the swimmer and use a magnetic field for guidance [47, 5]. This then
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creates the question why not create a similar system which only relies on the magnetic field

for both the propulsion and guidance.

Fig. 2.5 Ultrasonically powered Au and segmented AuRu micro-rods. Asymmetrically shaped
metallic micro-rods are activated in an ultrasonic standing wave at MHz frequency through an
acoustic pressure gradient along the length of the micro-rod, resulting in directional motion.
Figure from [45, 46].

Light driven propellers

Liquid-crystal elastomers, whose constituent molecules are orientationally ordered, have a

strong coupling between their mechanical strain and alignment of the molecules. The order

can be affected by external stimuli, in this case light, which lead to strains and change in the

shape (Figure 2.6a). It has been shown that by dissolving azo dye into the network of the

liquid-crystal elastomers [48], the deformation in response to visible light is more than 60°

of bending. The interaction of elastomers with fluids was also studied, and remarkably it

was shown that a disk (diameter 5 mm and thickness 0.32 mm) of the material would swim
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away from the external light source. More recently, a swimmer (2.6 cm) has been fabricated

using polymer film containing the azobenzene chromophore – acting as a motor – attached to

an artificial flagellum [49]. The azobenzene chromophore is sensitive to ultra-violet (UV)

light; periodically switching between UV and white light will create an oscillation of the

artificial flagellum, resulting in an average swimming speed of 142 µm s−1. A schematic

of the artificial flagellum is shown in Figure 2.6b. A possible limitation of these devices is

the fact that system relies on an optically transparent environment for the actuation to occur.

Therefore, these devices may encounter issues when externally controlling through a human

body, however, could be useful for components in transparent lab-on-a-chip systems.

Fig. 2.6 Illustrations to visualise the induced deformation of the liquid-crystal elastomers.
(a) Illustration of how the sample shape changes and hence interacts with the fluid below it.
Figure adapted from [48]. (b) Schematic diagrams of the micro swimming robot and light
irradiation system. Figure from [49].

Recent work from P. Fischer’s group has focused on creating soft micro-robots utilising

these liquid-crystal elastomers [50]. The micro-robots were cylindrical in shape with diameter

200 µm and length 1 mm. By manipulating the applied light pattern, travelling waves were

able to be created along the surface of the device, and propel at 200 µm s−1. These micro-
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robots were designed to mimic the body deformations of microorganisms such as annelids

and ciliated protozoa.

Electric actuation

Electro-osmosis and electro-phoresis are the two key processes for transporting charged

micro-scaled objects through a fluid [7]. Electro-osmosis is the bulk motion of a fluid over a

charged surface, due to the presence of an electric field. The second process, electro-phoresis,

is the drift velocity of a charged object due to the electric force FE = qE from an applied

electric field E. Micro-diodes have been shown to act as self-propelling particles when

exposed to an external electric field, due to the effects of the electro-osmotic process [51].

The micro-diodes travelled with speeds in the mm s−1 range and the direction of motion

depends on the orientations of the anode and cathode.

Magnetic swimmers

Magnetically actuated swimmers have attracted a considerable interest in the recent decade.

The direction of their propulsion is normally related to the orientation of the bias/oscillating

field that can be controlled via simple rotation of the principle axes of the magnetic system.

Expanding on this appeal, other methods of actuation, such as chemical [46, 52] and ultra-

sound [47, 5] have adapted magnetic components to control the propagation direction of

swimming. Magnetically driven micro-scaled swimmers will be expanded on in the following

section.

23



Background

2.2 Magnetic actuation

The influx and appeal of magnetically controlled swimmers is due to the fact that magnetic

fields are bio-compatible and have good penetration into human tissue (for example: MRI

used in current medical diagnostics). Such controllability makes these devices attractive for

a number of biomedical and technological applications.

The basic principle that governs the majority of magnetically actuated swimmers is

magnetic torque TM due to an applied magnetic field. When a magnetic object is subject to a

constant external magnetic field H (i.e. not a gradient), the magnetic torque is given by

TM = µ0m×H, (2.23)

where µ0 is the permeability of free space (4π ×10−7 Hm−1). The magnetic moment m of

the object is defined as

m =
∫

V
MdV. (2.24)

Here, M is the magnetisation of the object and dV is the volume element. It is clear

from Equation 2.23 and 2.24 that the torque experienced by the object is dependent on its

orientation (from the angle between parameters m and H), the strength of the external field,

as well as the magnetisation and volume of the object. The magnetisation of a magnetic

material is in turn a function of H, depending on the class of magnetic material.

In magnetism, a key equation is the magnetic flux density between two magnetic dipoles.

A magnetic dipole is the magnetic analogue of an electric dipole. A point to note about this

analogy, is that magnetic monopoles – the equivalent of an electric charge – are yet to be

observed. The magnetic flux density produced by a magnetic dipole moment is defined by

B = ∇×A, where A is the magnetic vector potential. Finally, the magnetic flux density in
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tesla is

B =
µ0

4π

(
3(m · r)r

r5 − m
r3

)
, (2.25)

where r is the radial distance from the dipole [53].

Magnetic materials can be classified into three main types according to the response of

materials in an external magnetic field: ferromagnetic materials, paramagnetic materials and

diamagnetic materials. The three classifications are shown in Figure 2.7

Fig. 2.7 Schematic representation of diamagnetic, paramagnetic, and ferromagnetic materials
microscopic structures at rest and in the presence of a magnetic field H

A diamagnetic material has no net atomic or molecular magnetic moment. A magnetic

response derives from the change in the movement of electrons in the presence of an external

magnetic field. The electrons move in such a way that they produce a magnetic dipole

moment anti-parallel to the external magnetic field. The magnetic response does not remain

when the external field is removed. Most elements are diamagnetic, a couple of examples

include; copper (Cu), silver (Ag) and gold (Au).

Paramagnetic materials have a net magnetic moment at the atomic level, with random

orientation when no external magnetic field is applied. When an external magnetic field is

applied, the moments tend to align parallel with it. Materials which exhibit this response

include magnesium (Mg), platinum (Pt), and aluminium (Al).

Ferromagnetic materials such as iron (Fe), cobalt (Co), and nickel (Ni) have a net magnetic

moment at the atomic level, but show a strong coupling between magnetic moments. The
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magnetic moments align in the same direction and parallel to each other. This coupling

gives rise to macroscopic regions of aligned moments, known as domains. The magnetic

domains undergo further alignment when a ferromagnetic material is subjected to an external

magnetic field. Ferromagnetic materials can be permanently magnetised since they are able

to retain a residual magnetisation - even with the removal of the external magnetic field.

In general, the magnetisation of paramagnetic and diamagnetic materials have a linear

dependence on the applied magnetic field H. The magnetisation is defined as

M = χmH, (2.26)

where the quantity χm is the magnetic susceptibility. If χm > 0, the magnetic field is increased

by the material, and this corresponds to a paramagnetic material. If χm < 0, the magnetic field

is decreased by the material, this corresponds to a diamagnetic material. The main feature of

a ferromagnetic material is that their magnetisation is nonlinear in H, a phenomenon known

as magnetic hysteresis (Figure 2.8).

Fig. 2.8 Ideal representation of hysteresis loops for ferromagnetic materials. The magnetic
coercivity is shown as Hc. (a) A material with a typical soft ferromagnetic response. (b) A
material with a typical hard ferromagnetic response.
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Ferromagnetic materials have been very important in modern technology and are the

basis for many electrical devices, including motors and transformers, as well as magnetic

storage devices such as hard disks and tape recorders.

The behaviour of ferromagnetic materials is based on the coercivity (Hc) of the material.

Coercivity is the intensity of the applied magnetic field required to reduce the magnetisation of

the material to zero, after saturation. The saturation is the state at which the applied magnetic

field can no longer increase the magnetisation of the material, shown as the plateaus with no

area on Figure 2.8. Typically, ferromagnetic materials with a high coercivity are known as

ferromagnetically hard, as after saturation the material will keep its magnetisation. Practically,

this means materials with an intrinsic coercivity greater than ∼ 10 kAm−1. A material with a

low coercivity will demagnetise on small time scales and are known as ferromagnetically

soft. Such materials, typically have an intrinsic coercivity less than ∼ 1 kAm−1. An example

of a hard ferromagnetic material is neodymium iron boron (NdFeB) and a soft ferromagnetic

material, iron (Fe) - these are the magnetic materials investigated in this work. Ferromagnetic

materials are typically used for the fabrication of magnetic swimmers, since they have larger

magnetisation compared to paramagnetic and diamagnetic materials. The large magnetisation

results in a stronger magnetic force and torque experienced. Although some micro-scale

swimmers - where rely on collective interactions - have been fabricated using paramagnetic

materials [54, 55, 20, 56, 57].

2.2.1 Magnetically actuated swimmers

Two main types of magnetic fields have been used to manipulate the propulsion of magnetic

micro-scaled swimmers, rotating field and oscillating fields. A rotating magnetic field has a

flux density B, which rotates around a central axis. In an oscillating field, the flux density

B, changes direction in the plane. There are three main types of magnetic swimmers that

have been investigated over the years. The first that will be discussed will be swimmers that
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are based on spiral or helical structures. In the case of these helical strictures, a rotating

magnetic field rotates around the axis of the length of the swimmer. The second type are

known as “surface walkers” and rely on the magnetic field interactions of many magnetic

colloidal particles bound to a surface. The final type are flexible magnetic swimmers, which

have been shown to be actuated using both rotating and oscillating magnetic fields. These

swimmers rely on the interactions of both the magnetic and flexible components present.

The swimmers shown in this sections are the closest of interest to the work presented in the

following chapters.

Spiral and helical magnetic swimmers

One of the first magnetically actuated swimmer was shown in the work produced by K.

Ishiyama et al. The swimmer consisted of a screw-shaped structure and a NdFeB magnet

(Figure 2.9a) of total length 12 mm [8] and was controlled by using a rotating magnetic

field. The mechanism of propulsion of the device showed great potential for being used

for micro-scaled swimmers, as it could swim under conditions of a Reynolds number of

10−7. The authors later worked on a similar device, in which an endoscope capsule was

incorporated [58]. The device comprised of a NdFeB magnet inside of the capsule and a spiral

shape outside (Figure 2.9b). It was demonstrated that the device could move at a maximum

speed of 5 mm s−1. A popular method used to utilise the induced magnetic torque are

micro-scaled helical swimmers actuated via rotating magnetic fields [59–61, 18, 62, 63, 19].

These magnetic helical swimmers mimic the flagella propulsion mechanism used by E. coli

and other micro-organisms. First proposed by Honda et al, the device (Figure 2.10a) was

composed of a small samarium–cobalt (SmCo) magnet (1 mm × 1 mm × 1 mm) attached

with a spiral Cu wire with length 21.7 mm [59]. The swimmer was submerged in silicone oil

and actuated using a rotating magnetic field, causing the magnet to rotate due to the induced

magnetic torque. As a result, the swimmer was able to propel in a low Reynolds number
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Fig. 2.9 Examples of the simple designs of magnetic torque devices. (a) Photograph of the
spiral-type magnetic device consisting of a 7.5 mm long (2 mm diameter) NdFeB magnet -
magnetised along the diameter - and a 4 mm spiral cone tip. Figure adapted from K. Ishiyama
et al [8]. (b) Schematic of the device comprising of a NdFeB magnet - magnetised along the
diameter - encased in an endoscope capsule, with a spiral structure on the outside. Figure
adapted from M. Sendoh et al [58].

environment and the velocity of the swimmer increased linearly with frequency. In 2005,

the same group developed a smaller version of the swimmer, with a total length of 5.55 mm

[60]. The swimmer (Figure 2.10b) was composed of a SmCo magnetic cylinder and a Cu

tube attached to a spiral tungsten wire. It was shown that the swimmer was able to trail a thin

wire and change direction within a narrow fluidic channel. Using silicone oil (the viscosity is

much greater than that of water) this system mimicked propulsion through a blood vessel,

resulting in the propulsion method showing great potential for navigating medical catheters.

In 2007, the first micro-scaled helical swimmer was reported [64]. The flagella of living

bacteria can range in size from 2 - 20 µm, thus the swimmer was of comparable size to what

is observed in nature (Figure 2.10c). The swimmer consisted of a soft magnetic head and a

helical tail with the diameter of 3 µm and a length of 30 - 40 µm. The swimming properties

of these artificial bacterial flagella (ABF) were characterised by Zhang et al [65]. It was

shown that the ABFs could be propelled and steered precisely in water by a low-strength

(2.0 mT) rotating magnetic field. The directional control of the ABFs was achieved by the

translational motion and rotation directions of the applied field (Figure 2.10d). It was stated
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by the authors that the tracking and navigation of the ABFs in a dynamic fluid environment

would be challenging.

Fig. 2.10 An overview of magnetic helical swimmers. (a) The first prototype of a magnetic
helical swimmer. Figure from [59]. (b) Millimetre scaled magnetic helical comprising of
a SmCo magnet attached to a tungsten wire. Figure from [65]. (c) The first micro-scaled
prototype of a helical swimmer. Figure from [64]. (d) Characterised motion of the micro-
scaled prototype shown in Figure 2.10c. The arrows indicate the translational motion and
rotation direction of the applied magnetic field.

In 2009, P. Fischer’s group was working a different fabrication method which allowed a

large number of micron sized colloidal screw-propellers to be created in a single evaporation

run [66]. The method was based on a deposition technique known as “glancing angle

deposition” (GLAD). During the deposition of the material (SiO2), the substrate was at an

angle to the vapour flux and was rotated, resulting in the fabrication of a screw-like structure

between 1 to2 µm in length. The structures were then coated with a 30 nm layer of cobalt

to create a magnetic swimmer (Figure 2.11a). Under the actuation of a 6.0 mT rotating

magnetic field, the propellers were able to propel at 20 body lengths per second.

An alternative fabrication method was proposed by W. Gao et al in 2014 [67]. This

method involved creating plant-based helical swimmers (typically 50 µm). The proposed

method simply consisted of depositing a thin magnetic coating on isolated spiral xylem
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Fig. 2.11 Further examples of magnetic helical swimmers. (a) Scanning electron microscope
image of an individual glass screw with nanostructured helicity, fabricated by P. Fischer’s
group using the GLAD technique. Figure from [66]. (b) The so-called spermbot was able to
propel, capture an immobile sperm cell and transport the cell. Figure from [19].

vessel planet fibres. This method created mover a million individual helical swimmers

(biocompatible) from a single segment of the plant stem. These novel plant-based swimmers

were able to propel at speeds of approximately 5 body lengths per second.

Spiral and helical swimmers have been a large focus for many groups [61, 18, 62, 63].

Most recently, in the work by M. Medina-Sanchez et al the swimmers were shown [19]

a transportation devices for sperm cells. The so-called spermbots (approx. 20 µm) were

fabricated using Direct Laser Writing and were coated with a soft-magnetic NiTi layer. These

swimmers were shown to have a peak speed of 70 µm s−1. Most interestingly, the swimmers

were able to capture, transport, and release a single immotile living sperm cell without

damaging the cell (Figure 2.11b).

Surface interaction swimmers

Devices that rely on surface interactions are known as “surface walkers” and require an

air-fluid or fluid-fluid to propel. A large amount of these devices have been proposed, in

which micro-scaled magnetic colloidal particles self-assemble into structures induced by an

alternating magnetic field [54, 55, 20, 56, 68–71]. The work produced by A. Snezhko et al,

is based on the formation of snakelike structures (Figure 2.12a) from nickel micro-particles,

via an out-of-plane oscillating magnetic field [68]. In addition, an in-plane DC magnetic

field was applied to probe the magnetic properties of the structure. It was later shown, that
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these nickel micro-particles could be used to produce a magnetic surface swimmer [69], by

attaching a bead to one end of the snakelike structure (Figure 2.12b). The bead used for the

head was either glass or polystyrene (1 - 2 mm) and would self-attach itself to one end of the

snake structure. The authors state that the control over the direction of the swimmer could be

gained through use of spatially inhomogeneous fields. Such structures are of great interest,

but the main concern with these “surface walkers” is that they rely on the surface interactions,

making them impractical for many of the desired bulk fluid applications.

Fig. 2.12 Examples of magnetic surface swimmers. (a) Formation of the snake-like self-
assembly structure due nickel micro-particles subject to an out-of-plane magnetic field.
Figure from [68]. (b) Surface swimmer consisting of a snake-like self-assembly structure
and a glass bead. Figure from [69].

More recently, work has been conducted to be investigate the flocking behaviour of

colloidal particles [72]. In this work, the global behaviour of ferromagnetic particles actuated

by a vertical alternating magnetic field were investigated. It was shown that large-scale

collective motion could be observed: spontaneous clockwise/counter-clockwise rotation,

and alignment of particle velocities. This work was shown to be useful for understanding

coherence in large-scale active systems.

Flexible magnetic swimmers

An early simple example of a flexible device that is actuated by an oscillating field, is two

permanent magnets coupled together [73]. In this work, two NdFeB magnets (0.7 mm × 0.7

mm × 2 mm) attached by a rubber film, swim in water in parallel to the applied magnetic
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field (Figure 2.13a). The motion is induced by the magnetic torque and the repulsive force

yielded on the magnets.

An elegant example of a device using this method, is the artificial micro-scaled swimmer

produced by R. Dreyfus et al [9]. This swimmer had a red blood cell which acted as the

head of the device, and a linear chain of magnetic particles linked by DNA serving as a

flexible artificial flagellum (Figure 2.13b). The chain would align with an external uniform

magnetic field and would be actuated by an oscillating transverse field. They found that the

actuation induced a beating pattern that was able to propel the structure, and that by varying

the external fields, the velocity and direction of motion could be controlled.

Fig. 2.13 Examples of flexible magnetic swimmers that use oscillating magnetic fields. (a)
Structure of the device comprising of two NdFeB magnets coupled together. Schematic of
the motion of the device in the presence of an oscillating magnetic field. Figure from [73].
(b) Schematic representation of a flexible magnetic filament. Beating pattern of the motion
of a magnetic flexible filament - comprising of DNA connected magnetic particles - attached
to a red blood cell. The white arrow represents the direction of motion. The magnetic field
at time steps is represented by the red arrows. (Bx = 8.3 mT, By = 13.7 mT, f = 10 Hz).
Figure from [9]. (c) Schematic diagram of the flexible Au/Ag/Ni nano-wire device. Figure
from [74].

In 2010, a device comprised of flexible Au/Ag/Ni nano-wires utilised rotating magnetic

fields [74]. This device comprised of a gold head and a nickel tail coupled by a partially

weakened silver link (Figure 2.13c). The flexible link promoted cyclic mechanical defor-

mations under an external rotating magnetic field. In such a field the nickel tail would start

to rotate, causing the gold head to rotate at a different amplitude. The authors concluded

that this simple design obviates the requirement for the complex helical micro-structures,

as previously stated. Similarly, to the helical swimmers, by changing the direction of the
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rotational axis of the applied field, these swimmers can navigate in three dimensions in the

bulk of the fluid.

More recently, I.S.M Khalil et al. fabricated a device that mimicked the motion of a

sperm cell [75]. The device known as MagnetoSperm (Figure 2.14a) comprised of SU-8

photoresist (epoxy based photoresist), in the shape of a sperm cell, with length 322 µm, and

a 200 nm CoNi layer on the head of the cell. The CoNi layer provided a dipole moment, and

allowed the flexible structure to align with the oscillating magnetic field, hence generating

propulsion, with an average speed of 0.1 – 0.5 body lengths per second. The direction of

propulsion was controlled by directing the oscillating magnetic field towards a reference

position.

Fig. 2.14 Examples of flexible magnetic swimmers that were developed by I.S.M Khalil et al..
(a) Image of the SU-8 and CoNi device known as MagnetoSperm. Figure from [75]. (b) The
robotic sperm consisting of a magnetic head and a flexible flagellum. The Planar flagellar
propulsion was achieved by applying in-plane uniform field along direction of motion with a
sinusoidally varying orthogonal component. The helical flagellar propulsion was created by
rotating the magnetic field as shown in the figure. Figure from [75].
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As well as the creation of the MagnetoSperm, I.S.M Khalil et al. also developed a

magnetic sperm-like device made from an ultra-thin polymer material (Figure 2.14b) [76].

The device was able to switch between two modes of propulsion, by manipulating the out-of-

and in-plane components of the applied magnetic field. The two modes were a planar motion

and a helical flagellar propulsion. They showed that the device could increase the swimming

speed by a factor of 1.4 when transitioning between the modes, such a behaviour would not

be possible with more rigid materials.
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2.3 Pump technology for microfluidic devices

Pumps and valves are basic components in virtually every microfluidic platform. In laboratory

conditions, pumps often are external to the microfluidic assembly, which allows for easy and

accurate control over every aspect of fluid flow. Lab-on-a-chip devices, however, impose

a number of design restrictions that stem from the basic requirement for packing complex

functionality in a restricted space. In response to this demand, recent years have seen a

number of original design solutions for pumps (both passive and active), valves, mixers and

other components that could be incorporated into lab-on-a-chip devices, having various levels

of performance and complexity and different actuation mechanisms [77, 78].

2.3.1 Mechanical actuation of micropumps

A main consideration when designing micropumps is the nature of the fluid flow. Typical

microfluidic systems (channel widths and height on length scales of tens of micrometres)

operate under low Reynolds number conditions, i.e. viscous forces dominate over inertia -

as previously discussed. Thus, the systems are under the same restrictions as micro-scaled

swimmers. In order to create overall displacement of the liquid, such a pump must execute

asymmetric strokes, i.e. the backward stroke must not be a mirror image of the forward stroke,

otherwise the liquid volume will oscillate with no net displacement. Stroke asymmetry can

be achieved using a system of valves, but at the expense of increased complexity, footprint

and cost.

All mechanical micropumps require an actuation source to provide the asymmetric stroke.

Some actuation sources include; piezoelectric, pneumatic, and electromagnetic mechanisms.

Piezoelectric actuation

Piezoelectric actuation has been produced by utilising the properties of piezoelectric materials

(for example lead zirconate titanate). When a voltage is applied to a piezoelectric material, a
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strain and mechanical deformation is produced. By coupling a piezoelectric material - for

example a disk - to a pump membrane, the membrane would flex and produce an asymmetric

stroke [79–81].

Pneumatic actuation

Pneumatic actuation relies on using a high pressure gas source. The gas chamber is controlled

by a two valve system, which either open to pressurise the chamber or closed to depressurise.

Coupling this interaction with a flexible membrane, produces a flexing on the membrane and

an asymmetric stroke [82–84].

Electromagnetic actuation

The main electromagnetic actuation works using a small-scale electromagnet (a solenoid).

The plunger is produced from a ferromagnetic material, and coupled to a membrane. When

the electromagnet is powered the ferromagnetic plunger displaces and creates a deformation

of the membrane. When the electromagnet is switched off the ferromagnetic plunger returns

to its original rest position. Usually such structures are large compared to the other mentioned

actuation methods - due to the size of the solenoid [85–87]. However, this system can be

quite controllable by tailoring the coil current, and winding number of the coil for the desired

application.

2.3.2 Utilising microswimmers as micropumps

Production of a valve-free pump is a non-trivial problem, and requires the identification and

implementation of a set of physical interactions that introduce asymmetry to the stroke cycle.

Microfluidic flow generation is the reciprocal of the problem identified for swimming

under low Reynolds number conditions, summarised succinctly by the scallop theorem [4]: a

swimmer under low Reynolds number conditions will not be able to self-propel unless the
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forward swimming stroke is geometrically different from the backwards stroke. Swimming

and pumping in this context are two sides of the same coin: a low Reynolds number swimmer

can be turned into a micropump by a simple “change of reference”, i.e. a spatially restricted

swimmer will be able to drive fluid flow. Such an approach has been demonstrated by

several groups [88, 89, 22, 90, 91] who implemented methodologies for assembling artificial

magnetic cilia which can be used to induce fluid flow.

Fig. 2.15 Fabrication of the artificial cilia created by Y. Wang et al. (a) A mixture of 2.7 µm
spherical polystyrene spheres with embedded magnetic nanoparticles and latex particles are
placed within a fluid cell. (b) The magnetic beads are linked into chains and attached to the
surface in the presence of an external magnetic field Bext .(c) The latex particles attach to the
beads by electrostatic attraction and create chains after heating. (d) Actuation of the artificial
cilia by an external field. Figure recreated from [91].

Y. Wang et al. created a cost-effective in situ fabrication method for magnetic cilia-like

structures [91]. The cilia structures (∼ 3 µm) were constructed by self-assembly of micro

sized magnetic beads (polystyrene spheres with embedded magnetic nanoparticles) and were

encapsulated with soft polymer (latex) coatings. The artificial cilia were actuated using a

rotating magnetic field, and a frequency of 5 Hz, created a non-reciprocal motion and a net

flow velocity of 3 µm s−1.
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2.3 Pump technology for microfluidic devices

The magnetic approach for activating such systems is desirable due to the wireless

capabilities and the simplicity of generating the field as small field (< 5 mT) only requiring a

small amount of power to generate. Other magnetically controlled valves, pumps, and stirrers

have also been demonstrated by other groups [92–95].

Fig. 2.16 (a) Optical image of a magnetic stir bar inside a microchannel. Two streams of
fluid join in the rotor and mix. The rotor diameter is 400 µm. Figure from [92]. (b) Check
valve position as a function of applied flow. The colloidal assembly composes of 4.5 µm
particles. Note that 1.5 µm particles are used here as flow tracers, the white arrows indicate
flow direction. Figure from [93]

2.3.3 Magnetically controlled membranes

Another system of interest consists of creating magnetic-elastic membranes which can be

used as valves and fluid pumping systems [96–98]. These membranes can be attached to the

top surface of the channel or even built into the walls of the channel. The interest in these is

due to them being less intrusive compared to pumps and mixers placed within the channel.

The work by P. Tseng et al. shows a method of integrating varying size permalloy

features (4 µm to 5 mm) into PDMS (photographs of the structure are shown in Figure 2.17)

[98]. Application of an external magnetic gradient led to a deformation of the permalloy
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array embedded into PDMS. The structure showed potential to generate new applications in

magnetic droplet control, magnetophoresis, bio-patterning, and self-assembly.

Fig. 2.17 Optical images of a magnetic PDSM membranes of different thicknesses. Thin
PDMS membranes can be folded, while metal structures on 40:1 PDMS can be morphed in x
and y dimensions. Figure from [98].

40



2.4 Conclusion

2.4 Conclusion

The underlining issue of swimming at a low Reynolds number has been discussed, showing

the derivation in fluid mechanics. The history of swimming in this regime was discussed

leading onto a number of different propulsion mechanisms.

As has been demonstrated in a number of cases, a typical approach to tackling the

problem would be by mimicking the natural microscopic swimmers in one way for another.

Nature finds a way of overcoming the challenges of the microscopic world by deforming

their bodies or employing cilia and rotating flagella.

