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Abstract

Human activity is causing rising atmospheric CO2 concentrations leading to an increase in global

mean temperature and a changing climate. Monitoring biospheric CO2 fluxes at global, continental

and regional scales is important to track how the biosphere is responding to climate change and to

evaulate the success of mitigation policies that involve enhancing sinks of CO2, such as reforestation.

The use of atmospheric measurements of CO2 concentrations in a “top-down” inverse modelling

set-up is a valuable tool to assess CO2 fluxes. This thesis works towards the first top-down estimates

of UK biospheric CO2 fluxes and includes the contribution to a regional inverse modelling comparison

project that focusses on European biospheric CO2 fluxes.

A hierarchical Bayesian inverse modelling framework is first adapted to some of the unique

characteristics of CO2 fluxes, such as the strong diurnal and seasonal cycle, and the mixture of

anthropogenic, biospheric and oceanic sources. This framework is then applied to the UK, using

atmospheric CO2 concentrations from a relatively dense network of tall-tower and surface sites in

and around the UK. The UK biosphere is found to be in balance with a net zero CO2 flux to the

atmosphere, according to two separate inversions that use two different models of biospheric flux

as prior information. Extending the scope of the study to Europe, with a different measurement

network and a more mature model of biospheric fluxes, reveals that European biospheric fluxes are

also in balance and estimates found here agree with previous regional inverse modelling studies. Of

particular interest in this thesis is the role of the prior biospheric flux model. The inversion process

has highlighted some areas where models need to improve, for example in estimating fluxes related to

human disturbance.
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Chapter 1

Introduction

1.1 The carbon cycle and climate change

The global concentration of carbon dioxide (CO2) in the atmosphere is rising. Charles David Keeling

began making continuous measurements of CO2 in "clean" background air at the remote site of Mauna

Loa in Hawaii in the 1950s and as a result of this work, the "Keeling Curve" (Fig. 1.1a) provided one

of the first pieces of evidence of the rapid increase in atmospheric CO2 concentrations.

The atmosphere is just one of the global carbon reservoirs (Fig. 1.2). The biosphere stores

carbon in vegetation and soils and the ocean stores carbon at different depths and within sediments.

Geological reservoirs exist where terrestrial vegetation, mostly from the Carboniferous period, has

been fossilised or where, millions of years ago, phytoplankton and zooplankton have undergone

anaerobic decomposition. These carbon reservoirs have different turnover times (the mass of carbon

divided by the flux of exchange). The atmosphere has a turnover time of a few years, whereas this is

decades to millennia in the biospheric and oceanic reservoirs and over 10,000 years in the geological

reservoir (Ciais et al., 2013). As well as these turnover times, processes relating to the exchange of

carbon between reservoirs occur on a whole range of timescales. The biosphere removes CO2 from

the atmosphere via photosynthesis (gross primary productivity, GPP) and releases CO2 via autotrophic

(plant) and heterotrophic (soil, microbial and animal) respiration. These are particularly strong diurnal

and seasonal processes. Photosynthesis is driven by changes in solar radiation down to seconds

and there is predominant uptake of CO2 during the growing season as vegetation flourishes and a

predominant source of CO2 outside the growing season due to heterotrophic respiration as vegetation

dies and decomposes. The oscillation seen in the red curve of Fig. 1.1a represents this strong seasonal

cycle of atmospheric CO2 that originates from the disproportionate northern hemisphere biospheric

flux to the atmosphere (since the land mass is greater than in the southern hemisphere). Atmospheric

CO2 is exchanged with the ocean due to the partial CO2 pressure difference and the timescale of

this process is dependant on wind speeds and wave breaking. A smaller oceanic carbon pool exists

in marine biota, such as phytoplanckton and, like with the terrestrial biosphere, CO2 exchange here

through photosynthesis and respiration is also driven by solar radiation down to timescales of seconds.
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Fig. 1.1: (a): CO2 measurements taken at Mauna Loa between 1958 and 2018. The red curve represents
monthly average concentrations and the black curve represents seasonally corrected data (Keeling et al., 1976;
Thoning et al., 1989). (b): measurements of atmospheric ∆14C derived from tree rings between 1820 and 1954
(Stuiver and Quay, 1981). The uncertainty bars give the 1σ uncertainty range.

Prior to Keeling’s measurements, Hans Suess noticed a decrease in the 14C/C ratio in tree

rings (Fig. 1.1b). Unlike active carbon pools in the biosphere and ocean, fossil fuels from the

geological reservoirs contain no 14C, since 14C has a half-life of 5700 years. Burning fossil fuels will

therefore reduce the 14C/C ratio. This provided important evidence that the rise in atmospheric CO2

concentrations is predominantly due to fossil fuel burning as a result of industrialisation. Averaged

over the past half-century, the contribution from fossil fuels is estimated to be 82% of total CO2

emissions due to human activity (Boden et al., 2018), whilst the other 18% is caused by land use

changes, such as deforestation (Hansis et al., 2015; Houghton and Nassikas, 2017).

Around the time of the industrial revolution (circa 1750), the concentration of CO2 in the atmo-

sphere was 277 parts per million (ppm) (Joos and Spahni, 2008) and today, in 2018, it has increased

by nearly 45% to around 405 ppm (Dlugokencky and Tans, 2018). This rapid rise in atmospheric

CO2 concentrations is important because CO2 is a greenhouse gas (GHG). The greenhouse effect is a

natural process that keeps the planet 33◦C warmer than it would otherwise be, through the absorption

of infrared radiation by GHGs in the atmosphere (Kiehl and Trenberth, 1997). Natural levels of

GHGs have fluctuated in the past over time-scales of thousands of years. In the last million years, the

concentration of CO2 has varied between roughly 180 ppm and 280 ppm (Petit et al., 1999). This

is directly linked to global temperatures; times of low CO2 concentration have been cooler glacial

periods, whereas times of high CO2 concentration have been warmer inter-glacial periods. However,

the rapid increase in CO2 concentrations in the last century and a half since the industrial revolution is

unprecedented and is leading to rising global temperatures (Zeebe et al., 2016).

Already, the global mean temperature has risen by 1◦C since the pre-industrial era, which has

led to a number of observed climatic changes (Masson-Delmotte et al., 2018). Warmer tempera-

tures cause the ocean to expand and ice caps to melt, leading to sea level rise. Further impacts

of climate change include increased precipitation in some areas and higher frequency of extreme

2
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Fig. 1.2: The global carbon cycle, taken from Ciais et al. (2013). Numbers in boxes represent the mass of the
reservoir in Pg C (1012 grams carbon). Numbers next to arrows represent fluxes between reservoirs in Pg C
yr−1 averaged over 2000-2009. Black numbers and arrows show pre-industrial (before 1750) reservoir masses
and fluxes. Red numbers and arrows show the changes in reservoir masses and fluxes related to anthropogenic
activity.
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events, such as droughts, heatwaves, floods, cyclones and wildfires. Many species have already been

affected and are expected to be further affected by a changing climate; for example, researchers have

observed changes to migratory patterns and geographic range. Future climate change will dispro-

portionately affect the poorest in society and negatively impact the ability to achieve international

sustainable development, for example through the United Nations Sustainable Development Goals

(https://www.un.org/sustainabledevelopment/).

Looking at the changes in the fluxes between the carbon reservoirs over the past 50 years, only

around 45% of the CO2 emissions from fossil fuel burning and land use change end up as CO2 in

the atmosphere (Dlugokencky and Tans, 2018). The ocean absorbs around 23% of the CO2 emitted

as it is soluble in water REF (Le Quéré et al., 2018). This alters ocean chemistry and leads to ocean

acidification, which impacts marine organisms REF. The remaining roughly 32% is absorbed by the

land, mostly because the additional CO2 in the atmosphere causes a fertilisation effect for plants,

making them more productive (Sitch et al., 2008), but also because of the affects of climate change,

which will be further discussed shortly (Le Quéré et al., 2018). For an idea of the magnitudes and

uncertainties on the fluxes from these reservoirs see the values in Fig. 1.2, which are averaged over the

period 2000-2009. Annual emissions from fossil fuel burning and uptake into these three reservoirs

have all grown since 1959, however emissions from land-use change have remained roughly constant.

This partitioning between the reservoirs tended to be calculated through measuring and estimating the

atmospheric, oceanic and total carbon reservoirs, leaving the residual to be attributed to the biospheric

reservoir. More recently, methods to understand the biospheric reservoir have improved, despite

remaining uncertain, leading to a budget imbalance between estimated emissions and estimated uptake

into the biospheric, oceanic and atmospheric reservoirs of just 0.07 Pg C yr−1 averaged over the past

50 years. This indicates that over half-century timescales the estimates for the individual reservoirs

in the carbon budget are well understood. However, on shorter timescales there can be significant

variability, for example the imbalance grows to -0.6 Pg C yr−1 averaged over 2007-2016 (Le Quéré

et al., 2018). This is most likely due to errors in the estimates for the land and ocean sinks.

The climate and the carbon cycle are inextricably linked, so changes to the climate will impact

the way that different carbon reservoirs can absorb CO2 (Friedlingstein et al., 2006). For example, a

warmer climate stimulates photosynthesis in plants and may lengthen the growing season in some

areas. However, at higher temperatures plants become heat stressed and suffer from drought, and

as a result photosynthesis may be reduced. Warmer temperatures also increase soil respiration, in

turn increasing the nutrient release to soils, which has a positive feedback on photosynthesis. Along

with a rise in atmospheric CO2 concentrations, an increase in the amplitude of the seasonal cycle of

atmospheric CO2 concentrations has been observed (Graven et al., 2013), indicating that the northern

hemisphere biosphere is exchanging 30-60% more CO2 between the growing and non-growing season

than it did 50 years ago. This is thought to be explained by ecological changes such as the migration

of evergreen shrubs and trees northwards as the temperature increases and human disturbance, such as

4



1.2 The international response to climate change

fire and logging, shifting the overall composition of vegetation to contain an increasing amount of

younger trees that experience shorter, more intense periods of CO2 uptake.

The biosphere and biospheric fluxes are the focus of much of this thesis and their future evolution

as the climate changes can be separated into two key components.The first is how the biosphere

reacts to changing temperatures, precipitation patterns and extreme events. The second is how human

interaction with the biosphere changes as global population increases and humans inevitably look to

the biosphere as a way to curb CO2 emissions to the atmosphere.

1.2 The international response to climate change

1.2.1 Intergovernmental Panel on Climate Change

In 1988, the World Meterological Organisation (WMO) and the United Nations Environment Pro-

gramme (UNEP) established the Intergovernmental Panel on Climate Change (IPCC), as concerns

began to grow about the potential climate impacts of rising CO2 concentrations. Widely regarded

as the accepted voice on climate change, the IPCC brings together leading climate scientists from

all over the world and amalgamates the latest climate science publications to produce reports on the

current state of climate science. These reports set out the impacts of climate change and present

options for mitigation and adaptation. Through a painstaking process, the wording in the "Summary

for Policymakers" is agreed by representatives from all participating governments, ensuring that the

message of the IPCC report is clear and understandable for decision-makers.

1.2.2 United Nations Framework Convention on Climate Change

The United Nations Framework Convention on Climate Change (UNFCCC) was initiated and entered

into force in 1994. Annual Conferences of the Parties (COPs) take place for the, currently 192,

countries involved to discuss the progress being made in relation to action against climate change.

At COP 3 in Kyoto in 1997, the Kyoto Protocol was agreed, setting legally binding obligations for

Annex I countries (those countries considered at the time to be more economically developed) to

reduce their GHG emissions between 2008 and 2012. The Doha amendment extended this period

from 2013 to 2020. A key component of the Kyoto Protocol is to establish GHG inventories and

Annex I countries are required to submit estimates of their GHG emissions to the UNFCCC each year

to track progress. In 2010, at the UN Climate Change Conference it was also agreed that warming

should be limited to 2◦C.

At COP 21 in 2015, the successor to the Kyoto Protocol was agreed in the form of the Paris

Agreement. The Paris Agreement states that average global mean temperature rise should be kept

to well below 2◦C and that there should be a concerted effort to limit warming to 1.5◦C. Instead of

making the distinction between Annex I and non-Annex I countries, the Paris Agreement includes

all countries and works on the basis of Nationally Determined Contributions (NDCs). Countries are
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Fig. 1.3: Historical global emissions (black line) along with projected future emissions under current climate 
change policies (darker blue range) and the pledges, or NDCs, made as a result of the Paris Agreement (lighter 
blue range). The emissions pathways that are consistent with meeting the 2◦C limit in global mean temperature 
rise (yellow range) and those consistent with meeting the 1.5◦C limit in global mean temperature rise (green 
range). The yellow and green arrows show the emissions reductions required, through more ambitious pledges 
and their realisation as climate change policies, to meet the 2◦C and 1.5◦C targets respectively. Graph taken 
from the Climate Action Tracker (https://climateactiontracker.org/global/cat-emissions-gaps/).
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expected to make pledges of their emissions reductions and the financial support that they can provide

to less economically developed countries. The current emissions reduction pledges from all countries

are shown in Fig. 1.3 and fall short of what is required to remain within the 2◦C target, let alone

the 1.5◦C target. As part of this process, a global stocktake will occur every 5 years to evaluate the

progess countries are making towards the aims of the Paris Agreement and countries will be required

to strengthen the ambition of their NDCs in response.

The agreement also aims for GHG neutrality by 2050, meaning that sources of GHGs as a result

of human activity are balanced by negative emissions or sinks (i.e. a removal of CO2 from the

atmosphere through processes such as reforestation or carbon capture and storage). Indeed, enhancing

the carbon sink is deemed a neccessity given the scale of the problem (Rockström et al., 2017).

Therefore, many NDCs involve policies that create negative emissions. Forests in particular provide

huge mitigation potential (Griscom et al., 2017) and 25% of the emissions reductions pledged through

NDCs are expected to be achieved through changing land use and reforestation (Grassi et al., 2017).

The latest IPCC report was especially commissioned to examine the climatic impacts of a 1.5◦C

world versus a 2◦C world and revealed alarming consequences of both scenarios (Masson-Delmotte

et al., 2018). For example, under 1.5◦C warming coral reefs are expected to decline by 80%, rising to

99% under 2◦C warming. The Arctic ocean will be free of sea-ice around once a century under 1.5◦C

warming and once a decade under 2◦C warming. The authors of the report estimate that there are just

12 years until the 1.5◦C warming is met if there are no changes to current policies.

1.2.3 UK Climate Change Act 2008

The United Kingdom (UK) has developed its own piece of legislation: the UK Climate Change Act

2008 (The UK government, 2008), that commits to reducing greenhouse gas emissions to 80% of

1990 levels by 2050. This requires an annual report of UK emissions to be submitted to Parliament.

As part of this legislation, carbon budgets are set at 5 year intervals. The Committee on Climate

Change was set up to scrutinise government over its progress towards each carbon budget and to

suggest ways in which the UK may be able to meet its targets.

1.3 Reporting greenhouse gas emissions

All of these agreements and pieces of legislation require countries to know how much CO2 and other

GHGs they are emitting. Measuring progress in reducing GHGs requires an estimate of the baseline

to work from and some form of regular reporting to ensure countries are on track. The most common

form of reporting takes an inventory-style approach, where an estimate is made for the emissions of

different sectors. This is known as the "bottom-up" approach.

7



Introduction

1.3.1 CO2 emissions from fossil fuels and industry

National inventories of CO2 emissions from fossil fuel burning are built up using a variety of different

datasets, such as population density and the quantity of fuel sold to power vehicles etc. Various

scaling factors are used to convert the information in these datasets into GHG emissions estimates.

Different countries have access to different levels of data, meaning that some inventories are much

more sophisticated than others. Sophisticated inventories may use country-specific scaling factors as

opposed to the basic scaling factors that are applied globally. This can lead to some discrepancies in

different inventories (Peylin et al., 2011). One inventory covering global sectoral emissions is the

Emissions Database for Global Atmospheric Research (EDGAR, EC-JRC/PBL, 2011), which uses

emissions factors for different human activities and technologies and collates information at the most

basic level required for submission to the UNFCCC for every country. Another is the Open-source

Data Inventory for Anthropogenic CO2 (ODIAC, Oda and Maksyutov, 2011), based on datasets such

as satellite-observed night lights.

The UK inventory is the National Atmospheric Emissions Inventory (NAEI, http://naei.beis.gov.uk).

