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a  b  s  t  r  a  c  t

Recently,  our  research  team  has  reported  that  Tualang  honey  was  able  to  improve  immediate  mem-
ory  in  postmenopausal  women  comparable  with  that  of  estrogen  progestin  therapy.  Therefore  the  aim
of the  present  study  was to  examine  the  effects  of Tualang  honey  supplement  on  hippocampal  mor-
phology  and  memory  performance  in ovariectomized  (OVX)  rats  exposed  to  social  instability  stress.
Female  Sprague-Dawley  rats  were  divided  into  six  groups:  (i)  sham-operated  controls,  (ii) stressed  sham-
operated controls,  (iii)  OVX  rats,  (iv)  stressed  OVX  rats,  (v)  stressed  OVX  rats  treated  with  17�-estradiol
(E2),  and  (vi)  stressed  OVX  rats  treated  with  Tualang  honey.  These  rats were  subjected  to social insta-
bility  stress  procedure  followed  by novel  object  recognition  (NOR)  test.  Right  brain  hemispheres  were
subjected  to  Nissl  staining.  The  number  and  arrangement  of  pyramidal  neurons  in  regions  of CA1,  CA2,
CA3  and the dentate  gyrus  (DG)  were  recorded.  Two-way  ANOVA  analyses  showed  significant  interac-
tions  between  stress  and  OVX  in  both  STM  and LTM  test  as well  as  number  of  Nissl-positive  cells  in all
hippocampal  regions.  Both  E2 and  Tualang  honey  treatments  improved  both short-term  and  long-term
memory  and  enhanced  the  neuronal  proliferation  of hippocampal  CA2,  CA3  and  DG regions  compared  to
that of untreated  stressed  OVX  rats.

© 2013  Elsevier  GmbH.  All  rights  reserved.

Introduction

Functional integrity of brain regions including the hippocam-
pus proper, dentate gyrus (DG), amygdala, entorhinal, perirhinal,
and parahippocamal cortices is necessary for object recognition
memory processing (Clarke, 2000; Brown and Aggleton, 2001). Hip-
pocampal CAl, CA3 and DG comprise the hippocampal formation
(Eichenbaum et al., 1994) which has long been regarded as a crucial
structure for memory (Olton et al., 1989; Hodges, 1995).

Chronic stress and its associated prolonged chronic elevation
of glucocorticoid hormones have negative effects on cognitive
abilities of animals such as learning and memory by causing neu-
ronal death and reducing neurogenesis (Sapolsky, 1992; McEwen

Abbreviations: ANOVA, analyses of variance; BDNF, brain-derived neurotrophic
factor; DG, dentate gyrus; ER, estrogen receptors; FAMA, Federal Agricultural Mar-
keting Authority; HRP, horseradish peroxidase; HRT, hormone replacement therapy;
LTM, long-term memory; NOR, novel object recognition; OVX, ovariectomized; PFC,
prefrontal cortex; SEM, standard error of mean; STM, short-term memory; TMB,
3,3′ ,5,5′-tetramethylbenzidine; USM, Universiti Sains Malaysia.
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and Sapolsky, 1995; McEwen, 2000). It has been suggested that
prolonged chronic elevation of glucocorticoid hormones should
result in structural differences in the hippocampus such as reduced
volume, fewer hippocampal neurons and reduced neurogenesis
(McEwen and Sapolsky, 1995; Gould and Tanapat, 1999; Ohl and
Fuchs, 1999).