The idealise models showing the volume and separation between spheres is analogous to

deformations employed by the eukaryotic cells. However, the creation of such systems has

been mainly limited to light driven systems. Light driven systems are shown to be elegant,

although such a system could be described as problematic for applications. As this actuation

method requires a UV light pulse, the system could not be used in an opaque environment. In

addition to this if the system was to be used for a lab-on-a-chip system, addition components

will be required, for example a miniature light source and power supply. Many other different

methods of propulsion at a low Reynolds number have been discussed including: chemical,

ultrasound, electric and magnetic.

The catalytic chemical method creates random propulsion direction can lead to difficulties

in applications, such a precise drug transport and delivery. For these random propulsion

directions to be controlled, magnetic components are added to the structures. The addition

of the magnetic components adds another layer of complexity to the system – when other

systems rely only on a magnetic field. The main issue with these systems being used for

bio-medical applications or use inside the human body is the requirement of H2O2 for the

reaction, which is toxic. Similar to that of the chemical propellers, ultrasound actuated

systems have also been adapted with magnetic components to improve the control over

the system. Actuation via electric fields shows promise for applications as pumps and
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components in a lab-on-a-chip. However, such a method may be troublesome when involving

a human body.

Magnetic actuation will be the focus of the work presented in this thesis, thus a section

was dedicated to the understanding of the relevant magnetic theory with a focus on ferromag-

netism. Magnetic actuation is a popular method due to the relative safety of magnetic fields,

as well as the ease of fabrication of structures. The vast majority of magnetic controlled

devices rely on three dimensional or rotating magnetic field structures to produce either the

guidance and/or propulsion. For the systems to be portable, this would require the magnetic

field to be as simple as possible to have a low power required to generate the field. As a

result of this, all presented work in this thesis is focused on one dimension weak (< 5 mT)

magnetic fields. The common method used to create a motion is to mimic the beating of cilia

or rotation of flagella. This has been studied using the combination of flexible and magnetic

materials, as well as fully magnetic materials. Such structures typically have a complex

fabrication process.

The underpinning physics behind microfluidic pumps was also discussed, showing how

the restrictions due to the Scallop theorem not only apply to micro-scaled swimmers, but

also to applications which involve the manipulation of millilitre to microlitre volumes of

fluid. The magnetic approach for activating such systems is desirable due to the wireless

capabilities and the simplicity of generating the field. Portable devices could be created

using the magnetic approach as long as low field strengths are used (< 5 mT), as these fields

can be locally generated using the power from a USB. The elegant method of creating a

pump by restricting the transitional motion of a micro-scaled swimmer has shown to be an

area of interest, however the field is currently still in its infancy. In this thesis, there will be

a focus on creating fluid pumps for different application (examples include: possible cell

sorting channels and blood plasma separation) using a range of different elastic-ferromagnetic

swimmers.
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The collective interactions of natural flagella as well as artificial flagella has been shown

to create a motion – be it propulsion or fluid flow – greater than a single beating system.

Building upon the fabrication techniques outlined in this thesis, collective arrays of magnetic

components were created. Unlike the previously discussed flagella systems, these systems

are comprised of components that on their own are bound by reciprocal motion. Therefore,

do not create a net flow, until they are allowed to magnetically interact with each other,

resulting in rotational patterns not possible before.
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Chapter 3

Experimental methods

This chapter will describe the experimental methods which were commonly used over the

course of the work. This includes the fabrication of magnetic and elastic components, the

main experimental system used, as well as the data collection and analysis.

3.1 Swimmer, pump, and membrane fabrication

The fabrication of all presented devices follows a similar methodology, comprising of

different combinations of magnetic and elastic components. This section focuses on the

creation of the different ferromagnetic and elastic components used within this work.

3.1.1 Fabrication of magnetic components

A key ingredient in the presented devices are the magnetic components. All systems created in

this work rely on having at least one hard ferromagnetic particle, and in some cases a mixtures

of hard ferromagnetic and soft ferromagnetic particles. Hard ferromagnetic materials have

a high coercivity and thus retain their magnetisation in the absence of an applied field (for

example permanent fridge magnets). In contrast soft ferromagnetic materials have a low

coercivity, thus demagnetise on small timescales in the absence of an applied field (for

45



Experimental methods

example a paper clip). The creation of the soft ferromagnetic particles size and geometry has

remained the same throughout all presented work, and will be discussed first.

In this work, iron (Fe) was used as the soft ferromagnetic material, because it is an

intrinsically soft ferromagnetic material, that is relatively easy to magnetise and demagnetise

in weak magnetic fields. 99.5% pure Fe wire (diameter 0.5 mm) was purchased from Advent

Research Materials. The material was cut using a diamond dicer (LoadPoint Micro Ace 3

Dicing Saw) to produce the soft (0.7 mm long with diameter 0.5 mm) particles.

The hard ferromagnetic material used throughout this work was neodymium iron boron

(NdFeB), however this material has taken different forms during the work. Initially, the

creation of the hard ferromagnetic particles consisted of using a method similar to that of

the soft ferromagnetic particles. For example, 5 mm × 2 mm × 0.45 mm rectangle NdFeB

magnets were purchased from First4Magnets. These magnets were cut once again using the

diamond dicer (LoadPoint Micro Ace 3 Dicing Saw) to produce hard ferromagnetic particles

with dimensions 0.6 mm × 0.6 mm × 0.45 mm. A better option used in later work was the

use of hard ferromagnetic particles, purchased from SuperMagnetMan. Cube magnets with

the dimensions 0.5 mm × 0.5 mm × 0.5 mm.

The hard ferromagnetic particles used in the presented investigations was further improved

in order to have a greater control over the geometry and strength of the particles. The method

used to create these magnetic components were based on the production of the elastic

components. The method will be discussed in the following subsection.

3.1.2 Fabrication of elastic components

The second component present in all the fabricated systems was the elastic material. The pre-

sented work focuses on the interaction of different magnetic forces, with different geometries

of elastic materials. Thus a high control over the geometry and dimensions was required.

The initial prototypes used a brass based mould to create the elastic component (discussed in
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Chapter 4), however this method had little control over the geometry and could not be used

for rapid prototyping or mass production.

To create the control over the geometry a stereolithography 3D printer was used (Formlab

Form 2). This method can be used to create structures with layers as fine as 0.05 mm,

resulting in a minimum feature size of 0.2 mm. To create the desired geometries a commercial

computer-aided design software (Autodesk AutoCAD) was used to design a mould. As a

result of combining 3D printing and AutoCAD the ability to easily produce a large range of

elastic shapes was achieved. Once the mould was printed, it was placed in a bath of isopropyl

alcohol for 20 minutes to remove any uncured material. After this process, the mould could

be used to create the elastic components.

The elastic material of choice was a silicone based rubber. Other elastomers were also

tested. Dow Corning 781 silicone sealant cured at room temperature for 4 hours produced a

large number of air bubble defects. Liquid latex cured at room temperature for 6 hours also

produced components with a large number of visible defects. Polycraft silicone rubber and

fast cure catalyst (GP-3481-F) were purchased from MBFibreglass. The two components

were mixed with a weight ratio of 1:10 (catalyst:silicone) and placed into the 3D printed

mould cured at room temperature for 6 hours, with minimal defects.

3.1.3 Controlling geometry and magnetic properties

As previously mentioned, the final improvement for the magnetic components relied on the

3D printing methods used for the elastic components. Using AutoCAD and the 3D printer

resulted in a high degree of control over the geometry and dimensions. This method was

latter used for the magnetic components; mixtures of silicone based rubber and magnetic

powder were created.

The liquid silicone rubber was once again mixed with the curing catalyst in a 1:10 ratio

(by weight). NdFeB powder (average diameter < 10 µm) was added to the rubber mix.
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By mixing different volumes of NdFeB powder to the rubber, the desired control over the

magnetic properties of the components is obtained. Once the magnetic rubber mixture

was cured, the component would need to be magnetised. To magnetise the components, a

MicroSense Vibrating Sample Magnetometer (VSM) was used, shown in Figure 3.1.

Fig. 3.1 Photograph and schematic diagram of a Vibrating Sample Magnetometer.

Vibrating Sample Magnetometry is based on Faraday’s law which states that an elec-

tromagnetic force is generated in a coil when there is a change in flux through the coil

[53]. When measuring a magnetic response with a VSM, a magnetic sample is moved in

the proximity of two pickup coils. The sample is fixed to a sample holder and vibrated

vertically via a sinusoidal signal. The sample is placed in the centre of the two poles of an

electromagnet which generates a homogeneous magnetic field H0.

Pickup coils are mounted on the end of the poles of the electromagnets, with the symmetry

centre in line with the static location of the sample. As the sample is displaced vertically, the

magnetisation of the sample induces a voltage difference Uind. Using this induced voltage,

according to Faraday, the magnetic properties of the sample can be found. However, in the

presented work, the VSM is used to saturate the hard ferromagnetic components.

The VSM used is capable of generating magnetic field strengths up to 1.8 T. NdFeB has

a saturation of is ∼ 1.6 T, thus the VSM it was able to fully magnetise the NdFeB magnetic
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component in the direction of the applied magnetic field strength. This provided a complete

control over the fixed magnetic moment direction of the magnetic components.

Using the combination of the high resolution 3D printer, elastic materials, magnetic

powder and the VSM, it was possible to have a high control over the parameters of the

magnetic components. These parameters include the geometry, the dimensions (sizes down

to 0.2 mm), the volume fraction of magnetic material, and the fixed magnetic moment

direction.

3.2 Experimental systems

This section will describe the experimental setup commonly used in all the presented work.

All magnetic systems investigated rely on an external magnetic field to be actuated. This

work was focused on producing a uniform oscillating magnetic field, who’s the frequency

and amplitude can be varied. In this work, two coil Helmholtz systems were used to create a

one dimensional uniform field; however, three different versions of two coil systems were

used.

The basic idea of a Helmholtz coil system is to create a region of nearly uniform magnetic

field. A Helmholtz coil system consists of two identical circular magnetic coils on the same

axis, shown in Figure 3.2. The coils of radius RHelm are separated by a distance h. In the

case of a Helmholtz pair, h = RHelm, which minimises the non-uniformity of the produced

magnetic field.

The strength of the magnetic field BHelm, is controlled by the winding of the coils n, the

coil current I, and radius RHelm. Starting from Biot-Savart law, for a single wire loop [53], of

radius R1 will in induced magnetic field, which is defined as

B1(x) =
µ0IR2

1

2(R2
1 + x2)3/2 , (3.1)
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Fig. 3.2 Schematic diagram of a Helmholtz pair.

where µ0 is the permeability of free space, and x is the distance from the wire loop. As a

Helmholtz coil consists of n turns of a wire, the equivalent current is nI

B1(x) =
µ0nIR2

1

2(R2
1 + x2)3/2 . (3.2)

Halfway between two loops the field strength will be twice as high - due to there being two

coils

BHelm(RHelm/2) = 2B1(RHelm/2)

=
2µ0nIR2

Helm

2(R2
Helm +(R/2Helm)2)3/2

=

(
4
5

)3/2
µ0nI
RHelm

(3.3)

3.2.1 Initial Helmholtz coil system

The initial experimental setup consisted of a large area Helmholtz coil system. Each coil

of the magnetic system had approximately 560 turns with a width of 61 mm, inner bobbin
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diameter 155 mm and height 37 mm. A large area Petri dish (148 mm diameter) was placed

in the centre of the system. A magnetic field was produced by a signal generator using a

sinusoidal signal, that was connected to a power amplifier to increase the voltage of the

signal. The fields generated had a frequency range of 1 - 200 Hz, with a maximum field

strength of 4.0 mT. A 1080p HD camera was attached to the top of the coils to monitor the

Petri dish. The camera was connected to a computer for video analysis. A photograph of the

initial system is shown in Figure 3.3.

Fig. 3.3 (a) A schemetic diagram and (b) a photograph of the large area Helmholtz coil
system, with a camera for particle tracking. The signal is produced by a signal generator
attached to a power amplifier. A DC power supply is also shown for creating static magnetic
fields.
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3.2.2 High-speed camera system

To improve on the first experimental setup, Dr. Tom Myers from Platform Kinetics collabo-

rated with the University of Exeter to create a new system. This system also was required to

create a uniform AC electromagnetic field. In this case, the system was created as a 3 axis

coil system, however in the presented work, only the x component was used. The x and y

axes were based on a rectangular Helmholtz geometry and the z axis on a circular geometry.

A photograph of the system is shown in Figure 3.4

The produced magnetic field strengths ranged up to 25 mT for frequencies of 1 - 300

Hz, with an observation area of 50 mm × 50 mm. A PC interface was created to control

the frequency, amplitude and phase of the three magnetic fields. A microscope was built

around the coil assembly with an extended optical path to reach into the centre of the coils.

A high-speed camera was also attached to the microscope system (Mikrotron Motionblitz),

which could achieve a frame rate up to 1700 fps.

Due to the smaller area, this system was useful for observing the internal motion of the

devices (rather than net motion), and fluid pumps. This system was also very useful for

creating high field strengths (up to 6.0 mT) at 1 Hz. These high fields at such a low frequency

were very useful for some of the collective motion systems discussed in this work.
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Fig. 3.4 Photograph of the inside of the 3 axis Helmholtz coil system. Photograph of the
optical system in use, produced by Platform Kinetics.

3.2.3 Portable Helmholtz coil system

In addition to the other two Helmholtz coil systems, Dr. Tom Myers from Platform Kinetics

also created a smaller, portable (approximately 15 cm x 15 cm x 25 cm), all-in-one system.

This system (shown in Figure 3.5) comprised of a single axis Helmholtz pair, connected

to a Raspberry Pi and touch screen. The system also had a built-in camera, thus it was

completely self-contained. The user friendly interface to control the frequency and amplitude

of the magnetic field made the system perfect for quick initial exploratory tests (before a full

investigation), as well as for the undergraduate physics laboratory.
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Fig. 3.5 Photograph of the portable system, produced by Platform Kinetics.

3.2.4 Controlling the viscosity of the fluids

Due to the nature of the experiments, a range of viscous fluids were required to test the

capability of the devices in different Reynolds number regimes. To do this, sucrose (reagent

grade) and sodium azide were purchased from Sigma-Aldrich and were dissolved in water

using a heating magnetic stirrer to produce sucrose solutions with concentrations of 30%,

40%, 50%, 60%, and 70%. The trace amount of sodium azide (30 mg per 100 ml) was added

to prevent bacterial growth. The viscosity of these solutions have been well studied in the

literature [99, 100]. Other fluids used in the experiments were water (for the lowest viscosity)

and glycerol (for the highest viscosity). Table 3.1 shows all viscous fluids used.
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Viscous fluid Kinematic viscosity [m2s−1]
Water 8.96 ×10−7

30% Sucrose 2.48 ×10−6

40% Sucrose 4.41 ×10−6

50% Sucrose 1.01 ×10−5

60% Sucrose 3.45 ×10−5

70% Sucrose 2.40 ×10−4

Glycerol 7.20 ×10−4

Table 3.1 List of viscous fluids produced in the experiments.

3.3 Data analysis

This section will focus on the collection and analysis of data. In all experiments, the raw data

was videos. However, depending on the system, the analysis was different. The two main

analysis methods were particle tracking and particle image velocimetry (PIV).

3.3.1 Analysis of migration characteristics

When the magnetic device of interest is free to execute translational motion on the surface of

the fluid, a particle tracking software is required to analyse its migration characteristics. In

this work, the linear net motion of the device is known as the swimming speed. The Open

Source software - Tracker was used to obtain the resulting swimming speeds.

Tracker has manual and automated object tracking with position, velocity and acceleration.

The automated object tracking worked by assigning a ’region of interest’, and saved the

pixels within this region. The area has an allowed evolution rate (typically set to 10%) which

allows variation in the pixels over the frames.

The video of interest was then split into frames and the software searched for the pixels

of the ’region of interest’ over the length of the video. An examples of this is shown in Figure

3.6. For calibration, a known distance is specified and the time was taken from the frame rate

of the video.
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Fig. 3.6 Visualisation of the particle tracking software, showing the position vector, ∆r, and
angle θ between two frames of the video. The long axis of the shown swimmer is 3.6 mm.

The timescale was set to ∆t = 1
f ramerate , and the velocity was found by taking the position

of the pixels between each frame, ∆r and dividing by the timescale. Using trivial trigonometry,

the angle could be found. This method was applied over the total length of the video and

the velocity is averaged over all the values. The software was found to be very useful for

the cases where the magnetic system was free to propel. In the cases where a fluid flow was

being induced, a slightly different method was required - particle image velocimetry.

3.3.2 Particle image velocimetry (PIV)

Digital particle image velocimetry is a common technique used for both qualitative and

quantitative flow visualisation [101–104]. The software used in this work (PIVLab), was

developed by W. Thielicke [105, 106] and is an open source tool in Matlab. In PIV, typically

the motion of a fluid is visualised by illuminating a thin sheet of fluid containing buoyant

tracer particles which reflect the light. However, in this work, the surface flows are investi-

gated, thus by placing light the tracer particles (in this case, a fine graphite powder) on the
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surface of the fluid. Due to the surface tension of fluid (water and water/sucrose mixtures)

and the buoyancy of the particle, they were restricted to the two-dimensional plane of the

fluid surface. The sample was illuminated from the top and the videos are captured at 240

frames per second.

In most cases of PIV analyses, two images are created (A and B) at times t0 and t0 +∆t.

The distance that the particles have travelled between image A and B is known as the particle

displacement. The particle displacement is typically calculated for groups of particles by

evaluating the correlation of many small sub-regions of the images. These correlations give

the most probable displacement of the group of particles, assuming they travel in straight

lines between image A and image B. The velocity of the area of interest can then be evaluated

from the particle displacement and ∆t.

Fig. 3.7 Visualisation of the process used in particle image velocimetry. The boxes on Image
A and Image B show the typical sized of the sub-regions. The final image shows the velocity
field calculated from the time step and particle displacement.

Figure 3.7 visualises the PIV process, for a computer generated rotational flow (an

example created by the software). In reality, the flow fields were more complex and the

vectors were vectored over multiple frames of the video. This process was very useful for

analysing the flow fields generated by the magnetic systems.

57



Experimental methods

3.3.3 Error analysis

Generally, the intrinsic error of the measurements arises from uncertainties in the measured

position and speed of the particle (or swimmer) and the speed of the fluid flow. The speed and

position were measured using particle tracking and particle image velocimetry (PIV) between

two subsequent frames of the video footage. As an example, a 30 second video (filmed at

30 frames per second) would have created 450 values for the speed for the swimmer, from

which the mean and standard deviation are calculated.

For the case of a PIV analysis, an average flow speed over the frame area was created.

For example, similar to that of the particle tracking, for a 30 second video, 450 values would

be created, however each value in this case contained the flow profile for the measured area.

The mean and standard deviation of each point (direction and speed, i.e. 408 white arrows

on Figure 3.7). A mean flow speed of the whole area of interest was calculating using the

produced flow profile.

The standard deviation was used as a measure of the experimental error. This type of

error analysis was used for in all experiments presented in the thesis, unless stated otherwise

(for example multiple devices or systems).
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Magnetically controlled swimmers

This chapter focuses on the fabrication and experimental investigation of magnetic millimetre-

scaled swimmers. There are two main swimming system that will be focused on. The first

is a new class of autonomous ferromagnetic swimming devices, actuated and controlled

solely by an oscillating magnetic field. These devices are comprised of a pair of interacting

ferromagnetic particles (one NdFeB and one Fe) coupled together by a silicone rubber link.

Due to the difference in magnetic properties of the two particles, the application of an

external magnetic field leads to time varying dipolar gradient force between the particles

(resulting in a relative radial motion) as well as time-dependent torque (causing an oscillatory

rotational motion of the whole system). The deformation of the elastic link caused by the

two interaction reminiscent of the deformation that many biological organisms, for example

the amoeboid movement of eukaryotic cells [107].

The second focus will be on a torque driven ferromagnetic swimmer. This swimmer

comprises of a magnetically hard ferromagnetic material attached to a flexible elastic tail.

Once actuated by an external magnetic field, the swimmer experiences a torque and creates

bending modes that successfully create an asymmetric motion. The swimmer showed a

motion which is analogous to the beating flagellum of many natural microscopic swimmers.

59



Magnetically controlled swimmers

4.1 Two-ferromagnetic particle swimmers

This section will demonstrate the experimental and theoretical understanding of the two-

ferromagnetic particle swimmer. These swimmers are based on a pair of interacting ferro-

magnetic particles - of different size and different anisotropic properties - joined by an elastic

link. The swimmers are actuated and controlled by the manipulation of the parameters of

the external magnetic field - resulting in a robust control over the speed and direction of

propulsion.

4.1.1 The theoretical model

In the simplest case, the proposed swimmer utilises two types of interactions, the dipolar

gradient forces between the magnetic particles and the torque exerted by the external magnetic

field. A schematic representation of the system consisting of a hard and soft magnetic particles

is shown in Figure 4.1. To investigate the plausibility of such a system F. Ogrin et al. [1, 2]

Fig. 4.1 Schematic representation of the system consisting of a hard (red) and a soft (blue)
particle connected with an elastic link. The magnetic forces experienced by each particle are
shown for two orientations of the external magnetic field: (a) anti-parallel to the magnetic
moment of the hard particle, (b) parallel to the magnetic moment of the hard particle. (c)
Shows the effects of the magnetic torque when the system is subject to an oscillating magnetic
field.
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developed a computational model, which calculates the trajectories of the two magnetic

particles. The model assumes that both magnetic particles are point dipoles, therefore, for a

dipole magnetic field, Equation 2.25 will become

Bk =
µ0

4π

(
3(mk · rk)rk

r5
k

− mk

r3
k

)
, (4.1)

where Bk is the flux density generated by the particle k, mk is the magnetic moment of

particle k, and rk position vector of the particles j and k (indices denote the particle number,

j = 1 or j = 2 and k = 3− j). The resulting force of attraction or repulsion between the

particles is given by

FMj = ∇(mj ·Bk). (4.2)

The force of attraction or repulsion resulted in a physical displacement of the two magnetic

particles relative to each other. This interaction gave the first degree of freedom for the system.

To determine the orientation of the dipole moments in the external field H the model used a

standard magnetostatic approach [108] in which the interaction energy is minimised to find

the local minima with stable positions of both moments. For simplicity, the magnetostatic

energy density for each particle was represented by

Emag =−M ·H+K sin2
α. (4.3)

The first term is the Zeeman energy representing the interaction of the magnetic moments

with the applied magnetic field. The second term is the uniaxial magnetic anisotropy term.

This describes the combined effects of shape and crystalline anisotropy, with α being the

angle between the magnetic moment of the particles and the orientation of the easy axis

respect to the vector M. K is the effective anisotropy field constant. The soft particle was
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given a zero value of K, whereas for the hard particle K was chosen so that the effective

anisotropy field was higher than the applied magnetic field.

As the system is in the presence of an external elliptical magnetic field, it experiences

a magnetic torque. The hard particle (with higher anisotropy) will rotate to align its easy

axis with the direction of the applied field. If the particles were rigidly connected with each

other, the whole system would experience a mechanical torque, resulting in a rotation of the

whole dipole pair. This mechanical torque provided the second degree of freedom in the

configuration space required to propel.

As well as the magnetic interactions, both particles were subject to elastic forces (from

the elastic link) and hydrodynamics friction. The elastic force Fel results from compression

and extension of the elastic link connecting the particles

Fel = kspr[(r2 − r1)− r0]. (4.4)

Here kspr is the effective spring constant and r0 is the vector representing the natural length

of the spring. In the model the bending modulus of the spring was assumed to be infinitely

large.

The hydrodynamic interactions between the two magnetic particles has a decisive con-

tribution for the symmetry breaking and generation of translational displacement. The

hydrodynamic interactions were derived by considering the flow past a moving sphere in a

viscous fluid, by taking the leading order term from the greens function shown in [109]

m̃jaj = Fext
j − γj

[
vj −

3
4

Rk

Ljk
(n̂jkn̂jk + I) ·vk

]
, (4.5)

where j, k = 1, 2 and j ̸= k denotes each magnetic particle, vj is the particle velocity, Rk

is the particle radius, Ljk is the inter-particle separation, m̃j is the particle mass, aj is the

acceleration, Fext
j is the sum of the external forces, n̂jk is the unit vector in the direction
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connecting the particles, I is the identity matrix, and γj = 6πνRj. The left-hand side could be

neglected as, as the motion of the swimmer was over-damped.

In the simulation, an elliptical oscillating magnetic field is applied in the xy plane, with

Hx = H0
x cos(ωt) and Hy = H0

y sin(ωt). Here Hx and Hy are the amplitudes of the field, ω is

the angular frequency of the field and t is time.

Parameter Value
Horizontal magnetic field amplitude H0

x = 500 Oe
Vertical magnetic field amplitude H0

y = 10 Oe
Magnetic properties of hard particle M1 = 1.4×10−6 Am−1, 2K1/M1 = 1 kG
Magnetic properties of soft particle M2 = 1.4×10−6 Am−1, 2K2/M2 = 0 kG

Radius of hard particle R1 = 3.2 µm
Radius of soft particle R2 = 6.4 µm]
Natural spring length r0 = 6.4 µm

Effective spring constant kspr = 0.05 Nm−1

Dynamic viscosity of fluid µ = 0.1 Pa s
Reynolds number Re ∼ 1×10−3

Table 4.1 Simulated parameter values for the two-ferromagnetic particle swimmer [1, 2].

The motion of the system was calculated for realistic parameters, shown in Table 4.1.

Figure 4.2 shows the trajectories of the centre of reaction (black), as well as the particles

themselves (hard particle - red, soft particle - blue). The simulation shows a linear displace-

ment of the centre of reaction, with a net motion of approximately 8 µm s−1. Thus, the

conditions for swimming at a low Reynolds number are fulfilled allowing a net translational

motion. For the size of the swimmer this would correspond to a speed of 0.7 body lengths

per second. Eukaryotic cells are able to create a swimming speed of up to 2 body lengths per

second. This proposed system showed promise for a reliable method to propel a swimming

at a low Reynolds number.
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Fig. 4.2 Trajectories of the centre of reaction (black), hard particle (red), and soft particle
(blue), after application of an elliptically rotating external field. The black arrow shows the
direction of the linear displacement of the system. The circles show the initial position of
the two particles and their centre of reaction. Simulation parameters are shown in Table 4.1.
Figure taken from F. Orgin et al. [2].

The direction of propagation was shown to also depend on the parameters of the external

magnetic field. Two main regimes of the system were identified. The first is the case when the

magnetic torque of the system dominated; in this case the model predicted that the swimmer

would move along its principal axis. For this regime the magnetic particles would exhibit

large amplitude undulations, the internal motion would resemble a pendulum-like motion

(Figure 4.3a). In contrast, the second regime was present when the magnetic dipolar force

between the particles dominated. For this regime the swimmer mainly rocked about a mean

angle with large compressions and extensions of the elastic link. In this case the swimmer

would propel perpendicular to its primary axis and this regime was termed "locomotive"

(Figure 4.3b).
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Fig. 4.3 Trajectories of the hard particle (red), and soft particle (blue) after one cycle. The
black arrow shows the direction of the linear displacement of the system after multiple cycles.
(a) Particle trajectory when the system is in the pendulum regime. (b) Particle trajectory when
the system is in the locomotive regime. Figure adapted from A. Gilbert et al. [110, 111].