This inventory is compiled by the consultancy Ricardo Engineering and Environment for the UK

government and is made up of energy and fuel statistics from the Department for Business Energy and

Industrial Strategy, transport statistics from the Department for Transport and food and farming statis-

tics from the Department for the Environment, Food and Rural Affairs, along with information from

trade associations and individual companies. Emissions factors are from the 2006 IPCC Guidelines for

National Greenhouse Gas Inventories or more specialised literature sources. The inventory complies

with, and aims to exceed, the Tier 1 Quality Assurance and Quality Control standards outlined in

the 2006 IPCC guidelines, which are the basic requirements for submitting inventory data to the

UNFCCC. Uncertainty estimates (two standard deviations) for individual CO2 sectors range from

2-55% and the combined uncertainty across all greenhouse gases is estimated to be 5% in 1990 and

3% in 2006 (Brown et al., 2018).

1.3.2 CO2 emissions from land use and land use change

The anthropogenic emissions sector that is subject to the largest uncertainty is that of CO2 emissions

from land-use, land-use change and forestry (LULUCF). Bookkeeping models are used to track the

carbon stored in vegetation and soils before and after land-use change, which incorporate datasets

on, for example, biomass in forests, harvests and land that has been converted to a new land-use

type. Finding estimates for different human or natural effects applying to the same areas of land is a

difficult task and one problem with estimating emissions from LULUCF is ensuring comparability

between estimates (Grassi et al., 2018). In the inventories reported to the UNFCCC, LULUCF is

considered to be the direct human induced effect on both managed and un-managed land (such as

land-use change and harvest); the indirect human induced effects on managed land (those due to

climate change, such as changes in temperature and precipitation); and the natural effects on managed

land (such as inter-annual variability and forest fires). The uncertainty on global LULUCF emissions

8
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submitted to the UNFCCC, averaged over 1990-2010, is around 90% to two standard deviations

(Grassi et al., 2017). In contrast, the LULUCF estimates given in the IPCC reports only include

the direct human induced effect on managed and un-managed land; the indirect human induced and

natural effects, on the other hand, are considered to be the "residual sink". These decadal estimates

have an uncertainty of around 110% to two standard deviations (Houghton and Nassikas, 2017).

These reporting differences have led to a discrepancy between global estimates of LULUCF of around

4 Pg CO2 yr−1 between 2005-2014, which is a significant as this is equivalent to 10% of the total

anthropogenic emissions during this time period (Grassi et al., 2018).

1.3.3 CO2 flux from the terrestrial biosphere

Regional terrestrial carbon fluxes can be estimated using a range of observational and computational

methods. These include the up-scaling of direct flux measurements made using eddy covariance or

chamber systems (Baldocchi and Wilson, 2001) and models of atmosphere-biosphere CO2 exchange.

Flux measurements are important for understanding the small-scale processes responsible for carbon

fluxes. However, they are relatively localised estimates (centimetres to kilometres), which are

challenging to scale up to national levels. Biosphere models and land surface models (LSMs) can be

used to estimate carbon fluxes using coupled representations of biogeophysical and biogeochemical

processes, driven by observations of meteorology and ecosystem parameters (Bloom et al., 2016;

Clark et al., 2011; Potter, 1999). Such models describe processes to varying degrees of complexity

and are driven by observational data to varying degrees of detail; hence predictions of biospheric

GHG fluxes can vary significantly between models (Atkin et al., 2015; Todd-Brown et al., 2013).

1.3.4 Emissions estimation from the top-down

Emissions accounting using the bottom-up technique is in widespread use. However, many pieces

of legislation, and indeed the IPCC itself, suggest that "best practice" should include alternative

methods of emissions accounting to verify bottom-up estimates. One alternative, known as the

"top-down" approach, is to consider atmospheric concentrations of the gases emitted. An atmospheric

concentration measurement can be related to the surface emissions that have contributed to it via

the wind fields that transported the emissions to the measurement location. This is the premise of

atmospheric inverse modelling, which will be further described in Section 1.4.

There are not many countries that officially use this technique to report emissions. The UK,

Switzerland and Australia are currently the only ones. This is partly due to the number of continuous

measurements required, which are costly to set up and maintain. However, top down methods are

constantly improving, so their use in official emissions verification is likely to grow in the near

future. It is even thought that as bottom-up methods reach the limit of possible uncertainty reduction,

top-down methods may be able to overtake these methods for precision (Leip et al., 2018).
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1.4 Atmospheric inverse modelling

Atmospheric inverse modelling has been introduced as a top-down approach that provides an alterna-

tive to the bottom-up approaches described in Section 1.3. In this approach, a model of atmospheric

transport is used to relate spatiotemporally resolved surface fluxes to atmospheric measurements of

CO2 concentrations. Since atmospheric observations are sensitive to fluxes spanning tens to hundreds

of kilometres (Gerbig et al., 2009), inverse methods are a valuable tool for examining national fluxes

and evaluating estimates of surface exchange of CO2 at larger spatial scales. Through the introduction

of the atmospheric data, an initial "guess" of the surface fluxes may be changed to be consistent with

atmospheric concentrations.

1.4.1 The forward model

Equation 1.1 describes the linear forward model that maps the relationship between atmospheric

observations and fluxes and forms the basis of the inverse method.

yyy = HHHxxx+ ε (1.1)

Here, there are observations of atmospheric CO2 concentrations, yyy, that are connected to a set

of CO2 fluxes, xxx, via a model of atmospheric transport, HHH. Using what is known initially about

the fluxes in a region (the first "guess"), a time series of modelled "observations", HHHxxx, can be

calculated. However, due to imperfections in the atmospheric transport model, initial flux estimates

and measurements, there will likely be a mismatch between the modelled "observations" and what has

actually been measured in the atmosphere. This mismatch is accounted for in the additional parameter,

ε .

The component parts of the inverse modelling technique - the atmospheric data, the atmospheric

transport model and the initial flux maps used to help solve the problem - are described in the following

sections.

1.4.2 Atmospheric data

Measurements may be collected on a variety of platforms, such as through an inlet on a tall (typically

100s of metres above the surface) or surface (~10m above the surface) tower, via aircraft, by filling

flasks of air or, more recently, via satellite. The work of this thesis will focus on measurements taken

at tall tower and surface tower continuous measurement sites.

1.4.2.1 Measuring atmospheric CO2 concentrations

Measurements of atmospheric CO2 are usually made with a cavity ring-down spectrometer (CRDS).

This instrument involves a cavity with a mirror at either end, a laser and a detector. The laser is fired

within the cavity and the intensity of light is allowed to build up. The laser is then turned off and the
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light intensity within the cavity decays away as light leaks out. The mirrors allow the light to bounce

back and forth, giving a large effective path length for the decay. If a gas, such as CO2, is injected into

the cavity, the absorption or reflection properties of the gas will decrease the time taken for the light

intensity to decay to 1/e from the original intensity. This "ringdown" time can be calculated from the

detector signal, which is registered in volts, and can then be converted to a mole fraction of gas in the

cavity. Of course, measurements need to be calibrated and a description of the calibration method for

a specific set-up is described in Sect. 1.4.2.2.

1.4.2.2 UK measurement networks

To support the UK’s climate change legislation, a continuous and automated measurement network

has been established (Stanley et al., 2018; Stavert et al., 2018) with the goal of providing estimates

of GHG emissions that are independent of the UK’s bottom-up anthropogenic inventory. CO2 mole

fractions are continuously measured at six sites across the UK and Republic of Ireland. Four of

these sites, Mace Head (MHD), Ridge Hill (RGL), Angus (TTA) and Tacolneston (TAC), originally

formed the UK Deriving Emissions related to Climate Change (UK-DECC) network and are described

in Stanley et al. (2018), whilst two, Heathfield (HFD) and Bilsdale (BSD), were developed under

the Greenhouse gAs Uk and Global Emissions (GAUGE) programme (Palmer et al., 2018) and are

described in Stavert et al. (2018). The location of these sites is shown in Fig. 1.4. The site at MHD,

Republic of Ireland, is a coastal station, 10m above ground level (magl), situated primarily to measure

concentrations of background air arriving at the site from the Atlantic Ocean. The Laboratoire des

Sciences du Climat et de l’Environnement (LSCE) is responsible for making CO2 measurements

at this site from a 23 magl inlet (see Vardag et al., 2014, for a full site description). All of the UK

sites are tall-tower stations (with inlets ranging from 42 to 248 magl), designed to measure elevated

greenhouse gas mole fractions as air is transported over the surface in the UK and Europe.

Previous studies have used data from the UK-DECC network to infer UK emissions of GHGs

of predominantly anthropogenic origin, such as methane (CH4), nitrous oxide (N2O) and HFC-134a

(Ganesan et al., 2015; Manning et al., 2011; Say et al., 2016). These studies found varying levels of

agreement with bottom-up inventory methods. Whilst CO2 is measured by the network, top-down CO2

emissions estimates are not yet reported to the UK government as the methodology for disaggregating

biospheric and anthropogenic sources and sinks needs to be developed.

Continuous CO2 measurements are made at all stations using Picarro G2301 or G2401 CRDS

instruments. CRDS data are corrected for daily linear instrumental drift using standard gases and

for instrumental non-linearity using calibration gases, spanning a range of above and below ambient

mole fractions, on a monthly basis (Stanley et al., 2018). Calibration and standard gases are of natural

composition and calibrated at the GasLab Max Planck Institute for Biogeochemistry, Jena, or the

World Calibration Centre for CO2 at Empa, linking them to the WMO X2007 scale (Stanley et al.,

2018; Stavert et al., 2018). At sites with multiple inlets, since there is only one CRDS instrument, each

hour is divided up into the number of inlets and measurements at each inlet are taken continuously
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over this period. Therefore, measurements at each height at Bilsdale and Tacolneston (with 3 inlets)

are taken continuously for roughly 20 minutes every hour, and at Heathfield and Ridge Hill (with 2

inlets) measurements are taken continuously for roughly 30 minutes at each inlet every hour. Dividing

measurements between multiple inlets each hour is not thought to have a large effect on the data

collected, however for the purposes of the inverse modelling in this study a 2-hourly average of the

data is taken, which ensures any discontinuities are smoothed out. Further information about the

instruments, measurement protocol and uncertainty estimates can be found in Stanley et al. (2018)

and Stavert et al. (2018).

Depending on the atmospheric conditions, these tall-tower sites may be measuring CO2 concen-

trations within the well vertically mixed boundary layer (typically during the daytime when deep

convection occurs in part due to warmer surface temperatures) or within the stratified free troposphere

(possible during some nighttime hours when the height of the boundary layer decreases to below

the inlet height in part due to cooler surface temperatures). Measurements made in the well mixed

boundary layer are representative of changes to CO2 concentrations due to surface CO2 fluxes whereas

measurements made in the free troposphere capture background CO2 concentrations. Understanding

surface fluxes of CO2 is the aim of inverse modelling so the distinction between these times of day

needs to be taken into account and this often leads to some level of data filtering. An investigation of

various filtering techniques is carried out in this thesis.

1.4.3 Atmospheric transport models

Atmospheric transport models connect surface fluxes to the concentrations of gases in the atmosphere.

There are two types of transport models. The first are Lagrangian models that release particles from a

reference point and then track the location of those particles as they are dispersed in the atmosphere

following fields of wind speed and wind direction. A random term is also added to simulate sub grid

scale turbulence, slightly nudging the particles in different directions whilst they follow the mean

wind fields. The second are Eulerian models that operate on a fixed grid and gases are advected based

on the conditions in each grid cell.

Lagrangian models are well suited to understanding regional atmospheric transport at high spatial

resolutions (on the order of 0.1◦× 0.1◦ but it would be very computationally expensive to run these

models over a global domain. Eulerian models on the other hand are very well suited to global

modelling but are lacking in spatial resolution (typically on the order of 1◦× 1◦). Lagrangian models

are also known to perform well at times of convective transport but poorly during times of low wind

speeds and stratified atmospheric conditions, which leads inverse modelling teams to filter out data

points for which the model may not be able to correctly represent the atmospheric transport.

Both a Lagrangian and an Eulerian model are used in this work. The Lagrangian model is

used to find regional source sensitivities, i.e. where surface emissions are expected to contribute to

measurements taken within the region, and the Eulerian model provides the mole fraction boundary

conditions at the edge of the region.
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1.4 Atmospheric inverse modelling

Fig. 1.4: (a): Mean annual NAME footprint (or surface sensitivities) for 2014, for each of the six sites. MHD:
Mace Head; RGL: Ridge Hill; HFD: Heathfield; TAC: Tacolneston; BSD: Bilsdale; TTA: Angus. WAO shows
the location of the Weybourne Atmospheric Observatory, where data has been used to validate the results in
Chapter 3 but has not been included in the inversion (the mean footprint from this station is not plotted). (b):
Footprints representing the 30-day air histories corresponding to one 2-hour measurement period (i.e. where air
has been for the 30 days before the measurement was taken) for each of the same six sites. The map extent
represents a typical NAME domain.

1.4.3.1 NAME

The Chernobyl disaster in 1986 revealed the lack of available models to estimate where emissions

from a point source, in this case radioactive particles from the nuclear reactor, are transported in

the atmosphere. As a result, in 1987, the UK Met Office developed The Numerical Atmospheric

dispersion Modelling Environment (NAME), a Lagrangian particle dispersion model (LPDM). Later,

it was adapted to run backwards in time to find where air has come from, and where it could have

picked up possible emissions sources, before arriving at a particular location, i.e. a measurement site.

When run backwards in time, as it is for inverse modelling applications, NAME tracks thousands

of particles back in time from observation locations. The particles move based on mean wind

speed, wind direction and sub grid scale turbulence. The model determines the locations where air

masses interacted with the surface, and therefore where surface sources and sinks could contribute

to a concentration measurement. The "surface" is defined in this work as the lowest 40 km of the

troposphere. There is therefore no vertical dimension to the model output, however there are multiple

vertical levels in the model itself (determined by the meteorology used to drive the model) and it is

possible for a particle to interact with the surface, move to a higher height and then move back to the

surface, in which case all interaction with the surface would be recorded. At the end of the simulation,

which could be 30 days as in Fig. 1.4b, the air histories at each time step in the model are integrated to

give a full 30-day back trajectory. The model provides a grid of the sensitivity of each mole fraction

observation to the potential flux from each grid cell and this is often referred to as the “footprint” of
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Fig. 1.5: MOZART model CO2 output for February 2014 at the vertical level closest to the surface.

a particular observation (Jones et al., 2006; Manning et al., 2011). The units used to describe the

footprints are therefore units of concentration divided by units of flux
(

mol/mol

mol/m2/s

)

. The meteorological

dataset used to drive NAME is from the Met Office Unified Model (Cullen, 1993). This is constructed

of a series of meteorological analyses that produce short-term forecasts using observational data from

the land surface, ocean and satellites to constrain the meteorology in the model to the real state of

the atmosphere. The spatial and vertical resolution of the meteorology guides the spatial and vertical

resolution of NAME and changes through time; for example between early-2010 and mid-2014 it is

0.233◦ latitude by 0.352◦ longitude (roughly 25 by 25 km over the UK) and has 70 vertical levels.

Figure 1.4a shows an average footprint over 2014 and Fig. 1.4b shows a footprint taken from

a 2-hour period. The average footprint shows that with the six measurement sites described in

Sect. 1.4.2.2, a good coverage of sensitivity to UK surface fluxes can be achieved. For context, a

sensitivity of -1.5 log10 (mol mol−1 (mol m−2 s−1)−1) and a grid cell flux of 3.5×10−7 mol m−2 s−1

(an average NEE flux in June) equates to a concentration of 0.1ppm seen at the measurement site,

which is above typical measurement uncertainty. The 2-hour footprint shows a typical full NAME

domain and how measurements taken at MHD are mostly receiving air from across the Atlantic, with

even some small sensitivity to the east coast of the United States of America. The other sites are

mostly sensitive to fluxes over the UK and northern France.