On the other hand, estrogens have a beneficial influence on
the morphological and electrophysiological properties of the hip-
pocampus (Leuner et al., 2004), a brain region implicated in certain
forms of learning, memory and stress. Estrogen increased astro-
cytic volume in the rat CA1 (Klintsova et al., 1995) which in turn
provides trophic support for the formation of new dendritic spines
and synapses, and increased Nissl-positive cells in hippocampal
CA3 and DG regions (Takuma et al., 2007). It has been shown in
experimental studies using rats that exposure to estrogen, either
exogenously or endogenously, during proestrus enhances the den-
sity of dendritic spines in several areas of the hippocampus (Gould
et al., 1990; Zhang et al., 1999). Estrogen treatment also protects
against a wide range of toxic insults including free radical genera-
tors (Behl et al., 2000), excitotoxicity (Singer et al., 1999; Singh et al.,
1999; Diaz Brinton et al., 2000), �-amyloid-induced toxicity (Green
and Simpkins, 2000) and ischemia (Zhang et al., 1998; Viscoli et al.,
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2001). Both estrogen receptors, ER� and ER�,  are expressed in
the hippocampus and cortex of rodent and human brain (Beyer,
1999; Green and Simpkins, 2000; Shughrue and Merchenthaler,
2000; Milner et al., 2001, 2005; Lu et al., 2003) and their activa-
tion (mainly ER�) can promote neuron survival in rat hippocampal
neurons (Zhao et al., 2004).

Nevertheless, the evidence for a neuroprotective role of
hormone replacement therapy (HRT) for cognitive disorders
in menopausal women has been inconclusive. Previous meta-
analyses of research and epidemiological studies suggested that
HRT might have a beneficial effect on cognition in postmenopausal
women (Hogervorst et al., 2000; Marder and Sano, 2000). However,
subsequent reports of the Women’s Health Initiative Memory Study
(WHIMS) in very large cohorts (Espeland et al., 2004; Shumaker
et al., 2004; Resnick et al., 2006) stated that HRT increased the risk
of cognitive impairment and dementia in elderly women. How-
ever, recent studies on postmenopausal women reported beneficial
effects of HRT on verbal memory (Tierney et al., 2009; Othman et al.,
2011).

Despite reports on the beneficial effects of estrogen treatment
(MacLennan et al., 2001; Dören et al., 2003; Sherwin and Henry,
2008; Rozenberg et al., 2013), many postmenopausal women  refuse
to take HRT to alleviate their menopausal symptoms. A substantial
number of women have discontinued its use because of side-effects
such as withdrawal bleeding, bloating, premenstrual irritability,
lower abdominal cramps, and breast tenderness or increased risk of
cancer or other HRT-linked conditions (Ettinger et al., 1999, 2003;
Regan et al., 2001; Hulley et al., 2002; Lacey et al., 2002; Miller
et al., 2002; Beral et al., 2003; Shumaker et al., 2003). Numerous
alternatives to HRT are being researched to relieve postmenopausal
symptoms and improve quality of life (Borrelli and Ernst, 2010;
Cardini et al., 2010; Lunny and Fraser, 2010; Othman et al., 2011;
Asltoghiri and Ghodsi, 2012).

Malaysian Tualang honey is a pure wild multifloral honey pro-
duced by Asian rock bees, Apis dorsata (Khalil et al., 2011). The
bees build immense honeycombs on branches of very tall Tualang
trees (Koompassia excelsa) in the Rain Forest of Northern Peninsu-
lar Malaysia (Bashkaran et al., 2011). Honey contains significant
antioxidant activities (Frankel et al., 1998; Al-Mamary et al., 2002;
Fahey and Stephenson, 2002; Gheldof et al., 2002; Aljadi and
Kamaruddin, 2004; Beretta et al., 2005; Inoue et al., 2005; Blasa
et al., 2006; Nagai et al., 2006; Beretta et al., 2007; Perez et al.,
2007; Brudzynski and Miotto, 2011; Kishore et al., 2011) as well as
choline and acetylcholine (Heitkamp, 1984) which are essential for
brain function and as neurotransmitters. A previous animal study
reported that honey-fed rats performed significantly better than
those fed sucrose or a sugar-free diet in the Y maze task (Chepulis
et al., 2009). Recently, our research team has reported that Tualang
honey (Agro Mas) was able to improve immediate memory in post-
menopausal women comparable with that of estrogen progestin
therapy (Othman et al., 2011).

Therefore the aim of the present study was to examine the
effects of Tualang honey (Agro Mas) supplement on hippocam-
pal morphology and memory performance in overiectomized rats
exposed to social instability stress.