4.1.2 The first prototype

This section will focus on the fabrication and investigation of the first prototype based on the

model system proposed by F. Ogrin et al. [1, 2]. The initial prototypes were fabricated using

a brass mould built in-house to create the elastic links. The mould comprised of two brass

disks. The first had a pin - producing the inner diameter of the link - and the second had a

hole - producing the outer diameter. A schematic of the described brass mould is shown in

Figure 4.4a. Once a uncured liquid rubber was added to the mould and cured, the mould

could be disassembled.

This fabrication process created elastic ring structures which were the building blocks

for the first prototypes (Figure 4.4b shows a cured silicone gel ring, of outer diameter of

approximately 2 mm and depth 0.6 mm). Once a ring was fabricated, the magnetic particles

could be attached using superglue. To create a soft ferromagnetic particle 0.5 mm diameter

iron wire was cut to a length of approximately 2 mm. The hard ferromagnetic particle was
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created by cutting cube-like fragments with pliers from a 1 cm cubic neodymium iron boron

(NdFeB) magnet (approximately 2 mm x 1 mm x 1 mm). Figure 4.5 shows two of the first

prototype created. Figure 4.5a shows a photograph of a prototype where the elastic link is

created from a silicone gel, and Figure 4.5b shows a photograph of a prototype where the

link is created using a latex based rubber.

Fig. 4.4 (a) Schematic diagram of the two brass disks of the mould. (b) A fabricated silicone
gel ring - with approximate diameter of 2 mm on top of the base disk of the mould.

Fig. 4.5 Photographs of the first fabricated two-ferromagnetic particle prototypes, (a) with a
silicone gel link and (b) a latex-based link. A millimetre scaled ruler is shown for scale.

To systematically investigate the swimming capabilities of the initial swimmers, the

swimmers mobility was examined at the fluid-air interface, so they were restricted to the

surface. The swimmers were placed in the centre of a large area (148 mm diameter) Petri
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dish, which ensured that it was not affected by the curved meniscus near the edges of the

Petri dish (the capillary length for water is a few millimetres).

To create the actuating magnetic field for the initial swimmers, a Helmholtz coil system

was powered with a sinusoidal signal via a standard audio amplifier. An open-source

particle tracking software was used to determine both the average speed and direction of

migration of the swimmers. A full description of the experimental method can be found in

the Experimental Methods Chapter.

Figure 4.6 shows data collected from the swimmer with the latex-based ring (Figure

4.5b). The figure shows the swimming speed as a function of the frequency of the external

magnetic field for different field strengths. For all shown field strengths, there is an observed

drop in swimming speed as the frequency is increased apart from a peak at 100 Hz. The

peak occurs due to a small bias (25 to 65 µT) perpendicular to the external magnetic field -

the Earth’s magnetic field. The presence of the Earth’s magnetic field perpendicular to the

external field creates additional regimes, not originally shown in the model. The effects of

the Earth’s magnetic field will be discussed further later in this chapter. The maximum speed

observed for this swimmer was ∼ 15.82±0.13 mm s−1 (approximately 3 body lengths per

second), but quickly falls off with frequency (a change of 20 Hz) to < 5 mm s−1 (1 body

lengths per second). This device showed good comparison to the speeds of eukaryotic cells

(2 body lengths per second), however it would be desirable for the system to be stable over a

broader band frequency range, so that the different propulsion regimes could be explored. As

well as the fall off with frequency, this swimmer also exhibited a poor directional control,

despite the fact that the model predicted different propulsion direction at different frequency

and strength of the external magnetic field, due to a switching and mixing of the dominating

swimming regime.
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Fig. 4.6 Swimming speed as a function of frequency for the initial prototype for different
external magnetic field strengths. Black solid line (squares) - 0.3 mT, red dashed line
(triangles) - 0.5 mT, blue dotted line (circles) - 0.7 mT, and green dot-dashed line (diamonds)
- 1.0 mT.

I proposed that the issue of directional control was arising from the fabrication process.

Although these swimmers showed that the model by F. Ogrin et al. [1, 2] could experimentally

create the motion required for low Reynolds number swimming, it needed to be improved.

The most likely reason for this was that the superglue used to attached the ferromagnetic

particles to the elastic link was altering the elastic properties of the link. This was causing the

link to become more rigid. Another issue in the fabrication was the creation of hard NdFeB

particles, as they were quite irregular with their shape as can be seen in Figure 4.5.
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4.1.3 Improving the two-ferromagnetic particle swimmer

This section focuses on the optimisation of the two-ferromagnetic particle swimmer. The

optimisation includes the improvement of the mould, elastic properties and ferromagnetic

particle production. All these variables improved the reproducibility and reliability of the

fabricated two-ferromagnetic particle swimmers.

To reduce the effect on the elastic properties due to the superglue, I proposed and designed

a new mould. Once again this mould comprised of two brass disks, but in this case the top

disk was altered. In this mould two regions were milled with width 0.6 mm, and length 0.8

mm (shown in Figure 4.7a). These regions were created so that the ferromagnetic particles

could be placed in the mould when the elastic material was in its liquid form. The depth of

the ferromagnetic swimmer fabricated was kept the same as previously stated (0.6 mm). This

alteration means that the particles were encapsulated within the elastic material once cured,

so the material would keep the same elastic properties. To further improve the mould, screws

and dowels were added so that the two sections of the mould could be compressed tightly

together (shown in Figure 4.7b). Ensuring that the two halves of the mould were tightly

bound reduced the leakage of liquid elastic material into the joins. This small alteration

helped improve the uniformity of the fabrication of the two-ferromagnetic particle swimmers

as well as their swimming behaviour.

To further improve the uniformity of the two-ferromagnetic particle swimmers, a diamond

blade dicer was used to cut 2 cm diameter, 0.6 mm thick disk NdFeB magnetic into 0.6

mm × 0.6 mm × 0.45 mm. The diamond blade dicer was also used to cut the length of the

iron wire to 0.7 mm. Using this method to cut the desired dimensions of the ferromagnetic

particles increased the similarities between different fabricated swimmers.

To improve the performance of the swimmer for the range of external magnetic field

parameters, I investigated how the material would affect the operating range. As previously

shown (Figure 4.6) the swimming performance fell off quickly with the frequency of the
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external magnetic field. Three materials were investigated, silicone gel (4.7c), silicone rubber

(4.7d), and a latex-based rubber (4.7e).

Fig. 4.7 (a) Schematic diagram showing the improved two brass disks of the mould. (b)
Photograph of the final improved mould - with holes for screws and dowels. The photographs
show the swimmers produced from this mould for different materials: (a) silicone-based gel,
(b) silicone rubber, and (c) latex.

The swimming performance of the different material two-ferromagnetic particle swim-

mers were investigated for a frequency sweep of 60 Hz to 260 Hz at a field strength of 1.0

mT (Figure 4.8a). The different material swimmers were also tested for a magnetic field

strength sweep of 1.0 mT to 4.0 mT at a frequency of 100 Hz (Figure 4.8b). As a control a

swimmer was fabricated with two soft iron particles and its behaviour is shown with the green

dot-dash line. Figure 4.8 shows that its swimming speed is very low. These low speeds were

to be expected due to the minimal magnetic torque experienced by the soft particles which

interact only via a small dipolar force. This would result in the moment being reciprocal and

therefore no overall propulsion.

The swimming speed of all swimmers fall off with increasing frequency, a peak is also

shown for all materials between 80 Hz - 110 Hz (similar to the peaks shown in Figure 4.6).
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The latex based swimmer exhibited a large maximum (approximately 6.2 ± 0.3 mm s−1),

followed by a quick drop to swimming speeds similar to those for the silicone gel swimmer.

The silicone rubber swimmer has the steadiest decrease in swimming speed.

In the magnetic field strength investigation, the speed of the silicone rubber swimmer (red

dashed) and the latex swimmer (black solid) both increased with increasing field strength.

The latex based swimmer had a steeper gradient and higher swimming speeds but the device

has a tendency to became unstable on the surface of the fluid. This was thought to be due

to the deflect and air bubbles seen in the structure (no two swimmers ever showed the same

swimming behaviour). On the other hand, the silicone gel swimmer’s speed decreased as the

magnetic field strength was increased.

Fig. 4.8 Swimming speed as a function of (a) frequency (60 Hz - 160 Hz) at 1.0 mT and (b)
magnetic field strength (1.0 mT - 4.0 mT) at 100 Hz for the improved swimmer prototype
for different materials. Black solid line - latex, red dashed line - silicone rubber, blue dotted
line - silicone-based gel. Green dot-dashed line shows a control swimmer which has two soft
(iron) particles.

Following the elastic material tests, I decided that the most stable and interesting elastic

material to use for all two-ferromagnetic particle swimmers would be the silicone rubber (Fig-
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ure 4.7d). The swimmers design and materials had now been finalised and the investigation

of the full swimming performance and directional control could start.

4.1.4 Magnetically controlled two-ferromagnetic particle swimmers

In this section, I will discuss the investigations of the dynamic performance of the two-

ferromagnetic particle swimmer in fluids of different viscosity as a function of the external

field parameters (frequency and magnetic field strength) and demonstrate stable propulsion

over a wide range of Reynolds numbers. The publication on this work can be found in J.K.

Hamilton et al. [112].

Swimming speed

As noted previously, the systematic investigation of the frequency and viscosity dependencies

of the average propagation speed of the silicone rubber two-ferromagnetic particle swimmer

revealed that the orientation of the system relative to a small bias field - in this case the

Earth’s magnetic field - is an important parameter. Figure 4.9a shows the average propagation

speed of a two-ferromagnetic particle swimmer as a function of the applied frequency at

three different field strengths (1.0 mT, 1.5 mT, and 2.0 mT). In this case the Helmholtz coil

system is aligned parallel to the Earth’s magnetic field. To clarify in this orientation, the line

joining the geometrical centres of the two coil loops is parallel to the direction of the Earth’s

magnetic field. In this configuration a maximum is observed followed by a steady decrease

in swimming speed with increasing frequency, ω . For the case of the strongest magnetic field

investigated a maximum is present at 60 Hz. For the same orientation, Figure 4.9b shows the

swimming speed as a function of the viscosity for three different frequencies (50 Hz, 100 Hz,

and 150 Hz). For all cases, the swimming speed falls off with increasing kinematic viscosity.

The swimmer’s swimming behaviour was investigated over a range of viscosity start from
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water (ν = 1.0×10−6 m2s−1) to a mixture of 30% water and 70% sucrose (ν = 2.4×10−4

m2s−1).

Fig. 4.9 (a) Swimming speed as a function of frequency (50 Hz - 150 Hz) for different
magnetic field strengths. Black circles - 2.0 mT, red triangles - 1.5 mT, and blue squares -
1.0 mT. (b) Swimming speed as a function of fluid viscosity, for different frequencies. Black
squares - 150 Hz, red triangles - 100 Hz, and blue circles - 50 Hz, with an external magnetic
field of 1.5 mT. The lines shown are power law fits with the colour corresponding to the fitted
data.

In Figure 4.9a frequencies lower than < 50 Hz are not shown in the investigation. At

these frequencies (< 50 Hz) the swimmer would experience a full rotation and would result

in no net motion or incoherent swimming. This motion is due to that fact that the magnetic

torque felt by the external magnetic field has time to fully rotate the swimming in one cycle.

As previously defined within the Methods Chapter, the swimming speed as linear motion and

therefore this motion was defined as not swimming. Figure 4.10 shows a typical trajectory of

a swimmer in this spinning regime, a schematic shows a full rotation.

73



Magnetically controlled swimmers

Fig. 4.10 Trajectory plot of a swimmer in the presence of a 1.5 mT field with a frequency
of 40 Hz. In this regime the swimmer undergoes a full rotation (within a period) creating
incoherent swimming. A schematic depicts the motion within one cycle.

Using Figure 4.9a, Figure 4.9b, and a power law fitting tool, one can deduce an ex-

perimental dependence of swimming speed on frequency and fluid viscosity. For the case

shown in these figure, u ∝ ωaνb, with a ≈ −0.6 (−0.6± 0.2 at 1.0 mT,−0.4± 0.1 at 1.5

mT, and −0.7±0.2 at 2.0 mT) and b ≈−1 (−0.9±0.2 at 50 Hz,−1.0±0.1 at 100 Hz, and

−1.0±0.1 at 150 Hz).

These power law dependencies are in qualitative agreement with the current theoretical

model [110] which predicts the reduction in swimming speed with the increase of both

frequency and fluid viscosity. . In the model, an equation of motion was created by solving a

Lagrangian, which balanced the forces in the system: hydrodynamic interactions, dipolar

gradient force, magnetic torque, and the elastic restoring force. From the equation of motion,

the key parameters that effect the swimming speed can be extracted. Here, the parameters of

interest are the external stimuli (field strength Bext, viscosity ν , and frequency ω), resulting
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in

u ∝
B2

ext
νω

. (4.6)

The dependency on viscosity is to be expected, as in the Stokes regime the velocity is

proportional to 1
ν

(as shown in Equation 4.5). The dependence on frequency is a result of the

two magnetic interactions (dipolar gradient force between the two particles and the magnetic

torque felt by the hard particle) as well as the hydrodynamic interactions. By comparing the

magnetic response time to the frequency of the field, as the frequency is increased the system

would have less time to react to the forces within a cycle. It would result in a decrease in

velocity increasing frequency. The viscosity sets an additional time scale in the system. For

example, it is important when discussing the frequency response. For low frequencies, the

system will be able to rotate, however has the viscosity is increased the motion is supressed

by the viscous friction, this result in shown in Figure 4.9b.

As previously stated the applied magnetic field in the theoretical model comprised of

an elliptical field, with no bias. Following the experimental investigation, the effects of a

constant bias field - parallel to the applied magnetic field - was added to the model. Figure

4.11 shows the theoretical prediction and has similarities to the experimental findings shown

for 2.0 mT in Figure 4.9a. Figure 4.11 reveals the presence of a maximum (approximately 3

body lengths per second) at low dimensionless frequencies (ϖ is the dimensionless magnitude

of the viscous drag compared with elasticity, at a frequency ω), followed by a monotonic

decrease in swimming speed for increasing field dimensionless frequency. The two other

main dimensionless parameters in the model are: Amag which is the measure of the dipole

attraction between the two ferromagnetic particles (compared with the elastic force), which

varies as the ferromagnetically soft particle dipole direction follows the external magnetic

field, and Aext, which gives the torque on the ferromagnetically hard particle due to the

external magnetic field (compared with the elastic force). The parameters are defined as

follows
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ϖ =
6πωµ

k
R1R2

(R1 +R2)
, (4.7)

Amag =
3µ0m1m2

4πkr5
0

, (4.8)

Aext =
√

m1m2
Bext

kr2
0
. (4.9)

Recalling the variables [110], Ri the radii of the particles, mi the magnetic moments of

the particles (where i = 1 or 2), k the string constant, r0 the natural length, external magnetic

field strength Bext, and frequency ω , and ν the fluid viscosity. Using these parameters, the

experimental system can be tested to verify that the regime would be similar to that for the

model.

Parameter Experimental value
M1 1.39×10−4 Am−1

M2 2.45×10−5 Am−1

R1 0.30×10−3 m
R2 0.25×10−3 m
r0 1.6×10−3 m
µ 1.0×10−3 Pa s

Bext 2.0×10−3 T
Table 4.2 Simulated parameter values for the two-ferromagnetic particle swimmer model,
based on the experimental device.

The values of the dimensionless parameters can be found using the experimental values

in Table 4.2 and assuming the elastic force for an elastic ring with a rectangular cross-section
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can be evaluated by using the Castigliano theorem

Fel = 4.55
he3E
D3 y, (4.10)

where y is the extension, h is the cross-sectional height (0.6 mm), e is the width (0.2 mm), D

is the diameter of the ring (1.8 mm), and E is the Young’s Modulus of the material. Assuming

that the system obeys Hooke’s Law (Fel = ky), an expression for a predicted k can be obtained.

In the literature, the value of E (for silicone rubber) is known to be 0.001 GPa.

Parameter Model Experiment
ϖ 0.0503 0.00043

Amag 0.0403 0.026
Aext 0.207 0.012

Table 4.3 Comparison between the simulated and experimental dimensionless parameter for
the two-ferromagnetic particle swimmer.

The theoretical values of the dimensionless quantities are for a micrometre-sized swimmer

(total length of 11.2 µm) activated in an external field of 0.05 T and frequency 2500 rad s−1.

The agreement between the experimental and theoretical values (all values less than 1.0)

imply that the system is scalable and results in the swimmer remaining in the same regime.

It is worth noting that the region marked in red on Figure 4.11 indicates a region of

incoherent swimming. In this region the motion of the swimmer is not a linear and this can

be compared to the experimental findings. In the experiment, for frequencies lower than

shown (< 40 Hz), the torque experienced by the swimmer by the external magnetic field is

too large. When the swimmer experiences a large torque, the swimmer fully rotates resulting

in non-linear motion.
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Fig. 4.11 Simulated dependencies of the average speed of the swimmer on frequency (di-
mensionless) for a parallel bias field. Three distinct swimming behaviours are observed
(depicted in different colours): no or very slow swimming (white), incoherent swimming
(red) and stable swimming (grey). The externally applied oscillating field is almost uniaxial
(1% aspect ratio) to mimic the uniaxial field in experiment and the bias field is 0.5% of the
maximum external field. The rest of the parameters are the same as the model by A. Gilbert
et al. [110]. Initially, the swimmer is aligned with its primary axis along the bias field as in
the experiments.

The quantitative differences between the model and experiment are to be expected since

the model employed a simplified geometry (previously described as two spherical magnetic

particles joined with a linear spring of zero volume). Another difference between the two is

that the model assumed the swimmer to be placed within the bulk of the fluid, whereas in

reality the experiments were conducted on the air-fluid interface.

A range of Reynolds numbers can be deduced from the viscosity experiments. Basing

the Reynolds number on the maximum average speed achieved by a swimmer, the overall

length of the swimmer and the viscosity of the fluids, Re is between 6×10−5 and 20. This

shows that these two-ferromagnetic particle swimmers are capable of self-propulsion at low

to moderate Reynolds numbers.
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In addition to the investigation of the frequency and viscosity dependence, further exper-

imental studies were conducted. Figure 4.12 shows the dependence of the magnetic field

strength on the swimming speed. In this investigation the frequency was kept at 50 Hz, 100

Hz, and 150 Hz, respectively, and the coil system is in the parallel alignment to the Earth’s

magnetic field. An increase in swimming speed is observed for increasing magnetic field

strength (for 50 Hz and 100 Hz). However, at the higher frequency (150 Hz) the swimming

speed reaches a saturation at high magnetic field strength (1.25 mT) and plateaus.

Fig. 4.12 Swimming speed as a function of magnetic field strength (0.25 mT - 2.0 mT) for
different frequencies. Black circles - 150 Hz, red triangles - 100 Hz, and blue squares - 50
Hz. The lines shown are linear fits with the colour corresponding to the fitted data.

Figure 4.13a and Figure 4.13b show the same dependencies but in this case the coil system

was placed perpendicular with respect to the Earth’s magnetic field. In this orientation, the

swimming performance is significantly modified. In this case the frequency dependence is

no longer shown to be monotonically decreasing and exhibits more than one maximum even

at low field strengths. At higher field strengths, there is a tendency of fast decrease in the

speed with increase of frequency up to ca. 110 Hz, after which the speed begins rising again.

79



Magnetically controlled swimmers

Fig. 4.13 (a) Swimming speed as a function of frequency (50 Hz - 150 Hz) for different
magnetic field strengths. Black circles - 2.0 mT, red triangles - 1.5 mT, and blue squares - 1.0
mT. The green diamonds show the swimming performance of a swimmer with an increased
particle separation of 3.0 mm for a field strength of 2.0 mT. (b) Swimming speed as a function
of fluid viscosity, for different frequencies. Black squares - 150 Hz, red triangles - 100 Hz,
and blue circles - 50 Hz, with an external magnetic field of 1.5 mT The lines shown are
power law fits with the colour corresponding to the fitted data.

It is evident that the presence of a constant bias field (even as small as the Earth’s magnetic

field) is an important factor that could be used to control the performance of the swimmers.

The bias field provided an additional symmetry axis and contributed to the torque affecting

the swimmer’s speed. I predicted that, depending on the frequency, it would lead to switching

between the different propulsion regimes previously described. This switching of regimes

results in a complex frequency dependence. To test this prediction, a small bias field was

added in the theoretical model perpendicular to the main applied magnetic field. In this

configuration of the model, for increasing frequency, there are two maxima (shown in Figure

4.14), qualitatively similar to the experimental findings. The two maxima have speeds of

approximately 2.6 body lengths per second and 3.4 body lengths per second, respectively.
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Fig. 4.14 Simulated dependencies of the average speed of the swimmer on frequency (dimen-
sionless) for a perpendicular bias field. Three distinct swimming behaviours are observed
(depicted in different colours): no or very slow swimming (white), incoherent swimming
(red) and stable swimming (grey). The externally applied oscillating field is almost uniaxial
(1% aspect ratio) to mimic the uniaxial field in experiment and the bias field is 0.5% of the
maximum external field. The rest of the parameters are the same as the model by A. Gilbert
et al. [110]. Initially, the swimmer is aligned with its primary axis along the bias field as in
the experiments.

Small variations in the geometrical parameters of the swimmer were shown to drastically

affect the swimming performance. One parameter investigated was the equilibrium distance

between the magnetic particles, which has a strong effect due to the dependence of the

magnetic particle-particle interaction forces on the particle separation. Figure 4.13a illustrates

this with the green diamonds (IncreaseSep) - where the separation was increased by ∼ 36%.

This increase in separation was shown to reduce the swimming speed by almost two orders

of magnitude. The dynamics of the system depends on the gradient forces generated by the

magnets, the elasticity of the coupling and thus the strain in the elastic coupling over the

oscillation cycle.

The magnetic force between the two particles can be analytically estimated if the geometry

of the particle is known [113]. Figure 4.15 shows the magnetic gradient forces between the
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particles (estimated using the geometry and magnetic response of the particles) as a function

of particle separation. The standard separation (2.2 mm) for the swimmers is shown, as

well as the increased separation of the IncreaseSep swimmer (green diamonds on Figure

4.13a), shown with the grey dashed line. Assuming the strongest attraction force between the

particles (the anti-parallel alignment of the magnetization), an external field of 2.0 mT and

an equilibrium particle-particle separation of 2.2 mm, the elastic and magnetic forces can be

balanced. The maximum extension of 0.25 mm is obtained (a deformation of ∼ 7%) from this

balancing of forces. Characterising the deformation of the single parameter of longitudinal

strain, the model would have predicted a deformation of ∼ 13% of the total length. In the case

of the swimmer with the increased particle separation (IncreaseSep) (∼ 36%), the resulting

extension would decrease to 0.13 mm. This reduction in elastic deformation produces the

reduction in the speed of motion seen in Figure 4.13a (green diamonds).

Fig. 4.15 Analytical estimate of the magnetic force between the hard and soft ferromagnetic
particles as a function of the separation between them in the presence of external magnetic
fields of different strength (green: 1.0 mT, red: 1.5 mT and blue: 2.0 mT) and zero external
magnetic field (black). The vertical dashed line corresponds to increased particle separation
of ∼ 36%, as for a swimmer with an increased particle-particle separation.
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Both experiments and simulations reveal rich dynamics which has implications for the

control of the swimming motion - not only speed but also direction of motion. The rich

behaviour of the swimmer under the actuation of the external magnetic parameters will be

discussed in the following section.

Directional control

One of the main advantages of the two-ferromagnetic particle swimmer presented in this

work is the directional control of the swimmer. The direction of motion can be easily

controlled by adjusting the frequency and strength of the external magnetic field without

spatial repositioning of the coil system. Figure 4.16 illustrates the effects of altering the

frequency of the external magnetic field on the orientation of the swimmer as well as the

trajectory (for parallel alignment with respect to the Earth’s field), Figure 4.16a, and the

perpendicular alignment, Figure 4.16b.

Fig. 4.16 Effects of the frequency of the external magnetic field on the direction of migration.
The direction of the external magnetic field, H, and the Earth’s magnetic field, HE (∼ 0.02
mT) are indicated. (a) Direction of motion as a function of frequency at 2.0 mT for a parallel
alignment between H and HE. The mean orientation of the swimmer is shown schematically
for each frequency. The final point on each trajectory is at 1.9 seconds. (b) Direction of
motion as a function of frequency at 2.0 mT for a perpendicular alignment between H and
HE. The mean orientation of the swimmer is shown schematically for each frequency. The
final point on each trajectory is at 1.9 seconds.
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In the parallel alignment between the coil system and the Earth’s magnetic field the

direction of propagation of the swimmer could be controlled within a 95◦ angle. In this ori-

entation, the swimmer would either travel parallel, or perpendicular to the external magnetic

field. . This is expected due to the swimmer’s motion either in one of the two extremes: the

previously discussed pendulum and locomotive regimes. In the pendulum regime (when

the magnetic torque is the dominate interaction), the swimmer would rock on its major

axis and travel parallel to this major axis. In the case of the locomotive regime (when the

dipolar gradient force is the dominate interaction), the swimmer would experience a greater

attraction and repulsion force between each cycle. This interaction created a ‘rolling’ motion,

which typically resulted in the swimmer propelling perpendicular to its major axis. In the

intermediate frequencies where no interaction dominates (‘sub-regimes’), the swimmer could

propel at angles between the two extremes. The regimes are illustrated via the schematic of

the swimmer on the figure. Examples of the two regimes can be seen in Figure 4.16a: 50 Hz

and 80 Hz show a pendulum like regime and 120 Hz and 150 Hz show a locomotive regime.

In the perpendicular alignment between the coil system and the Earth’s magnetic field

the direction of propagation of the swimmer can be controlled within a 115◦ angle. As

the frequency of the external magnetic field is increased, the swimmer had the tendency

to migrate in the direction of the Earth’s magnetic field. The effect of this migration is

suspected to be due to the initial conditions of the swimmer. Initially, the swimmer is aligned

with its primary axis along the bias field (similar to a compress pointing north with the

Earth’s magnetic field). At rest the swimmer is free to rotate in the presence of the Earth’s

magnetic field; the swimmer will align along the direction of this small bias. Once the

external magnetic field is applied - at larger frequencies - the swimmer does not have enough

time to physically rotate the swimmer, thus the swimmer would oscillate about the direction

of the Earth’s field. As a result, there is a new regime - resembling the pendulum one -

created when the small bias is perpendicular.
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In Figure 4.16, the only manipulated external parameter was the frequency of the external

magnetic field. In Figure 4.17, both the strength and frequency of the external magnetic field

were varied. In this case, the system was once again in the perpendicular alignment relative

to the Earth’s magnetic field. The three discussed regimes are clearly shown in Figure 4.17:

50 Hz shows the regular pendulum, 90 Hz shows the locomotive, and 130 Hz shows the

bias-based pendulum. The trajectories shown in this figure show a control over the direction

of propagation in over 270◦, only by manipulating the frequency between 50 Hz and 150 Hz,

and strength of 2.5 mT to 0.9 mT.