1.4.3.2 MOZART

The Model for OZone And Related chemical Tracers (MOZART, Emmons et al., 2010) is a global

Eulerian model. The model is driven by a meteorological dataset, which could be output from climate
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models or assimilations of meterological data, and an emissions inventory. In each grid cell, emissions

are dispersed based on physical dispersion processes that are simulated using equations of shallow,

mid-level and deep convective transport, as well as vertical diffusion in the boundary layer and

advective transport. The model includes grid cell chemistry. As sources and sinks of CO2 occur at

the land surface and are taken into account in the emissions inventory, the atmospheric chemistry

component in a CO2 simulation does not play a large role. MOZART’s spatial resolution is guided by

the meterology used to drive it, which in this work is GEOS-5 (Rienecker et al., 2011) at a resolution

of 2.5◦ latitude by 1.895◦ longitude, and there are 56 vertical levels.

MOZART monthly mean mole fractions for February 2014 are shown in Fig. 1.5. The inter-

hemispheric gradient of CO2 is clear to see, as a result of the slow mixing times between the

hemispheres and the comparatively large number of emissions sources and sinks in the northern

hemisphere. Also, since this is winter in the northern hemisphere, the terrestrial biosphere will be

a dominant source of CO2, whereas the terrestrial biosphere in the southern hemisphere will be a

dominant sink of CO2.

1.4.4 Initial fluxes

The "initial fluxes" used in the forward model in Sect. 1.4.1 are known as "prior" fluxes in the inverse

model and are used to initiate and guide the inversion process. These fluxes usually come from

bottom up inventories of sources and sinks as described in Sect. 1.3 and this is the approach taken in

this thesis. One alternative approach, however, constructs the prior as a spatio-temporal correlation,

where the mean flux distribution is a function of an underlying dataset related to emissions, such as

population density. This is known as the geostatistical method (Michalak, 2004).

1.4.5 The Jacobian matrix

As has already been seen, the role of the atmospheric transport model is to relate concentration

measurements to surface fluxes. The output of the model provides a map of where on the surface any

fluxes would contribute to an observation made at a measurement site, so where the measurements are

sensitive to fluxes. This sensitivity of concentration measurements to fluxes is known as the “Jacobian”

or “sensitivity” matrix, denoted HHH in the description of the linear forward model (Eq. 1.1), and maps

the change in yyy given a change in xxx (Eq. 1.2).

HHH i j =
∆yyyi

∆xxx j

(1.2)

However, HHH is not neccessarily simply the output from the atmospheric transport model. Finding a

new flux field by changing the flux in every grid cell in the domain is likely to be a very large problem

and the data from atmospheric observations is unlikely to be enough to constrain it. To reduce the

problem the model grid may be split up into a smaller number of regions, known as basis functions.

The sum of fluxes in these basis functions are then scaled up or down in the inversion. Therefore, HHH
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has dimensions m (number of data points) by n (number of basis functions). Further basis functions

are included to account for the boundary conditions.

1.4.6 The inverse model

1.4.6.1 Bayes theorem

The idea behind the "inverse" problem is that an updated estimate of the initial fluxes, xxx, can be found

by incorporating the information about atmospheric concentrations, yyy, thereby reducing the mismatch,

ε from Eq. 1.1. Both xxx and yyy are probability distributions as they have an uncertainty related to

them. The question is, how does the probability distribution of xxx change when new evidence, yyy, is

introduced?

Determining conditional probabilities like this is the premise of Bayes theorem, which forms

the basis of the majority of inverse methods. Consider two separate events, A and B. P(A) and P(B)

are the probabilities of A and B occurring independently of each other, while P(A,B) and P(B,A)

are the probabilities of both events occurring together and P(A|B) and P(B|A) are the conditional

probabilities of P(A) occurring given that P(B) has already occurred and vice versa. Given the product

rule:

P(A,B) = P(B|A)P(A) (1.3)

P(B,A) = P(A|B)P(B) (1.4)

And since the order doesn’t matter:

P(A,B) = P(B,A) (1.5)

Leading to Bayes theorem, which describes the probability of an event occurring based on

knowledge about a different, related event:

P(A|B) =
P(B|A)P(A)

P(B)
(1.6)

Therefore, in the case of atmospheric inverse modelling the Bayes equation can be written as:

ρ(xxx|yyy) =
ρ(yyy|xxx)ρ(xxx)

ρ(yyy)
(1.7)

The parameters to be estimated (such as the flux and boundary condition scaling) are initially

described by a prior probability density function (PDF), ρ(xxx), that is not aware of any observations, yyy.

ρ(yyy|xxx) is known as the likelihood function and describes how well yyy maps to the prior estimate of xxx,

i.e. the mismatch, ε , from Eq. 1.1. The updated parameter estimates are described by the posterior

PDF ρ(xxx|yyy), i.e. the probability of the parameter estimates given the added information yyy. The term
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ρ(yyy), known as the "evidence", acts as a normalising term and is the same for all values of yyy. It

can usually be ignored because in the case where xxx has a fixed number of dimensions it will cancel

out when comparing different parameter values. However, for reasons that will become apparent in

Sect. 1.4.8.1, the dimension of xxx does not always remain constant throughout the inversion used in

this thesis, and in this case the evidence term becomes important.

ρ(xxx) and ρ(yyy|xxx) could be considered to have a Gaussian distribution and the form of this distri-

bution is described by Eq. 1.8. Here µµµ is the mean of the distribution and ΣΣΣ is a covariance matrix

whose diagonal elements describe the variance of the parameters, xxx, and whose off-diagonal elements

describe the covariance between different parameters.

f (xxx) =
1

√

|ΣΣΣ|2π
exp

(

−
1
2
(xxx−µµµ)T ΣΣΣ−1(xxx−µµµ)

)

(1.8)

Combining Eq. 1.7 and 1.8 gives Eq. 1.9, where RRR is the data covariance matrix and PPP is the prior

covariance matrix. xxxprior is the prior mean estimate for xxx.

ρ(xxx|yyy) ∝
1

2π
√

|RRR||PPP|
exp

(

−
1
2
(yyy−HHHxxx)T RRR−1(yyy−HHHxxx)

)

· exp

(

−
1
2
(xxxprior −−− xxx)T PPP−1(xxxprior −−− xxx)

)

(1.9)

1.4.6.2 Finding the posterior solution

The optimum solution to Eq. 1.9 is where the probability of the posterior ρ(xxx|yyy) is at its maximum.

There are a number of different ways to reach the posterior solution. Optimisation approaches seek to

maximise the exponential components of Eq. 1.9, which leads to the cost function in Eq. 1.10 where

the solution is found by minimising J (Tarantola, 2005).

J(xxx) = (yyy−HHHxxx)T RRR−1(yyy−HHHxxx)+(xxx− xxxprior)
T PPP−1(xxx− xxxprior) (1.10)

The cost function can be minimised using many different techniques. For less complex problems

a Bayesian synthesis inversion may be used, where the model grid is split into a number of regions

(basis functions) to reduce the size of the problem and the cost function is solved analytically (e.g.

Enting et al., 1995; Gerbig et al., 2003b; Rödenbeck et al., 2003). Alternatively, the solution may

be found iteratively using simple gradient descent methods (e.g. Rodenbeck et al., 2009). For more

complex problems, ensemble and variational methods have been developed to approximate the

solution. Ensemble methods, like the ensemble Kalman filter used in the CarbonTracker framework

(Peters et al., 2005), carry out an ensemble of model runs and use that to approximate the exact

solution. Variational methods, such as the 4D-variational approach used in TM5-4DVar (Basu et al.,

2013), take a step by step approach to find the optimal solution.
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More recently, Markov chain Monte Carlo (MCMC) algorithms have been used as an alternative

method to sample the parameter space and build up the posterior PDF (Rigby et al., 2011). More

details of this technique are given in Sect. 1.4.8.2.

1.4.7 Challenges of atmospheric inverse modelling

Robust uncertainty quantification in Bayesian frameworks can be difficult as they require that un-

certainties in the prior flux estimate ρ(xxx), and uncertainties in the model’s ability to simulate the

data ρ(yyy|xxx), are well characterised. In practice, this is rarely the case and various studies have

investigated the use of data-driven uncertainty estimation (e.g. Berchet et al., 2013; Ganesan et al.,

2014; Kountouris et al., 2018b; Michalak, 2004).

Inversions are also known to suffer from “aggregation errors”. One type of aggregation error

arises from the way in which areas of the flux domain are grouped together to decrease the number

of unknowns, because usually there are not sufficient data to solve for fluxes in each model grid cell

(Kaminski et al., 2001). If too coarse a resolution is used the aggregation error may be large, however

if too fine a resolution is used, the computational cost can become prohibitive in some inversion

frameworks.

Finally, for reasons of mathematical and computational convenience within probabilistic inverse

modelling approaches, Gaussian PDFs are often used to describe prior knowledge (Miller et al., 2014).

However, in reality atmospheric GHG emissions or uptake processes are physically bound to either

be positive or negative but cannot be both. Gaussian assumptions, which permit both positive and

negative solutions, can therefore lead to unphysical solutions. Miller et al. (2014)has investigated

different ways to impose non-negativity on inversion estimates and finds that MCMC approaches, like

the one described in the following sections, are best able to robustly impose this constraint and find

the most realistic posterior estimates and uncertainty bounds.

1.4.8 Hierarchical Bayesian trans-dimensional Markov Chain Monte Carlo

The hierarchical Bayesian trans-dimensional MCMC approach has been developed to address many

of the challenges introduced in Sect. 1.4.7.

1.4.8.1 Hierarchical Bayes and the trans-dimensional case

The traditional Bayesian approach requires that decisions about the form of the prior PDF, ρ(xxx),

and likelihood function, ρ(yyy|xxx), are made a priori. These pre-defined decisions have the potential

to strongly influence the form of the posterior PDF in an inversion (Ganesan et al., 2014). In a

hierarchical Bayesian inversion, a second "level" to the traditional Bayes equation is introduced, to

account for the fact that initial parameter uncertainty estimates are themselves uncertain. This is

known as a "hierarchical" Bayes framework and is shown in Eq. 1.11 (Ganesan et al., 2014). In

this case, additional parameters, known as hyper-parameters, are used to describe the uncertainties
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in the prior and the model and posterior estimates for these parameters are found as a result of the

inversion. In Eq 1.11, θ is an assortment of hyper-parameters describing the uncertainty on xxx, and the

model-measurement error.

ρ(xxx,θ ,k|yyy) = ρ(yyy|xxx,θ ,k)ρ(xxx|θ ,k)ρ(k)ρ(θ) (1.11)

Alongside the additional hyper-parameters θ , Eq. 1.11 also contains a parameter k, the number

of unknowns in xxx. In response to the problem of aggregation errors, Lunt et al. (2016) has set

out a trans-dimensional method that finds the balance between the two extremes of this problem

without imposing arbitrary region boundaries. In this approach, the number of basis functions to be

solved is not fixed a priori because spatial regions can be moved, created or destroyed throughout

the inversion process, and hence xxx has an unknown length. Therefore, the number of unknowns is

itself a parameter to be solved in the inversion, with the uncertainty in this term propagating through

to the posterior parameters estimate, more fully accounting for the uncertainties within a traditional

Bayesian approach.

1.4.8.2 Reversible jump Markov chain Monte Carlo

In general, there is no analytical solution to the hierarchical Bayesian equation, so the posterior

solution is approximated using a reversible jump Metropolis-Hastings MCMC algorithm (Green,

1995; Lunt et al., 2016; Metropolis et al., 1953; Tarantola, 2005).

This is an algorithm that explores the possible values for each parameter by making a new proposal

for a parameter value at each step of a "chain" of possible values. Equation 1.12 describes how values

are accepted or rejected.

U ≤ (prior ratio× likelihood ratio× proposal ratio) (1.12)

U is a uniformly distributed random number between 0 and 1, the prior ratio is the probability of

the proposed value sampled from the prior PDF compared to the probability of the existing value;

the likelihood ratio is the likelihood of the proposed value compared to the likelihood of the existing

value; and the proposal ratio is the probability of generating the current model state (i.e. the model

with the current number of basis functions) from the proposed model state compared to the probability

of generating the proposed model state from the current model state. New values are accepted if

the combination of ratios is greater than or equal to the value U . This means that more favourable

parameter values or model states are always accepted; however, less favourable parameter values

or model states can also be randomly accepted in order to fully explore the full posterior PDF. The

algorithm will usually have to undergo around 105 or 106 iterations to appropriately explore the

posterior distribution. At the end of the algorithm a chain of all accepted parameter values is stored (if

a proposal is rejected the chain will spend longer at the previously accepted value). A histogram of
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this chain describes a posterior PDF for each parameter so that statistics such as the mean, median

and standard deviation can be calculated.

Reversible jump MCMC is required here because it is able to sample PDFs with an unknown

number of dimensions, unlike the standard MCMC algorithm where the dimensions of the problem

must be pre-defined. Therefore, the proposal ratio must be calculated at each iteration, whereas in

standard MCMC the proposal ratio would always be equal to 1.

1.5 Brief history of atmospheric CO2 inversions

Atmospheric inversions differ in four main respects: the observational data used, the atmospheric

transport model used, the prior fluxes used and, as has been touched on already, the inverse framework

used. These differences govern the scale across which the inversion takes place and have led to a

diversity of inverse flux estimates. However, it is important to understand the differences between

fluxes from many methods to better understand the methods themselves.

In CO2 emissions estimation, researchers have mostly focussed on finding estimates for biospheric

CO2 fluxes. This is because it is difficult to separate the anthropogenic and biospheric components

from the observational data and, since the uncertainty of bottom-up biospheric fluxes is comparatively

large compared to that of bottom-up anthropogenic fluxes, anthropogenic fluxes can be thought of as

"known".

1.5.1 Global inversions

The first global atmospheric inversions of CO2 were developed in the 1980s, using Eulerian transport

models and weekly surface flask data (Enting and Mansbridge, 1989; Tans et al., 1989). Given the

differing results that were being produced, the Atmospheric Tracer Transport Model Intercomparison

Project (Transcom) was set up, initally to investigate the impact of using different transport models

in the same Bayesian synthesis inversion with 11 land and 11 ocean regions and using data from 76

measurement sites in the GLOBALVIEW-2000 dataset (Gurney et al., 2003). Atmospheric transport

models were found to be a large contributor to uncertainty, comparable to the uncertainty related to

the limited number of CO2 observations. The work concluded that the reduction of uncertainty of

carbon budgets in the mid-latitudes could be achieved through improved transport simulation, whereas

in the tropics the lack of data was the limiting factor.

As more complex inversion systems became available, such as the ones introduced in Sect. 1.4.6.2,

the comparison could extend its remit and investigate the differences between the inverse set-ups, as

well as differences in observational datasets and choice of prior fluxes (Peylin et al., 2013). These

differences led to a spread in annual mean fluxes across the eleven inversions of around 1 Pg C yr−1

(for context, mean global flux across the inversion period was −3.11 Pg C yr−1). Despite these

limitations, Peylin et al. (2013) note that the results of the study provide a unique perspective on the
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global carbon budget, as atmospheric inverse modelling is the only tool that can evaluate exchange

between all carbon pools.

In the Global Carbon Budget 2014 (Le Quéré et al., 2015), global atmospheric inversions were

incorporated for the first time to estimate year to year changes in biospheric fluxes, which correlated

well with the budget residual that had previously been used to estimate the uptake of anthropogenic

CO2 by the biosphere. Inversions could also contribute to the evaluation of the spatial distribution of

land and ocean fluxes.

1.5.2 Regional inversions

Whilst understanding global CO2 emissions is important for constraining the global carbon budget,

for the emissions reporting requirements of the Paris Agreement and other national pieces of climate

change legislation, such as the UK Climate Change Act, 2008, CO2 fluxes need to be evaluated at

smaller regional scales, over continents and individual countries.

Continental studies have been carried out over Europe, for example by Peters et al. (2010) using

an Eulerian transport model, by Rivier et al. (2010) comparing Eulerian and Lagrangian transport

models, or by Kountouris et al. (2018a) using a Lagrangian transport model. Gerbig et al. (2003b)

and (Schuh et al., 2010) have assesed North American fluxes using Lagrangian transport models. At

the country scale, the high resolution offered by Lagrangian transport models is required. Studies

have been carried out over the Netherlands (Meesters et al., 2012) and New Zealand (Steinkamp

et al., 2017), for example. Regional inversions have focussed on New England and Quebec in Canada

(Matross et al., 2006) and on the state of Oregon in the USA (Göckede et al., 2010).

To date, regional inverse modelling set-ups have not benefitted from the same intercomparison

studies carried out for global inversions. However, a study focussed on comparing regional inverse

set-ups over Europe is currently being developed and Chapter 4 presents one contribution to the

project.