Materials and methods

Animals

Sixty adult female Sprague-Dawley rats of approximately
8-weeks old, with body weight of 200 ± 20 g, were obtained
from the Laboratory Animal Research Unit, Universiti Sains
Malaysia (USM). All rats were housed in polypropylene cages
(40 cm × 25 cm × 16 cm), exposed to 12 h light–dark cycles,

maintained at a room temperature of 23 ◦C, and provided with free
access to food and water. The experimental protocol was approved
by the Research and Ethics Committee, USM.

The rats were randomly divided into six groups (n = 10 per
group). These were: (1) sham-operated control rats, (2) stressed
sham-operated control rats, (3) ovariectomized (OVX) rats, (4)
stressed OVX rats, (5) stressed OVX rats treated with 17�-estradiol
(20 �g daily, subcutaneously) and (6) stressed OVX rats treated
orally with Tualang honey (0.2 g/kg body weight).

Surgical procedures

Forty rats underwent bilateral OVX through a dorsal inci-
sion under anesthesia (90 mg/kg ketamine and 5 mg/kg xylazine,
intraperitoneally). The other 20 rats were sham-operated, i.e. the
ovaries were not removed. After the operation, the rats were kept
in individual cages to avoid any interactions which might lead
to bleeding or poor wound healing for 10 days. The groups were
reformed and all the rats were left undisturbed for two  months as
a recovery period.

Social instability stress procedure

The social instability stress procedure was conducted eight
weeks after ovariectomy. The stress procedure consists of alter-
nating isolation and crowding phases for 15 days as previously
described (Haller et al., 1999). The experiment started and ended
with an isolation phase, and each phase lasted for 24 h. Eight rats
(three males and five females) were held per cage for a crowd-
ing phase. Behavior of rats was videotaped for the initial 30 min of
each crowding phase. Biting attacks, dominant postures and fight-
ing for food were counted (De Goeij et al., 1992). Body weights were
recorded at the end of each crowding phase.

Animal treatments

The rats were treated with either 17�-estradiol (Cayman Chem-
ical, Ann Arbor, MI,  USA) 20 �g/day in 2.5 �l corn oil injected
subcutaneously (Takuma et al., 2007) or Tualang honey (Agro Mas,
Federal Agricultural Marketing Authority (FAMA), Mergong, Kedah,
Malaysia) 0.2 g/kg body weight/day administered orally by gavage
diluted in 1 ml  of distilled water (Zaid et al., 2010) three days prior
to stress procedure and the treatments were continued throughout
the 15 days of stress procedure.

Behavioral test

The novel object recognition (NOR) test uses the natural pref-
erence for novel object displayed by rats. This test is normally
used to assess cognitive alterations associated with aging, genetic
manipulations, or drug treatments. The chamber was an open field
apparatus (60 cm × 60 cm × 30 cm). Firstly, all animals were sub-
mitted to a habituation session for three days during which they
were placed in the empty open field and left to freely explore the
field for 10 min. During the training session, two  identical objects
(A1 and A2) were placed in the field, and the rat was allowed
to explore freely for 10 min  as described in previous studies (De
Lima et al., 2005; Pieta Dias et al., 2007). Time spent exploring
each object was recorded manually. For test sessions, animals were
tested for memory retention 2 h after training session (short-term
memory/retention, STM). In STM test, the rats explored the open
field for 5 min  in the presence of one familiar (A1 or A2) and one
novel (B) object. The location of objects was alternated with each
new animal; it was approximately placed in 50% trials in the right
side and 50% in the left side of the field. The same test was repeated
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24 h after the training session and this is known as long-term mem-
ory/retention, LTM.

All objects consisted of plastic toys and had a height of about
5 cm.  Objects presented similar textures, colors and sizes, but
distinctive shapes. The objects were positioned in two adjacent cor-
ners, 10 cm from the walls. Between tests, the objects were cleaned
with 10% ethanol solution to mask any olfactory cues.