Fig. 4.17 Direction of motion as a function of different frequencies and magnetic field
strengths (ranging between 50 – 150 Hz and 2.5 – 0.9 mT, respectively) for a perpendicular
alignment between H and HE. The mean orientation of the swimmer is shown schematically
for each frequency. The final point on each trajectory is at 2.7 seconds.

Figure 4.17 shows that when the frequency and amplitude are adjusted simultaneously,

one can achieve virtually any direction. This addition control of the swimmer is due to the
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Fig. 4.18 A figure of eight trajectory produced by varying the frequency and amplitude. The
four sketches of the swimmer show its orientation at the respective time points.

dependencies that the swimmer has on both frequency and field strength. By systematically

controlling these external parameters, and utilising the small bias field (the Earth’s magnetic

field) different ‘sub-regimes’ could be used to control the swimmer. To further demonstrate

this, Figure 4.18 shows the trajectory of the swimmer while both the frequency and strength

of the external magnetic field were manipulated. The figure-of-eight trajectory shown, was

achieved by only varying the frequency and amplitude within the ranges 50 – 150 Hz and 0.5

– 2.0 mT, respectively. The orientation of the swimmer is also illustrated for different time

points along the trajectory.

The results from this investigation show how a high level of control over the speed and

direction of propagation can easily be achieved by tuning the frequency and amplitude of the

external magnetic field. With the addition of a very small constant bias to it (in this case the

Earth’s field, ∼ 0.02 mT) the control can be tailored for the requirements. This would be

highly advantageous in technological applications requiring robust actuation and control.
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4.1.5 Final improvements to the two-ferromagnetic particle swimmer

To further improve the reproducibility of the swimmers in the fabrication, NdFeB cube

magnets were purchased from SuperMagnetMan, these magnets have dimensions of 0.5 mm

× 0.5 mm × 0.5 mm. Using these magnets, the swimmers could be fabricated reliably with

the same geometry and magnetic properties. To improve the fabrication of multiple swimmers,

a Formlabs Form 2 resin based 3D printer was used (resolution of 25 µm) example of a 3D

printed mould is shown in Figure 4.19. Further information can be found in Experimental

Methods Chapter.

Fig. 4.19 An example of a mould recreated using Autodesk AutoCAD and the Formlabs
Form 2 3D printer

4.2 Torque driven ferromagnetic swimmers

This section will focus on torque driven ferromagnetic swimmers. The publication on this

work can be found in J.K. Hamilton et al. [114] in collaboration with A. Gilbert. The

theoretical framework and all simulations were developed by A. Gilbert (shown in Appendix

A), and the experimental findings were produced by myself. After the previously highlighted

drawbacks with the micrometre-sized two-ferromagnetic particle swimmer (small magnetic
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forces compared to the elastic force), an investigation into fabricating a new system was

proposed.

As has been demonstrated in a number of cases, a typical approach to create non-

reciprocal propulsion cycle would be by mimicking the natural microscopic swimmers,

such as sperm cells or bacteria. One way to achieve this is by including magnetic particles

for actuating and driving the swimmer in the liquid with an external magnetic field. The

mechanism of motion in this case relies on the collective response of all particles. Even

though the individual torques created on each bead is small the overall mechanics of the

system is sufficient to generate a non-zero displacement [115, 9].

Other approaches take advantage of the elastic properties of the tail, while applying the

torque only to a single particle [75, 116–123]. For example, in a recent study by F. Box et al.

[124] a centimetre-scale system of elastically linked spheres was investigated, comprising of

three spheres connected by elastic struts of unequal length. One of the spheres contained a

fixed magnetic moment and the field was applied perpendicular to the moment.

In this section, the properties and external responses of a self-propelled millimetre-

scaled ferromagnetic swimmer based on only one ferromagnetic particle are presented.

Experimentally, this is implemented by using a high anisotropy magnetic particle - the head -

attached to a flexible elastic filament - the tail - to mimic the structure of a beating flagellum.

In order to describe this system, a simplified model based on multiple particles, in which the

effect of the tail is represented by non-magnetic particles linked with massless elastic links

was developed. Further information regarding the model can be found in Appendix A.
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4.2.1 Experimental investigation of the torque driven single ferromag-

netic particle swimmer

The initial prototype

To show experimentally, that such a system could indeed propel in the low Reynolds environ-

ment, a prototype was fabricated (shown in Figure 4.20). The first prototype was fabricated

by using a thin strip (0.09 mm thick, 0.25 mm wide, and 7.1 mm long) of silicon rubber and

attaching a 0.5 mm × 0.5 mm × 0.5 mm cubic NdFeB ferromagnetic on the top of one end.

Fig. 4.20 Photograph of the first torque driven ferromagnetic swimmer prototype.

Initially, how the swimming speeds depended on the frequency investigated, using the

same experimental setup as previously described. The swimming behaviour of the millimetre

scaled swimmers were studied by examining their mobility on an air-fluid interface of a

large area Petri dish (148 mm diameter). The experimental setup comprised a Helmholtz

coil system, powered with a sinusoidal signal, providing a uniform magnetic field to actuate

and control the swimmers. Further information can be found in the Experimental Methods

Chapter.

Figure 4.21 shows the initial data for the torque driven ferromagnetic swimmer. The

figure shows the frequency dependence of the swimmer for the range of 20 Hz - 200 Hz, for

three external magnetic field strengths: 0.5 mT - blue squares, 1.0 mT - red triangles, and 1.5

89



Magnetically controlled swimmers

mT - black squares. The typical trends of the swimming speed remain similar for all external

field strengths, only an increase in swimming speed with field strength is observed, similar

to that shown in Figure 10.4. This increase in swimming speed would be expected as the

torque experienced by the swimmer would be greater for larger external field strengths and

was predicted in the model. For all external field strengths, the swimmer speed gradually

decreases with increasing frequency until a cut-off frequency (shown in the orange region).

The gradual decrease in swimming speed was also shown in the model (Figure 10.4), however

the cut-off frequency was not present. At the cut-off frequency the swimming speed quickly

falls off. The cut-off frequency is expected to be due to the external magnetic field oscillating

too fast for the beating of the swimmers tail. This cut-off frequency is shown in other torque

driven swimmers when the device cannot keep up with the rotation of the magnetic field

[19, 65].

Fig. 4.21 Frequency dependence of the swimming speed of the first torque driven ferromag-
netic swimmer prototype for different external magnetic field strengths: blue squares - 0.5
mT, red triangles - 1.0 mT, and black circles - 1.5 mT. The orange region indicates the region
beyond the cut-off frequency for the swimmer.
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Figure 4.22 shows the trajectory of the torque driven ferromagnetic swimmer for different

external magnetic field frequencies. The orientation of the swimmer is also shown, the end

point of each trajectory is after 1 second of actuation. The typical migration is approximately

perpendicular to the external magnetic field, as expected from the model and previous work

[116, 120]. At the largest frequency shown (200 Hz), the swimmer starts to swim almost

parallel to the external magnetic field, this is suspected to be due to additional asymmetries

in the experiment - compared to the models.

Fig. 4.22 Trajectory plots of the first torque driven ferromagnetic swimmer prototype actuated
by a 1.0 mT external magnetic field for different frequencies. Frequencies are shown on the
figures, as well as a schematic of the swimmer.

Optimising the single ferromagnetic particle swimmer

To improve the initial prototype so that a systematic investigation could be conducted, 3D

printing was used. The ’tails’ were constructed using a 3D printed mould to produce the
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desired overall swimmer geometry (shown in Figure 4.23a). The mould was designed using

Autodesk AutoCAD and 3D printed using a Formlabs Form 2. The hard ferromagnetic

material (NdFeB) used was cubic with dimensions of 0.5 mm × 0.5 mm × 0.5 mm, with the

anisotropy axis along the tail axis of the swimmer. Silicone rubber was used to create the

flexible elastic tail (shown in Figure 4.23b). The length of the tail was varied in the range

of L = 1−12 mm, while keeping the head cubic (h = 0.7 mm) and tail width (b = 0.4 mm)

constant. For all produced swimmers, the depth was kept at 0.7 mm, to ensure the complete

encapsulation of the magnetic particle.

In previous investigations, the swimming behaviour of swimmers with flexible tails have

been shown to have a dependence on the length of the tail, frequency of the applied field,

the bending stiffness of the filament and the tail’s fluid dynamic interactions [121, 125].

This investigation focused on the effects of the external parameters of the magnetic field

- frequency ω and field strength Bext - on the swimmers, as well as tail length L. To find

the optimum length of the swimmer’s tail, swimmers of different tail lengths were created

and the change in swimming performance for different field strengths and frequencies were

investigated.

Figure 4.24a shows the range in performance of the swimming speed (scaled by Lω) as a

function of tail length for different frequencies. The magnetic field strength is fixed at 1.5

mT. There is a clear peak for all frequencies at L = 4 mm. When the tail length is increased

past the peak, the swimming speeds start to decrease for all frequencies. A maximum

dimensionless speed of 0.18 is observed, corresponding to a real speed of 57.8±0.1 mm s−1

(approximately 12 body lengths per second), with an external field of 1.5 mT and 80 Hz and

a tail length of 4 mm.

Figure 4.24b shows a similar trend, but in this case for different field strengths, with

a fixed frequency of 50 Hz. As the field strength is increased the overall speed of the

swimming increases - due to the increased torque effects - as well as a peak at L = 5 mm
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Fig. 4.23 (a) Schematic and (b) Photograph of the improved torque driven ferromagnetic
swimmer. The length of the tails were varied in the range of L = 1−12 mm, while keeping
the head cubic (h = 0.7 mm) and tail width (b = 0.4 mm) constant. The two swimmers
shown have length of 12 mm and 3 mm, respectively.

manifesting at the higher field strengths. The maximum dimensionless speed in this case

is 0.3 corresponding to a speed of 74.6±0.1 mm s−1 (approximately 13 body lengths per

second), with an external field of 3.2 mT and 50 Hz and a tail length of 5 mm.

Figure 4.24 shows that as the length of the tail becomes shorter (L< 3 mm), the swimming

performance begins to reduce; this is expected, due to the tail becoming effectively more

rigid. For such conditions, the device becomes similar to a single degree of freedom

reciprocal system and the scallop theorem will apply [4]. On the other hand, as the tail

length is increased (L > 10 mm), the elastic deformation or beating patterns become irregular,

resulting in another reduction of swimming speed.

From the theoretical model shown in Appendix A, the predicted swimming speed can be

obtained and written as:
Ẋ

l0ω
= ε

21A2
ext

16ϖ(ϖ2 +36)
. (4.11)
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The velocity, Ẋ , here has been normalised in terms of body lengths per radian of the magnetic

field cycle l0ω . The dimensionless frequency is shown as ϖ and Aext is known as the

magnetoelastic number. The following experimental parameter values were used for the

developed theory,

Parameter Value
R 1.25×10−3 m
k 1.67×10−2 N m−1

l0 5×10−3 m
ℓ= kl2

0 4.2×10−7 J
m 1.2×10−4 Am2

Bext 3×10−3 T
ω 100×2π s−1

µ 1×10−3 Pa s
Table 4.4 Simulated parameter values for the torque driven ferromagnetic swimmer model,
based on the experimental device.

The theory developed (in Appendix A) and the parameters shown in Table 4.4 the above

gives an approximation to the swimming speed yields,

Ẋ = εl0ω
21A2

ext
16ϖ(ϖ2 +36)

≃ 2.4×10−2 m s−1. (4.12)

The value for the swimming speed shown in Equation 4.12 (≃ 2.4× 10−2 m s−1) can

be compared with the typical value of speed shown experimentally. Comparing to the

experimental data, the velocities range ∼ 5 mm s−1 - 70 mm s−1. This comparison gives

good order of magnitude agreement and provides support for the model, despite its idealised

nature - simplified geometry and elastic properties.

Differences between the model and the experiment could also arise from the swimmer

being modelled within the bulk of the fluid. In the experiment the simmer is mainly confined

to the interface, with only part of the body submerged into the liquid.

An important observation is that there is an obvious optimum length at which the swim-

ming speed is maximised. This behaviour can be linked to previous work, [116, 120] - as
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well as the three-particle model and the initial prototype - which show a rapid decrease in

swimming performance and irregular beading trajectories at large tail lengths. It also appears

that there is also a second peak at L = 8 mm (Figure 4.24). It may be due to the second

harmonic beating pattern, as the tail is twice the length of that for the first peak.

Fig. 4.24 Dimensionless speed (by Lω) as a function of tail length for (a) different frequencies
- 80 Hz (black circle), 100 Hz (red square) and 120 Hz (blue diamond) with an external
magnetic field strength of 1.5 mT, (b) different magnetic field strengths - 1.7 mT (black
circle), 2.4 mT (red square) and 3.2 mT (blue diamond) with a fixed frequency of 50 Hz.

Directional control of the single ferromagnetic particle swimmer

Figure 4.25 shows a trajectory plot to visualise the direction of motion of the swimmer for

different tail lengths and frequencies. The field direction is given in the last panel. The

trajectories for four frequencies are shown: 30 Hz (black circle), 80 Hz (red triangle), 130 Hz

(blue square) and 170 Hz (green diamond). If the trace for a given frequency is not present,

this is due to unstable propulsion of the swimmer for this combination of tail length and

frequency.

Figure 4.25 clearly shows that as the frequency is increased for all tail lengths, the

swimmer can be controlled for a range of propagation angles. The maximum angle of control

∼ 90o, can be observed for L = 12 mm. The trajectories also visualise the variations of
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swimming speed with tail length, as the distance between the two points on the trajectories

increases (the time between two points is kept constant at 0.2 seconds). For the swimmer

with tail length less than 6 mm, the trajectories tend to be parallel to the applied magnetic

field.

Typically, as the length of the tail is increased (L > 6 mm), at low frequencies, the trajec-

tories become more perpendicular to the applied field. This mix of parallel and perpendicular

behaviour is unexpected, as one would expect the trajectories to be perpendicular to the

applied field [116, 120]. This could be due to irregular beating patterns created at large tail

lengths, but could also be caused by additional degrees of freedom. These extra degrees

of freedom could be caused in fabrication: there may be a small out-of-plane magnetic

component, resulting in a rocking in the z-plane when the external field is applied. As the

devices are placed on the surface of the fluid, this could also cause extra asymmetries in the

motion, due to boundary effects. At the air-liquid interface, the force arising from the surface

tension confines the swimmer to the liquid surface as it acts against swimmer’s motion in the

z-direction (i.e. in the direction normal to the liquid surface). This behaviour could also be

explained by the increased Reynolds number for the larger values of L, resulting in inertia

effects being present.
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Fig. 4.25 Trajectory plots for tail lengths, 12 mm, 10 mm, 8 mm, 6 mm, 4 mm and 2 mm.
The field has a strength of 1.5 mT and frequencies shown are 30 Hz (black circle), 80 Hz
(red triangle), 130 Hz (blue square) and 170 Hz (green diamond). The swimmer is recorded
for 20 seconds and the time between two points on a trajectory is 0.2 second.

Viscosity dependency of the single ferromagnetic particle swimmer

Figure 4.26 shows the swimming speed of a single particle swimmer with L = 3 mm for

fluids of different viscosities. The dynamic viscosity ranges from 1×10−3 Pa s (100% water)

to 1.4 Pa s (100% glycerol). The external magnetic field has a frequency of 50 Hz and

strength of 3.0 mT. The predicted velocities are shown with the solid red line - using the

experimental parameters with no fitted parameters and Equation 4.11. The experiment and

theory show good agreement, expect for the most viscous data where the experiment is out

performing the theoretical prediction. The differences between the theory and experiment
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may arise from the simplifications made in the theory. Figure 4.26 shows that the swimmer

can successfully propel at both low and moderate Reynolds number - given the Reynolds

number range of ∼ 3×10−6 – 90.
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Fig. 4.26 Swimming speed of the improved torque driven swimmer as a function of dynamic
viscosity. The solid red line indicates the predicted values from the theory (Equation 4.11).
The external magnetic field has strength 3.0 mT and frequency 50 Hz. The Reynolds numbers
shown here are: 90 (for η = 1×10−3 Pa s), 0.53 (for η = 1×10−2 Pa s), 1.6×10−4 (for
η = 0.1 Pa s) and 2.5×10−6 (for η = 1 Pa s).
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4.3 Conclusion

In summary this chapter focused on the fabrication, optimisation and the experimental

investigation of two types of ferromagnetic elastic swimmers.

The first was the two-ferromagnetic particle swimmer. This swimmer was based on

magnetic, elastic and hydrodynamic interactions of a pair of particles (a hard ferromagnetic

particle NdFeB and a soft ferromagnetic particle Fe), controlled by an external oscillating

magnetic field. Due to the different anisotropic properties of the two particles, the application

of an external magnetic field leads to time varying dipolar gradient force between the particles

(resulting in a relative radial motion) as well as time-dependent torque (causing an oscillatory

rotational motion of the whole system). Another key factor for the propulsion is the particles

having different sizes leading to the hydrodynamics interactions which breaks the symmetry

of the motion.

The swimming performance of the first millimetre scaled prototype was shown, as well

as the improvements made to the swimmer, including the materials used and the fabrication

process.

The swimmer’s response to changes in the external magnetic field (frequency and am-

plitude) as well as fluid viscosity was investigated. How its speed and direction of motion

can be controlled using the magnetic field parameters was also demonstrated. It was shown

that the inclusion of a small constant bias to the external field could be advantageous for

establishing tighter control over both the direction of motion of the device and its speed.

Swimmers on a micrometre-scale were also shown to have similar trends to the millimetre-

scale system. However, a ferromagnetic material which has a larger coercivity would be

required to overcome the proportionally greater elastic force [126].

The second system was a millimetre scaled single ferromagnetic particle swimmer based

on the bending of a flexible tail. The swimmer was actuated and controlled by an oscillating

magnetic field (< 3.5 mT), which created a torque on the swimmer, creating bending modes
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of the tail. This investigation involved the fabrication and optimisation of the swimmer and its

characterisation by device and external parameters (tail length, field strength and frequency).

The frequency and tail length response showed that there is an optimum tail length of 4 mm,

corresponding to swimming speed and control of direction. The single ferromagnetic particle

swimmer was shown to successfully propel at a range of Reynolds numbers ∼ 3×10−6 – 90.

This investigation of macroscopic swimmers helps to understand the swimming behaviour

of artificial flagella-based swimmers and paves the way for fabricating optimum microscopic

magnetic flagella-based swimmers. As well as helping understand the behaviour of the

micro-scale swimmers, this presented work also helps blends into the applications of milli

fluidic pumps. In the world of fluid mechanics, a swimmer and a pump can be thought of one

in the same. The only different between swimming and pumping the fluid is the reference

frame. If a human was kicking their legs in a swimming pool they would propel themselves.

However, if that same human was holding onto the edge of a swimming pool and kicking

their legs, they would induce a flow in the fluid. Even when the system is scaled down

(resulting in a low Reynolds number) this same principle stands. The focus of the following

chapter will be using the actuation methods described in this chapter to create fluid pump

systems rather than swimming devices.
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Chapter 5

Magnetically controlled fluid pumps and

mixers

This chapter focuses on magnetically controlled fluid pumps, valves, and mixers. Pumps

and valves are basic components in virtually every microfluidic platform. In laboratory

conditions, pumps often are external to the microfluidic assembly, which allows for easy and

accurate control over every aspect of fluid flow. Lab-on-a-chip devices, however, impose

a number of design restrictions that stem from the basic requirement for packing complex

functionality in a restricted space. In response to this demand, recent years have seen a

number of original design solutions for pumps (both passive and active), valves, mixers

and other components that could be incorporated into lab-on-a-chip devices, having various

levels of performance and complexity and different actuation mechanisms. Details on these

developments can be found in the thorough reviews by J. Zahn [78], D. Nikitopoulos and A.

Maha [127], and K. Au et al. [77].

Typical microfluidic systems (channel width and height on length scales of tens of

micrometres) operate under low Reynolds number conditions, thus are bound by the same

restrictions as the micro-scaled swimmers. Therefore, a popular approach has been to

utilise low Reynolds number swimmers as microfluidic pumps [88, 89, 22, 90, 91]. These
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pumps formed from swimmers have been shown to be effective in their pumping mechanics.

However, most rely on complex fabrication methods or collective behaviour to generate a

flow. An ideal pump system would be to utilise a highly efficient swimmer (in this case large

swimming speeds compared to body length) which can be fabricates simply.

In this chapter the two previously described magnetically controlled swimmers are

converted to pumps and valves. As well as single pump systems, the fabrication and

performance of networks of the previously mentioned systems, are presented. These networks

are known as active membranes. The focus of the membranes is to utilise the collective

behaviour of multiple simple single-ferromagnetic particle systems and create a less invasive

system for lab-on-a-chip technology.

5.1 Two-ferromagnetic particle based fluid pumps

In the present work, the previously described two-ferromagnetic particle swimmers are re-

purposed to control fluid flow in microfluidic systems. By tethering the swimmer, a variety of

flow patterns could be elicited remotely, via manipulating parameters of the applied magnetic

field. Depending on the channel geometry, a single swimmer was able to serve as a pump,

valve or mixer, demonstrating its versatility for self-contained lab-on-a-chip applications.

The publication on this work can be found: J.K. Hamilton et al. [128].

5.1.1 Tethering the two-ferromagnetic particle swimmer

The swimmer was converted into a pumping device by making use of the ring geometry of

the elastic link. A thin (0.25 mm diameter) non-magnetic rigid post was mounted to the

bottom of the channel, and the swimmer was loosely threaded through it as shown in Figure

5.1a. This restricts the translational motion of the swimmer when actuated, but it is still free

to rotate and oscillate, which are essential requirements for inducing and sustaining fluid flow.
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In this configuration, the pinned swimmer rests gently on the surface of the fluid (supported

by surface tension forces) and the fluid flow it generates can conveniently be investigated.

Experiments were conducted using several different channel geometries (5.1).

Fig. 5.1 (a) Photograph and schematic of a two-ferromagnetic particle swimmer pinned on
a non-magnetic rod. (b) Diagrams (made to scale) of channel geometries with the pinned
swimmer shown within: a straight channel of width 10 mm, a cross-shaped channel of width
11 mm, and a Y-shaped channel of width 10 mm. (c) Diagram showing a closed circuit
channel with a cross-section of 7.2 mm wide close to the swimmer well tapering down to 0.5
mm. (d) Diagram showing a closed circuit channel with a uniform cross-section of 2 mm ×
1.1 mm.

First, the fluid flow around a swimmer pinned in the middle of a large Petri dish (148

mm diameter) was investigated. Then the flow behaviour was investigated when the pinned

swimmer was placed in 3D-printed straight channels (5.1b) of different width (between 4

and 13 mm), a cross-shaped channel, a Y-shaped channel (all with a depth of 13 mm but only

partly filled with liquid to ca. 8.7 mm) and closed channels of different geometry containing

the swimmer as shown in Figure 5.1d. The circular channel shown in Figure 5.1c was 1.1
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mm deep, and 2 mm wide, with a well containing the swimmer with depth 1.5 mm. The

other closed circuit shown in Figure 5.1d was shallower (0.5 mm) with the same depth of the

well (1.5 mm), with a width tapering from 7.2 mm to 0.5 mm.

Fluid flow around a pinned swimmer

First, the flow around a pinned swimmer on the surface of a fluid contained in a large

Petri dish was investigated. The flow that developed under the action of the swimmer was

investigated at different frequencies and amplitudes of the external magnetic field. Figure 5.2

shows a typical flow pattern around a pinned swimmer actuated on the surface of the fluid (in

this case water). The external magnetic field used to actuate the swimmer had a frequency of

60 Hz and strength of 2.0 mT.

Fig. 5.2 Typical surface flow generated by a pinned swimmer actuated by an external magnetic
field of strength 2.0 mT and frequency 60 Hz. The overlay of the schematic swimmer in the
middle indicates its mean orientation around which it oscillates (radially and tangentially).
The amplitude of the radial and tangential oscillations is on a sub-mm length scale. The
swimmer is prevented from translation by a thin post protruding through the elastic circular
link (not shown in the picture). The arrows indicate the direction and magnitude of flow, and
were generated using particle image velocimetry (PIV).
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The cross-shaped steady-state flow pattern that developed had a structure with four

vortices around the swimmer, which extended over large distances compared to the size of the

swimmer. The resulting net flow was pulled towards the swimmer along its major axis and

ejected in the perpendicular direction. As discussed and presented previously, the swimming

behaviour of a free, unrestricted two-ferromagnetic particle swimmer greatly depends on the

frequency and amplitude of the external magnetic field. Therefore, the effect of these two

parameters on the flow features around a pinned swimmer was investigated.

The main flow feature, namely its cross-shaped structure and four vortices, occurred at

all frequencies and amplitudes investigated. However, the orientation of the cross varied for

different values of the field parameters, enabling the flow pattern to be ‘rotated’ by merely

changing the frequency and amplitude, without spatially repositioning the two Helmholtz

coils. This effect is illustrated in Figure 5.3. At field strength of 1.5 mT, the cross-shaped

pattern of the flow is rotated by +25◦ (i.e. clockwise) relative to the applied oscillating

magnetic field axis for a frequency of 90 Hz, whereas changing the frequency to 130 Hz

rotates the pattern to −30◦ (anticlockwise).

Fig. 5.3 Fluid flow around a pinned swimmer under a magnetic field of strength 1.5 mT and
frequency of (a) 90 Hz (θ1 = +25◦ relative to the applied magnetic field) and (b) 130 Hz (θ2
= −30◦ relative to the applied magnetic field). The overlay of the schematic swimmer shows
the mean orientation of the pinned swimmer, different at the two frequencies. The arrows
represent the direction of flow (but not the magnitude of the velocity).

Note also that the mean orientation of the swimmer with respect to the applied magnetic

field is different at the two different frequencies, which is a distinct feature of the swimmer
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as discussed previously and relates to its propagation mechanism. The results of these initial

experiments indicate the possibility of controlling the direction and speed of flow by varying

the parameters of the externally imposed magnetic field. This has clear implications for the

behaviour of a pinned swimmer in narrow channels, as reported below.