1.6 Thesis motivation

CO2 emissions as a result of human activity are rising, both through burning fossil fuels and through

LULUCF, which is leading to rising global mean temperature. The latest IPCC report, commissioned

to look at the climate impacts of living in a world 1.5◦C warmer than pre-industrial times, has given a

stark warning to the global community. There are just 12 years to implement policies that will limit

global mean temperature rise to 1.5◦C. Monitoring atmospheric CO2 concentrations and using inverse

modelling to find surface fluxes provides one means by which current emissions can be evaluated and

progress to meet targets can be tracked.

The strengths of atmospheric CO2 inversions currently lie in estimating biospheric CO2 fluxes.

Although anthropogenic emissions estimation is the aim of carbon targets, biospheric emissions
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estimation can make an important contribution towards this. Firstly, a significant part of anthropogenic

emissions are related to biospheric fluxes as 18% are a result of LULUCF. Atmospheric CO2 inversions

usually assume the anthropogenic component is well known and include it as a fixed term in the

inversion, however in these cases researchers typically only refer to the anthropogenic emissions

from fossil fuel burning as the emissions related to LULUCF are difficult to quantify and subject to

large uncertainties. As such, there is scope for atmospheric CO2 inversions to be sensitive to fluxes

from LULUCF and as the biosphere is potentially the target of 25% of emissions reductions under

the Paris Agreement, alternative mechanisms to evaluate these fluxes will become more important.

Secondly, the biosphere is changing as a result of climate change. The potential of the biosphere

to absorb CO2 from the atmosphere is clearly why it is being used to mitigate climate change.

Therefore, it is important to track how that potential changes as climate variables, such as temperature

and precipitation, change. Thirdly, through advancing inverse modelling techniques and improving

biospheric flux estimates, it is hoped that inverse modelling can be used to estimate anthropogenic

fluxes from fossil fuel burning and LULUCF more routinely in the future.

Under the UK Climate Change Act, 2008, the UK has its own obligations to monitor GHG

emissions and report them to Parliament each year. The UK is advanced compared to other nations in

its use of top-down emissions verification, establishing the UK-DECC measurement network to verify

emissions of GHGs such as CH4, N2O and HFC-134a (Ganesan et al., 2015; Manning et al., 2011;

Say et al., 2016). However, solely bottom-up inventories provide information on CO2 fluxes because

there are inherent difficulties in the top-down inverse modelling approach, caused by the fact that

CO2 fluxes come from many different sources. Therefore, the work of this thesis develops the first

CO2 emissions estimates for the UK using a top-down inverse modelling approach, albeit focussed on

biospheric fluxes. These estimates are to be found in Chapter 3.

The hierarchical Bayesian trans-dimensional MCMC inversion set-up described in Sect. 1.4.8 has

been developed for GHGs that only have anthropogenic influence and no natural sources. As will

be further discussed in Chapter 2, there are many characteristics unique to CO2 that require some

adaptations to a standard atmospheric inversion framework. As such, the work of Chapter 2 focusses

on the methodological advancements needed to support the UK biospheric CO2 emissions estimation

in Chapter 3.

Finally, although regional inversion systems have undergone major developments in the last

decade, they have suffered from a lack of intercomparison studies. During this PhD project, the

opportunity has arisen to participate in one such intercomparison project focussing on European

biospheric fluxes, offering the chance to test the inversion set up developed in Chapters 2 and 3

against other more mature CO2 inversion systems. The results that have been generated by this system

through the intercomparison process are explored in Chapter 4. Since the work of Chapter 3, focussing

on the UK, and the work of Chapter 4, focussing on Europe, overlap, a synthesis of the results of

these chapters is presented in Chapter 5.
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This thesis is therefore a first step towards CO2 flux estimation using the inverse framework

described here. It is hoped that through this work, a better understanding of UK biospheric CO2 fluxes

can be achieved, as well as a better understanding of how a CO2 inversion can be set up within this

framework.
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Chapter 2

Adapting an inverse system for carbon

dioxide flux estimation

2.1 Introduction

In this chapter, the hierarchical Bayesian trans-dimensional MCMC approach described in Sect. 1.4.8

is adapted to meet the needs of a CO2 inversion. Performing atmospheric inversions for CO2 poses a

unique set of challenges, which are described in the following paragraphs. The new system is then

tested, as described in the rest of this chapter. This is the first concerted effort to use the NAME

atmospheric dispersion model along with a hierarchical Bayesian inversion to estimate fluxes of CO2

and the method developed here forms the basis of the work of Chapters 3 and 4. The final set-up is

described in Section 2.2 and the rationale behind this set-up is explored in a number of tests using

synthetic data in Section 2.3. The method developed in this chapter features in White et al. (2019).

The key challenges associated with estimating fluxes of CO2 that are not necessarily present with

other GHGs are that: there are multiple co-located sources that are highly spatially variable; CO2 has

a strong diurnal and seasonal cycle associated with biospheric fluxes (and anthropogenic fluxes to a

smaller extent); and, due to the existence of sinks as well as sources, the flux to the atmosphere can be

negative.

In Sect. 1.1 the complex interplay of the biospheric, oceanic and anthropogenic components of

the carbon cycle is described. These different, often co-located, sources make it very difficult to

disentangle the contributions of the separate sources to the observations. The biospheric flux is by

far the largest component, and net ecosystem exchange (NEE) is composed of positive fluxes to the

atmosphere (or sources) from terrestrial ecosystem respiration (TER, a combination of autotrophic

and heterotrophic respiration) and negative fluxes to the atmosphere (or sinks) from gross primary

productivity (GPP). The relationship between these three fluxes is given in Eq. 2.1.

NEE = T ER−GPP (2.1)
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Fig. 2.1: Top: maps of average NEE CO2 fluxes in 2014 from JULES and CARDAMOM, anthropogenic
emissions from NAEI (UK) and EDGAR (outside UK), and ocean fluxes from Takahashi et al. (2009). All
datasets have been regridded to the resolution of NAME model output from their native resolution (given in
Table 2.2). Bottom: time-series of UK CO2 fluxes throughout 2014. Solid line represents monthly fluxes and
shading represents the diurnal range.

According to the CARDAMOM and JULES models of biospheric fluxes, monthly mean fluxes of

TER and GPP are on the order of +/- 103 Tg yr−1 respectively at their seasonal maximum over the UK.

In contrast, annual anthropogenic fluxes are on the order of 102 Tg yr−1 over the UK according to the

NAEI (http://naei.beis.gov.uk), which can be similar to the UK’s monthly NEE flux at the seasonal

maximum. UK coastal ocean fluxes are on the order of 101 Tg yr −1 (Takahashi et al., 2009), which is

similar to the UK’s annual NEE flux. These fluxes are illustrated in Fig 2.1, note the different scales

on the y-axes. Given the dominant seasonal cycle in biospheric fluxes, many inverse modelling studies

of CO2 flux typically focus on estimating biospheric fluxes and assume that anthropogenic fluxes

are “fixed” in the inversion (e.g. Kountouris et al., 2018a; Meesters et al., 2012). This assumption

is made since the uncertainties in anthropogenic fluxes are thought to be low compared to those

of the biospheric fluxes, although this may not necessarily be the case as there can be significant

discrepancies between different anthropogenic emissions inventories (Peylin et al., 2011).

To address the challenges in separating sources, some researchers have looked at concentrations of

isotopes or co-emitted gasses to ascertain source signatures in CO2 mole fractions. Whilst biospheric

fluxes are the focus of this work, these methods hold promise for future work and are woth mentioning

here. Radiocarbon, 14C, is completely depleted in fossil fuels compared to biospheric and oceanic

carbon pools, so measurements of atmospheric ∆14C taken alongside measurements of CO2 have been

used to isolate fossil fuel CO2 concentrations (e.g. Miller et al., 2012; Turnbull et al., 2011a; Xueref-
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Remy et al., 2018). However, measurements of 14C are expensive so can only be made infrequently

across a sparse network. Carbon monoxide (CO) is released during incomplete combustion so

also provides a way to separate the contribution of biospheric and anthropogenic sources to CO2

concentrations (e.g. Laan et al., 2010; Turnbull et al., 2011b). However, due to large uncertainties in

the CO:CO2 source ratio, CO measurements usually need to be combined with 14C measurements. The

atmospheric potential oxygen (APO) method is based on the fact that there are different O2:CO2 ratios

for biospheric and anthropogenic fluxes and can be used independently of CO and 14C (Pickers, 2016).

Along with tracers for anthropogenic emissions, methods have also been developed to distinguish the

different biospheric processes. Carbonyl sulphide (COS) is taken up by plants during photosynthesis

and since this is the dominant process by which it is removed from the atmosphere it can be used to

isolate fluxes of GPP (e.g. Campbell et al., 2017; Suntharalingam et al., 2008; Wang et al., 2016).

Along with a large seasonal cycle, atmosphere-biosphere CO2 exchange has an even more

pronounced diurnal flux cycle, and both temporal flux cycles are orders of magnitude greater than

the annual net flux (see the difference in magnitude between the diurnal range and monthly means of

NEE in Fig. 2.1). Denning et al. (1996) was the first to explore the importance of coupling diurnal

cycles in fluxes and atmospheric transport finding that, in comparison to using monthly average CO2

fluxes, the diurnal cycle of simulated mole fractions was greatly improved and could match that

of the observations. This is in order to represent the "diurnal rectifier effect" - the fact that both

atmospheric transport and photosynthesis and respiration cycles are driven by solar radiaton leading to

higher CO2 concentrations at the surface and lower concentrations at higher altitudes. This is because

photosynthesis occurs in the day when there is deep convection in the boundary layer (lowering CO2

concentrations in the boundary layer) whereas respiration occurs at night when generally only shallow

mixing takes place (increasing CO2 concentrations close to the surface). Gerbig et al. (2003b) then

developed an analysis framework for regional scale CO2 flux inversions, building on the work of

Denning et al. (1996). The study sets out the need to explicitly simulate the diurnal cycle of biospheric

fluxes and highlights the importance of high spatial and temporal resolution data when addressing the

unique problems of representation and aggregation errors caused by the highly varying nature of CO2

fluxes in both space and time.

GPP and TER can be very large fluxes (according to the CARDAMOM model the minimum

monthly GPP over the UK is -1200 Tg CO2 yr−1 and the maximum monthly TER is 1000 Tg CO2

yr−1), whilst the net flux is much smaller in comparison (with a monthly minimum over the UK

of -400 Tg CO2 yr−1 and maximum of 100 Tg CO2 yr−1). The daily transition from positive to

negative net flux is also unique to CO2 inversions and, depending on the system, may be problematic.

Many inverse systems scale NEE as a single variable in their inversions (e.g. Kountouris et al., 2018a;

Steinkamp et al., 2017). However, in a synthetic data study in which biospheric CO2 was inferred,

Tolk et al. (2011) found that separately solving for positive fluxes (TER) and negative fluxes (GPP) in

atmospheric inversions provided a better fit to the atmospheric mole fraction data than inversions that

scaled NEE only. This separation has been applied in various studies demonstrating model set-ups
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Table 2.1: Measurement site information. The location of sites is also shown in Fig. 1.4a. *Weybourne data is
used for validation of the results only and is not included in the inversions. LSCE – Laboratoire des Sciences du
Climat et de l’Environnement, DECC – Deriving Emissions related to Climate Change, GAUGE – Greenhouse
gAs Uk and Global Emissions, UEA – University of East Anglia.

Site Site code Location Inlet Height Network
(m above ground level)

Mace Head MHD 53.327 °N, 9.904 °W 24 LSCE
Ridge Hill RGL 51.998 °N, 2.540 °W 90 DECC
Tacolneston TAC 52.518 °N, 1.139 °E 185 DECC
Heathfield HFD 50.977 °N, 0.231 °E 100 GAUGE
Bilsdale BSD 54.359 °N, 1.150 °W 248 GAUGE
Angus TTA 56.555 °N, 2.986 °W 222 DECC
*Weybourne WAO 52.950 °N, 1.122 °E 10 UEA

with synthetic data, for example: geostatistical approaches (Göckede et al., 2010), ensemble Kalman

filter methods (Lokupitiya et al., 2008; Zupanski et al., 2007) and Bayesian synthesis methods (Schuh

et al., 2009). Yet, despite the apparent improvement in performance, this separation is not routinely

used in CO2 inversions as there are only a limited number of real data studies where it has been

implemented (e.g. Gerbig et al., 2003a; Matross et al., 2006; Meesters et al., 2012; Schuh et al., 2010).

This issue is given particular attention throughout this thesis.

2.2 Method

This section describes the set-up that has been developed for CO2 estimation, responding to many of

the challenges that have been introduced. The decisions that have been made leading to the final set

up will be further explored in a suite of tests using synthetic data that follow this section. The set-up

for the synthetic tests is described in Section 2.2.5.

2.2.1 Data

Although the results presented in this chapter are based on synthetic data, an appreciation of the

observations is essential to understand some of the difficulties of modelling CO2 fluxes. Studies using

real data will follow in Chapters 3 and 4. The synthetic data used in this chapter represents the same

six measurement sites and inlet heights (the highest available) as the work in Chapter 3, which are

detailed in Table 2.1. The locations of these measurements sites are shown in Fig. 1.4a.

Figure 2.2 shows the mole fraction measurements available for the six sites during the period

2013-2014, averaged to weekly bins. Gaps in the data are where the site was not yet in operation

or was experiencing downtime due to instrument disruption. Mace Head (MHD) is a background

site, mostly measuring "clean" background air that has come over the Atlantic ocean, which is why

the concentrations seen here (Fig. 2.2c) are some of the lowest across all sites. The small variability
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Fig. 2.2: Data collected at the six measurement sites in the DECC and GAUGE networks. Data is averaged to
weekly and the shading represents the standard deviation of the measurements taken in each week period.

at MHD is explained by the lack of pollution events measured there. Observations at Angus (TTA,

Fig. 2.2f) are similarly low, indicating that it too lacks strong pollution sources nearby. The other

sites are often sampling the enhancement of CO2 concentrations due to human activity or ecosystem

respiration over the UK.

Unlike other GHGs, there is a clear seasonal cycle seen in the observational CO2 data. This

is characterised at most sites by a steep decline in atmospheric concentration between June and

August, a sharp turning point in August, a steep increase again between August and November and

a comparatively smooth turning point between December and May. Measurements at Tacolneston

(TAC, Fig. 2.2e) seem to be an exception to this in that the summer turning point is much smoother,

occurring between July and September. Peaks in CO2 concentration can reach roughly 30ppm above

baseline and one that seems to be seen across all measurement sites occurs in November 2015. This is

a period of particularly stagnant meteorological conditions across the UK, which means that emissions

at that time will accumulate in the atmosphere without being dispersed.
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Fig. 2.3: The domain used to calculate NAME footprints. The boxes relate to the basis functions that are scaled
in the inversion, described in Sect. 2.2.4.1. The four edge boxes correspond to four basis functions. The hatched
box is the main area of focus for the synthetic studies and, in most tests, basis functions in this area are based
on a fractional map of 6–7 different plant functional types (PFTs).

2.2.2 Atmospheric transport model

The Lagrangian atmospheric transport model, or LPDM, NAME is used in this work and is introduced

in Section 1.4.3.1. The domain used to calculate atmospheric transport covers most of Europe, the

east coast of North and Central America and North Africa (-97.9◦ - 39.38◦ longitude and 10.729◦

- 79.057◦ latitude) and is shown in Fig. 2.3. At each two-hourly measurement time step, the model

releases 20,000 particles, which are tracked back in time for 30 days, so that by the end of this period

the majority of particles will have left the model domain. Since most CO2 flux to the atmosphere

occurs at the surface, the instances where the particles are in the lowest 40m of the atmosphere are

recorded and it is assumed that this represents the sensitivity of observed mole fractions to surface

fluxes in the inversion domain, when integrated over time.

2.2.2.1 Adapting NAME footprints for rapidly varying fluxes

In many previous inverse modelling studies using LPDMs (e.g. Manning et al., 2011; Steinkamp

et al., 2017; Thompson and Stohl, 2014) the footprint is assumed to be equal to the integrated air

history over the duration of the simulation (e.g. 30 days). Based on the assumption that fluxes have

not changed substantially during the 30-day period, the integrated footprint can be multiplied by the

prior flux and summed over all the grid cells in the domain to create a time series of modelled mole

fractions at each measurement site.