Exploration was defined as sniffing or touching the object with
the nose. Sitting on the object was not considered as exploration
(Bowman et al., 2002). Total exploration times of the familiar and
novel objects were recorded and used to calculate a discrimination
index [time spent with novel object (B) − time spent with famil-
iar object (A)]/[total time exploring both objects] for training and
test sessions (Reneerkens et al., 2012). This index was  used to mea-
sure recognition memory (Kamei et al., 2006). The exploration of
each object was expressed as percentage of total exploration time.
Increased exploration time of the novel object or better preference
to novel object was interpreted as successful retention of memory
for the familiar object. An absence of any difference in the explo-
ration of the two objects was interpreted as memory deficit (Carlini
et al., 2008).

Blood and tissue collection

The animals were sacrificed by decapitation immediately after
the NOR sessions. Blood samples (10 ml)  were collected imme-
diately. All blood samples were left to clot for 2 h prior to
centrifugation for 15 min  at 4000 rpm (EBA 21, Hettich GmbH &
Co. KG, Tuttlingen, Germany). Approximately 3 ml  of serum was
collected and stored at −20 ◦C until assay. The brain of each animal
was quickly removed followed by careful dissection of the right
brain hemispheres in ice-cold saline. The hemispheres were then
stored in 10% formalin until assayed.

Estimation of serum corticosterone levels

Serum corticosterone levels were measured using a specific
ELISA kit (Creative Diagnostics, Shirley, NY, USA) according to
the manufacturer’s instructions. Briefly, 100 �l of serum sample
was added into each well followed by 100 �l of enzyme-labeled
corticosterone. The plate was incubated at 37 ◦C for 90 min. Fol-
lowing incubation, the wells were carefully washed. 100 �l of
biotin-antibody working solution was added into each well and
then incubated at 37 ◦C for 60 min. After three washes, 100 �l
of horseradish peroxidase (HRP) was added into each well and
then incubated at 37 ◦C for 30 min. Next, 100 �l of 3,3′,5,5′-
tetramethylbenzidine (TMB) reagent was added into each well and
then incubated at room temperature for 20 min, which resulted
in the development of color change. The color development was
then stopped with the addition of 100 �l of stop solution. The
absorbance was measured at 450 nm using a spectrophotometer
(Thermo Fisher Scientific, Waltham, MA,  USA).

Nissl staining

The right brain hemispheres were embedded in paraffin wax,
cut into 5-�m-thick coronal sections using a rotary micro-
tome (HM505E; Microm International GmbH, Walldorf, Germany),
mounted on slides and followed by Nissl staining. Nissl stain-
ing was performed according to the standard procedure (Yamada
et al., 2005). Two continuous fields of each hippocampus region
were selected and captured (Olympus CX41 biological microscope;
Tokyo, Japan). The arrangement of pyramidal neurons in regions
of CA1, CA2, CA3 and the DG was recorded. The Nissl-positive
cells were counted at different magnifications using High Defini-
tion Medical Image Analysis Program (analySIS docu 5.0, Münster,

Germany). The mean of two  fields was taken as the number of Nissl-
positive cells for each section and the mean of four sections was
taken as the Nissl-positive cells of each group. Cells which had a
shrunken or unclear body with surrounding empty spaces were
excluded.

Statistical analysis

Data are expressed as mean ± standard error of mean (SEM).
Probability values less than 5% (P < 0.05) were considered statis-
tically significant. Two-way analyses of variance (ANOVA) were
utilized to examine the main effects of social stress (stressed vs.
unstressed) and surgery (sham-operated vs. OVX) on NOR behavior
and the number of Nissl-positive cells in hippocampal regions.

Data on NOR behavior, the number of Nissl-positive cells in hip-
pocampal regions and corticosterone levels were analyzed using
a one-way ANOVA and where appropriate, Tukey’s post hoc tests
were utilized to determine group differences. Pearson’s Correlation
Coefficient was utilized to test the correlation between the number
of Nissl-positive cells in hippocampal regions and discrimination
indexes during STM and LTM tests.