5.1.2 Production of the fluid pump

Typical microfluidics applications involve fluid flow in narrow channels, a situation that is

very different from unrestricted flows due to the effect of nearby boundaries. In principle,

the pumping performance of a pinned swimmer (measured as the volumetric flow rate that

is generated) is related to the swimming velocity of the equivalent free swimmer. Thus,

investigating the swimming performance of a free swimmer in a channel can bring a great

deal of understanding of the range of behaviours exhibited by a pinned swimmer

Two-ferromagnetic swimmer within a straight channel

In this investigation, the behaviour of the two-ferromagnetic particle swimmer within a

straight channel - of different widths - were tested. For the same channel width and field

strength, increasing the frequency leads to variation in swimmer’s speed, a change in its

mean orientation (due to change of the propagation mechanism) and reversal of direction of

propagation, as illustrated in Figure 5.4. At 40 Hz, the swimmer travels with the axis joining

the two particles perpendicular to the direction of travel. Increasing the frequency to 130 Hz

results in direction reversal and change in the propulsion mode, with the hard particle leading

and a much higher speed (from 9.7±0.3 mm s−1 to 35.5±0.1 mm s−1). A further increase

in frequency to 140 Hz forces another switch in direction of travel, and now the swimmer

propels with its soft particle leading and a reduction in speed (12.6±0.2 mm s−1).
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Fig. 5.4 Free two-ferromagnetic particle swimmer in a straight channel of 11 mm width.
Trajectories of the hard particle (blue dots) and the soft particle (yellow dots) are overlaid on
the image of the channel. The three panels show different propagation modes of the swimmer
at a constant magnetic field strength of 1.5 mT and varying frequency (40, 130 and 140 Hz)
for a period of 0.8 s. The external magnetic field is aligned along the main axis of the channel.
The grey arrows indicate the direction of swimming.

Varying the channel width also affects the swimming performance. Figure 5.5 shows

that at 1.5 mT and 40 Hz, the speed of swimming gradually decreases with the increase in

the channel width. In principle, the speed of the swimmer is affected by a combination of

factors, e.g. channel width, swimming regime, field parameters, orientation etc. [129]. The

main factor is expected to be the boundary conditions associated with the channel width.

As the width of the channel is decreased the swimmer will start to experience an increase

in speed due to the boundary conditions of the channel forcing the swimmer into different

regimes. For the case of the smallest channel width, the swimmer is physically forced into

the locomotive regime and must propel parallel to the channel.
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Fig. 5.5 Swimming speed as a function of channel width at field strength of 1.5 mT and
frequency of 40 Hz. The upper horizontal axis is the ratio between the swimmer’s size (3.6
mm) and the channel width.

Pinned swimmer in a straight channel

The results of the previous section suggest that one could expect a set of varying but

controllable flow responses when the swimmer is pinned in a channel. Therefore, the fluid

flow induced by a pinned magnetic swimmer in channels of different width and as a function

of the external field parameters, fluid viscosity and channel orientation with respect to the

external magnetic field was investigated. The experiments were conducted with a range of

Reynolds numbers from ∼ 6×10−5 to ∼ 20.

Figure 5.6a shows the frequency dependencies of the flow speed on the surface of the

liquid (measured in the middle of the channel) taken at a distance of 40 mm from the position
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of the pinned swimmer within the channel. The different trends correspond to different

kinematic viscosities, ν , of the fluids used, produced by dissolving predetermined amounts

of sucrose in distilled water. For the least viscous liquid (ν = 1×10−6 m2 s−1), one observes

a maximum in the frequency dependence at ∼ 60 Hz suggesting that there is an optimal

value for which the induced flow reaches its highest rate. With increase in viscosity, this

maximum disappears and the flow speed gradually becomes independent of the frequency

of the external field. Figure 5.6b shows the dependence of the flow speed on the amplitude

of the applied external magnetic field (at constant frequency of 50 Hz). Generally, the flow

speed for the more viscous liquids (ν = 4.41×10−6 m2 s−1, ν = 1.01×10−5 m2 s−1, and

ν = 3.45×10−5 m2 s−1) increases when the field strength is increased from 1.0 to 3.0 mT.

For the two less viscous liquids (ν = 1× 10−6 m2 s−1 and ν = 2.48× 10−6 m2 s−1) the

dependence has a maximum at 2.0 mT. In this case, it is observed that for field amplitudes

higher than 2.0 mT the motion of the swimmer becomes irregular and unstable leading to a

reduction in the flow speed.

Fig. 5.6 Surface flow speed at different kinematic viscosities in a channel of width 11 mm (a)
as a function of field frequency at an amplitude of 1.5 mT, (b) as a function of magnetic field
strength at a frequency of 50 Hz. The values of the fluid kinematic viscosity (in m2 s−1) are
given in the insets. The error bars represent the standard deviation from 3 measurements.
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Figure 5.6 also shows that the flow speed decreases with the increase in fluid viscosity

(apart from the region of instability in Figure 5.5b). However, the flow, although small, is still

present and measurable even for the highest viscosity fluid investigated (ν = 3.45×10−5 m2

s−1, i.e. some 35 times that of water). This mirrors the behaviour of a free two-ferromagnetic

particle swimmer previously shown for which the propulsion speed is inversely proportional

to the fluid viscosity

Figure 5.7 shows the effect of the channel width on the flow speed. A gradual decrease

in the flow speed with increasing channel width is observed, a trend mirroring the free

swimmer’s propulsion speed (Figure 5.5).

Fig. 5.7 Flow speed as a function of channel width at field strength of 1.5 mT and frequency
of 40 Hz. The upper horizontal axis is the ratio between the swimmer’s size (3.6 mm) and
the channel width.
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Further analysis of the behaviour allows the determination of the mean orientation of

the pinned swimmer when executing pumping. The mean orientation is shown in Figure 5.8

for different channel widths. For relatively narrow channels of width 4-6 mm (i.e. 0.9-0.6

swimmer length to channel width ratio), confinement of the flow by the walls means that

there is a large velocity gradient generating a large viscous drag on the swimmer, which

adopts a tilted mean orientation with respect to the channel main axis. For wider channels of

width 7-13 mm (0.51-0.28 swimmer length to channel with a ratio), the velocity gradient is

lower and the swimmer is able to orient with its axis perpendicular to the channel axis, which

is the normal propagation mode of the swimmer at this frequency (Figure 5.4, first panel).

Fig. 5.8 Mean orientation of the pinned swimmer in channels of increasing width once the
swimmer reorients when the magnetic field is applied. The magnetic field is aligned along the
main axis of the channel and the numbers indicate the width of the channel in mm. Magnetic
field parameters: frequency 40 Hz, amplitude 1.5 mT. The direction of flow is downwards.

The final set of experiments with straight channels was aimed at establishing the pumping

behaviour of a pinned swimmer as a function of the orientation of the channel with respect to

the external magnetic field. Figure 5.9a and Figure 5.9b show the frequency dependencies of

the induced flow speeds in two channels of different width (5 mm and 11 mm, respectively)

for three orientations of the channel with respect to the external field (0◦, 90◦ and 180◦).

For the wider channel (11 mm, Figure 5.9b), the trends are similar in the 0◦ and 180◦
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orientations (mirror orientations), and show maximums at around 60–70 Hz. The flow in the

90◦ orientation is slower, and almost stagnant between 50 and 100 Hz.

Fig. 5.9 Frequency dependencies of the flow speed at three different orientations between the
channel axis and the external magnetic field (0◦, 90◦ and 180◦) for (a) channel of width 5
mm and (b) channel of width 11 mm.

The frequency dependencies for the narrower channel (5 mm, Figure 5.9a) show a similar

peak around 60 Hz in parallel orientations (0◦ and 180◦), but the flow speeds achieved are

higher than those for the wider channel. A prominent feature at this channel width is the

reversal of flow direction at higher frequencies between 110 and 140 Hz (note the negative

values of the flow speed in Figure 5.9a). In 90◦ orientation, the flow is stagnant for all

frequencies investigated.

The flow patterns at different angles between the channel and the external field are

determined by the dynamical behaviour of the pinned swimmer which in principle can

be affected by its orientation both with respect to the channel axis and the external field.

At angles close to 90◦ (between the channel and applied field), where the flow is either

slow or stagnant, it was observed that the swimmer undergoes rocking motion of large

amplitude. When the alignment of the channel is close to parallel to the external field, the
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rocking amplitude of the swimmer is much smaller and the induced flow is faster. The mean

orientation of the swimmer also depends on the channel width relative to the swimmer’s size,

as shown in Figure 5.8. Therefore, the structure of the induced flow depends on the interplay

between various interactions between the swimmer, field and channel geometry.

In order to clarify the pumping efficiency of the pinned swimmer at different orientations

between the channel and the external magnetic field, the speed of the induced fluid flow at

intervals of 10◦ (between 0◦ and 360◦) and 10 Hz (from 40 to 140 Hz) was investigated.

The results for the 11 mm channel is presented as a pseudo-colour contour map in Figure

5.10. For lower frequencies, regions of high flow speed are observed at angles close to

parallel orientation. Stop-valve behaviour (i.e. stagnant flow) is observed around 90◦ and

270◦. For higher frequencies, the regions of slow or stagnant flow extend over wider range

of orientations.

Fig. 5.10 Contour map representing mid-channel flow speed as a function of frequency and
channel orientation for the 11 mm channel. The magnetic field amplitude is 1.5 mT.
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Together these results illustrate the rich dynamics of the device that can be used to extract

useful functionality by varying easily adjustable parameters such as frequency and/or channel

orientation.

5.1.3 Tailoring the system for applications

Due to the rich dynamics of this system, it could easily be tailored for a range of applications,

depending on the channel geometry. This section is focused on tailoring the channel for

possible flow splitter, as well as another system designed to mix a fluid of volume 100 µl.

Pinned swimmer in a cross-shaped channel

The cross-shaped flow structure for a pinned swimmer shown in Figure 5.2 and Figure

5.3 suggests that interesting effects may be expected when the swimmer is actuated near

branching channels. Therefore, the flow in a junction mimicking the unrestricted flow

structure was explored. A cross-shaped channel of width 10 mm was produced, with the

swimmer placed in the centre of the cross. Figure 5.11 shows typical flow patterns for

channels oriented at 0◦, 10◦, 20◦, and 30◦ relative to the applied field (for a magnetic field

with frequency 40 Hz and strength 1.5 mT). At 0◦, the flow within the channel resembles the

cross-shaped structure observed with a swimmer pinned in a Petri dish (Figure 5.2). The fluid

is drawn towards the swimmer from the left- and right-hand side channels and ejected in the

perpendicular direction. Changing the channel orientation with respect to the field gradually

affects the flow and at 30◦ the flow is directed from the upper left to the upper right channel.

However, the two other channels show the formation of vortices, which do not contribute to

a net fluid flow. This results in a valve-like regime (two open and two closed branches).
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Fig. 5.11 Flow in a cross-shaped channel. The flow lines for four different orientations of the
channel relative to the applied magnetic field (0◦, 10◦, 20◦, and 30◦) are shown with blue
dashed lines and arrows. A schematic diagram of the swimmer is overlaid to show its mean
orientation in the centre of the cross. In all orientations, the magnetic field has frequency 40
Hz and strength 1.5 mT.
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Pinned swimmer in a Y-shaped channel

The Y-shaped channel was designed to take advantage of the rotation of the flow pattern due

to the change in frequency, as seen in Figure 5.3b, with its two arms angled at 30◦ from the

vertical (all arms of the channel had a width of 10 mm, see Figure 5.12), and the swimmer

pinned at the centre of the junction. Figure 5.12 shows the change of the fluid flow when the

parameters of the external field (frequency and amplitude) are changed without changing

the orientation of the channel. At 60 Hz and 2.40 mT (Figure 5.12a), the pinned swimmer

directs the flow from the upper right branch towards the bottom branch. Two vortices are

formed in the upper left branch; however, they do not generate net fluid flow so this channel

is effectively closed. When the frequency and amplitude are adjusted to 130 Hz and 1.38 mT,

respectively (Figure 5.12b), the flow is directed from the upper right to the upper left branch,

isolating the bottom branch (in which a vortex is observed).

Fig. 5.12 Induced flow with arrows showing the typical flow direction. (a) The direction
of the surface flow in the presence of an applied magnetic field of strength 2.40 mT at a
frequency of 60 Hz. (b) The direction of the surface flow in the presence of an applied
magnetic field of strength 1.38 mT at a frequency of 130 Hz. The schematic of the swimmer
shows its orientation in both cases.
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A more detailed investigation of the external parameters shows that upon gradual increase

of frequency and decrease of amplitude, the two initial vortices in the upper left branch

become unstable and part of the flow is directed along this branch. At these intermediate

values of the field parameters, the flow from the upper right branch is split between the

other two branches. Further increase in frequency and decrease in amplitude causes the

flow to be directed entirely towards the upper left branch, effectively closing the bottom

branch. These flow patterns are stable and fully reproducible after switching the magnetic

field off and on and provide an illustration of the potential for hybrid functionality of the

device. With minimal adjustment of the parameters of the external field (without any physical

repositioning of the coils or the channel), the device can be used to produce pump- and

valve-like functionality as well as serve as a flow splitter. A feedback system could provide

automatic adjustment of flow rate and direction.

Pinned swimmer in closed circuits

So far, the demonstrations of fluid pumping have concentrated on walled channels within

open dishes. However, many applications require flow generation within a closed system.

The final set of experiments presented demonstrates that swimmer-based pumps are also

capable of driving circulation in closed circuits. Two such channels were designed which

included a well where the swimmer can be positioned using a thin non-magnetic post attached

to the bottom of the well (see Figure 5.1c and 5.1d). The first channel was circular with a

uniform rectangular cross-section (channel width 2 mm and depth 1.1 mm, with a well for

the swimmer of radius 3 mm and depth 1.1 mm) holding ∼ 100 µl of liquid. The pinned

swimmer is capable of driving flow, as seen in Figure 5.13.
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Fig. 5.13 Confined swimmer in a closed loop circular channel. The swimmer is positioned in
the left side of the channel in a well and the channel is filled with water. A few drops of ink
are placed in the right side of the channel: (a) initial ink distribution; (b) ink distribution at
t = 5 s; (c) ink distribution t = 10 s; (d) ink distribution at t = 21 s. The magnetic field has
strength 1.5 mT and frequency of 50 Hz.

Figure 5.13 shows four consecutive images of the water-filled channel (100 µl) before

and after pumping is activated. Initially, a few drops of ink are placed in the water in the

right part of the channel (Figure 5.13a). Shortly after the magnetic field (1.5 mT and 50 Hz)

is turned on the swimmer re-orientates and flow is induced in the anticlockwise direction,

Figure 5.13e-d.

After 21 seconds of the magnetic field being applied the sample has fully mixed. The

speed of this mixing is promising for applications which involve mixing volumes of this size,

for example blood plasma analytical tests. The low strength and frequency of the external

magnetic field also means that such a system could be made as a portable point-of-care

device.

The second design was of a circuit with a non-uniform cross-section. The swimmer well

is connected on both sides to 7.2 mm wide and 0.5 mm deep channels, tapering to a 0.5
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mm × 0.5 mm channel on the opposite side (see Figure 5.1c and the inset in Figure 5.14).

Even in this case, the swimmer generates flow (Figure 5.14). For this channel, the velocity

profile on the surface of the liquid was characterised using a high speed camera attached to a

microscope. The resulting velocity profile at 100 Hz and 3.0 mT in the region opposite to the

swimmer (where the channel is 0.5 mm × 0.5 mm) is shown in Figure 5.14. As expected,

the velocity profile is approximately parabolic, with a maximal speed of 8.6±0.3 mm s−1 at

the centre of the channel.

Fig. 5.14 Velocity profile at the surface of the liquid in a closed channel. The red dashed line
shows a fitted parabolic function. The velocity profile was measured opposite to the position
of the swimmer, where the channel had a cross-section of 0.5 mm × 0.5 mm. External
magnetic field of 100 Hz and 3.0 mT. The inset shows a model of the 3D printed channel.
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5.2 Torque driven fluid pumps

In the case of the single ferromagnetic particle swimmer, it is possible to attach one end to

the top of an elastic pin. Instead of propelling itself through the fluid, the swimmer now

induces a fluid flow. To reduce the size of the system, these torque driven structures could be

fabricated into the walls of the channel. This would reduce the amount of passive material

(for example the pin) in contact with the fluid. This section will focus on different types of

torque driven fluid pumps.

5.2.1 Channel based torque driven fluid pump

A ferromagnetic swimmer attached by one end to a elastic pin (Figure 5.15 inset) will

restrict the translational motion, but still allow the beating patterns required to break the

time-symmetry. In this configuration, the pinned swimmer rests on the surface of the fluid and

the fluid flow it generates can conveniently be investigated. As an example of this application

the pinned swimmer (tail length of 7 mm) was attached inside a 3D printed straight channel

with width of 5 mm and depth of 10 mm. In this investigation, the external magnetic field is

applied perpendicularly to the channel.

Figure 5.15 shows the frequency dependence of the induced flow speeds driven by an

actuating magnetic field of 1.5 mT. The figure shows a maximum in flow speed at 30 Hz,

then over 40 - 140 Hz a gradual decrease in flow speed between 6 mm s−1 and 2 mm s−1.

The effectiveness (χ) of the system can be defined as the ratio between the real speed range

of a free swimmer and the induced flow speed. When the stable range of the system 40 -

140 Hz was investigated, the effectiveness was found to be χ7mm = 0.31±0.07, where the

uncertainty is half a standard deviation. The trend seen with his device mimics that seen in

Figure 4.24, that the speed decreases with frequency. This is due to the beating of the tail at

the higher frequencies not being able to keep in time with the external magnetic field. This is
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to be expected as the actuation method and geometries are the same (only differing by the

reference frame).

Fig. 5.15 Measured flow speed along the channel as a function of frequency. The inset shows
a schematic representation of the single ferromagnetic particle swimmer as a fluid pump.
The base of the pin is attached to the base of the channel.

This system shows a stable flow speed over the operating regime of the device. A possible

way to improve the effectiveness would be to restrict the translational motion with less effects

on the beating pattern. The only concern with such a system is that as the channel width

is reduced, the pump could obstruct too much of the channel and the viscous friction will

increase, and this may result in a reduced flow rate. This concern could be addressed by

scaling the pump with the channel, or incorporating the system into the walls of the channel.
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5.2.2 Wall based torque driven fluid pump

This section will focus on the flow induced by a torque driven pump which is incorporated

into the wall of a channel. Figure 5.16a shows an Autodesk AutoCAD diagram showing

the geometry of the system. The pump system comprises of a hard ferromagnetic particle

(NdFeB, 0.5 mm × 0.5 mm × 0.5 mm), encapsulated within an elastic tail, similar to the

torque driven swimmers previously shown - with the only difference being the curved edges.

At the end of the tail, without the magnetic particle, there is an area which can be used to

attached the tail to the channel wall. The total length of the pump (tail and head) was L = 3.8

mm, the depth was of 0.8 mm and width 0.45 mm. The length chosen is in correspondence to

the investigation previously shown on torque driven swimmers. The inverse of the AutoCAD

diagram was created and this was used to produce the 3D printed mould. Figure 5.16b shows

a photograph of the pump attached (using super glue) to the wall of the channel. Figure 5.16c

shows a schematic of the system which can be used to estimate the deflection, w, induced for

different magnetic field strengths.

Fig. 5.16 (a) AutoCAD diagram showing the geometry of a torque driven pump attached to a
channel wall. (b) Photograph showing a torque driven pump attached to a channel wall. (c)
Schematic diagram showing the deflection, w of the pump, as well as the total length L = 3.8
mm.
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To investigate the induced deflection, the applied force to the pump can be estimated. A

simple force-displacement relationship for the bending of an elastic cylindrical beam can be

given by

Fdisp =

(
3π

64
E

D4

L3

)
w, (5.1)

where E is the Youngs’ modulus of the beam (0.001 GPa), Fdisp is the bending force, and D

is the effective diameter of the beam (0.58 mm). Analysing the videos, the position of the

maximum deflection of the end of the pump for each magnetic field strength (at a frequency

of 30 Hz) was found. Using the initial position and the maximum deflection position, an

estimate of the bending force could be made. The measured deflection and estimated bending

force (using equation 5.1) are shown in Table 5.1.

Magnetic field [mT] Deflection [mm] Force [mN]
2.5 0.41 45.1 ± 3.9
3.0 0.35 38.5 ± 1.2
3.5 0.41 45.1 ± 3.9
4.0 0.47 51.7 ± 5.1
4.5 0.46 50.6 ± 1.9
5.0 0.49 53.9 ± 2.5
5.5 0.58 63.8 ± 2.7
6.0 0.64 70.4 ± 1.1

Table 5.1 Deflection and bending force for increasing magnetic field strength. The error in
the deflection is 0.01 mm from the detect method of the pixels, resulting in the error in the
force values.

Table 5.1 clearly shows an increase in deflection for increasing magnetic field strength,

and in turn an increase in bending force. This is expected as the induced magnetic torque felt

by the NdFeB particle will increase with increasing field strength. The induced flow speed

can be investigated, using tracer particles on the surface of the fluid. Figure 5.17 shows the

induced flow speed as a function of the magnetic field strength, once again at a frequency
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of 30 Hz. To further visualise the deflection the inset on Figure 5.17 shows the increasing

deflection for increasing magnetic field strength.

Fig. 5.17 Flow speed as a function magnetic field strength with a frequency of 30 Hz. The
inset shows the induced deflection of the pump as a function of the magnetic field strength.
The inset shows the deflection, w, of the tail as a function of magnetic field strength, a
schematic of this interaction is shown in Figure 5.16c
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5.3 Torque driven ferromagnetic membranes

The focus of this section will be magnetically controlled elastic membranes. These systems

have seen an increase in interest due to their non-invasive nature [96–98]. Such systems

could be attached in various locations along a microchannel, as well as placed on the top

surface. These membranes could also be built into the walls of the channels and serve to

induce fluid flow.

The work presented will focus on membranes which experience magnetic torques when

an external magnetic field is applied. These membranes consist of arrays of magnetic

particles and elastic linking structures. The devices are based on the similar swimmer design

previously presented where the magnetic torque creates a mechanical torsion and deforms

the elastic coupling.

This section will focus on the fabrication and investigation of two different torque driven

magnetic membranes. The first membrane is based on the torque driven ferromagnetic

swimmer (previously discussed in J.K. Hamilton et al [114]), and consists of an array of

single particle swimmers. This membrane was attached to the end of a channel and the

induced flow inside and outside of the channel was investigated.

The second membrane used the same actuation method - relying on the induced magnetic

torque coupling with the mechanical torsion. In this case the membrane consists of a network

of magnetic disks, connected with elastic links. Two system were created with this design:

the first with all disks magnetised out-of-plane, and the second with a mix of in-plane and

out-of-plane magnetisation. The membranes were pinned on the fluid surface and the induced

flow was investigated.

5.3.1 Flagella-based magnetic membranes

In this study, properties and external responses of a macro-scaled ferromagnetic membrane is

discussed. Experimentally, the membrane was created based on the millimetre-scale torque
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driven swimmers and pumps previously discussed. The structure was created with a unit cell

containing a flagella structure - mimicking structures observed in nature (shown in Figure

5.18a). The devices were attached to the end of a channel and actuated by manipulating the

frequency of a weak oscillating magnetic field (1.5 mT). The induced flow inside and outside

of the channel was investigated.

Fabrication of the flagella-based membranes

Experimentally, the flagella-based membrane was composed of a magnetically hard NdFeB

cubic particle (0.5 mm × 0.5 mm × 0.5 mm). The devices were constructed using a 3D

printed mould similar to that of the torque driven ferromagnetic swimmers. To produce a

2 × 2 unit cell geometry (shown in Figure 5.18a), a mould was designed using Autodesk

AutoCAD and 3D printed using a Formlabs Form 2. The magnetically hard ferromagnetic

particle was fixed with its anisotropy axis along the tail axis of the unit cell, then the mould

was filled with a silicone rubber. After the liquid rubber was cured, the desired tail was

produced which also encapsulated the magnetic particle.

Fig. 5.18 (a) Schematic diagram of a unit cell of the flagella-based membrane, showing the
outer dimensions of the cell (a and b), as well as the length of the tail l. (b) Photograph of
the 2 x 2 flagella-based membrane attached to the end of a 11 mm wide 3D printed channel.
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The dimensions of a unit cell were: a = 6.8 mm, b = 5.8 mm, l = 3 mm, depth = 0.8

mm and width = 0.4 mm. The head around the magnetic particle had dimensions 0.8 mm ×

0.8 mm × 0.8 mm to ensure full encapsulation of the particle. The length of the tail chosen

was 3 mm based on the previous study on single ferromagnetic particle swimmers where

the peak in swimming speed was at this length. Figure 5.18b shows the descried membrane

(comprising of a 2 ×2 array of flagella based swimmers, attached to one end of a channel.

The investigated focused on exploring the fluid behaviour induced by the membrane inside

and outside of the channel.”

Inducing a fluid flow outside the channel

The induced flow of the flagella-based membrane was studied by fixing a 2 × 2 structure to

the end 3D printed channel. The channel had a length of 80 mm and width of 11 mm. The

channel was filled with fluid - in this study water - and the device was fully submerged.

The frequency dependence of the induced flow was investigated by applying a fixed field

strength of 1.5 mT and varying the frequency between 40 and 140 Hz. Figure 5.19a shows

the particle image velocimetry (PIV) results of the generated flow for the flagella-based

membrane in the presence of a 1.5 mT external magnetic field and frequencies 40 Hz, 80

Hz, 120 Hz. A key feature observed was two vortices produced outside of the channel for

frequencies > 60 Hz. These vortices indicate that a flow is being induced.

Using PIV, the averaged - over 200 frames - flow velocity was observed for different

frequencies. Figure 5.19b shows the flow speed generated outside the end of the channel as

a function of frequency. The flow speed was shown to gradually increase with increasing

frequency and peaked at 120 Hz 6.9±0.2 mm s−1.
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Fig. 5.19 (a) Shows the generated PIV flow fields. The red region indicates the end of the
channel, where the membrane is attached. (b) Flow velocity outside the channel as a function
of frequency for the flagella-based membrane. The strength of the external magnetic field is
kept constant at 1.5 mT.

Inducing a fluid flow inside the channel

Following the investigation outside the channel, the flow of the fluid within the channel was

tracked and investigated. Using an external magnetic field of 1.5 mT and frequency 100 Hz

the induced surface wave can be observed and tracked.

The speed of propagation of the front of the pulsing wave was tracked using a 2000

FPS camera. Figure 5.20 shows the front speed along the length of the channel. The front

speed remains constant (∼ 450±92 mm s−1) between 5 mm (near the membrane) to 40 mm

(approximately halfway down the channel). At distances > 50 mm, the front speed starts to

fall off, due to the channel exit.

It is clear that the front speed is much larger than the average velocities previously shown

from PIV. This is due to the fact the particles do not travel along the front of the induced
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wave. Further investigation using tracker particles - and PIV - will need to be conducted to

get a full understanding of the induced surface flow down the channel.