Integrated NAME footprints have been used for CO2 simulations in Steinkamp et al. (2017), with

twice-daily data, 4 day back-trajectories and weekly prior flux estimates. However, many CO2 inverse

modelling studies using other LPDMs will disaggregate footprints back in time, capturing changes in

surface sensitivity on timescales shorter than the duration of the simulation, to cope with sub-daily
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Fig. 2.4: The breakdown of NAME footprints that constitute the atmospheric transport of CO2 to a measurement
site for one 2-hourly measurement period.

varying CO2 fluxes (Gerbig et al., 2003b; Gourdji et al., 2010) as per Denning et al. (1996). Thus

far, a disaggregation such as this has not been used in NAME simulations, so the development of a

suitable method has formed part of this work.

Instead of having one footprint that represents a 30-day air history, the footprints are determined

for each 2-hourly average period back in time for the first 24 hours before an observation. These 24

hours of disaggregated footprints then replace the first 24 hours of integrated sensitivities (Fig. 2.4).

This means that mole fractions can be simulated by multiplying the 24 hours of disaggregated

footprints by biospheric flux estimates for the corresponding time, so that the ~hourly variability in the

source or sink of CO2 is represented in the modelled observations. The remaining integrated footprint

is multiplied by the monthly average flux, based on the assumption that this only incurs minor errors

in the simulated mole fractions. This is demonstrated in Eq. 2.2, which yields the modelled mole

fraction, yt , for one 2-hourly measurement time step, t, at one measurement site.

yt =
12

∑
i=0

n

∑
j=0

f pt−i, j ×qt−i, j +
n

∑
j=0

f premainder j
×qmonth j

(2.2)

Here i denotes the number of 2-hour periods back in time before the particle release at time t

and j represents the grid cell where n is the total number of grid cells; f pt−i, j is one grid cell of the

two-dimensional time-disaggregated footprint corresponding to the 2-hourly period back in time;

qt−i, j is one grid cell of the two-dimensional, two-hourly flux field corresponding to the same time;
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Fig. 2.5: Prior mean modelled baseline CO2 concentrations at six measurement sites.

f premainder j
is one grid cell of the remaining 29 day footprint and qmonth j

is one grid cell of the monthly

average flux.

An investigation of the impact of disaggregating footprints further back in time and a demon-

stration of why the disaggregation is necessary is the focus of "Test 1" in Section 2.3.2. The other

tests use synthetic data created using footprints that have been disaggregated for the first 24 hours (as

above) so the impact of this decision cannot be seen in those results.

2.2.2.2 Baseline

As discussed in Sect. 1.4.3, NAME is a regional model, so a set of boundary conditions is required

to estimate baseline CO2 concentrations of air before it enters the NAME domain. In the NAME

simulation, when particles leave the model domain the time and location of their exit point is recorded.

The Eulerian model MOZART (Emmons et al., 2010), described in Sect. 1.4.3.2, is then used to find

the concentration of CO2 at these locations to serve as prior boundary conditions. Figure 2.5 shows

the prior mean modelled baseline at the six measurement sites. During the inversion, the mole fraction

at each domain edge (N, E, S, W) is scaled up or down to account for uncertainties in the MOZART

boundary conditions (Lunt et al., 2016).
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The MOZART output used in this work was from a run using GEOS-5 meteorology (Rienecker

et al., 2011) and global biospheric fluxes from the NASA-CASA biosphere model (Potter, 1999),

global ocean fluxes from Takahashi et al. (2009) and global anthropogenic fluxes from the Emission

Database for Global Atmospheric Research (EDGAR, EC-JRC/PBL, 2011). Since MOZART tends

to produce baseline concentrations that are too high, the global MOZART initial mole fraction field

for January 2014 was scaled down before commencing the 2014 MOZART run in order to match the

surface South Pole value to the mean NOAA January 2014 flask value (Dlugokencky et al., 2018).

This same scaling (the factor required to reconcile the MOZART concentrations at the South Pole

with those of flask observations) was then also applied to any pre-January 2014 MOZART output,

ensuring that the South Pole values in the MOZART output were consistent, to prevent discontinuities

in the boundary mole fraction fields.

A sensitivity test has been carried out to assess the impact of assigning prior boundary conditions

in this way. 1ppm was added or taken away from the mole fractions at the domain edges and it

was found that in June a ±1ppm change translates to a 1-3% change in the inversion result and in

December a ±1ppm change translates to a 7-11% change in the inversion result. These changes

are substantially smaller than the posterior uncertainty, indicating that the choice of prior boundary

conditions has a negligible impact on the result of the inversion.

2.2.2.3 Data filtering

LPDMs are known to perform poorly under certain meteorological conditions. In particular, it is

often assumed that model-data mismatch should be smallest during periods when the boundary layer

is relatively well mixed. A common approach is to only include daytime data in the inversion (e.g.

Kountouris et al., 2018a; Meesters et al., 2012; Steinkamp et al., 2017) or separate morning and

afternoon averages (e.g. Matross et al., 2006). To make use of as much high frequency measurement

information as possible, a filter based on two metrics has been used in this work to remove times of

high atmospheric stability and/or stagnant conditions. This is referred to as the "local-lapse" filter.

The first metric is based on calculating the ratio of the NAME footprint magnitude in the 25 grid

boxes in the immediate vicinity of the measurement station to the total for all of the grid boxes in the

domain. A high ratio indicates times when a significant fraction of air influencing the observation

point originates from very local sources, which may not be resolved by the model (Lunt et al., 2016).

The second metric is based on the modelled lapse rate at each site, which describes the rate of change

in temperature with height in the atmosphere. This a measure of atmospheric stability. A high lapse

rate, i.e. a large change of temperature with height, suggests very stable conditions because the air

is very stratified and this would be conducive for significant influence from local sources on the

measurement. However, a low lapse rate suggests that the air is well mixed (because temperature is

not changing so rapidly with height in the atmosphere) and this means that the measurement station

can monitor CO2 concentrations resulting from emissions sources further from the measurement

location. Thresholds for each of these criteria were chosen to preserve as much data as possible, whilst
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Fig. 2.6: Data filtered out in 2014 using the “local-lapse” filter. Left hand bar charts for each site show the
average percentage of data removed for each 2-hour period in the day. Right hand bar charts for each site show
the number of data points used in the inversion for each month (orange bars) and the number of data points
removed prior to the inversion for each month (blue bars).

retaining only points that the model was (somewhat subjectively) found to resolve well. Figure 2.6

shows how much data has been removed for each site in 2014. A comparison of different data filters,

including those used in other inverse modelling studies, is carried out in "Test 5" in Section 2.3.6.

2.2.2.4 Model-measurement uncertainty

Model-measurement uncertainty (or model-data mismatch) has a measurement uncertainty component

and a component that takes into account the ability of the model to represent real atmospheric condi-

tions. In these synthetic tests the synthetic measurements are assigned a fixed monthly uncertainty,

relative to the monthly average synthetic mole fraction, that resembles the uncertainty of observa-

tional data. The model uncertainty is a poorly constrained quantity so a priori it is given a uniform

distribution based on an appropriate range of values. The measurement uncertainty is added to the
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Table 2.2: Specifications for different priors.

Spatial Resolution Temporal Resolution

Biogenic fluxes

JULES 0.25◦ x 0.25◦ 2-hourly

CARDAMOM 25 km x 25 km 2-hourly

(1◦ x 1◦ outside the UK)

Anthropogenic fluxes

NAEI (UK) 1 km x 1 km 2-hourly

EDGAR (outside UK) 0.1◦ x 0.1◦ Yearly (using 2010)

Ocean fluxes 4◦ x 5◦ Monthly (climatology)

uniform prior distribution for model uncertainty and together they make up the model-measurement

uncertainty, which is one of the hyper-parameters solved in the inversion (see Table 2.3).

2.2.3 Models of CO2 fluxes

In this work, bottom-up estimates of flux sources are required to provide prior information for the

inversion. Figure 2.1 shows the spatial and temporal distribution of biospheric, anthropogenic and

oceanic CO2 sources from four different bottom-up datasets and Table 2.2 gives their spatial and

temporal resolution.

NEE estimates are from the Joint UK Land Environment Simulator (JULES) and CARbon DAta

MOdel fraMework (CARDAMOM). JULES is a physically based, process driven model that estimates

the energy, water and carbon fluxes at the land-atmosphere boundary (Best et al., 2011; Clark et al.,

2011). CARDAMOM, on the other hand, is a model-data fusion framework ingesting satellite based

remotely sensed estimates of the state of terrestrial ecosystems to retrieve process parameters for

the DALEC carbon balance model (Bloom et al., 2016; Bloom and Williams, 2015; Smallman et al.,

2017). A more thorough description of the two models and analysis of the differences between them

is given in Chapter 3.

Estimates of fluxes due to anthropogenic activity within the UK were obtained from the NAEI

(http://naei.beis.gov.uk). The NAEI provides a yearly estimate of emissions, which has been disag-

gregated into a 2-hourly product based on temporal patterns in activity data and varies on diurnal,

weekly and seasonal scales. The inventory emissions were disaggregated according to the UN-

ECE/CORINAIR Selected Nomenclature for sources of Air Pollution (SNAP) sectors (UNECE/EMEP,

2001). Outside the UK, anthropogenic emissions are from EDGAR v4.2 FT2010 inventory data for

2010 (EC-JRC/PBL, 2011). This is a fixed 2D map that is used throughout the inversion period. Within

the UK, the NAEI and EDGAR fluxes differ by around 15% (540 Tg CO2 yr−1 for EDGAR, 460 Tg
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Table 2.3: Probability density functions (PDFs) for parameter and hyper-parameter scaling factors. Mean and
st. dev. in fourth and fifth columns relate to lognormal PDFs, lower bound and upper bound relate to uniform
PDFs.

Parameter PDF Mean / St. dev. /

lower bound upper bound

Prior uncertainty

GPP xGPP Lognormal 1 1

σxGPP
Uniform 0.1 1.5

TER xT ER Lognormal 1 1

σxT ER
Uniform 0.1 1.5

Boundary conditions xBC Lognormal 1 1

σxBC
Uniform 0.01 0.05

Model-measurement

representation uncertainty

Standard deviation σy Uniform 0.9 ppm 45 ppm

Correlation timescale τ Uniform 1 hour 120 hours

CO2 yr−1 for NAEI), however UK fluxes are not found to be significantly affected by perturbations of

this magnitude applied to anthropogenic emissions outside the UK.

Prior ocean flux estimates are from Takahashi et al. (2009). They are based on a climatology of

surface ocean partial pressure of CO2 (pCO2) constructed using measurements taken between 1970

and 2008. The monthly UK coastal ocean flux in Fig. 2.1h is calculated within the UK’s exclusive

economic zone.

The plots of monthly UK CO2 fluxes and diurnal range in Fig. 2.1 highlight the differences in

magnitude of the three flux sources. The NAEI anthropogenic emissions inventory has a reported

uncertainty of around 5%, in contrast to the models of biospheric fluxes where uncertainty estimates

are difficult to calculate. Due to the difficulty of separating sources and the large biospheric flux

uncertainty, this work will mainly focus on biospheric fluxes as many previous studies have done. In

these cases, anthropogenic and oceanic fluxes will be fixed and will not be updated in the inversion.

The positive and negative biospheric fluxes, TER and GPP, are solved separately, and then combined

a posteriori to determine NEE. The rationale for this is explored in "Test 2" in Section 2.3.3. The diffi-

culties of attempting to solve for anthropogenic fluxes alongside biospheric fluxes are demonstrated

in "Test 3" in Section 2.3.4.
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2.2.4 Inversion set-up

The inversion method used follows the hierarchical Bayesian trans-dimensional MCMC inversion

introduced in Sect. 1.4.8. The hyper-parameters are defined as in Table 2.3 along with the prior PDFs

used to describe them in this inversion set-up. Lognormal PDFs are chosen for the GPP, TER and

BC parameters, as opposed to Gaussian distributions for example, because it is impossible for these

parameters to change sign, i.e. the fluxes/concentrations can only be either positive or negative. For

the other parameters a simple uniform distribution has been chosen as there is less information about

the range of possible prior values. Mean/lower bound and standard deviation/upper bound values were

chosen based on a number of factors: the range of estimates found in the literature, an understanding

of where in the parameter space the inverse system feels most comfortable (i.e. if a parameter was

given uncertainty bounds that were not covering an appropriate range the system would predict scaling

factors bunched around the highest or lowest possible values), and the plausibility of posterior results

and uncertainty estimates. In this work, the trans-dimensional method is adapted to keep a fixed set of

regional basis functions (described in Sect. 2.2.4.1) but allow the inversion to have a variable time

rather than space dimension. The inversion calculations are performed over one month at a time, but

with the trans-dimensional case in time, multiple scaling factors for each fixed region are found over

the course of the inversion, down to a minimum daily resolution, increasing the effective temporal

resolution of the inversion. Therefore, in this case k from Eqn. 1.11 is more specifically the unknown

number of time periods resolved in the inversion. This is believed to be important for the highly

variable temporal nature of CO2 fluxes and is further explored in "Test 4" in Section 2.3.5.

The MCMC algorithm had a burn-in period of 5x104 iterations, to allow the system to forget

about the initial prior constraints, and was then run for an additional 2x105 iterations to appropriately

explore the posterior distribution. With an MCMC algorithm, appropriately exploring the posterior

distribution and converging on a solution involves frequently accepting new values for each parameter

within a large range of the proposed prior distribution. This behaviour manifests itself as a noisy,

well-mixed "chain" of possible parameter values across the number of iterations that doesn’t appear

to be drifting towards higher or lower values. Therefore, the trace of each chain was examined

qualitatively for these characteristics to ensure that the algorithm had been run for a sufficient number

of iterations to converge on a result.

The likelihood function used for this inversion set-up takes a Gaussian form, as in Eq. 1.8. The

form of the other components of Eq. 1.11 can be found in Lunt et al. (2016).

2.2.4.1 Basis functions

The domain is split into five spatial regions separating west-central Europe from north-east, south-east,

south-west and north-west regions, shown in Fig. 2.3. Within the West-Central Europe area (the

hashed region in Fig. 2.3), a map of the fraction of different plant functional types (PFTs) in each grid

cell has been used to further break down the region (Fig. 2.7). This is the same PFT map used in the
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Fig. 2.7: Maps showing the fraction of each plant functional type (PFT) over the sub-domain.

JULES biospheric simulation (see Sect. 3.2.2.2). Scaling factors are derived in the inversion to scale

GPP and TER within maps of five or six PFTs: broadleaf tree, needleleaf tree, C3 grasses, C4 grasses,

shrubland and, in the case of TER, bare soil. As seen in Fig. 2.7, C3 grass is the dominant PFT over

the UK, however scaling the PFTs separately adds a degree of flexibility to the inversion based on

physical characteristics (as opposed to country boundaries, for example).

2.2.4.2 Definition of the Jacobian matrix

To create the Jacobian matrix, H (explained in Sect. 1.4.5), the footprints were multiplied by the

prior GPP and TER fluxes separately (as per Eq. 2.2), then multiplied by the fractional map of basis

functions (described in Sect. 2.2.4.1) and summed over the area covered by each basis function to

create the columns of H. The boundary conditions were broken down by four further basis functions

for each edge of the domain as explained in Sect. 2.2.2.2. The make up of H is illustrated in Fig. 2.8.

Both the sensitivity to the boundary conditions and GPP and TER fluxes change in time, in the m

dimension. Multiplying this m by n sensitivity matrix by a vector of ones of length n yields the prior

modelled time-series at each site (length m). Therefore, during the inversion, this vector of ones is

updated as a scaling factor, to scale up or down fluxes for each PFT and biospheric component to

better agree with the data.

2.2.5 Synthetic test set-up

In the tests that follow, two-hourly synthetic data is generated using biospheric fluxes from CAR-

DAMOM (the "true" fluxes), whilst JULES provides the the biospheric fluxes for the prior. Fig-

ures 2.1a, b, e and f show how different these two flux models are both spatially and temporally. By

using different biosphere models to produce the synthetic data and the prior fluxes, instead of simply
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2.2 Method

Fig. 2.8: An illustration of the components of the Jacobian (H) matrix. The 2-hourly measurements over the
month for each measurement site are stacked on top of each other in the vertical, m dimension. The boundary
conditions (bc) and fluxes (xT ER and xGPP) along the horizontal n dimension have the number of columns stated
in the labels (e.g. there are 4 boundary condition columns) and these relate to the basis functions for each
variable (see Sect. 2.2.4.1). xT ER and xGPP have two sets of columns as the first relates to regions north-east,
south-east, south-west and north-west of the west-central Europe region and the second relates to the plant
functional types used to scale xT ER and xGPP within the west-central Europe area.
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perturbing prior fluxes to generate "true" fluxes, the study allows an investigation of the underlying

biosphere model structure and avoids biasing the tests in favour of one result or another depending on

how perturbations are made.