Results

Effects of surgery and social stress on NOR behavior and the
number of Nissl-positive cells in hippocampal regions

A two-way ANOVA was conducted to determine whether if
exposed to social stress and surgery (OVX) affects the NOR behav-
iors and number of Nissl-positive cells in hippocampal regions. A
significant main effect of surgery (OVX) was observed for the dis-
criminative index during STM (F(1,36) = 11.21, P < 0.05) and LTM
(F(1,36) = 61.50, P < 0.001) tests, with OVX rats had lower discrim-
ination index during both STM and LTM tests compared to those
non-OVX rats. A significant main effect of surgery (OVX) was
also observed for the number of Nissl positive cells in hippocam-
pal CA1 (F(1,36) = 5.44, P < 0.05), CA2 (F(1,36) = 39.25, P < 0.001),
CA3 (F(1,36) = 49.11, P < 0.001) and DG (F(1,36) = 19.81, P < 0.001)
regions, indicating that OVX rats had lower number of Nissl-
positive cells in all the hippocampal regions compared to those
non-OVX rats.

A significant main effect of stress was observed for the dis-
criminative index during LTM test (F(1,36) = 33.68, P < 0.001) but
not during STM test (F(1,36) = 3.75, P = 0.061), indicating that
stressed rats had lower discrimination index during LTM test com-
pared to those unstressed rats. A significant main effect of stress
was also observed for the number of Nissl positive cells in CA1
(F(1,36) = 10.77, P < 0.05), CA3 (F(1,36) = 8.12, P < 0.05), but not in
CA2 (F(1,36) = 2.17, P = 0.149) and DG (F(1,36) = 2.13, P = 0.153),
indicating that stressed rats had a lower number of Nissl-positive
cells in hippocampal CA1 and CA3 regions compared to those
unstressed rats.

With regard to the interaction between surgery (OVX) and
stress, the discrimination index during both STM and LTM
tests, and the number of Nissl-positive cells in hippocampal
CA1, CA2, CA3 and DG regions were significant (F(1,36) = 14.33,
P < 0.05; F(1,36) = 25.37, P < 0.001; F(1,36) = 12.51, P < 0.05 and
F(1,36) = 12.81, P < 0.05; respectively), indicating that both OVX and
stress were associated with a decline in the short-term and long-
term memory performance as well as reduction in the number of
Nissl-positive cells in all the hipppocampal regions.

Effects of E2 and Tualang honey on memory performance

Further analyses to examine the effects of E2 and Tualang honey
in stressed OVX rats on memory performance were conducted
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Fig. 1. Discrimination index during STM test (n = 10). Discrimination indices are expressed as mean ratio [time spent with new object novel − time spent with object
familiar]/[total time exploring both objects] ± SEM. *P < 0.05 compared with the stressed OVX group.

using one-way ANOVA. The one way ANOVA showed discrimina-
tion indices during STM and LTM tests were significantly different
between the groups (F(5,54) = 5.95, P < 0.001 and F(5,54) = 40.66,
P < 0.001, respectively). The post hoc data indicated that stressed
OVX treated with either E2 or Tualang honey have a significantly
higher discrimination index during both STM (Fig. 1) and LTM
(Fig. 2) tests compared to untreated stressed OVX rats. There was
no difference in the discrimination indices during STM and LTM
tests between stressed OVX treated with E2 compared to that of the
Tualang honey group (P > 0.05). Both E2 and Tualang honey treated
groups improved STM comparable to the sham-operated control
group but not for LTM.