Fig. 5.20 The front speed as a function of distance along the channel. The external magnetic
field has strength 1.5 mT and frequency 100 Hz. The membrane is attached at distance = 0
mm.

5.3.2 Disk-based magnetic membranes

Based on the initial idea of the flagella-based membrane, disk-based magnetic membranes

were fabricated. They still rely on the induced magnetic torque and mechanical torsion

interactions. Two membranes of the same design but with different combinations of magnetic

moments were investigated. For both membranes the tilt of the magnetic disks elements due

to an external magnetic field were investigated. Also investigated was how manipulating the

parameters of the external magnetic field affects the induced fluid flow.

Fabrication of the disk-based magnetic membranes

Using a 3D printed mould magnetic components were fabricated with dimensions: diameter

ΦM = 2.45 mm and depth = 0.8 mm. NdFeB powder (average diameter < 10 µm) was added

to silicone rubber and mixed (approximately 6% of the total volume). The liquid magnetic

rubber was then placed in the mould to create the desired magnetic disks.
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Fig. 5.21 (a) Photograph showing the geometry of the investigated disk-based membrane. (b)
Detailed schematic of the fabricated disk-based membrane, showing all dimensions.

The cured magnetic components were magnetised in a Vibrating Sample Magnetometer

(VSM) at 1.8 T for 17 minutes to saturate the disks along the major axis of the geometry,

resulting in a magnetic moment m = 1.4×10−4 A m2. Once the magnetic components were

magnetised they were placed in the mould of the membrane. The dimensions of a unit cell

were: link depth a = 0.4 mm, link width b = 1.2 mm, outer long length lL = 12.8 mm, and

outer short length lS = 9.1 mm. The centre-to-centre separation between the magnetic disk

was SD = 4.0 mm, and the separation between a disk and the side of the unit cell was SL =

3.8 mm. Non-magnetic liquid silicone rubber was placed in the mould and cured at room

temperature. Figure 5.21a shows photograph of a full membrane and schematic diagram of

a unit cell (Figure 5.21b). More information regarding the full fabrication can be found in

Experimental Methods Chapter.

Investigation of the induced tilt angle

In solid mechanics, torsion is the twisting of an object due to an applied torque τmec, which

can be expressed as

τmec =
JT

l
Gϕ. (5.2)
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In this case JT is the torsion constant for a cross-section, l is the length of the object which the

torque is being applied over, G is the shear modulus, and ϕ is the angle of twist (in radians).

The magnetic torque TTT M induced by a magnetic moment mmm in the presence of an external

magnetic field BBB

TTT M = mmm×BBB. (5.3)

Using Equation 5.2 and 5.3, a predicted angular dependence on the strength of the external

magnetic field can be produced. The predicted dependence is shown with the red dotted line

on Figure 5.22. In the case, JT for a rectangular cross-section with long side length, a and

short, b, has been assumed to be

JT ≈ ab3
(

1
3
−0.21

b
a

(
1− b4

12a4

))
. (5.4)

Figure 5.22 and Figure 5.23 show the angle of tilt for two cases: when all magnetic disks

are magnetised out-of-plane (Figure 5.22) and when in a unit cell, one disk is in-plane and

the other is out-of-plane (Figure 5.23). Figure 5.22 shows that the measured data (the error

bars show the standard deviation of 30 disks), oscillating in both directions of the external

magnetic field fit linearly (blue solid line). The predicted trend (red dotted line) and the

measured (blue solid line) fit show an excellent agreement, only with a small shift in the

intercept. Such shift is expected due to the presence of the fluid in the experiment, producing

a threshold field strength required to overcome the surface tension forces. This effect is not

taken into account in the model.
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Fig. 5.22 The induced tilt angle as a function of magnetic field strength for a membrane with
all disks magnetised out-of-plane. The red dotted line shows the predicted tilt angle for the
parameters. The blue solid line shows a linear fit to the measured data.

Figure 5.23 shows the angle of tilt for a membrane with in-plane and out-of-plane

magnetised disks. The black circles show the angle of tilt for the out-of-plane disks and the

red diamonds show the angle of tilt for the in-plane disks. The error bars show the standard

deviation for 24 disks. The figure shows the out-of-plane disks induce similar rotation angles

for both directions of the applied magnetic field. The in-plane disks show very different

behaviours when the magnetic field is applied in different directions. The solid red line

(diamonds) shows that the induced torsion is minimal compared to the < 90◦ rotation of the

dotted red line. This difference in the rotation is due to the rest magnetisation orientations of

disks in the membrane.
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Fig. 5.23 The tilt angle as a function of magnetic field strength for a membrane with a
mix of disks magnetised in-plane and out-of-plane. The black data shows the tilt angle for
out-of-plane for the magnetic field being applied in each direction. The red data shows the
tilt angle for in-plane for the magnetic field being applied in each direction.

In the simplest case, one can take two neighbouring magnetic disks – neglecting net

motion of the membranes and investigate if in fact they create a non-reciprocal motion. For

the membrane with both disks magnetised out-of-plane the sequence shown in Figure 5.24

over one cycle of the magnetic field is observed. The produced motion is reciprocal in nature,

thus not generating a net flow.
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Fig. 5.24 Schematic diagram and photographs visualising the rotation of the a unit cell; with
both disks magnetised out-of-plane.

However, when preforming the same analysis on the membrane with disks magnetised

in-plane and out-of-plane, the sequence shown in Figure 5.25 is observed. In this case, the

motion can be stated as non-reciprocal, thus even in this simplified case, the system would

generate a fluid flow at a low Reynolds number.
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Fig. 5.25 Schematic diagram and photographs visualising the rotation of the a unit cell with
one disk magnetised out-of-plane and the other in-plane.

In reality, the systems are not as simple as two tilting disks, as there is a net induced

motion of the full membrane, as well as elastic deformations, and surface tension effects.

Thus both membranes are able to induce a fluid flow.

Investigation of the induced flow

To investigate the flow induced by the membrane, the induced flow speed as a function of

different external parameters, frequency and magnitude of the external magnetic field, was

examined. The induce a flow, the membrane was placed on the fluid-air interface and pinned

in the centre of a Petri dish, so the membrane is free to rotate if required. Particle image

velocimetry (PIV) was used to visualise and analyse the flow.

Figure 5.26 shows the PIV image of the generated flow for an out-of-plane only membrane

in the presence of a 1.5 mT field with frequency 40 Hz. The main feature observed is the
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four vortices produced around the membrane. The maximum speed of jet of the upper two

vortices has a value of ∼ 68±0.7 mm s−1, compared to the maximum speed ∼ 26±0.4 mm

s−1 for the jet of the lower two (shown in Figure 5.26). Due to this difference between the jet

speeds, if the membrane was free to move on the surface, it would have a preferred direction

of propagation. In the case of the pinned membrane, the membrane will induce a preferred

direction, creating a net flow.

Fig. 5.26 PIV visualisation of the induced flow created by the out-of-plane disk-based
membrane in the presence of a 40 Hz, 1.5 mT magnetic field.

Using the information gathered from Figure 5.26, a dependence of flow speed on external

parameters can be created, by taking the averaged velocity magnitude of the region around
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the two upper vortices. Figure 5.27 (black circles) shows the dependence of flow speed on

frequency for the two membranes. Two regimes for the all out-of-plane membrane (< 70 Hz

and > 70 Hz) are observed, this is due to the membrane being free to rotate on the surface. At

40 Hz the membrane has the optimum orientation relative to the applied field for the tilting

of the magnetic disks (a unit cell parallel to the field). At frequencies between 40 Hz and 80

Hz the membrane is rotating in the field, once the frequency is > 80 Hz, the membrane has

rotated 90◦ producing the second regime.

The motion of the fluid observed in the case of the membrane with in and out-of-plane

magnetised disk is a more irregular compared to the previous membrane, but the vortices

still occur. Figure 5.27 (red diamond) shows the dependence of the flow speed as a function

of frequency. Once again, a peak at 40 Hz is observed, with a second at 70 Hz. The rotation

of the membrane in this case is typically at 45◦ to the applied magnetic field.

Fig. 5.27 Flow speed as a function of frequency for the out-of-plane (black circle) and in and
out-of-plane mixed (red diamond) membranes. Inset shows the orientation of the out-of-plane
membrane.
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Figure 5.28 shows the flow speed for increasing magnetic field strength for three different

frequencies, for the membrane with all out-of-plane magnetic disks. As expected, the flow

speed increases with increasing field strength, indicating that the flow speed has a dependence

of the angle of tilt (shown in Figure 5.22). At 40 Hz and fields > 2.5 mT, the vortices start to

break down, thus the average flow speed plateaus.

Fig. 5.28 Flow speed as a function of magnetic field strength for 40 Hz (black circles), 80 Hz
(red squares) and 120 Hz (blue diamonds), for the out-of-plane membrane.

138



5.3 Torque driven ferromagnetic membranes

Figure 5.29 shows a similar dependence for the membrane with both in-plane and out-of-

plane magnetic disks - with comparably lower velocities. At high fields (> 3.0 mT) and 40

Hz, both membranes are creating a similar averaged flow speed.

Fig. 5.29 Flow speed as a function of magnetic field strength for 40 Hz (black circles), 80 Hz
(red squares) and 120 Hz (blue diamonds), for the disk-based membrane with in-plane and
out-of-plane magnetic components.
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5.4 Conclusion

A proof of concept was demonstrated for a new class of active microfluidic components and

lab-on-a-chip devices of hybrid functionality. The systems were based on the performance

of a low Reynolds number swimmer - consisting of a pinned two-ferromagnetic particle

swimmer - which, when prevented from translation, is capable of generating flows of different

speed, directionality and pattern. These systems could potentially be used as pumps, valves

and mixers in microfluidic applications with a number of advantages, particularly for point-of-

care technologies where options for flow control are limited due to requirements of portability

and low cost. The system lends itself to robust control and can quickly switch between

different functionalities (e.g. as a pump, valve, flow splitter or mixer). It is controlled

wirelessly through a small number of easily adjustable parameters of the external uniaxial

magnetic field, such as frequency and amplitude. The fact that the swimmer is connected by

an elastic ring means that it can easily be pinned and prevented from translation without loss

of other degrees of freedom necessary for its proper function. This may be difficult to achieve

with other swimmers such as the unconnected [130] or helical configurations [18, 131] for

which pinning would interfere with the method of propulsion.

Secondly, a torque driven fluid pump system was presented. This system worked on a

similar premise to the two-ferromagnetic particle swimmer, by pinning the swimmer in such

a way not to affect the beating patterns produced. It was shown that this system was able to

induce a stable flow speed over the operating regime of the device. However, the method

used to pin the swimmer may be affecting the motion of the swimmer, resulting in the slow

flow speed generated compared to the free swimming speeds. It also shown that such systems

could be built into the walls of the channel. The induced deflection of the wall based pump

was investigated and an estimated bending force was shown to have the similar dependence

on the external magnetic field strength as the induced flow speed. A further extension to this

work would be to investigate how multiple torque driven pumps would collectively work
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together. Such an investigation could shed light on how the separation between the pumps

affects the induced flow.

The final section was decided to the investigation of two different magnetically controlled

membranes. The first was a 2 × 2 membrane based on a magnetic flagella-like structure.

This macroscopic membrane was attached to the end of a 3D printed channel and submerged

in fluid. The dependency of the frequency of the actuating magnetic field on the induce flow

speed was investigated. PIV was used to find the flow field velocity out of the channel near

the membrane.

The front speed within the channel was also investigated. Both measurements indicate

that a flow has been induced due to the active membrane. Further work will have to be to be

done on controlling or enhancing the induced flow created by this design.

Using a similar principle, membranes comprising of magnetic disks were fabricated and

actuated using an external magnetic field to induce a magnetic torque and in turn a mechanical

torsion. Two membranes were investigated: one with all magnetic components magnetised

out-of-plane, and the other with a mixture of in and out-of-plane magnetic components in a

unit cell. The membranes were actuated using an in-plane uniaxial magnetic field, and the

mechanical tilt of the components were investigated, showing excellent agreement with the

predicted angles. By manipulating the frequency and amplitude of external magnetic field,

the membranes induced a fluid flow. The induced flow was investigated using PIV and a four

vortex structure of the flow was shown.

The simple design of these devices is promising for incorporating them into lab-on-a-chip

systems. The next step in this work would be to fabricate such structures on a micrometre

length scale. One method could be lithographic fabrication for the elastic components and

electrodeposition for the magnetic components.
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Chapter 6

Collective motion of magnetic systems

This chapter will focus on the collective motion of two different magnetic systems. The first

system was based on the rotational collective patterns of an array of ferromagnetic rotors.

Under the influence of an external magnetic field, the rotors can create different rotational

patterns, analogous to the metachronal wave seen in nature. A metachronal wave is formed

from the interaction between neighbouring beating cilia.

The second system will also show a collective motion analogous to a metachronal wave,

however, this system comprises of a line of rocking rudders within a channel. The magnetic

rudders had different fixed magnetic moments, to induce a phase lag between the rudders.

In recent years, the magnetic colloids have been extensively used in microfluidic devices

and applications such as magnetic swimmers [54, 65, 1, 112, 132], magnetic pumps [128,

133, 21, 23], magnetic cilia [91, 134, 135], and particle sorting and segregations [136–139].

When a uniform rotational magnetic field is applied to a ferromagnetic colloidal particle, the

colloidal particle experiences torque and rotates together with the field.

Many previous studies achieved their goals of net motion by utilising this rotational

motion in investigating ways. For instance, a magnetic colloid rotating close to a wall

boundary causes net translational motions [54], and can be delivered to a desired position.
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Another example would be a magnetic particle with a helical tail [65] which converts its

rotational motion to translational motion with its chiral tail.

The colloid rotation can be used for pumping or mixing fluids but it is not intuitive to

achieve net-pumping effect under low Reynolds number regime, because a single rotating

unit would just result in a rotlet flow-field, [140], resulting in no net flow.

In previous studies, two approaches have been tested to extract effective pumping from

colloid rotation. The first idea is to utilise the wall boundary effect to break the rotational

flow symmetry [133, 21, 23]. When a colloid rotates parallel to the wall, the net-pumping

effect can be achieved because the flow farther from the wall would be faster than the flow

closer to the wall [133].

The second idea is to create an non-reciprocal beating during a rotation cycle [91, 134,

141]. The previously discussed self-assembled magnetic cilia were shown to produce fluid

flow, if pathway of effective/recovery strokes are different.

Many of these previous investigations were designed to control a single magnetic unit or

to actuate many units in exactly the same manner. For next stage of these magnetic devices,

it will be practical if the collective dynamics of the magnetic units could be controlled by

only changing the external magnetic field.

Fig. 6.1 (a) Schematic showing the asymmetric beating pattern of a single cilium. A full
cycle is shown from light grey to black. (b) Schematic showing a visualisation of an array of
beating cilia producing a metachronal wave.

144



6.1 Collective rotational patterns of magnetic rotors

However, it is not intuitive to achieve different behaviour among the units because all

units receive a same signal from outside. It is known that cilia, natural pump, has rich

collective dynamics in their beating pattern [142]. Due to the hydrodynamic interactions

between the cilia, they beat with a phase lag with their neighbours which is known as the

metachronal wave. An example of a single beating cilium and an array of cilia is shown in

Figure 6.1. There are only few attempts [134, 135] to control collective dynamics of large

number of magnetic units.

6.1 Collective rotational patterns of magnetic rotors

This work was completed in collaboration with Dr. Daiki Matsunaga from the University of

Oxford. In this work, the interesting collective rotation/swinging of magnetic rotors that are

positioned in a grid structure was investigated. The magnetic rotors are fabricated with 3D

printing technology, and the collective motions under actuation of 1D alternating magnetic

fields were analysed. By changing parameters, magnetic field strength and grid size, two

interesting collective modes of rotors were found: the quarter rotational pattern and stripe

swinging pattern. A theoretical model was developed by Dr. Daiki Matsunaga that matched

and helped describe the experimental results (shown in Appendix B).

6.1.1 Experimental investigation

The system consisted of N = NxNy magnetic rotors with ring geometries (Figure 6.2) po-

sitioned in a grid structure, where Nx and Ny is the number of rotors in x- and y-direction

respectively. The rotors are fabricated by mixing liquid silicone rubber and NdFeB magnetic

powder. The liquid magnetic rubber was then placed in the 3D printed mould and cured at

room temperature for 6 hours. The cured magnetic rotors were then placed in a Vibrating

Sample Magnetometer (VSM). The VSM ramped the magnetising field up to 1.8 T over 17
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minutes to saturate the rotors in-plane along their longer major axis resulting in a magnetic

moment m = 2.2×10−4Am2 at the presence of zero external field. The magnetic hysteresis

of a rotor is shown in Figure 6.3. The dimensions of the rotors are shown in Figure 6.2 (inset)

and have a depth of 0.9 mm.

Fig. 6.2 Schematic of the experimental setup, consisting of a Helmholtz coil system, with the
3D printed pin system placed in the centre. The inset shows a rotor placed on a 3D printed
pin and its dimensions.

146



6.1 Collective rotational patterns of magnetic rotors

Fig. 6.3 Magnetic hysteresis of a single magnetic rotor used for the collective motion of
arrays of identical magnetic structures. At zero external magnetic field the magnetic moment
was shown to be m = 2.2×10−4Am2.

The rotors are placed on the fluid-air interface on 3D printed posts (radius 0.5 mm)

separated of a distance l from each other, and glycerol (> 99.5% pure, viscosity η = 1.4

Pas) is used as the fluid. The rotors have no translational degree of freedom because of the

posts, but can freely rotate under the action of the local magnetic fields.

Similar to previous experiments, a Helmholtz coil system was used to create a uniform

magnetic field alternating in x-direction as

BBBext = [Bsin(2π f t),0,0], (6.1)

where B is the amplitude and f is the frequency. The coil system is powered by a signal gen-

erator and power amplifier to generate the sinusoidal field, and the amplitude and frequency

of the field could be manipulated by using the attached computer.
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Dimensionless parameters introduced for the rotor system

The rotor behaviour is governed by both magnetic and hydrodynamic interactions with neigh-

bouring rotors. After introducing several simplifications, Dr. Daiki Matsunaga developed a

theoretical model that describes the rotational dynamics of the rotors which is discussed later

in this section. Based on the model, there are three important dimensionless parameters:

α =
Bl3

µ0m
, (6.2)

β =
η l3 f
mB

, (6.3)

and the reduced rotor radius ã = a/l, where a is characteristic size of the rotor.

The parameter α defines the dipole-dipole interaction strength of the rotors compared

to the external magnetic field. The second parameter, β defines the relaxation time of the

system compared to the external field frequency f . The final parameter is ã, which defines

the contribution of hydrodynamic interactions of rotors compared to magnetic interactions;

the hydrodynamic contribution is important for larger ã.

The hydrodynamic interactions would play an important role if the rotors are close to

each other ã ≈ 0.5, because of the lubrication interactions [140]. In the experimental set-up

ã = 0.21−0.33 and these interactions would are weak.

Table 6.1 shows the parameters values used in the following experiments. The Reynolds

number of this system can be defined as

Re =
a2ρ f

η
≈ 10−3, (6.4)

and the inertial effect would be negligible due to the small Reynolds number Re ≪ 1.
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Parameter Experimental value
characteristic size (radius) of rotors a = 1.3 mm

grid size l1 = 6.3, l2 = 4.0 mm
magnetic moment of rotors m = 2.2×10−4 Am2

external magnetic field strength B1 = 6.0, B2 = 1.5 mT
external magnetic field frequency f = 1.0 Hz

fluid viscosity η = 1.4 Pa s
fluid density ρ = 1.3×103 kgm−3

Reynolds number Re = 1.57×10−3

α α1 = 6.0, α2 = 0.4
β β1 = 0.3, β2 = 0.3
ã ã1 = 0.21, ã2 = 0.33

Table 6.1 Experimental values used for the rotor system, as well as the Reynolds number and
dimensionless parameters.

Base state conditions under a static magnetic field

Finally, the rotor orientational pattern under static or no magnetic fields conditions is briefly

described. For all sets of parameters, the experimental findings and the model are shown.

Figure 6.4a shows a pattern under no magnetic field B = 0 (α = 0) resulting in the spin

ice structure [143, 144] since the rotors try to maximise their angle difference from their

neighbour. The pattern is also known as a “two-in, two-out" structure since two arrows face

inside while the other two face outside at each grid.

At the other extreme α ≫ 1, all rotors follow the external magnetic field direction as

shown in Figure 6.4c, due to their dipolar interactions being negligible in this condition.

At an intermediate value of α ≈ 1 (α = 0.2 is shown here) shown in Figure 6.4b, there

is a small local alignment resulting in a tilting at the corners and edges: the rotors placed

left-bottom or right-top show slight tilting towards +y, while those in other two corners show

tilting towards −y.

149



Collective motion of magnetic systems

Fig. 6.4 Snapshots of orientational configuration under a static field with (a) α = 0.0, (b) 0.2
and (c) 10.0. The external magnetic field is imposed to right. Top row shows results from the
experiment while bottom shows the simulation. Red arrows describe the magnetic moment
direction of each rotor, in both the model and experiment.

The behaviour of a single rotor

For easy understanding of the system, firstly the simplest rotor behaviour was described: a

single rotor under the alternating field. Experiencing the torque exerted from the uniaxial

external field, the rotor would swing continuously back-and-forth with a frequency f . The

swinging direction would purely depend on the initial angle, and they show upper-swing

if the initial m orientation is pointing +y-half while they will show lower-swing for other

half. Since the system satisfies small inertia condition Re ≪ 1, the rotor would not overshoot

during the swinging behaviour and they tend to stay at one side. Therefore, they will never

show full-rotation under alternating field at any given parameters α and β .

The collective motions of the rotor arrays under external magnetic field is descried below.

Changing the parameters, two different collective modes in this system were found: quarter

rotational pattern and stripe swing pattern.
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Rotational patterns

As shown in Appendix B, a full phase diagram from the theoretical model for the compre-

hensive understanding of the system was created. Figure 6.5 shows the phase diagram of the

collective rotational patterns. Figure 6.5 shows the rotors form the quarter rotational pattern

(c) staggered(a) stripe (b) quarter
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Fig. 6.5 Phase diagram from the simulation in Nx = Ny = 4 array. Showing the resulting
rotational patterns for different combinations of α and β . Showing 4 regions of interest: (a)
the stripe swinging pattern, (b) the quarter rotational pattern, (c) the staggered pattern, and
(d) where no pattern is observed.

for large α while they form the stripe swinging pattern for smaller α . In a range between

these two states, another interesting set of rotational pattern was observed, which is named

“staggered patterns". There are also regions where for given combinations of alpha and beta

in which no patterns are observed. The following section show the experimental verification

of the existence of the quarter rotational and stripe swinging patterns.
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Quarter rotational pattern

Figure 6.6 shows a schematic diagram of the rotational pattern under the one dimensional

alternating magnetic field with α1 = 6.0 and β1 = 0.3. Interestingly, the rotors have their

own preference in the rotating direction depending on the rotor position the rotors located top

left and bottom right quarters rotate clockwise, while they rotate anticlockwise for the other

two corners. The rotor movements are visualised in Figure 6.6, and there is a clear contrast

from a single rotor motion because the rotors are showing full rotation during the cycle.

Fig. 6.6 Schematic showing the rotational pattern in the presence of an external magnetic
field with α1 = 6.0 and β1 = 0.3. The rotors are shown in a 4×4 grid, with the blue arrows
showing clockwise rotation and the red arrows showing anticlockwise rotation.

In order to characterise the rotational pattern, the number of rotations during x-directional

flipping was counted, and the following parameter was introduced

R =
n+−n−
n++n−

, (6.5)

where n+ and n− are number of rotation in +z (anticlockwise) and −z (clockwise) respec-

tively.
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Figure 6.7 shows the parameter R for each rotor. Rotors at the corners almost always

rotate in the same direction. The rotor motions did not result in a reciprocal motion [4]

because the dipolar interactions between rotors break the time reversibility of the system. At

the same time, the four central rotors do not have a preferred direction and they typically

swing during a cycle.

Fig. 6.7 The rotational parameter R of each rotor for a 4×4 rotor array. The circles depict
a single rotor, with blue meaning clockwise and red meaning anticlockwise rotation. The
observation was based on 25 cycles.

The rotational preference appeared because of the non-uniformity of the magnetic in-

teractions, which is based on the finite system size. For simplicity, consider the situation

of flipping the magnetic field suddenly from +x to −x in Figure 6.4b. Before flipping the

field, all rotors more or less point +x direction but with a slight tilting due to the local dipolar

interactions.
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As previously shown, when discussing the base conditions of the rotors, the rotors placed

left-bottom or right-top of the system show slight tilting towards +y, while those in other

two corners show tilting towards −y. If the external magnetic field direction switches to

−x suddenly, this spatial dependent tilting gives rise to the rotation preference: rotors at

left-bottom and right-top corner prefer to rotate anticlockwise because this direction is closer

to −x direction (it will be the opposite for other two corners). After giving sufficient time for

the system to relax, same preference in the rotation would happen in a flip back (−x to +x)

because it is purely symmetric from the first flip.

Fig. 6.8 Time-averaged flow field generated by the rotors in (a) experiment (α1 = 6.0 and
β1 = 0.3) and (b) simulation (α = 6.0 and β = 0.03). The contour shows the vorticity ω

strength, the black arrows visualise the local flow field and the large grey arrows show net
flow field created by the system. Symbols indicate the rotor position: corners - circles, edges
- squares, and centre - triangles.
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This is the basic mechanism of the quarter rotational pattern, and this phenomenon stands

for small β because the system needs time to catch up to the external field. The collective

motion is interesting because rotors behave differently and have their own rotational direction,

even though they are identical with one another.

This collective rotational pattern can be used to mix or pump fluid as shown in Figure

6.8a. Due to the quarter rotational pattern, the rotors system pull the fluid into the centre

from y-direction and push it out in the x-direction. In other words, the system created dipolar

flow field, which can be also seen in a flow generated by stresslets [140].

The dipolar flow field is also seen in our theoretical model presented in Figure 6.8b. The

average flow speed through the system was found to be 0.63±0.25 mms−1. This approach of

creating dipolar flow field is practical, because the flow field direction can be easily switched

by the external magnetic field: the system would pull the fluid into itself from a direction

parallel to the external field and push the fluid toward a perpendicular direction.

To investigate the rotational phase of the rotors, the rotors are classified into three

categories depending on the position as shown in Figure 6.8a and Figure 6.8b with different

symbols. Figure 6.9 shows the time history of vorticity strength |ω|= |∇×u| for the three

categories and indicates that the corner rotors start to rotate first and the phase propagates

towards the centre of the system.
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Fig. 6.9 Time history of the vortex strength |ω| for three categories of rotors, in experiment
and simulation (inset). Note T = 1/ f is the period.