2.3 Synthetic tests

2.3.1 Test 0: "Best" set-up

The "best" set-up follows the method set out in Section 2.2. Figure 2.9a shows that the posterior

monthly net flux estimates are much closer to the "true" flux values than the prior, agreeing in 13 out

of 24 months within the estimated 90 percentile confidence interval as opposed to 7 out of 24 months

for the prior. Where the posterior estimates do not agree with the "true" fluxes within the 90 percentile

confidence interval, particularly in November and December 2013 and August and December 2014,

the differences could be due to the limitations of the inversion in moving between two biospheric flux

estimates that have very different imposed temporal and spatial patterns.

Annual mean posterior estimates of NEE (Fig. 2.9c) agree with the "true" flux well within the

estimated uncertainties. The individual TER and GPP estimates for the gross fluxes, on the other

hand, do not agree with the "true" gross fluxes. This demonstrates that, although the inversion can

theoretically find estimates for GPP and TER, it is not expected to estimate these correctly because

they are highly spatially correlated. However, through the increased flexibilty of the inversion to apply

separate scaling factors to these processes, the NEE is expected to be closer to the "truth" than the

prior, which is what is seen here and was also the conclusion made in Tolk et al. (2011). Therefore,

throughout this thesis the results are focussed on posterior net biospheric fluxes as opposed to the

separate gross fluxes.

Whilst the posterior diurnal range of the net flux has changed considerably from the prior

(Fig. 2.9b: daily maximum uptake is decreased in the first half of the year and daily maximum source

is increased around summer months) there are still some differences from the "true" flux. In particular,

the posterior has not been able to replicate the smooth seasonal cycle of the CARDAMOM fluxes

and underestimates the daily maximum sink in late summer and autumn. In this trans-dimensional

inversion the monthly inversion time period can be broken down into smaller chunks of time, however

the diurnal range is probably beyond the limit that can be resolved with this system with the data

available.

In terms of the spatial distribution of fluxes, Fig. 2.10b shows that, qualitatively, the difference

between the posterior and "true" fluxes is smaller than the difference between the prior and "true"

fluxes in Fig. 2.10a. Areas in northern Republic of Ireland, northern Scotland, Wales and eastern

England have been well estimated. However, fluxes in much of the rest of England have been scaled

up too much and are now slightly larger than the "true" fluxes as opposed to being slightly smaller

than the "true" fluxes in the prior. Elsewhere, posterior mean fluxes are slightly smaller than the "true"
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Fig. 2.9: Results of "Test 0" demonstrating the final inverse set-up. (a): Monthly average biospheric UK CO2

fluxes. Shading represents the 5th–95th percentile. (b): Diurnal range of biospheric UK CO2 fluxes, overlain
by the monthly mean fluxes in (a). (c): Annual average biospheric UK CO2 fluxes; error bars represent the
5th–95th percentile.
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Fig. 2.10: (a): Difference between prior average 2014 flux map and "true" average 2014 flux map. (b):
Difference between posterior average 2014 flux map from the "Test 0" standard inversion that scales gross
fluxes and "true" average 2014 flux map. (c): Difference between posterior average 2014 flux map from the net
flux inversion in "Test 2" and "true" average 2014 flux map.

fluxes although they are an improvement on the prior mean fluxes. Therefore, whilst country total

estimates can be well recovered with this system, smaller scale fluxes are harder to resolve.

These inversion results are given for context in the following tests.

2.3.2 Test 1: Diurnal cycle

In this test, the choice of disaggregating only the first 24 hours of the footprint is explored and justified.

Section 2.2.2.1 details the method for disaggregating NAME footprints. Assuming that disaggregating

the footprint further back in time will improve the result, footprints that are disaggregated for the first

72 hours have been created for June 2014 (hereafter called 72-hours-back footprints). The impact on

forward modelled mole fractions and the inversion result is presented here, along with a comparison

to using integrated 30-day footprints with a monthly prior.

Figure 2.11 shows forward modelled mole fractions for integrated and disaggregated footprints

along with the observations made at Ridge Hill (with the anthropogenic and coastal ocean component

removed). The modelled mole fractions using integrated footprints and monthly fluxes are 12 hours

out of phase with the observations and have a small amplitude, which is exactly the finding in Denning

et al. (1996). Combining integrated footprints with 2-hourly fluxes over-enhances the diurnal cycle

and is also slightly out of phase with observations. This is because a flux occurring at one 2 hour

period (e.g. 12 noon) is constant throughout the air history for 30 days back in time, whereas 12 hours

previously what was a sink of CO2 will have become a source. Using 6-hours-back footprints (i.e.

allowing the footprint to vary each 2 hours for the first 6 hours) still gives a result that is slightly out

of phase from the observations, however disaggregating footprints for 12 hours upwards seems to
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match the phase of the observations, implying that the diurnal cycle of CO2 flux has the strongest

impact on the mole fraction observations in the first 12 hours of transport before an observation is

made. The magnitude of the observations is not captured very well here, however that is likely due to

the underlying biospheric fluxes from JULES that were used to create the forward modelled mole

fractions. Assuming that 72-hours-back footprints are the best option, the largest differences in the

modelled mole fractions created using footprints disaggregated for 12 - 48 hours are seen at the daily

maximum and minimum in certain conditions. These differences decrease as the number of hours

disaggregated approaches 72.

Three inversions have been carried out for June 2014, using all six measurement sites, where the

sensitivity matrix has been calculated using integrated, 24-hours-back and 72-hours-back footprints

(Table 2.4). Synthetic data was created using the CARDAMOM fluxes and 72-hours-back footprints.

In the two inversions that use disaggregated footprints, the posterior UK net biospheric fluxes both

agree with the "true" flux and the difference between them is not statistically significant (using the

90%ile range). The inversion using the integrated footprints is not able to find the "true" flux result.

The fit of modelled mole fractions to the synthetic data can be evaluated using a variety of metrics.

Here, the square of the correlation coefficient (R2), the root mean square error (RMSE) and bias

statistics are calculated. R2 evaluates how well the modelled mole fractions are able to explain the

variation in the observations (in this case the synthetic data), where a high R2 value represents a better

fit. RMSE is a measure of the spread of residuals (i.e. the observations minus the modelled mole

fractions), with units of ppm and a lower RMSE represents a better fit. The mean bias is calculated as

the simple mean of the residuals (in ppm) and a smaller bias means a better fit. The statistics of fit to

the synthetic data are given in Table 2.5. The prior fit to the data is best using 72-hours-back footprints

and worst using the integrated footprints, as expected, however the statistics across all sites suggest

that the prior fit is only marginally worse using the 24-hours-back footprints. Using the integrated

footprints as opposed to the disaggregated footprints, R2 calculated between synthetic data and prior

modelled mole fractions can be up to around 0.3 lower (e.g. the difference between 0.56 and 0.14

at RGL), RMSE can be around 1ppm larger (e.g. the difference between 3.75 ppm and 5.34 ppm at

RGL) and the mean bias can be around 1–2ppm larger (e.g. the difference between 3.4 ppm and 4.76

ppm at RGL). Like the prior fit, the posterior fit to the synthetic data using both 72 and 24-hours-back

footprints is very similar, whereas the R2 calculated between synthetic data and posterior modelled

mole fractions using integrated footprints is around 0.25 lower and the RMSE is around 0.45 higher.

The mean bias statistics are roughly similar across all three inversions.

Therefore, the conclusion to disaggregate the footprints for 24 hours back in time was made

because, compared to 72-hours-back footprints, only minor errors in the forward simulation are

incurred, the inversion results are very similar and creating the sensitivity matrix with 24-hours-back

footprints is less computationally expensive.
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Fig. 2.11: (a) Observations at Ridge Hill in June 2014 (orange) and corresponding forward modelled mole
fractions under different scenarios (greys, blues, greens). Shading on observations represents the standard
deviation of sub-minutely measurements taken in each 2 hour period. (b) Zoomed in version of (a).

Table 2.4: Posterior UK CO2 fluxes for June 2014 for "Test 1" that examines the impact of using footprints
disaggregated in different ways.

Test UK CO2 flux (Tg yr−1)

June 2014

Prior -776

"True" -355

72-hours-back footprints -365±39
40

24-hours-back footprints -347±41
43

30-day integrated footprints -0.6±55
59
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Table 2.5: Statistics of fit to the synthetic data for the three inversions carried out in "Test 1" that examines
the impact of using footprints disaggregated in different ways. "Prior" signifies the fit of prior modelled mole
fractions to the "true" mole fractions. "Posterior" signifies the fit of posterior modelled mole fractions to the
"true" mole fractions

72-hours-back 24-hours-back 30-day integrated

footprints footprints footprints

Prior Posterior Prior Posterior Prior Posterior

MHD R2 0.35 0.45 0.31 0.7 0.27 0.48

RMSE 1.67 1.45 2.72 1.53 3.91 1.93

Bias 1.05 -0.19 1.42 0.03 2.8 0.87

RGL R2 0.56 0.77 0.54 0.64 0.14 0.25

RMSE 3.75 0.98 3.89 1.2 5.34 1.79

Bias 3.4 0.46 3.61 0.52 4.76 -0.77

HFD R2 0.41 0.66 0.38 0.64 0.11 0.22

RMSE 2.42 1.54 2.62 1.56 4.07 2.22

Bias 1.64 -0.4 1.91 -0.17 3.25 -0.05

TAC R2 0.4 0.71 0.37 0.7 0.27 0.48

RMSE 2.71 1.51 2.72 1.53 3.91 1.93

Bias 1.61 -0.27 1.79 -0.03 2.99 0.09

TTA R2 0.66 0.94 0.71 0.92 0.49 0.8

RMSE 3.73 1.21 4.11 1.37 4.75 1.21

Bias 3.1 1.01 3.6 1.15 3.88 -0.18

BSD R2 0.37 0.64 0.37 0.68 0.27 0.37

RMSE 3.65 1.9 3.65 1.79 4.8 2.55

Bias 2.15 -0.59 2.38 -0.39 3.38 -0.94

All sites R2 0.44 0.67 0.43 0.65 0.28 0.41

RMSE 3.07 1.47 3.22 1.52 4.41 1.97

Bias 2.12 -0.04 2.4 0.14 3.48 -0.18
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2.3.3 Test 2: Gross vs. net flux scaling

This test compares an inversion that scales prior NEE (net flux) to an inversion that scales GPP and

TER separately (gross fluxes).

The way the inversion is set up means that the uncertainty on prior fluxes is calculated as a

percentage of the flux itself, therefore the uncertainty becomes zero when the flux is zero. For GPP

and TER this does not pose a problem because the fluxes are never both zero. However for NEE

this does become a problem as the flux switches between positive and negative twice a day, meaning

that at times of zero flux the inversion cannot move away from the prior mean flux because it has no

probability distribution related to it. In an attempt to reduce the impact of this, the scaling factor used

to calculate the uncertainty on NEE scales with the flux, becoming larger if the flux is smaller, to

resemble the posterior uncertainty of the gross flux inversion on an annual scale. The PDF of prior

fluxes in the net flux inversion was assumed to be Gaussian as opposed to lognormal as a change of

sign is physically possible in this case.

Whilst posterior monthly fluxes from the net flux inversion have changed significantly from the

prior (Fig. 2.12a), they are not in agreement with the "true" flux except in July 2013 and August and

September 2014. Annual flux estimates (Fig. 2.12c) also do not agree with the "true" flux, predicting

a sink of nearly twice the "true" flux. The diurnal range of the net flux inversion (Fig. 2.12b) has a

similar pattern of maximum daily net uptake as the gross flux inversion, however it does not estimate

the maximum daily net source fluxes in spring (March, April, May) and June to be large enough.

Figure 2.10c shows the "true" flux map minus the posterior flux map for the net flux inversion.

Compared to the gross flux inversion in Fig. 2.10b, it is difficult to say which of these maps is closer

to the "true" fluxes. The net flux inversion has not scaled up the prior fluxes enough in Scotland,

Wales, central England, Northern Ireland and southern Republic of Ireland. Where the gross flux

inversion overcompensated by scaling up the fluxes too much in England, the net flux inversion gives

an improved flux estimate in these areas as the residual is close to zero here.

An analysis of the mean diurnal cycle in June 2014 (Fig. 2.13) reveals how the diurnal cycle is

being scaled from the prior to better agree with the "true" flux. It is important to remember here that

the timing of the diurnal cycle is not able to change as scaling factors can only go down to a minimum

daily resolution. Figure 2.13 highlights the differences in diurnal cycle between the two models, in

particular where the "true" TER flux shows very little diurnal variability (with an amplitude of 163 Tg

CO2 yr−1) whereas the prior TER flux has a strong diurnal cycle (with an amplitude of 957 Tg CO2

yr−1). In the gross flux inversion the two competing TER and GPP fluxes can be adjusted leading to

higher night-time fluxes that are closer to the "true" flux than the prior and a net monthly flux that

agrees with the "true" flux. On the other hand, the net flux inversion can only stretch or shrink the

diurnal cycle in one direction, increasing both the daytime sink and night-time source, or decreasing

them. In this case it has shrunk, which does bring the mean posterior June 2014 flux closer to the
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Fig. 2.12: Results of "Test 2" demonstrating the difference between scaling gross fluxes and scaling net fluxes.
(a): Monthly average biospheric UK CO2 fluxes. Shading represents the 5th–95th percentile. (b): Diurnal range
of biospheric UK CO2 fluxes, overlain by the monthly mean fluxes in (a). (c): Annual average biospheric UK
CO2 fluxes; error bars represent the 5th–95th percentile. "Best" set-up scales gross fluxes in the inversion.
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Fig. 2.13: (a): Prior, "true" and posterior average diurnal cycle of UK NEE CO2 flux in June 2014 for "Test 2."
(b): Prior, "true" and posterior average diurnal cycle of UK GPP and TER CO2 flux in June 2014 for "Test 2."

mean "true" flux by 269 Tg CO2 yr−1 but cannot go far enough to reconcile them as the posterior June

2014 sink is still 152 Tg CO2 yr−1 too large compared to the "true" flux in this month.

This test demonstrates that it is very difficult for an inversion that can only scale NEE to account

for disproportionate changes in the source and sink. Scaling the gross fluxes separately leads to a

greatly improved result, at least in the system proposed here and likely in other inversion systems. In

the real data inversions that follow in Chapters 3 and 4, a comparison of the performance of gross and

net flux inversions is carried out to illustrate this point in a real data context.

2.3.4 Test 3: Disentangling different sources of CO2

In this test, the impact of solving for the anthropogenic and ocean fluxes alongside the GPP and

TER biospheric fluxes is explored. As explained in Section 2.1, the co-location of sources of CO2

can make it difficult to resolve the separate sources. Therefore, many researchers will assume the

anthropogenic source is known and fix it in the inversion. The ocean source is comparatively small so

that is why it has been fixed in the other simulations presented in this work. Here, this decision to fix

the anthropogenic and ocean sources is explained.

As per the synthetic test set-up, the synthetic data is generated using CARDAMOM biospheric

fluxes and the prior fluxes are from JULES. The anthropogenic and oceanic component of the synthetic

data and the prior anthropogenic and oceanic fluxes are the same. Therefore, this test investigates the

inversion system’s ability to retrieve the same anthropogenic fluxes when there are major differences

in the biospheric fluxes (as the oceanic component is small, the focus will be on the anthropogenic
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fluxes). The uncertainty of the prior fluxes is based on the same scaling (given in Table 2.3) for all

sources.