Effects of E2 and Tualang honey on the number of
Nissl-positive cells in hippocampal regions

One-way ANOVA showed numbers of Nissl-positive cells in
CA1, CA2, CA3 and DG hippocampal regions were significantly
different between groups (F(5,54) = 6.66, P < 0.001; F(5,54) = 19.84,
P < 0.001;F(5,54) = 26.58, P < 0.001; F(5,54) = 6.54, P < 0.001; respec-
tively). The post hoc data indicated that stressed OVX treated with
either E2 or Tualang honey have a considerably higher number
of Nissl-positive cells in hippocampal CA2 (Fig. 3B), CA3 (Fig. 3C)
and DG (Fig. 3D) regions compared to untreated stressed OVX rats.
There was no comparable difference in the number of Nissl-positive
cells in all the hippocampal regions between stressed OVX treated
with E2 compared to that of the Tualang honey group.
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Fig. 2. Discrimination index during LTM test (n = 10). Discrimination indices are
expressed as mean ratio [time spent with new object novel − time spent with object
familiar]/[total time exploring both objects] ± SEM. *P < 0.05 compared with the
stressed OVX group; #P < 0.05 compared with the sham group.

Nissl staining results

Nissl staining revealed that the arrangement of hippocam-
pal CA2 (Fig. 4) and CA3 (Fig. 5) pyramidal neurons of stressed
or unstressed sham-operated controls were trimmed and dense,
and the Nissl substance in cytoplasm was clearly visible. The
arrangement of pyramidal neurons of untreated stressed OVX
group was sparse and the Nissl substance decreased or dissolved
(Figs. 4D and 5D). The arrangement of hippocampal CA2 (Fig. 4E
and F) and CA3 (Fig. 5E and F) pyramidal neurons of stressed treated
OVX groups was more regular than that of the untreated stressed
OVX group as shown in Figs. 4D and 5D.

Serum corticosterone levels

One way ANOVA results revealed that corticosterone levels
differed notably amongst the groups (F(5, 54) = 62.11, P < 0.001)
(Fig. 6). The corticosterone levels were highest in the stressed OVX
group, followed by the unstressed OVX, stressed sham-operated
control and unstressed sham-operated control groups. The post hoc
analysis revealed a significant decrease in corticosterone levels in
the stressed OVX rats following treatment with either E2 or Tualang
honey comparable to that of stressed sham-operated controls.
These findings indicated that E2 and Tualang honey could reduce
the stress levels to a certain extent as shown by the corticosterone
levels which were comparable to that of stressed sham-operated
controls but the levels were still significantly high when compared
to sham-operated controls.

Correlation between discrimination indices during STM and
LTM tests, and the number of hippocampal neurons

There were significant positive correlations between discrimi-
nation indices during the STM test and the number of CA2 (r = 0.35,
P < 0.05), CA3 (r = 0.35, P < 0.05) and DG (r = 0.58, P < 0.001). Stronger
correlations were noted between discrimination indices during the
LTM test and the number of CA2 (r = 0.60, P < 0.001), CA3 (r = 0.76,
P < 0.001) and DG (r = 0.57, P < 0.001). However, there were no
significant correlations between the number of CA1 and discrim-
ination indices during STM tests (r = −0.13, P > 0.05) and LTM test
(r = −0.14, P > 0.05).

Discussion

In the present study, we  used overiectomized rat as a
menopause model to examine the effects of estrogen deficiency on
hippocampal morphology and memory performance. The memory
performance was assessed using the NOR test because an earlier
study showed that recognition memory (object recognition test)
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Fig. 3. Mean number of Nissl-positive cells in (A) CA1, (B) CA2, (C) CA3 and (D) DG hippocampal regions (mean ± SEM per 0.01 mm2). *P < 0.05 compared with the stressed
OVX  group; #P < 0.05 compared with the sham group.

Fig. 4. The arrangement of hippocampal CA2 pyramidal neurons between the groups. (A) Sham-operated control, (B) stressed sham-operated control; (C) OVX; (D) stressed
OVX,  (E) stressed OVX treated with E2 and (F) stressed OVX treated with Tualang honey. The arrow indicates dead or damage cells (Nissl staining × 200; scale bar = 100 �m).
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Fig. 5. The arrangement of hippocampal CA3 pyramidal neurons between the groups. (A) Sham-operated control, (B) stressed sham-operated control; (C) OVX; (D) stressed
OVX,  (E) stressed OVX treated with E2 and (F) stressed OVX treated with Tualang honey. The arrow indicates dead or damage cells (Nissl staining × 100; scale bar = 200 �m).

is more sensitive to ovarian steroids than spatial memory (object
placement test) and performance of object recognition test was lost
faster after OVX (Luine, 2008) as compared to object placement test.