This phase propagation is also clearly shown in the theoretical model (inset). The phase

lag is again due to the finite system size effect. The corner rotors start to rotate first because

they have the maximum tilting angle from the external magnetic field as shown in Figure

6.4b, and this variety in the tilting angles gives rise to the phase lag.

An analogy can be drawn between the phase lag observed here and the metachronal wave

beating [142]. Previous studies achieved metachronal waves by designing the magnetic units

different from one another. This was achieved by different size gradient of the magnetic

units [135] or patterning the magnetisation direction differently [145]. The phase lag in this

system is different from the previous systems because all the units are identical, and the

current method is a new approach of creating phase lag based on the finite system size effect.

One of its advantages is production simplicity, since all magnetic elements are the same.
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Stripe swinging pattern

If the strength of the external magnetic field B is decreased, which corresponds to decreasing

α , the dipolar interactions between the rotors will be dominant. Figure 6.10 shows snapshot

of this rotational pattern, and the rotors show back-and-forth swinging instead of full-rotation.

This pattern was given the name stripe swinging pattern because the rotors form the y-

directional stripe upper-swing (red arrows) and lower-swing (blue arrows). This pattern is

clearly different from a single rotor swinging, because the upper-swing/lower-swing is not

determined by the initial angle and it is established by the interactions with the neighbours.

Fig. 6.10 Experimental observation of the stripe swinging pattern for a 4x4 rotor array under
α2 = 0.4 and β2 = 0.3. The arrows depict the direction of the magnetic moments and the
two frames show the moment when the external magnetic field reached −B (left) and +B
(right), respectively.

The dynamics can be understood by regarding the pattern as adding small perturbation to

the spin ice structure, Figure 6.4a. The spin ice structure intrinsically has the stripe character:

in Figure 6.4a, odd-columns from the left are pointing up while even-columns are pointing

down. If a small external magnetic field (1.5 mT) is applied, the rotors would form a stripe

pattern and swing together back-and-forth. By changing the two parameters α and β in the

experiment two different collective patterns develop.
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6.2 Magnetically actuated rudders

This section will focus on another collective motion system. However, in this case, the

magnetic components are placed within a channel. The magnetic components had a depth

similar to the height of that channel. The section is focused on investigating how the

magnetisation of the components can affect the collective motion.

6.2.1 Experimental investigation

The main idea of this work was to create a low Reynolds number system similar to that

presented with the rotor array, but within a channel. The structures investigated either

comprised of a pair of rudders or three rudders in a row. The main parameters investigated

were how the magnetisation direction of each rudder affects the induced flow, and also how

the separation affects the flow.

The rudders were fabricated using a 3D printed mould. The geometry of the rudder

was similar to the rotors previously presented. However, the rudders were symmetric and

had a depth of 4 mm. Figure 6.11 shows a schematic diagram and photograph of a rudder.

The rudders were made from a mixture of silicone rubber and NdFeB powder. The cured

magnetic rudders were then placed in a Vibrating Sample Magnetometer (VSM). The VSM

ramped the magnetising field up to 1.8 T over 17 minutes to saturate the rudders.
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Fig. 6.11 Schematic diagrams and photograph of the magnetically controlled rudders. (a)
Schematic showing a pair of rudders pinned on posts with separation lsep. (b) Schematic
showing the dimensions of a rudder with depth 4 mm. (c) Photograph of a pair of magnetic
rudders, pinned in the bulk of a fluid within a 10 mm channel, tracer particles are placed on
the surface.

The magnetisation of the rudders in a pair was different. Taking the in-plane magnetisation

of the main axis as 0◦, rudders were magnetised with the orientations, θmag; 0◦, 30◦, 60◦,

and 90◦. Figure 6.12 shows the different configurations of magnetisation orientation. The

difference in magnetisation was introduced to create a phase lag between the rotation of the

rudders in a pair. This phase lag was to be an analogue to the metachronal wave of beating

cilia.

Fig. 6.12 Schematic diagrams showing the magnetisation direction (θmag) of the magnetically
controlled rudders. (a) Shows the angle θmag. (b) Shows the magnetisation for different
rudders: θmag = 0◦, 30◦, 60◦, and 90◦.

The initial investigation involved pinning a pair of rudders at different separations to

observe how this affected the induced fluid flow. The separation of the rudders, lsep, ranged

from 1 mm to 8 mm. The pairs of rudders investigated were: 0◦ and 0◦ (the control), 0◦ and

30◦, and 0◦ and 60◦. The legend on Figure 6.13 helps visualise the rudder pairs. In the case
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of the control system, assuming there was no magnetic interaction between the rudders, no

net flow would be expected.

The rudders were placed in the bulk of the fluid, however the tracer particles were placed

on the surface and tracking using PIV. Once again, the fluid used for the investigation was

99.9% pure glycerol. The magnitude and direction of the induced flow were measured, away

from the rudders so the net flow could be observed. The external magnetic field applied had

a frequency of 1 Hz, and a strength of 6.0 mT. These magnetic field parameters were selected

as in the case of the rotor array, for a full rotation of ∼ 180◦.

Fig. 6.13 Flow induced by a pair of magnetically actuated rudders, as a function of separation.
(a) Induced flow as a function of separation for different magnetic phase: black circles - 0◦

and 0◦, red triangles - 0◦ and 30◦, blue diamonds - 0◦ and 60◦. (b) Shows the maximum flow
speed for each separation. The external magnetic field had strength 6.0 mT and frequency 1
Hz. The legend describes the magnetisation of the pairs.

Figure 6.13 shows the induced flow for all systems. The control system (black circles) in

fact shows an induced flow. This could be due to the fact that there is a dipolar interaction

between the rudders, resulting in a non-reciprocal motion. Thus, the flows generated would

be more complex than two rudders beating in phase.
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An interesting observation to make is that the flow switches direction. When the separa-

tion is 1 mm for all cases - apart from the control - the flow direction is defined as negative.

As the separation is increased, typically for each case, the flow direction switches. This effect

may be due to the magnetic interaction between the rudders at low separation. However, this

is an interesting effect and shows that the flow direction can be controlled by only altering

the separation.

The pairs consisting of 0◦ and 30◦ (red triangles) and 0◦ and 60◦ (blue diamonds), both

show similar tends and flow speeds. In both cases, as the separation is increased the flow

direction switches, followed by the induced flow slowly decreasing to about zero. This

reduction in flow speed is to be expected as the separation is increased, the rudders more like

single rocking paddles confined by a reciprocal motion.

To further investigate the rudder system, additional pairs were created. To increase the

torque experienced by the rudders, the rudder in a pair which was previously 0◦ was replaced

with a 90◦ magnetised rudder. In this orientation, the rudders will beat perpendicular to the

applied field and channel. The pairs of rudders investigated were: 90◦ and 0◦, 90◦ and 30◦,

and 90◦ and 60◦.
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Fig. 6.14 Flow induced by a pair of magnetically actuated rudders, as a function of separation.
(a) Induced flow as a function of separation for different magnetic phase: black circles
- 90◦ and 0◦, red triangles - 90◦ and 30◦, blue diamonds - 90◦ and 60◦. (b) Shows the
maximum flow speed for each separation. The external magnetic field had strength 6.0 mT
and frequency 1 Hz. The legend describes the magnetisation of the pairs.

Figure 6.14 shows the induced flow speeds of these pairs of rudders. Similar to the

previously shown data, the pairs with the 30◦ (red triangles) and 60◦ (blue diamonds) rudders

show similar flow speeds and tends. The overall flow speeds in this investigation are lower

when compared to that shown in Figure 6.13. However, in Figure 6.14, a third new pair of

rudders are shown. This pair consists of 90◦ and 0◦ magnetised rudders. This pair (shown as

black circles) produced the highest peak value of flow speed (∼ 0.1 mm s−1).

The final stage of this investigation involved creating a new rudder system, comprising

of three different magnetised rudders. Using the information gather from Figure 6.13, the

magnetic phase between the rudders was: 0◦, 30◦, and 60◦. These values were selected due

to the tends and flow speeds of two rudder pairs being similar. Figure 6.15 shows the flow
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speed dependence of this rudder system. The external magnetic field used was the same as

for the previous rudder pairs: strength 6.0 mT and 1 Hz frequency.

Fig. 6.15 Flow induced by a system of three magnetically actuated rudders, as a function
of separation. The magnetic phase between the rudders shown was 0◦, 30◦, and 60◦. The
external magnetic field had strength 6.0 mT and frequency 1 Hz.

The maximum flow speed observed with this system was 0.17±0.03 mm s−1, which is

comparable to the maximum of the rudder pair system. However, typically the induced flow

speeds were lower than that of the rudder pair system. This could be due to the magnetic

interactions between the rudders resulting in a negative impact on the induced flow. The

flow switched directions multiple times as the separation was increased. The investigation

suggests that the three rudder system was not as stable as the rudder pair. A way to improve

the system for use in a real microfluidic chip could be to have multiple pairs of rudders.

These pairs could be separated from other pairs by a much larger distance to reduce the

magnetic interaction between pairs.

6.3 Conclusion

This chapter focused on the presentation of the collective motion of two different magnetic

systems. The first system was based on the rotational collective patterns of an array of
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ferromagnetic rotors. When arranged in a grid structure and under the influence of an external

magnetic field, interesting collective motion was observed. A simple model produced by

Dr. Daiki Matsunaga was also presented, to help understand the interactions present in the

experiment.

The magnetic rotors are fabricated with 3D printing technology, and the motion of

the rotor array was analysed, as well as the fluid flow induced under actuation of 1D

alternating magnetic fields. By changing parameters, magnetic field strength and grid size,

two interesting collective modes of rotors were found: the quarter rotational pattern and the

stripe swinging pattern. In the quarter rotational pattern, rotors at each quarter of the system

showed spatial dependent continuous rotation: two corners show clockwise rotation while

the other two show anticlockwise rotation. Due to the rotational pattern, the system creates

dipolar flow field with a metachronal wave like phase lag of rotations.

When the magnetic dipolar interaction is significant compared to the external field, the

rotors showed the stripe swinging pattern. Changing the effectiveness of the dipole-dipole

interaction, the system revealed that variety of collective modes can be extracted from a

group of magnetic units. The collective modes presented in this work are interesting because

rotors behave differently even though they are identical to each other.

The second system shown was a collective motion analogous to a metachronal wave.

This system comprised of a line of rocking rudders within a channel. The magnetic rudders

had different fixed magnetic moments, to induce a phase lag between the rudders. The

dependence of the induced flow on the separation between the pair was investigated - for

different pairs of magnetic phases. The most investigating/stable system was the 0◦-30◦ pair.

This system produced a maximum flow speed of 0.15±0.04 mm s−1.

Both presented systems can be discussed as an analogy to the metachronal wave observed

in nature by beating cilia. Such systems could be used as a controllable microfluidic pumping

system, placed in the centre of a junction. Using magnetic components, it was shown
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that the phase lag can be controlled to a high degree. Future studies investigations could

include creating an all-on-one microfluidic chip containing the microfluidic channels and the

magnetic components.
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Chapter 7

Future investigations

This chapter will focus on possible future investigations related to the presented work. One

possibility discussed in this chapter is the interesting collective swimming patterns of the two-

ferromagnetic particle swimmer. Other investigations involve using the two-ferromagnetic

particle swimmer for different fluidic applications. One application would be using the two-

ferromagnetic particle swimmer to evaluate viscoelastic properties of insoluble monolayers

spread on aqueous surfaces. This could be a plausible application due to the changes in

the effective viscosity as the packing order of the monolayer increases. Another possible

application would be using the closed circuit pump systems as a cell growth environment.

The current method of controlled cell growth can be very wasteful in term of nutrients needed

for cell growth. The two-ferromagnetic particle pump system could be used to cycle nutrients

around a closed circuit microchannel. A similar approach could also be used for mixing

blood samples and/or separating red blood cells from the blood plasma.

The final proposed future investigation is focused on the creation of a novel elastic-

ferromagnetic membrane. The idea would be to create membranes using the methods

of fabrication presented in Chapter 6. In this case, there would be a high control over the

magnetic structure of a ribbon-like structure to create efficient microfluidic pump components.
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Some preliminary work on these ideas is presented in the following sections to demonstrate

the plausibility of the approach.

7.1 Collective swimming behaviour of two-ferromagnetic

particle swimmers

This section will focus on the possible investigation involving the interesting swimming

behaviour of multiple two-ferromagnetic particle swimmers. Cohort behaviour of swimmers

is an interesting topic and has been shown to have beneficial effects on the swimming

performance - for example increased swimming speeds [111, 146]. These effects have been

found in nature [147–149].

As a proof of concept, Polydimethylsiloxane (PDMS) two-ferromagnetic particle swim-

mers with the same size and geometry as the previously presented were created.

Fig. 7.1 Sequence of images showing the motion of two PDMS two-ferromagnetic parti-
cle swimmers (3.6 mm). The coloured rings are overlaid to distinguish between the two
swimmers. The magnetic field applied has a strength of 2.5 mT and frequency of 90 Hz.

When the external magnetic field was applied the behaviour of the swimming is altered

compared to a single two-ferromagnetic particle swimmer. Figure 7.1 visualises the motion

with a sequence of images. The two-ferromagnetic particle swimmers rotate around each

other in the x-y plane, resulting in a net translational motion. The interesting observation

of this interaction is that the swimmers are aligned antiparallel with respect to the magnetic

particles. This can be observed in the inset of Figure 7.2a. The trajectory of the two swimmers

is visualised in Figure 7.2a. It can be seen that initially the swimmers only rotate around

each other with a minimal net motion. After a number of cycles, the swimmers establish a
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direction of propulsion. Figure 7.2b shows the theoretical trajectories of two-ferromagnetic

particle swimmers [111]. Although slightly different, these theoretical trajectories show the

interactions affect the trajectories and produce a braiding motion. This behaviour has also

previously been predicted by A. Cēbers and M. Ozols [146].

Fig. 7.2 Trajectories of two swimmers in the presence of an external magnetic field. (a) The
experimental trajectories when a 2.5 mT and 90 Hz external magnetic field is applied. (b) The
theoretical trajectories adapted [111]. The lines depict the evolution of the centre of the link
with time. The inset shows the configuration of the two-ferromagnetic particle swimmers.
The pink circle indicates a hard ferromagnetic particle and the green circle indicates a soft
ferromagnetic particle.
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Figure 7.3 compares the swimming speed of a two swimmer system with a single two-

ferromagnetic particle swimmers (made from PDMS). It was observed that there was an

increase in swimming speed with the two-ferromagnetic particle swimmers due to their

interaction. These initial findings indicate that the magnetic and hydrodynamic interactions

between multiple swimmers could be beneficial to the swimming capabilities of the two-

ferromagnetic particle swimmers.

Fig. 7.3 Variation of swimming speed of cohort swimming of two-ferromagnetic particle
swimmers with frequency. In the presence of a 2.5 mT external magnetic field.

7.2 Viscoelastic properties of Langmuir monolayers

Lipid molecules are insoluble in water, due to their amphiphilic nature. At an interface, they

form monomolecular films that reduce the surface tension [150, 151]. The properties of

these lipid monolayers vary with the surface density [152]. For example, a dilute monolayer,

can be well described by a two-dimensional gas. As the area per molecule is decreased -
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increasing the surface pressure - the monolayer transitions into a new phase, traditionally

called the liquid expanded phase. Further compression of the monolayer gives rise to a

transition from liquid expanded to a condensed phase. A diagram illustrating the phases

is shown in Figure 7.4. Slight differences in the molecular lattice are often accompanied

by significant changes in the surface viscosity and elasticity. Thus, the surface viscoelastic

properties of lipid monolayers have been an area of active research [153, 154].

Fig. 7.4 Diagram to visualise the phase changes - gaseous, liquid-like and solid-like states -
of a typical lipid monolayer.

The idea is to use a two-ferromagnetic particle swimmer as a reporter of the monolayer vis-

cosity, since the swimmer’s propulsion speed depends on the fluid viscosity (u ∝ ω−0.6ν−1).

This would result in a less invasive method compared to current techniques to monitor

monolayer viscosity, for example torsion pendulums and channel viscometers [155–157].

The method consists on placing a two-ferromagnetic particle swimmer on the surface on the

lipid monolayer at a given area per molecule. When the external magnetic field is applied,

the two-ferromagnetic particle swimmer will propel with a speed dependent on viscosity.
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From the previously presented work on the two-ferromagnetic particle swimmers, it is

known that the speed dependency on the viscosity is 1
ν

. Using the speed of the swimmer in

water, one can deduce an effective viscosity for the monolayer. The following preliminary

work was to demonstrate if this measurement is sensitive enough to distinguish between

different phases of the lipid monolayer.

In collaboration with Dr Bob-Dan Lechner, Dipalmitoylphosphatidylcholine (DPPC) was

spread on a water surface to form a monolayer. Figure 7.5 (solid line) shows the pressure-area

isotherm for the lipid monolayer recorder using a Langmuir trough. In a separate set of

experiments, a smaller Petri dish was mounted between two Helmholtz coils (since the

Langmuir trough had a prohibitive large size). It was used to form a monolayer at a particular

area per molecule, and a two-ferromagnetic particle swimmer was placed on the water-air

interface. The speed of the swimmer was recorded at three different frequencies of the

external oscillating magnetic field (70 Hz, 100 Hz and 130 Hz) and an amplitude of 1.5 mT.

This measurement was repeated for six different surface concentrations (hence pressures) of

lipid, as well as a control measurement with water. The recorded speeds were then used to

calculate an effective viscosity using previous dependence and the control (please note that

this is not the surface viscosity of the monolayer, but rather an effective quantity equivalent

to a bulk viscosity of a fluid in which a submerged swimmer would propel with a given

speed). The results are presented in Figure 7.5 (symbols). It is clear from the figure that the

effective viscosity closely mirrors the phase behaviour of the lipid monolayer. There is a

systematic shift along the area axis of approximately 17 Angstrom2/molecule. This is due to

the fact that the surface concentration of lipid in the Petri dish was changed by adding small

amounts of lipid and hence difficult to control (compared to the precise measurements in the

Teflon-made Langmuir trough, in which exact areas per molecule are achieved by monolayer

compression or expansion).
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Fig. 7.5 Surface pressure of DPPC lipid monolayer as a function of area per molecule, in
comparison with the effective kinematic viscosity, measured using a two-ferromagnetic
particle swimmer.

These initial experiments clearly show that the trends are comparable and this gives

confidence that this method could be used for to quantify the viscous properties of monolayers.

Further work will need to be conducted to better validate this methodology.

7.3 Controlling cell growth within microchannels

This section will focus on another possible application by using the closed circuit pump

systems as a cell growth environment. In order to systematically study cells under well-

understood environments, a process of cell growth under controlled conditions was developed.

This progress is known as cell culture. Many types of cell trapping have been proposed so

that the controlled growth can be conducted. Some examples of trapping methods are: laser

trapping, chemical trapping, acoustic trapping, magnetic trapping [158]. A popular method
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is known as hydrodynamic trapping and involves using microfluidic channels to trap the cells

[159].

One of the most commonly used methods involves trapping cells in a 20 µm × 200 µm

lateral channels off of a master channel (with an inlet and outlet at each end), and flowing

nutrients through the channel [160, 161]. The current method of controlled cell growth can

be very wasteful in term of the nutrients needed for the growth. The nutrients in this case

are not cycled around the loop-shaped channel, but new nutrients are continually pumped

through an inlet and passed through an outlet.

The two-ferromagnetic particle pump system could be used as a method of cycling the

nutrients around a closed circuit microchannel. The motivation of this investigation is to

create a new microfluidic channel in which a standard 20 µm × 200 µm loop channel (with

lateral channels for cell trapping) was attached in a closed circuit to a well with a pump based

on a two-ferromagnetic particle swimmer.

A UV mask of a 20 µm × 200 µm channel is typically used to create an epoxy-based

negative photoresist (SU-8) mould containing multiple channels. PDMS is poured over the

mould to create the channel. The channel would then be cured in an oven for 30 minutes at

100◦.

Attempts have been made to produce a prototype of the proposed system. To create

the component to hold the swimmer, 3D printed sections were created (Figure 7.6). These

sections comprised of a well of diameter 5 mm and depth 1 mm, with two arms to connect to

the microchannel with cross-section 1 mm × 0.5 mm. Once printed these components were

glued to the epoxy-based mould, to complete the closed circuit channel (Figure 7.7). PDMS

was poured over the mould and cured. Once cured, the final channel and a glass microscope

slide were oxygen etched, to alter the wettability of the PDMS. A two-ferromagnetic particle

swimmer was placed inside the macro-scaled well and when the PDMS channel and glass
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Fig. 7.6 3D representation and photograph of the millimetre scaled section for the cell
growth channel. (a) AutoCAD model of the 3D printed section, with diameter 5 mm, depth
1 mm, and width of the arms of 0.5 mm. (b) Photograph of the produced channel with a
two-ferromagnetic particle swimmer trapped within the well.

slide were put in contact they fused together. Figure 7.8 shows photographs the final prototype

with a trapped swimmer; from the top (Figure 7.8a) and from the bottom (Figure 7.8b).

Fig. 7.7 Photograph of the 3D printed section attached to the epoxy-based mould for the cell
growth channel. The red overly helps visualise the micro-channel (20 µm × 200 µm).

Fig. 7.8 Photographs of the finished prototype of the cell growth channel. (a) Shows a
photograph from the top. (b) Shows a photograph from the bottom. The swimmer is shown
trapped in the well, and the tubes shows the inlets and outlets.
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An inlet and outlet were added to the channel to allow a mixture of 10 µm tracer particles

and distilled water (with a concentration of 0.1% of the total volume). When actuated by an

external magnetic field no flow was induced. After inspecting the two-ferromagnetic particle

swimmer under actuation, it was clear that the swimmer was getting suck and the flow only

circles around the well area. Other prototypes were produced and showed similar behaviour.

This cell growth system could be used for an interesting new method to controlled cell

growth. However, work will need to be continued to improve the current system. Some of

the issues with the current system include: the swimmer getting suck, due to motion in the

z-axis, air bubbles trapped within the microchannel, and the transition between the 20 µm

channel to the 500 µm arms of the swimmer well.

7.4 Controlling blood plasma separation within channels

Blood plasma is full of various biomarkers, including proteins and metabolites. Medical

diagnostics relies on the analysis of these biomarkers. A significant part of the preparation

of the plasma samples rely on processes such as filtration or centrifugation in a lab. Such

processes can take time to produce a sample and in some cases this can create significant

problems.

In recent years, there has been a large interest in creating lab-on-a-chip system for the

blood plasma separation. A full review of the field can be found in M. Kersaudy-Kerhoas

and E. Sollier [162]. A popular method of cell separation relies on the creation of acoustic

standing waves [163, 164]. The motivation for this future investigation would be to create an

all-on-one portable pump system to mix and/or separate blood plasma. This system would

be based on the closed circuit pumps previously presented. The closed circuit channels were

created to hold a volume of 100 µm which is the typical volume needed for a diagnostic test

involving blood.
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Initially, a sample was created with a mixture of 1 mL of PBS (a buffer solution) with

20 µm of blood. 100 µm of the sample was placed in a closed circuit channel. This very

dilute sample was used to test the flow speed induced by the pump. Figure 7.9 shows the

induced flow as a function the external magnetic field strength (with a frequency of 80 Hz).

The maximum flow speed observed was approximately 2.0±0.1 mm s−1. The flow speed

was calculated by tracking the speed of the red blood cells.

Fig. 7.9 Initial tests to show the speed of red blood cells in a closed circuit channel as a
function of magnetic field strength. The flow is induced by a pinned two-ferromagnetic
particle swimmer, and actuated by an 80 Hz magnetic field.

The second preliminary investigation involved creating of a more ’realistic’ sample, in

this case ten-parts PBS to one-part blood. In this experiment, there was no clear flow induced

in the channel. However, after observing the channel, area of high (in the arms of the channel)

and low (near the swimmer well) concentrations of red blood cells occurred as shown in

Figure 7.10.

To further investigate this phenomenon, the experiment was repeated for three different

frequencies (50 Hz, 70 Hz, and 90 Hz). These experiments once again showed the collection
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Fig. 7.10 Photographs of the closed circuit channel with a PBS and blood mixture, for
different applied frequencies after 2 minutes of actuation. The external magnetic field
strength was 1.5 mT for all measurements. There is a clear cell-plasma separation (see the
right side of the channel at 70 Hz).

of red blood cells, but with a different number of nodes (Figure 7.10). Due to the differences

in the number of nodes, the current hypothesis is that the two-ferromagnetic particle swimmer

is creating a standing wave and the blood cells collect in the nodes. A similar method has

been used in the past to collect and order cells [163, 164].

To test the concentration of plasma an albumin test was conducted. Samples were taken

from different location within the channel: from an arm of the channel (A), from a node (N),

and from the swimmer well (SW). Figure 7.11 shows a schematic with the locations as well

as the albumin tests. From this crude test, it appears that the location SW contains the most

plasma and the location N contains the least. This observation indicates that this method may

in fact separate the red blood cells from the plasma.

The samples used for the test had a small volume, so pipetting errors could be large.

Larger samples would be needed to further investigate this phenomenon. However, the initial

tests show promising results which could be built upon in future investigations. To further

show the portability of the system, a small-scale magnetic coil was created (this system is

shown in Figure 7.12. This coil created an isolated oscillated magnetic field around the

pinned swimmer (rather than across the whole channel). As the area required of the field was

only approximately 5 mm, the field could be generated with a current of < 1 A (the power

supplied by a standard USB).
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7.4 Controlling blood plasma separation within channels

Fig. 7.11 Schematic diagram showing the locations of the samples for the albumin test. The
results for the albumin test are also shown for each location. The brighter the colour of the
blue, the higher the concentration of plasma in the sample.

Fig. 7.12 Snapshots of the induced flow from a USB powered oscillating magnetic field. A
particle is highlighted to show the net motion. The snapshots show (a) 0 s, (b) 5 s, (c) 10 s,
and (d) 15 s.
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7.5 Magnetically controlled ribbon-like membranes

To section will focus on a preliminary investigation of ribbon-like membranes. The proposed

membranes are a continuation of the torque driven magnetic membranes presented in Chapter

5. An interesting work would be creating soft materials which as a bulk contain magnetic

powder [165–169], rather than a material with a mixture of magnetic and non-magnetic

materials. By producing these soft materials, the magnetisation profiles can be manipulated

to produce interesting effects. Such materials have previously been investigated - to different

levels of success - and a review of this field can be found in L. Hines et al.[170].

The main focus of this future investigation would be to test freezing the magnetic

moments of the structure to produce non-reciprocal motion. In a recent publication by Y.

Kim et al. [168], they used an in-house build magnetic 3D printer to create elastic materials

with different magnetisation. Here, the directions of magnetisation can be controlled by

creating a uniform mixture of silicone rubber and NdFeB powder, fixing the structure in the

desired geometry and magnetising using the VSM to create a 1.8 T magnetic field.