Figure 2.14 shows the monthly fluxes from the inversion that includes the biospheric, anthro-

pogenic and total flux sources. The posterior total flux agrees with the "true" flux in 18 out of 24

months within the 90 percentile confidence interval. However, separately, the posterior anthropogenic

and biospheric fluxes do not agree with their respective "true" fluxes, the posterior anthropogenic flux

agrees with the "true" anthropogenic flux in only 10 out of 24 months and the posterior biospheric flux

agrees with the "true" biospheric flux in only 12 out of 24 months. Therefore this inversion system is

not able to distinguish the anthropogenic fluxes from the biospheric fluxes when the anthropogenic

fluxes are perfectly known, and cannot estimate anthropogenic fluxes with certainty over the UK.

Increasing the number of unknowns in the inversion means that any differences will be attributed to

the parameter that is easiest to change and in this case, changing a combination of the biospheric and

anthropogenic fluxes has been the preferred pathway. Ultimately, even in the biospheric flux inversion,

the scaling for GPP and TER is assumed to be correlated so the net flux is the result of most interest.

However, as the uncertainty on anthropogenic fluxes is relatively small compared to the uncertainty

on biospheric fluxes from process models, if the inversion is not able to resolve anthropogenic fluxes

in even a simple case then there is a limit to the amount of information gained through solving for the

different components of the total flux and it is more useful to focus on the biospheric fluxes.

Clearly in a real-data scenario, the anthropogenic fluxes are not perfectly known. This puts into

question the validity of the assumption that anthropogenic fluxes can be modelled correctly before they

are removed from observations, thereby leaving the remaining observations with only the biospheric

influence (plus the baseline). As discussed in Section 2.1, Peylin et al. (2011) also challenges this

assumption and comes to the conclusion that the uncertainties are non-negligible given the large

discrepancies between different inventories. An investigation of the impact of a ±10% change in

anthropogenic flux is carried out for the work in Chapter 3 (found in Sect. 3.3.2).

2.3.5 Test 4: Trans-dimensional basis functions in space vs. time

A trans-dimensional inversion in space removes the need to fix spatial regions to be scaled up and

down and a trans-dimensional inversion in time means that scaling factors can apply to periods of less

than one month, guided by the data, which may be particularly useful for CO2 given its rapidly varying

seasonal and diurnal cycle. Trans-dimensional inversions in space and time have been described in

Sects. 1.4.8.1 and 2.2.4. There are positives of each approach. Here, these two methods for assigning

basis-functions are compared in the context of a CO2 inversion.

The trans-dimensional inversion in time follows the set-up explained in Sect. 2.2.4. The trans-

dimensional inversion in space is set up in the following way. As the name suggests, instead of having

a flexible time dimension, it is the space dimension that is flexible. This is achieved by splitting the

sub-domain into an initial number of voronoi cells, or regions, created by drawing lines of equidistance
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Fig. 2.14: Monthly average UK CO2 fluxes for "Test 3" that looks at the difficulties of separating anthropogenic
and biospheric fluxes.
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between a number of randomly scattered points. As the MCMC algorithm progresses, the number of

points used to create the voronoi cells can increase or decrease, or a point can move, changing the

configuration of the cells. A scaling factor is found for each region in each configuration so that at the

end of the iterations the effective spatial resolution of the inversion is higher than the resolution at each

single iteration. However, the trans-dimensional inversion in space can only realistically solve for one

source on the trans-dimensional grid as the large number of unknowns outweighs the data available.

Due to the fact that the different sources of CO2 need to be solved separately in the inversion (see

Sect. 2.3.3), they are assumed to be fixed maps and a "residual" term is found on the trans-dimensional

grid. The fixed source maps can be scaled up or down as one region and the "residual" is then able to

vary spatially to account for any spatial differences between the prior maps and what is "seen" by the

data. The prior uncertainty and hyper-parameters for GPP and TER are the same in both inversions.

The prior uncertainty and hyper-parameters for the additional "residual" component were set so that

the monthly and annual uncertainty on the net flux is roughly similar between the two inversions.

An illustration of the optimal number of spatial/temporal regions used in each of the inversions is

shown in Fig. 2.15. For the temporal trans-dimensional inversion, in most months and for most spatial

regions, a mean taken from the total number of temporal regions at each iteration of the MCMC

algorithm (Fig. 2.15a) suggests that less than 5 scaling factors have been used to change the prior flux

to better agree with the data (i.e. the month has been split into less than 5 time periods). The mean

maximum number of temporal regions across all iterations (Fig. 2.15b) is around 15. The boundary

conditions and the C3 grass PFT have the lowest number of regions. For the spatial trans-dimensional

inversion (Fig. 2.15c), the mean number of spatial regions used each month varies between around 10

and 110 and the maximum number of regions across all iterations can be over 300 in some months.

Figure 2.16 shows the inversion results using the two approaches. The trans-dimensional inversion

in space is not able to recreate the "true" monthly fluxes in spring and summer (Fig. 2.16a) and it is

also not able to correctly estimate the annual net flux (Fig. 2.16c), predicting the net annual sink to

be a factor of 1.8 too large. An investigation of the diurnal range reveals that the daily maximum in

spring and summer is not large enough (Fig. 2.16b). From the flux maps in Fig. 2.17, posterior fluxes

in the south of England, Wales and Republic of Ireland have been reduced to better agree with the

"true" fluxes but in Northern Ireland and Scotland the posterior fluxes are not a great improvement on

the prior.

Therefore, the trans-dimensional inversion in time is a clear improvement on that in space. It

may be that having flexibility in the time dimension across all 23 basis functions gives a greater

flexibility in the inversion overall than having flexibility in the spatial distribution of a "residual" term.

Alternatively, it may be that the CO2 inversion needs that flexibility in time to allow for the steep

changes in baseline that occur in summer months (Fig. 2.2) and this is where the trans-dimensional

inversion in space is failing. Either way, the trans-dimensional inversion in time is deemed the most

appropriate for estimating fluxes of CO2.
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Fig. 2.15: Illustration of the mean (a) and maximum (b) number of time regions used in the trans-dimensional
inversion in time across the 200,000 algorithm iterations. (c): Mean and maximum number of space regions
used in the trans-dimensional inversion in space across the 200,000 algorithm iterations.
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Fig. 2.16: Results of "Test 4" demonstrating the difference between trans-dimensional inversions in space and
time. (a): Monthly average biospheric UK CO2 fluxes. Shading represents the 5th–95th percentile. (c): Diurnal
range of biospheric UK CO2 fluxes, overlain by the monthly mean fluxes in (a). (c): Annual average biospheric
UK CO2 fluxes; error bars represent the 5th–95th percentile. "Best" set-up uses the trans-dimensional basis
functions in time.
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Fig. 2.17: (a): Difference between prior average 2014 flux map and "true" average 2014 flux map. (b):
Difference between posterior average 2014 flux map from the "Test 0" standard inversion and "true" average
2014 flux map. (c): Difference between posterior average 2014 flux map from the trans-dimensional inversion
in space and "true" average 2014 flux map.

2.3.6 Test 5: Implications of data selection

In this test the impact of the choice of data filter on the inversion is explored. The "local-lapse" filter

is described in Section 2.2.2.3 and is designed to remove data collected during times when there is

likely to be a high proportion of influence from local fluxes on the measurement regardless of the

time of day. This filter is compared to using only daytime data, using daytime data that has also been

filtered using the "local-lapse" filter and applying no filter at all. Here "daytime" includes the hours

between 10 a.m. and 6 p.m. Of course, the synthetic data is created using the same LPDM as the

sensitivity matrix so this test is not able to reveal the times where the model cannot replicate real

atmospheric conditions (in this synthetic world, the NAME model is the real state of the atmosphere).

However, given the different underlying biospheric fluxes, it may be able to reveal the times where

the atmospheric transport cannot resolve the spatial structure of the "true" flux.

Figure 2.18 shows the results of all four inversions. The inversion using all data points does not

replicate the "true" flux in summer months (Fig. 2.18a) and does not agree with the annual "true" flux

(Fig. 2.18b), predicting an annual sink 20% the size of the "true" sink in 2013 and 50% the size of the

"true" sink in 2014. This is important because it means that, as hypothesised above, there are times

where the atmospheric transport cannot resolve the spatial structure of the "true" flux (i.e. at times of

low wind speeds when the measurement station is not sampling fluxes from a large spatial area) and

that some filtering is necessary. Filtering the data to use just daytime values agrees with the "true"

flux within the estimated 90 percentile range in 16 out of 24 months (Fig. 2.18a) and agrees with the

annual "true" flux (Fig. 2.18b). This is an improvement to using no filter at all and in December of

both years the results of this inversion agrees better with the "true" flux than the "local-lapse" filter.

Finally, filtering the data to use just daytime values along with filtering out times of supposed stagnant
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Table 2.6: RMSE for "true" monthly average UK biospheric CO2 flux and the inversions from "Test 5" using
the "local-lapse" filter, daytime data or a combination of the two.

"local-lapse" filter daytime filter daytime and "local-lapse" filter
RMSE 40 42 41

conditions provides a similarly good fit to the "true" monthly fluxes, also agreeing in 16 out of 24

months (Fig. 2.18a), agrees with the annual "true" flux (Fig. 2.18b) and, like the simple daytime filter,

improves the fit to the "true" flux in December compared to the inversion using "local-lapse" filtered

data.

The two daytime tests are very similar to using the "local-lapse" filter on all data points. Given

the "local-lapse" filtered dataset shown in Fig. 2.6, it is not very surprising as this filter does generally

retain many more daytime than night-time points. Comparing the RMSE of the monthly inversion

results to the "true" monthly fluxes (Table 2.6) reveals that they all have an RMSE of around 40 Tg

CO2 yr−1 but that the "local-lapse" filter has the lowest RMSE and the simple daytime filter has the

highest RMSE. Therefore, the "local-lapse" filter is a good choice and it is thought that the possibility

to include some night-time data that is collected during favourable atmospheric conditions will be

beneficial to the inversion to avoid biasing the results to daytime observations when photosynthesis is

the predominant biospheric process.

2.4 Conclusions and future work

This chapter has outlined some of the challenges that are unique to atmospheric inversions of CO2. The

inverse set-up described in Chapter 1 has thus far been used to estimate fluxes of GHGs that do not have

many co-located sources, do not have a diurnal and seasonal cycle and cannot be negative. Therefore,

this chapter has set out the first concerted effort to adapt the hierarchical Bayesian trans-dimensional

MCMC inversion to deal with the challenges of estimating fluxes of CO2.

The multiple sources of CO2 make it difficult to differentiate biospheric and anthropogenic fluxes.

Like many other inverse studies of CO2 fluxes, the decision has been made to focus on estimating

biospheric fluxes, at least in this first attempt at developing a functional CO2 inversion. Indeed,

the results of one synthetic test indicate that there is not sufficient information in this set-up to

separate biospheric and anthropogenic fluxes. Further work in this area could incorporate some of

the techniques used to identify different source signatures and this could help to move this method

towards solving for anthropogenic fluxes as well.

The strong diurnal variations in CO2 mole fractions has required an adaptation to the NAME

footprints that have traditionally been used in inverse studies. 30-day footprints have been partially

disaggregated to result in a realistic forward modelled diurnal cycle. Tests have revealed that observed

CO2 concentrations are most sensitive to surface fluxes during the first 24 hours before a measurement
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Fig. 2.18: Results of "Test 5" demonstrating the impact of using different data filters. (a): Monthly average
biospheric UK CO2 fluxes. Shading represents the 5th–95th percentile. (b): Annual average biospheric UK
CO2 fluxes; error bars represent the 5th–95th percentile. "Best" set-up uses the "local-lapse" filter.
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2.4 Conclusions and future work

is taken. Therefore, footprints have been disaggregated for the first 24 hours back in time and

integrated footprints are used for the remainder of the time period. However, since this study has

focussed on only one month, further work could test that 24 hours is sufficient by extending the study

period to a full year.

Separately solving for fluxes of GPP and TER in the inversion enables a degree of flexibility

that is not present in an inversion that scales only NEE. This flexibility proves to be very important

for allowing the inversion to account for disproportionate changes in sources and sinks and greatly

improves the inversion result. This is further explored in a real data scenario in Chapter 3 and with a

different biospheric prior in Chapter 4.

Certain aspects of the inverse set-up have been tested for their appropriateness. It has been

concluded that using the trans-dimensional functionality of the inversion in time rather than space

benefits the CO2 inversion due to the added temporal flexibility. The "local-lapse" filter, used to

identify data points where NAME is expected to perform well, has been compared to other methods

of data-filtering. Since the "local-lapse" filter mostly retains only daytime data points, the results are

very similar to those using explicit daytime filters. However, the ability to retain some night time

information is deemed useful for the inversion. In contrast, an inversion that included all data points

did not perform well and shows that simulations are more sensitive to model errors (in the underlying

flux map, for instance) under conditions when there is little mixing.
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Chapter 3

Quantifying the UK’s carbon dioxide flux

3.1 Introduction

This chapter takes the method set out in Chapter 2 and applies it to a real data scenario to estimate

biospheric CO2 fluxes in the UK. GPP and TER estimates from JULES and CARDAMOM are used

as prior flux constraints in two separate inversions. The results and discussion of this chapter feature

in White et al. (2019).

The UK government has set legally binding targets to curb GHG emissions in an attempt to

prevent dangerous levels of climate change. The Climate Change Act 2008 (The UK government,

2008) commits the UK to 80% cuts in GHG emissions, from 1990 levels, by 2050. To support this

legislation, a continuous and automated measurement network has been established (Stanley et al.,

2018; Stavert et al., 2018) with the goal of providing estimates of GHG emissions that are independent

of the UK’s bottom-up anthropogenic inventory that must be reported annually to the UK Parliament

and submitted to the UNFCCC. Previous studies have used data from the UK-DECC network to infer

emissions of CH4, N2O and HFC-134a from the UK (Ganesan et al., 2015; Manning et al., 2011; Say

et al., 2016). Here, the UK-DECC network and two additional sites from the GAUGE programme

(Palmer et al., 2018) are used to estimate biospheric fluxes of CO2. Whilst anthropogenic emissions,

which are the remit of the UK inventory, are not estimated in this study, it represents the first step

towards a framework for estimating the complete UK CO2 budget.

The carbon cycle is subject to a lot of variability from short and long term changes in temperature,

precipitation, nutrient availability and increased atmospheric CO2 concentrations. The majority of this

variability, whilst observed in the atmosphere, originates from the processes ocurring in the biosphere

(Schimel et al., 2015) making it the most complex of the carbon reservoirs and consequently there

are large gaps in understanding of biospheric carbon cycle dynamics. Models that represent the

biosphere, frequently used as prior biospheric fluxes in atmospheric CO2 inversions, vary significantly

in internal dynamics leading to large discrepancies in estimated fluxes and, as a result, biospheric

CO2 fluxes are the most uncertain component of the global carbon budget. These models could be
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land surface models (LSMs), dynamic global vegetation models (DGVMs, often used in conjunction

with LSMs), or data assimilation frameworks. Jones et al. (2013) finds that the differences between

the LSMs used in the Climate Model Intercomparison Project Phase 5 (CMIP5) are as large as the

differences between the representative concentration pathways (RCPs) that are used in climate models

to represent possible future anthropogenic emissions under different scenarios. These differences may

be attributed to the differing ability of the models to represent soil carbon (Todd-Brown et al., 2013)

or the difficulties in simulating leaf (autotrophic) respiration (Atkin et al., 2015), for example.

The large variations between models of biospheric fluxes have led to the use of two different

biospheric flux priors in this study. This is to firstly assess the impact that the choice of biosphere

model has on the inversion. As the inverse framework is sensitive to the diurnal variations of prior

fluxes, and as these diurnal variations are large in biospheric fluxes with fundamental differences

between models, there is potential for the choice of prior to have an important impact on the posterior

flux result, even with large prior uncertainty. Secondly, through updating the biospheric flux priors in

the inversion, the performance of the models that produce the prior biospheric fluxes can be evaluated

against the constraint of the atmospheric data.

The potential for atmospheric inversions to evaluate the spatiotemporal patterns of biospheric

fluxes from models has been explored in Fang et al. (2014). The study recognised the work done

so far to compare inverse flux estimates with those from biosphere models and inventories (e.g.