Memory formation is a process that requires multiple steps,
including acquisition, cellular consolidation, and system consoli-
dation. Memories are first formed in a labile state, and then the
memory trace is stabilized through the process of consolidation
(McGaugh, 1966) via molecular and/or structural modifications
(Kandel, 2001). Processing of a memory trace can be divided
into at least two phases: short-term memory (0–3 h), a protein
synthesis-independent phase that lasts minutes to hours, and long-
term memory, a protein synthesis-dependent phase that lasts from
hours to days to weeks (Izquierdo et al., 1998; Kandel, 2001; Medina
et al., 2008). In this study, NOR test was conducted twice, the first
test was 2 h after the training session which represents the STM
and the second test was 24 h after training session which repre-
sents the LTM. In the STM test, the object recognition was  based on
the acquisition (learning) and this process occurs in the prefrontal
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Fig. 6. Mean serum corticosterone level (n = 8). *P < 0.05 compared with the stressed
OVX group; #P < 0.05 compared with the sham group.

cortex (PFC) (Warden and Miller, 2010) and the hippocampus was
not required at this stage. In contrast to the LTM test, the object
recognition required retrieval from consolidated memory and this
process occurred in the hippocampus.

Our two-way ANOVA analyses showed that the long-term mem-
ory performance and Nissl-positive cell numbers in hippocampal
CA1 and CA3 regions were affected by stress. These findings were
consistent with those of earlier reports which showed long term
memory impairment (Conrad et al., 1996) and degenerating cells
in the CA2 and CA3 sub-areas (Jain et al., 2001) in stressed rats.
Our findings, however, revealed that stress did not affect short-
term memory and Nissl-positive cell numbers in hippocampal
CA2 and DG regions. This could be explained by the fact that the
effects of stress on synaptic plasticity and memory performance
depend on the stressor timing, intensity and duration (Cazakoff
et al., 2010). An earlier study showed that when a high dose of
corticosterone administered for 10 min  before and during a high
frequency tetanus, hippocampal synaptic potentiation was facili-
tated (Wiegert et al., 2006). Therefore it is possible to postulate
at this stage that the effect of stress was  not so severe compared
to OVX to affect the entire hippocampal areas and the prefrontal
cortex, which is important for short-term memory.

Our biochemical results confirmed that serum corticosterone
levels were highest in OVX rats exposed to social instability stress
for 15 days compared to those who  were not exposed to stress. Two-
way ANOVA revealed that the corticosterone levels were higher in
OVX rats compared to stressed rats. The corticosterone levels were
reduced following treatment with either E2 or Tualang honey in
stressed OVX rats comparable to that of stressed sham-operated
controls but were significantly higher than unstressed sham-
operated controls. These suggest possible interaction between E2
and Tualang honey with the HPA axis.

In the present study, OVX exerts significant effects on both
short-term and long-term memory performances, and arrange-
ment and Nissl-positive cell numbers in hippocampal CA1, CA2, CA3
and DG regions. Our data clearly indicated that there was  memory
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deficit both short-term and long-term as well as significant reduc-
tion in the number of Nissl-positive cells in all hippocampal regions
in OVX rats when compared to sham-operated controls. Our find-
ings revealed that estrogen deficiency and higher stress levels as
shown by higher corticosterone in OVX rats compared to sham-
operated controls, caused negative effects, not only on the whole
hippocampal regions, but possibly PFC, thus, caused both short-
term and long-term memory deficit. These findings were further
supported by significant positive correlations between discrimi-
nation indices of STM and LTM tests, and the Nissl-positive cell
numbers in hippocampal CA2, CA3 and DG regions. Our findings
were supported by recent findings in rats that showed memory
impairment beginning in the second month after ovariectomy and
the histological data revealed high damage to CA3 area (Su et al.,
2012). Our results remain inconsistent, however, with those of pre-
vious studies (Gould et al., 1990; Woolley and Schwartzkroin, 1998)
who found a decreased dendritic spine density in CA1, but not in
CA3 following OVX. It could be explained by the difference in the
duration of post-OVX and the estradiol levels. In that study, the
rats were killed after one week post-OVX as compared to nearly 3
months post-OVX in our study. However, the estradiol levels were
not available for comparison (Gould et al., 1990).