This concept is similar to that of M. Sitti’s group [166, 169]. In their work, they fabricate

thin (0.1 mm) sheets of magneto-elastic materials (3.7 mm long). The structure was folded

into a ring and magnetised, to produce a single-wavelength harmonic magnetisation profile.

By manipulating the external magnetic field – for example between a periodic and rotating

B – the device was shown to be able to swim through a fluid, crawl, and roll along a hard

surface, and even jump over obstacles.

The preliminary data shown here use this simple method of freezing the magnetic

moments to create a ribbon-like structure. Figure 7.13a shows a schematic of the membrane,

with length 45 mm, width 9 mm, and depth 0.5 mm. The structure also has a small hole

towards one end, which allows the membrane to be pinned within a channel. As a simple

example, the ribbon-like structure was folded in a concertina shape. The structure was then

magnetised as shown in Figure 7.13b, once unfolded the ribbon-like structure will return to
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its original shape. Figure 7.13c shows the ribbon-like membrane pinned within a 10 mm

wide channel.

Fig. 7.13 Schematic diagrams and photograph of the ribbon-like membranes. (a) Schematic
diagram showing the dimensions of the ribbon-like membrane, with depth 0.5 mm. (b)
Schematic diagram to show the magnetisation of the ribbon-like membrane. (c) Photograph
of the ribbon-like membrane fixed within a 3D printed channel.

By oscillating the external magnetic field, the structure would actuate and create bending

modes. As a proof of concept, the structure was pinned in a 10 mm wide channel, on the

air-glycerol interface. The induced flow speed was investigated for increasing magnetic field

strength and different frequencies.

Typically, for all frequencies a rise (with similar flow speed) to a peak occurs then the

flow speed drops off. For increasing frequency, the peak shifts towards larger magnetic field

strengths. The maximum observed flow speed was approximately 0.8±0.1 mm s−1.
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Fig. 7.14 Flow speed induced by the ribbon-like membrane as a function of magnetic field
strength. Frequencies: black circle - 1 Hz, red square - 2 Hz, blue diamond - 3 Hz, yellow
triangle - 4 Hz, and green triangle - 5 Hz.

Previous work [166, 169] focused on thin sheets of magneto-elastic materials suggested

that the swimming speed have the following dependence vswim ∝ B2. In their work, experi-

mentally, they were unable to achieve this dependence, and it was stated that the differences

between the predicted dependence and the experimental dependence was due to the surface

interactions [166]. However, in the preliminary results with the ribbon placed on the surface

shown in Figure 7.14, the induced flow speed – analogous to the swimming speed – was

shown to be approximately B2. One can fit a power law dependence (v = Bb) for the region

before the plateau. Table 7.1 shows the values of b for different frequencies of the external

magnetic field. For all cases, the dependency was shown to be of the order of 2.

Using this method, the magnetisation of the desired structure could easily be controlled.

The preliminary data showed that even with a simple geometry the fixed magnetic moments
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7.5 Magnetically controlled ribbon-like membranes

Frequency [Hz] Power law fitting, b
2 2.211 ± 0.978
3 1.723 ± 0.573
4 1.916 ± 0.293
5 1.929 ± 0.310

Table 7.1 List of fitted power law dependencies on the external magnetic field strength, for
ribbon-like membrane pumps.

- under actuation of an external magnetic field - could induce a flow, and therefore non-

reciprocal motion. Such simple elastic-ferromagnetic system could be built into a microfluidic

channel and used to induce a flow. This method described could be used for adding magnetic

components to the fabrication of PDMS micro channels.
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Chapter 8

Conclusions

The initial study in this thesis focused on the fabrication and experimental investigation of

magnetically controlled ferromagnetic swimmers. The first type of swimmer shown was

a two-ferromagnetic particle swimmer. The system was created to mimic the deformation

swimming mechanism seen by eukaryotic cells. This was the first experimental investigation

on this system, and the initial investigation focused on the optimisation of the materials used

and fabrication. This swimmer was based on a pair of interacting ferromagnetic particles,

coupled to an elastic material. Under the actuation of an external magnetic field, it was shown

that it had two main swimming regimes: a pendulum regime in which the swimmer rocks

on the major axis, and a locomotive regime in which the swimmer propels perpendicularly

to the major axis. The swimming performance was investigated, and it was shown that by

varying the external magnetic field parameters (amplitude and frequency) as well as a small

external bias, the direction of motion and speed could be controlled. The dependence of the

average propagation speed on viscosity and frequency were in qualitative agreement with the

idealised two-particle pair analytical model.

The second system comprised of a ferromagnetic particle attached to a flexible tail

(analogous to a single beating flagellum). This system reacted to an induced torque via

an external magnetic field to produce translational motion. The frequency and tail length
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response showed that there was an optimum tail length of 4 mm, corresponding to the

speed of the propulsion and control of the direction. A analytical model was produced to

help understand the modes of translation. The model comprised of three particles, one of

which is magnetic, to describe the basic motion of the swimmer in a low Reynolds number

regime. This showed a quantitative agreement with experiment, even with the simplified

geometry and elastic properties. This investigation helps to understand the behaviour of these

magnetically controlled swimmers. Understanding and optimising such systems will help

with possible technological applications which require reliable actuation as well as a high

degree of control. Not only could these applications include novel drug delivery systems, but

microfludic components in lab-on-a-chip devices.

Chapter 5 focused on the converting swimming devices into fluid pumps and mixers.

Swimming and pumping in this context are two sides of the same coin because at low

Re, both configurations are subject to the scallop theorem. This work initially focused on

restricting the transtational degrees of freedom of the swimmers within channels which

induces a fluid flow. It was shown that by tailoring the channel geometry and manipulating

the external magnetic field parameters, the pumps could switch between different regimes of

pumping/mixing. Examples of these regimes include switching the flow direction or creating

a valve. This versatility endows the device with varied functionality which, together with

the robust remote control and reproducibility, makes it a promising candidate for several

applications. The applications which the shown channel geometries could be used for could

include, a cell sorting system, or a blood sample mixing system. Chapter 5 later focused on

creating membranes – with a mixture of elastic and ferromagnetic components - which rely

on magnetic and mechanical torques. These systems hold promise for use as fluid pumps in

a less invasive way, for example when attached to the walls or top of a channel.

Chapter 6 focused on creating magnetic systems which rely on the collective motion

of multiple components. This chapter was motivated by the metachronal waves observed
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by beating cilia. Mimicking nature, arrays of elastic-ferromagnetic mixture components

were investigated for different external magnetic field parameters. It was shown that for

different combinations of external parameters, as well as separation between the components,

that several interesting rotational patterns occurred. A theoretical model was produced by

Dr. Daiki Matsunaga (University of Oxford), to predict the possible rotational patterns and

net fluid flow. Similar components were also aligned within a channel to investigate the

induced flow along a channel. In this case, the magnetisation angle was used to create a

phase lag between the components. The separation between the components was found to be

an important factor and resulted in different regimes being present. The produced rotational

patterns created different fluid flows, including mixing regimes and net pumping regimes.

The final chapter focused on the future investigation and possible extensions to the pre-

sented work. The main focus was applications of the two-ferromagnetic particle swimmer.

One proposed application was to use the two-ferromagnetic particle swimmer as a novel

method of quantifying the viscostiy of monomolecular layers on aqueous surfaces. prelimi-

nary results using a dipalmitoylphosphatidylcholine (DPPC) monolayer demonstrated the fea-

sibility of this approach. Other investigations included using the two-ferromagnetic particle

swimmer within a closed circuit channel. In this system, the two-ferromagnetic particle swim-

mer could be used to either mix blood samples with a buffer solution (phosphate-buffered

saline, PBS) or separate the red blood cells from the blood plasma. In this configuration the

two-ferromagnetic particle swimmer could also be used to control the nutrients used for cell

growth in microfluidic channels. Once again, preliminary results were presented showing the

viability of these methods.

The final proposed future investigation focused on using mixtures of silicone rubber and

NdFeB powder to create complex structures with interesting functionality. The example

presented was based on a ribbon-like structure which was magnetised in a concertina shape.
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When pinned this strucutre was able to induce a fluid flow along a channel filled with a high

viscosity fluid.
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Chapter 9

Publications and conferences

9.1 Publications

Here I list all published and submitted papers within my postgraduate study. An asterisk (*)

indicates the corresponding author. An obelus (†) indicates that both authors contributed

equally.

• Joshua K. Hamilton, Peter G. Petrov, C. Peter Winlove, Andrew D. Gilbert, Matthew T.

Bryan, Feodor Y. Ogrin*. Magnetically controlled ferromagnetic swimmers. Scientific

Reports, volume 7, 44142, (2017)

• Joshua K. Hamilton*, Matthew T. Bryan, Andrew D. Gilbert, Feodor Y. Ogrin, Thomas

O. Myers. A new class of magnetically actuated pumps and valves for microfluidic

applications. Scientific Reports, volume 8, 933 (2018)

• Joshua K. Hamilton*, Peter G. Petrov, Andrew D. Gilbert, Feodor Y. Ogrin. Torque

driven ferromagnetic swimmers. Physics of Fluids, volume 30, 092001 (2018)

• Matthew T. Bryan*, Jose Garcia-Torres, Elizabeth L. Martin, Joshua K. Hamilton,

Carles Calero, Peter G. Petrov, C. Peter Winlove, Ignacio Pagonabarraga, P. Tierno,
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Publications and conferences

Francesc Sagués, Feodor Y. Ogrin. Microscale magneto-elastic composite swimmers

at the air-water and water-solid interfaces under a uniaxial field. Physical Review

Applied, volume 11, 044019 (2019)

• Joshua K. Hamilton†, Daiki Matsunaga†*, Fanlong Meng, Ramin Golestanian, Feodor

Y. Ogrin, and Julia M. Yeomans. Controlling collective (or spatial) rotational pattern

of magnetic rotors (Responding to review, Nature Communications)

9.2 Conferences

9.2.1 Organised conferences

• Bio-inspired Magnetic Systems 2018, Exeter, UK (9th - 11th July 2018)

9.2.2 Oral presentations

• Magnetism 2016, Sheffield, UK (4th - 5th April 2016) - "Experimental investigation

of magnetically controlled ferromagnetic swimmers"

• Intermag 2017, Dublin, Ireland (24th - 28th April 2017) - "Ferromagnetic swimmer: A

microfluidic pump prototype"

• 62nd Annual Conference on Magnetism and Magnetic Materials, Pittsburgh, USA (6th

- 10th November 2017) - "Ferromagnetic swimmers - Devices and Applications"

• 70th Annual Meeting of the APS Division of Fluid Dynamics, Denver, USA (19th -

21st November 2017) - "Ferromagnetic swimmers - Devices and Applications"

• Bio-inspired Magnetic Systems 2018, Exeter, UK (9th - 11th July 2018) - "Ferromag-

netic Swimmers: Fabrication, Controlled Swimming, and Applications"
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9.2 Conferences

9.2.3 Poster presentations

• 5th International Conference on Superconductivity and Magnetism 2016, Fethiye,

Turkey (24th - 30th April 2016) - "Experimental investigation of magnetically con-

trolled ferromagnetic swimmers"

• MAST STC Defence Materials Forum, Exeter UK (17th May 2016) - "Experimental

control of magnetically actuated ferromagnetic swimmers"

• Magnetism 2017, York, UK (3rd - 4th April 2017) - "Ferromagnetic swimmer: A

microfluidic pump prototype"

• Micromotors Summer School, Dresden Germany (14th - 18th August 2017) - "Fer-

romagnetic swimmer: A microfluidic pump prototype" - Awarded Student Travel

Grant

• Magnetism 2018, Manchester, UK (9th - 10th April 2017) - "Ferromagnetic swimmer:

fabrication, controlled swimming, and applications"

• 6th International Conference on Superconductivity and Magnetism 2018, Antalya,

Turkey (30th April - 4th May 2018) - "Ferromagnetic swimmers - Devices and Appli-

cations" - 3rd Best Poster Prize

• International Conference on Magnetism 2018, San Francisco, USA (15th - 20th July

2018) - "Elastic-ferromagnetic swimmers, pumps, and membranes" - Awarded Student

Travel Grant
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Chapter 10

Appendix A

10.1 Three particle theoretical model

To elucidate the swimmer mechanism shown in Chapter 4, Section 2, a minimal theoretical

model was developed where three spherical particles labelled by j = 1,2,3, were connected

via elastic filaments, as depicted in Figure 10.1.

Fig. 10.1 Geometrical configuration of the modelled torque driven ferromagnetic swimmer.
The model comprises of three particles - one of which is ferromagnetically hard, elastically
coupled together. The external magnetic field is also shown.

207



Appendix A

The particles had radii R j and were centred at rrr j(t) = (x j(t),y j(t)); the centre of reaction

[171] were XXX = (X ,Y ) given by

XXX ∑
j

R j = ∑
j

R jrrr j.

Setting rrr jk = rrrk − rrr j, r jk = |rrr jk|, r̂rr jk = r−1
jk rrr jk, and letting φ jk be the angle between rrr jk and

the x-axis. The motion of a particle is described by

ξ j r̈rr j = FFFspring, j +FFFbend, j +FFFext, j +FFFfluid, j, (10.1)

with masses ξ j taken to be sufficiently small that the motion is in an inertia-free Stokes

regime (the results are insensitive to the values of ξ j in the limit ξ j → 0). The following

forces are derived from potentials, the elastic forces can be written as

Vspring =
1
2k(r21 − l0)2 + 1

2k(r32 − l0)2,

where l0 is each filament’s natural length and k is a spring constant. A force is imposed

resisting bending motion of the three particle configuration, derived from the potential

Vbend =−ℓcos(φ21 −φ32).

Since cosε = 1−ε2/2+ · · · , this is quadratic for small angle, but being periodic in the angle

does not result in numerical problems if an angle jumps by 2π in the simulations.

The external magnetic field BBBext drives the swimmer directly through a potential term, on

magnetic particle j = 1

Vext =−mmm ·BBBext =−mBextb(t)cos(φ21 −ψ(t)),
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10.1 Three particle theoretical model

where the field has magnitude Bextb(t) and angle ψ(t) to the x-axis. Here Bext is a constant

and b(t) and ψ(t) are dimensionless. The field is taken to be purely back-and-forth along a

single axis - the y-axis

BBBext = Bext(0,sinωt). (10.2)

Provided that the radii R j ≪ l0, the length of the connecting filaments, the force on each

particle from the surrounding fluid may be written as expansions that include Stokes drag

and the leading order fluid interaction term [171, 109]

FFFfluid, j = FFFdrag, j +FFF interact, j =−6πµR j ṙrr j +∑
k

9π

2
µR jRk

r jk
(r̂rr jkr̂rr jk + I) · ṙrrk, (10.3)

where I is the identity matrix. Here and below the term when j = k is excluded, without

comment. These are the leading terms in an expansion in the small parameter ε = R/l0 ≪ 1

where R = 1
3(R1 +R2 +R3) is the average particle radius, say. At this level of approximation

the motion of the centre of reaction is given by

6πµ

(
∑

j
R j

)
ẊXX = ∑

j
FFF interact, j = ∑

j,k

9π

2
µR jRk

r jk
(r̂rr jkr̂rr jk + I) · ṙrrk. (10.4)

The parameters introduced are {ξ j,R j,k, l0, ℓ,m, Bext,ω,µ} and it is convenient to define

length, time and mass scales via

l0 = L , ω
−1 = T , ℓl−2

0 ω
−2 = M ,

as well as dimensionless parameters, similar to the ones previously discussed [110]

ε =
R
L

, ϖ = ε
LT

M
6πµ =

ωl2
0R
ℓ

6πµ,

Aext = mBext
T 2

ML 2 =
mBext

ℓ
.
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Note that the quantity Aext is sometimes called the magnetoelastic number. The following

experimental parameter values are used for simulations,

Parameter Value
R 1.25×10−3 m
k 1.67×10−2 N m−1

l0 5×10−3 m
ℓ= kl2

0 4.2×10−7 J
m 1.2×10−4 Am2

Bext 3×10−3 T
ω 100×2π s−1

µ 1×10−3 Pa s
Table 10.1 Experimental parameter values for the torque driven ferromagnetic swimmer.

yielding the following scales and dimensionless parameters

L = 5×10−3 m, T = 1.6×10−3 s, M = 4.2×10−8 kg,

ε = 0.25, ϖ = 0.89, Aext = 0.86,

however, it should noted that the idealised model is only expected to allow qualitative

comparison with the experiments, due to significant different in geometry.

In the approximate model, the swimmer’s particles are located at (l0,0), (0,0) and (−l0,0)

for j = 1,2,3, respectively. The equations of motion are linearised for small displacements,

neglecting any fluid interaction forces. The framework is easily generalised to any radii

particles and number. However, for simplicity the following assumptions were made: the

driving magnetic field to be given by Equation 10.2, zero inertia - ξ j = 0, and the particles

having radius R j = R. The linearised equations only involve the transverse displacements y j
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10.1 Three particle theoretical model

and take the form

6πµRẏyy = ℓl−2
0 Myyy+mBextl−1

0 sinωt www,

M =


−1 2 −1

2 −4 2

−1 2 −1

 , www =


1

−1

0

 , yyy =


y1

y2

y3

 .

A harmonic can be extracted by setting yyy = l0ŷyyeiωt + c.c.. The factor l0 makes the vector ŷyy

dimensionless and the governing equations then become

iϖ ŷyy = Mŷyy− 1
2 iAext www. (10.5)

This can be inverted to give ŷyy, giving the balance between elastic forces, Stokes drag and

magnetic driving, but excluding fluid interactions in Equation 10.3 - in other words the

internal motion of the swimmer.

The actual swimming speed is given at leading order by substituting the internal motion

into the Equation 10.4 for the centre of reaction. The leading order in perturbation theory is

given by the quadratic terms and the average speed in the x-direction is then

Ẋ = 1
4Rl−2

0 ⟨yyyT Nẏyy⟩, N =


0 1 1

4

−1 0 1

−1
4 −1 0

 , (10.6)

where the angled brackets denote a time average. This becomes

Ẋ = 1
2 iεl0ω ŷyy∗T Nŷyy, (10.7)
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noting that l0ω = L /T are the units of speed in the non-dimensionalisation, the motion of

the swimmer is measured in units of link length per cycle, multiplied by ε reflecting the fact

that it is the weak fluid interactions that are key to motion of the centre of reaction.

Although a similar system is easily written down for any number of particles, the advan-

tage of dealing with just three is that the problem may be solved analytically. The matrix

M has eigenvectors vvv1 = (1,1,1)T eigenvalue λ1 = 0 (a translation mode), vvv2 = (1,0,−1)T ,

λ2 = 0 (a rotation mode) and vvv3 = (1,−2,1)T , λ3 = −6 (a bending mode). The magnetic

driving excites the latter two since www = 1
2vvv2 +

1
2vvv3 and then the solution to Equation 10.5 can

be expressed as

ŷyy =−1
4Aext[ϖ

−1vvv2 +(ϖ −6i)−1vvv3]. (10.8)

Driving at least two modes is crucial for swimming at this regime. Now vvvT
2 Nvvv3 =−vvvT

3 Nvvv2 =

−7/2 and thus after a short calculation, the swimmer’s speed can be obtained from Equation

10.7 as
Ẋ

l0ω
= ε

21A2
ext

16ϖ(ϖ2 +36)
. (10.9)

The velocity here is normalised in terms of body length per radian of the magnetic field cycle.

It is worth noting that when ϖ → 0, the RHS of the expression diverges. This divergence is

unphysical, however in reality the linearisation would break down at this limit.

It is worth mentioning the motion of the swimmer. A swimmer needs to excite two

distinct modes to break the symmetry of motion. In this case, the translational mode vvv1

cannot be excited externally as there is no net force on the swimmer. For a model three-

particle biological swimmer (without any external torques or forces), the second mode vvv2

also could not be generated and only vvv3 could be, leading to precisely a scallop type motion

and no swimming. A point being raised here is that the external field provides torques on

the swimmer and allows a three-particle swimmer to work. Although these remarks are for

idealised multi-particle swimmers, they are also relevant to more realistic geometry.
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10.1 Three particle theoretical model

The theory developed above gives an approximation to the swimming speed as

Ẋ = εl0ω
21A2

ext
16ϖ(ϖ2 +36)

≃ 2.4×10−2 m s−1. (10.10)

Figure 10.2a shows the motion of the swimmer using the parameter values in Table 10.1

with no fluid interactions between particles. The symmetry breaking on the motion in one

cycle is shown by figure of eight trace of each particle. Once the fluid interactions are turned

on in the simulation, the swimmer now propels itself through the fluid (Figure 10.2b), as

seen in a series of snap-shots in Figure 10.3.

Fig. 10.2 (a) The motion of the swimmer without fluid interactions, to visualise how time-
reversibility is broken. (b) The overall motion of the modelled swimmer with fluid interac-
tions.

Figure 10.4 shows the frequency dependence of the swimming speed when Aext takes the

above value (solid red line) and when it is reduced to 20% in 20% intervals. For all values of

Aext the simulated velocities show a peak for low frequencies (ϖ ⪅ 1).

Figure 10.5 shows the dependency of the number of linked particles on the swimming

speed. The investigation ranges from n = 2 to n = 8, for different values of the frequency.

For all cases, a rise to a peak (≈ n = 3) occurs before a steady decrease in speed. This is in

agreement with results for flexible-tailed swimmers, Figure 7 of R. Livanovičs et al.[119]

which shows similar peaks in velocity as a function of swimmer length. For frequencies
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Fig. 10.3 A series of snap-shots showing the motion of the modelled three-particle swimmer,
with each panel separated by 21

6 cycles of the external field. The sequence reads as labelled.

Fig. 10.4 Scaled non-dimensional speed as a function of frequency for different values of
Aext. 100% Aext - red line, 80% Aext - black line, 60% Aext - blue line, 40% Aext - green line,
and 20% Aext - pink line.
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10.1 Three particle theoretical model

where ϖ ≤ 0.4, a peak at n = 4 is observed, and as the frequencies increases (ϖ ≥ 0.6), the

maximum shifts towards n = 3.

Fig. 10.5 Scaled non-dimensional speed as a function of number of linked particles for
different dimensionless frequencies, with ε = 0.1. The frequencies are shown in the legend.
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Chapter 11

Appendix B

11.1 The theoretical model of magnetic rotors

The following two simplifications were introduced and a theoretical model was developed

by Dr. Daiki Matsunaga to accompany the experimental work shown in Chapter 6, Section

1. Firstly, it was assumed that a rotor is a flat disk with radius a that can freely rotate. The

second simplification was to ignore that the rotors are located at liquid-air interface, and

consider that rotors are submerged in a fluid with a viscosity η and a density ρ .

The governing equation

A rotor has magnetic moment mmm = {mcosθ ,msinθ ,0} where θ is the angle of the magnetic

moment, and the rotational motion are governed by the magnetic and hydrodynamic interac-

tions. The rotor i would feel a magnetic torque from both the external magnetic field as well

as the neighbouring rotors. An expression for this magnetic torque is given by

Ti =

{
mmmi ×

(
BBBext +

µ0

4π

N

∑
j ̸=i

3(mmm j ·nnni j)nnni j −mmm j

r3
i j

)}
z

, (11.1)
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where rrri is the position vector of a rotor i, rrri j = rrr j−rrri, ri j = |rrri j|, nnni j = rrri j/ri j and a subscript

z denotes the z component.

The first term gives the torque from the external magnetic field BBBext, while the second

term describes the torque given by the dipolar interactions between the rotors. If the effect

of the first order hydrodynamic coupling of the torques are taken into account, the angular

velocity of a rotor i is given by

ωi =
dθi

dt
=

Ti

8πηa3 −
1

16πη

N

∑
j ̸=i

Tj

r3
i j
. (11.2)

The coefficient for the first term 8πηa3 is a friction constant for the rotation of a sphere,

while the second term is responsible for the rotational velocity resulting from the rotation

of the other particles [140]. Since there is a negative sign in the second term, rotors try

to make neighbour particle rotate in the opposite direction. Although the hydrodynamic

interactions would play an important role if the rotors are in the touching distance due to the

lubrication interactions [140], the interaction is not important in this set-up due to relatively

small particle size ã. Considering the rotor as a point torque, the flow velocity vvv at position xxx

can be expressed by a summation of rotlets as

vvv(xxx) =
1

8πη

N

∑
i

{
1

R3 TTT (rrriii)×RRR(xxx,rrri)

}
, (11.3)

where RRR = xxx− rrri and R = |RRR|.

In the simulation, equations (11.1) and (11.2) were calculated for each rotor to analyse

the rotational dynamics of the rotor. The initial orientation θ(t = 0) of the rotors are given at

random, and the orientations are updated with the 1st-order Euler method with a time step

f ∆t = 1.0×10−3. The dimensionless parameter ã = 0.2 is kept constant for all simulations.
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11.1 The theoretical model of magnetic rotors

Phase diagram

Finally, a full phase diagram from the theoretical model for the comprehensive understanding

of the system was created. Figure 11.1 shows the phase diagram of the collective rotational

patterns. Note that the experiment and model are not exactly matching because of the

simplifications introduced in the model.

(c) staggered(a) stripe (b) quarter
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Fig. 11.1 Phase diagram from the simulation in Nx = Ny = 4 array. Showing the resulting
rotational patterns for different combinations of α and β . Showing 4 regions of interest: (a)
the stripe swinging pattern, (b) the quarter rotational pattern, (c) the staggered pattern, and
(d) where no pattern is observed.

Figure 11.1 shows the rotors form the quarter rotational pattern for large α while they

form the stripe swinging pattern for smaller α , which is qualitatively the same as shown in

the experiment. In a range between these two states, another interesting set of rotational

pattern was observed, which is named “staggered patterns", as shown in Figure 11.2. There

were two main staggered patterns observed, the staggered patterns are slight variations of the

quarter rotational and stripe swinging patterns. The first staggered pattern shown in Figure
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11.2a is the “staggered stripe swinging pattern" where half of the pattern is shifted along.

The “staggered quarter rotational pattern" shows a similar rotational pattern to the standard

quarter rotational pattern, however the centre rotors have reversed chirality.

Fig. 11.2 Rotational patterns for three different combinations of α and β ; red describe
anticlockwise rotation while blue describes clockwise rotation. Bottom row shows generated
flow field from the rotational patterns.

As a result, the flow field is not purely dipolar (Figure 11.2c bottom) as seen in the quarter

rotation pattern, but more complex (Figure 11.2 bottom). These patterns might be useful

because different rotational patterns could allow access different length scales of mixing.

Although attempts were made to observe these staggered patterns in the experiment, such

patterns could not be reproduced due to fabrication imperfections. Adding small noise to

the rotor position (even 0.05l deviation from the grid structure) in the simulation resulted

in failure to reproduce the same result (data not shown). Therefore, it was concluded that a

perfect grid structure is required for reproducing these patterns in the experiment.
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