Our findings disclosed substantial interactions (stress × OVX) in
both STM and LTM test as well as number of Nissl-positive cells
in all hippocampal regions, indicating that both social stress and
OVX influences the memory performance as well as hippocampal
neurons. Therefore, the stressed OVX model was used to examine
the effect of E2 and Tualang honey treatments on the NOR behav-
ior and hippocampal morphology. Our data showed that both E2
and Tualang honey treatments were able to improve both short-
term and long-term memory performances as indicated by higher
discrimination indices compared to those of stressed OVX rats
without treatment. The histological data confirmed that both E2
and Tualang honey treatments in stressed OVX rats were able to
enhance the neuronal proliferation in hippocampal CA2, CA3 and
DG regions. Taken together, these findings suggest that Tualang
honey treatment was able to exert the same beneficial effects on
memory performance and hippocampal morphology comparable
to that of E2 treatment.

Our findings were supported by previous studies which showed
E2 treatment improved the cognitive in object recognition task
(Luine et al., 2003; Li et al., 2004; Walf et al., 2006; Scharfman
et al., 2007) and morphological impairments in the hippocampus
(Takuma et al., 2007) of rats and mice. Previous studies have sug-
gested that E2 mediated its neuroprotective effects through its
antioxidant properties (Mukai et al., 1990; Komuro et al., 1990;
Vedder et al., 1999), up-regulation of brain-derived neurotrophic
factor (BDNF) expression (Takuma et al., 2007) which may  lead
to activation of ERs-mediated cell survival signaling pathways (Yu
et al., 2004; Carrer et al., 2005) and augmentation of choline acetyl-
transferase and acetylcholinesterase activities in specific brain
areas (Luine, 1985; Gibbs, 1996; Gibbs et al., 2002). Tualang honey
may  share similar mechanisms of neuroprotection with E2 as it
has high antioxidant properties, i.e. total phenolic content was
251.7 ± 7.9 mg  gallic acid/kg honey, total antioxidant activity was
322.1 ± 9.7 (�M Fe(II)), the antiradical activity was  41.30 ± 0.78
(% inhibition) (Mohamed et al., 2010). However, further studies
are needed to confirm the choline and acetylcholine activities in
Tualang honey and the neuroprotective mechanisms of Tualang
honey.

There are a few limitations with the present study. Firstly, as
previously noted, apart from the hippocampus, the prefrontal cor-
tex is also a target for estrogen action (Markham and Greenough,
2004; Tang et al., 2004; Wallace et al., 2006). In our study, we  only
examined the hippocampal morphology, but not the PFC and thus
could not exclude the effect of E2 and Tualang honey on the PFC.

Secondly, we  used Nissl staining to study neuronal morphology of
the hippocampus. The Nissl staining approach allows the visual-
ization of all somata, but not neuronal processes in appropriately
prepared tissue sections. A more powerful method may  be utilized
in the future using a combined approach of Golgi silver impreg-
nation technique and the Nissl staining method. This method will
allow the establishment of the detailed morphological profiles of
neurons within a nucleus or a laminar structure (Pilati et al., 2008).

In conclusion, our study demonstrates that stressed OVX rats
negatively affect STM and LTM as well as the hippocampal morphol-
ogy. E2 and Tualang honey improved the memory and hippocampal
morphological impairments possibly through their antioxidant
properties, by up regulation of BDNF expression or augmentation
of choline acetyltransferase and acetylcholinesterase activities in
specific brain areas or a combination of these mechanisms. The neu-
roprotective actions of Tualang honey support its potential used as
an alternative therapy to help prevent memory decline in post-
menopausal women.
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