Hayes et al., 2012; McGuire et al., 2012) and the continued development of regional inverse systems

towards a resolution at which the processes controlling flux variability in biosphere models may

be able to be resolved, i.e. from monthly fluxes at regional scales (105-106 km2) down to hourly

fluxes at the grid scale of biosphere models (102-103 km2) (e.g. Gourdji et al., 2010, 2012). Using a

regression framework based on a geostatistical inverse modelling approach, Fang et al. (2014) was

able to evaluate flux patterns at fine scales (3 hourly fluxes at 1◦×1◦ resolution) as opposed to the

aggregated scales that are used in most inversion studies. The biosphere models compared performed

best in temperate broadleaf and mixed forests biomes. They were best able to represent fluxes during

the growing season (May - September) and struggled during the transition seasons. The work of

Fang et al. (2014) highlights the possibilities for atmospheric inversions to provide a constraint on

biosphere models and to understand where the underlying processes of biosphere models may be

failing. Consequently, this is something that will be explored in the work of this chapter.

3.2 Method

Much of the method used in the work of this chapter, including the inverse set-up and hyper-parameters,

has been described in Chapter 2. Further details on the measurement data and prior biospheric fluxes

are given here.
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3.2 Method

3.2.1 Data

The CO2 mole fraction data used in this chapter has been introduced in Chapter 2 along with the details

of each measurement site (Table 2.1). For the purposes of the inverse modelling carried out in this

study, continuous CRDS data are averaged to a 2-hour time resolution. The measurement uncertainty

was assumed to be equal to the standard deviation (SD) of the measurements over the 2-hour period

to give an estimate of measurement repeatability and a measure of the sub-model-timescale variability

in the observations. The 2-hourly measurement uncertainty was then averaged over the month to

ensure that measurements of high concentrations were not de-weighted, as they are more likely to

have greater variability and therefore a larger SD.

3.2.2 Prior biospheric fluxes

Two models (CARDAMOM and JULES) were used to assess how much influence the choice of

biospheric prior has on the outcome of the inversion. The NAME model was used to simulate the

contribution of anthropogenic and oceanic fluxes to the data, and this contribution was removed from

the observations prior to the inversion. These fixed fluxes in the inversion have been described in

Chapter 2. The spatial and temporal resolution of the prior information and fixed fluxes is summarised

in Table 2.2.

Given the results of "Test 2" in Chapter 2, separating GPP and TER in the inversion appears to

be an important improvement on scaling NEE directly and it is what has been implemented here.

However, in order to assess this conclusion in a real data scenario, two further inversions have been

carried out for JULES and CARDAMOM where only NEE is scaled.

3.2.2.1 CARDAMOM

The CARbon DAta MOdel fraMework (CARDAMOM) uses a model-data fusion approach to retrieve

location specific ensembles of parameters for the DALEC model (Bloom et al., 2016). CARDAMOM

uses a Bayesian approach within a Metropolis-Hastings MCMC algorithm to compare model states

and flux estimates against observational information to determine the likelihood of potential param-

eter sets guiding the parameterisation processes. DALEC simulates the ecosystem carbon balance

including uptake of CO2 via photosynthesis, CO2 loss via respiration, mortality and decomposition

processes, including carbon flows between ecosystem pools (non-structural carbohydrates, foliage,

fine roots, wood, fine litter, coarse woody debris and soil organic matter). GPP, or photosynthesis,

is estimated using the aggregated canopy model (ACM; Williams et al. (1997)) while autotrophic

respiration is estimated as a fixed fraction of GPP. Mortality and decomposition processes follow first

order kinetic equations (i.e. a daily fractional loss of the C stock in question). The mortality and

decomposition parameters are modified based on an exponential temperature sensitivity parameter.

The current version of DALEC does not include a representation of the water cycle, rather water stress

is parameterised through a sensitivity to high vapour pressure deficit. Comprehensive descriptions of
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CARDAMOM can be found in Bloom et al. (2016) and Bloom and Williams (2015) and DALEC in

Smallman et al. (2017).

The CARDAMOM analysis to generate the carbon flux priors was conducted at a weekly time step

and 25 km × 25 km spatial resolution. The weekly time step information was downscaled to 2-hourly

intervals, assuming that each day repeated throughout each week. Downscaling of GPP fluxes was

assumed to be distributed through the daylight period based on intensity of incoming shortwave

radiation. Respiration fluxes were downscaled assuming exponential temperature sensitivity.

The observational information used in this analysis were satellite-based remotely sensed time

series of Leaf Area Index (LAI) (MODIS; MOD15A2 LAI-8 day version 5, http://lpdacc.usgs.gov/)

a prior estimate of above ground biomass (Thurner et al., 2014) and a prior estimate of soil organic

matter (Hiederer and Köchy, 2012). Meteorological drivers were taken from ERA-Interim reanalysis.

Ecosystem disturbance due to forest clearances were imposed using Global Forest Watch information

(Hansen et al., 2013).

3.2.2.2 JULES

The Joint UK Land Environment Simulator (JULES) is a process driven Land Surface Model (LSM)

that estimates the energy, water and carbon fluxes at the land-atmosphere boundary (Best et al., 2011;

Clark et al., 2011). JULES version 4.6 was used in this work, driven with the WATCH Forcing Data

methodology applied to Era-Interim reanalysis data (WFDEI) meteorology (Weedon et al., 2014)

which were interpolated to 0.25◦ × 0.25◦ (Schellekens et al., 2017). The land cover was prescribed for

9 surface types and the vegetation phenology for 5 PFTs using MODIS monthly LAI climatology

and fixed MODIS land cover and canopy height data (Berry et al., 2009). The soil thermal and hy-

drology physics are described using the JULES implementation of the Brooks and Corey formulation

(Marthews et al., 2015) with the soil properties sourced from the Harmonised World Soil Database

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009). Soil carbon was calculated as the equilibrium balance be-

tween litter-fall and soil respiration for the period 1990-2000 using the formulation of Mariscal (2015).

The full JULES configuration and science options are available for download from the Met Office

science repository (https://code.metoffice.gov.uk/trac/roses-u/browser/a/x/0/9/1/trunk?rev=75249).

3.3 Results

The CO2 inversion set-up developed in Chapter 2 is applied to UK biospheric CO2 flux estimation

using output from two different models of biospheric flux as a prior constraint in two inversions. Here,

the differences between output from the two prior models are first described, followed by the UK flux

estimates found in the inversions, along with the spatial distribution of posterior fluxes.
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3.3 Results

Fig. 3.1: Prior UK fluxes in 2014. (a-c) Comparison of JULES (blue) and CARDAMOM (orange) monthly
mean fluxes and minimum and maximum daily values for TER, GPP and NEE respectively.

3.3.1 Comparison of prior biospheric flux estimates

The CO2 fluxes from CARDAMOM and JULES differ both temporally and spatially. Figure 3.1 shows

UK fluxes of GPP, TER and NEE from the two models. Most notable differences are seen in TER

(Fig. 3.1a) where JULES has a large diurnal range whereas CARDAMOM has a small diurnal range.

Averaged to monthly resolution, the fluxes are relatively similar although CARDAMOM has a higher

TER flux from July to October. Diurnal ranges for GPP (Fig. 3.1b) are more similar in magnitude,

however JULES exhibits a stronger sink in spring with maximum uptake in June. CARDAMOM has

maximum uptake in July and exhibits a stronger sink in autumn. Combining these two fluxes leads to

different NEE profiles for both models (Fig. 3.1c). The daily maximum source from JULES remains

relatively constant throughout the year, whereas the daily maximum source in CARDAMOM follows

a similar seasonal cycle to the daily maximum sink (albeit with a smaller magnitude). Monthly net

fluxes are similar between both models for much of the year although JULES has stronger uptake

between March and June.

In order to understand some of these seasonal differences it is useful to compare the processes

taking place in each model. The CARDAMOM system explicitly simulates the soil and litter stocks,

growth and turnover processes. LAI is retrieved from the DALEC model (which was calibrated using

MODIS LAI estimates at the correct time and location of the analysis, explained in Sect. 3.2.2.1) and

updated at each weekly time step. In the JULES system, soil and litter carbon stocks are fixed values

for each grid cell, calibrated from 1990-2000, and a fixed climatology of LAI and canopy height

is used. Therefore, variability in TER and GPP fluxes from JULES are governed by meteorology,

primarily temperature but also significant signals from photosynthetically active radiation (PAR)

and precipitation via the soil moisture. This gives CARDAMOM interannual variability in LAI

and soil carbon stocks, whereas these parameters remain constant in JULES year to year. However,

meteorology drives the JULES model at a 2-hourly timestep as opposed to a weekly time-step in
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Fig. 3.2: Average prior flux maps for winter 2013 (December 2013, January – February 2014). (a) TER from
CARDAMOM; (b) TER from JULES; (c) the difference between CARDAMOM and JULES TER; (d) GPP
from CARDAMOM; (e) GPP from JULES; (f) the difference between CARDAMOM and JULES GPP; (g)
NEE from CARDAMOM; (h) NEE from JULES; (i) the difference between CARDAMOM and JULES NEE.

CARDAMOM. Therefore, in the 2-hourly CARDAMOM product used here, the diurnal range is not

explicitly simulated and is downscaled from a weekly resolution. This downscaling is done based

on light and temperature curves as explained in Sect. 3.2.2.1. In CARDAMOM, the autotrophic

respiration is a fixed fraction of the GPP, roughly ranging from 0.3 to 0.7. In JULES, the autotrophic

respiration is made up of several PFT specific fixed fractions of GPP, totalling around 0.1 to 0.25,

plus some terms related to nitrogen content. Therefore, there are some large differences between the

model processes, particularly in how the respiration fluxes are simulated. This could be leading to too

small a diurnal range in CARDAMOM TER and too large a diurnal range in JULES TER.

Figures 3.2 and 3.3 show spatial maps of GPP, TER and NEE from both models averaged over

winter (December, January, February) and summer (June, July, August) months. The pattern of TER

is similar for both models, however JULES always has a stronger source over Northern Ireland and

CARDAMOM has a stronger source in east England. In winter there are only small spatial variations
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Fig. 3.3: Average prior flux maps for summer 2014 (June – August 2014). (a) TER from CARDAMOM; (b)
TER from JULES; (c) the difference between CARDAMOM and JULES TER; (d) GPP from CARDAMOM;
(e) GPP from JULES; (f) the difference between CARDAMOM and JULES GPP; (g) NEE from CARDAMOM;
(h) NEE from JULES; (i) the difference between CARDAMOM and JULES NEE.
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Fig. 3.4: Posterior monthly net UK CO2 flux (emission to the atmosphere is a positive flux). Orange and blue
monthly fluxes are posterior net biospheric (NEE) fluxes. Prior biosphere fluxes from JULES and CARDOMOM
are shown in dashed orange and blue lines respectively. The fixed anthropogenic and ocean fluxes are denoted
by the dark grey dashed line. Yellow and green monthly fluxes are the sum of the posterior NEE fluxes and the
fixed anthropogenic and ocean fluxes. Shading represents 5th – 95th percentile. The bar charts represent annual
net UK CO2 flux for 2013 (left) and 2014 (right). Hashed bars denote prior annual fluxes, solid bars denote
posterior annual fluxes. The bar colours correspond to the line colours: left hand bars for each model are NEE
fluxes, right hand bars for each model are total fluxes (NEE + fixed sources). Uncertainty bars represent 5th –
95th percentile. CA – CARDAMOM. JU – JULES.

in CARDAMOM GPP fluxes, whereas JULES has its largest uptake in south-west England and Wales.

In summer, the models are roughly in agreement in the size of the sink in Wales and the majority of

England, however JULES has a stronger sink in Scotland and Northern Ireland and CARDAMOM

has a stronger sink in central and south-east England. The differences between the models in GPP

and TER lead to fairly different winter NEE flux maps. CARDAMOM is a net source everywhere in

winter, with areas of strongest net source in southern Scotland, east and central England. JULES is a

small net winter sink in Northern Ireland, Wales, and south and central England. Summer NEE fluxes

are similar between the models, although JULES has a stronger net sink in Scotland and Northern

Ireland.
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3.3 Results

Table 3.1: Posterior UK estimates for the maximum net biospheric source and sink for the inversions using
CARDAMOM and JULES priors (values also shown in Fig. 3.4). The month in brackets indicates the month in
which the maximum source/sink occurred.

Year Max. sink (Tg CO2 yr−1) Max. source (Tg CO2 yr−1)

CARDAMOM 2013 –298±140
136 (June) 171±94

76 (January)

2014 –360±87
88 (June) 273±65

63 (November)

JULES 2013 –456±90
91 (June) 122±83

78 (December)

2014 –542±97
100 (June) 195±65

70 (October)

3.3.2 Posterior UK fluxes

The annual NEE estimates that have been derived for the UK using CO2 flux output from the two

different models of biospheric flux as prior information are –13±90
87 Tg CO2 yr−1 (CARDAMOM

prior) and –76±91
90 Tg CO2 yr−1 (JULES prior) in 2013 and –2±70

68 Tg CO2 yr−1 (CARDAMOM)

and –51±80
78 Tg CO2 yr−1 (JULES) in 2014 (Fig. 3.4 – orange and blue bars for CARDAMOM and

JULES respectively). These annual net flux estimates from both models agree within the estimated

uncertainties and mean values are higher than their respective priors in both cases. The uncertainties

straddle the zero net flux line implying that the UK is roughly in balance between sources and sinks

of biospheric CO2. However, according to the inversion using JULES, a net biospheric source is less

likely than in the inversion using CARDAMOM. When added to the anthropogenic and ocean fluxes

that remained fixed during the inversion the following estimates are produced for annual total net CO2

release from the UK (Fig. 3.4 – yellow and green bars for CARDAMOM and JULES respectively):

448±90
87 Tg CO2 yr−1 (CARDAMOM prior) and 386±91

90 Tg CO2 yr−1 (JULES prior) in 2013 and

418±70
68 Tg CO2 yr−1 (CARDAMOM prior) and 369±80

78 Tg CO2 yr−1 (JULES prior) in 2014.

Whilst it has been assumed that anthropogenic and ocean fluxes are perfectly known, in real-

ity there are non-negligible uncertainties related to these fluxes (Peylin et al., 2011). When the

anthropogenic source was varied by ± 10%, a conservatively large estimate of these uncertainties,

posterior biospheric flux estimates using the CARDAMOM prior still suggest a balanced biosphere,

and posterior flux estimates using the JULES prior suggest a small net sink at the lowest end of

the possibilities explored here (see Fig. 3.5). All mean annual posterior estimates, regardless of the

anthropogenic source used, suggest the prior net biospheric flux is underestimated, i.e. posterior

biospheric uptake of CO2 is smaller than predicted by the models. However, this is less statistically

significant with the 2013 inversion using the CARDAMOM prior.

The monthly posterior UK estimates using both models (Fig. 3.4) mostly agree well with each

other within the uncertainties. However, they are both notably different from the prior estimates,
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Fig. 3.5: Annual UK NEE flux estimates from CARDAMOM and JULES inversions for 2013 and 2014. Left
bars are prior NEE estimates, right bars are posterior NEE estimates. Dashed bars on the posterior estimates
represent annual NEE fluxes for inversions that use fixed anthropogenic fluxes multiplied by ±10%. Uncertainty
bars represent 5th – 95th percentile. Solid uncertainty bars on posterior estimates are the uncertainty on the
inversions using normal anthropogenic fluxes. Whiskers on the posterior estimates are the uncertainty on the
inversions using anthropogenic fluxes multiplied by ±10%.
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especially in 2014. The posterior total UK flux estimate, achieved by adding the posterior NEE fluxes

to anthropogenic and coastal ocean fluxes, shows that, according to the CARDAMOM inversion,

the UK may not be a net sink of CO2 at any time of year in 2013 and 2014. However, the JULES

inversion suggests the UK is a net sink of CO2 in June of both years.

Posterior seasonal cycle amplitudes are generally smaller than the prior amplitudes, except in

the CARDAMOM inversion in 2014. Table 3.1 gives the posterior maximum and minimum values

of NEE, leading to seasonal cycle amplitudes of 469 Tg CO2 yr−1 and 578 Tg CO2 yr−1 for 2013

and 633 Tg CO2 yr−1 and 737 Tg CO2 yr−1 for 2014, for the CARDAMOM and JULES inversions

respectively. These values are 90% and 76% of the prior amplitudes in 2013 and 123% and 85% of

the prior amplitudes in 2014.

The largest differences between the prior and posterior are seen in spring and summer for both

models. Posterior UK NEE estimates from the CARDAMOM inversion are in agreement with the

prior for 11 months: during the first half of 2013, in the majority of winter months (December, January,

February) and in June 2014. When the CARDAMOM inversion posterior UK NEE estimates are not

in agreement with the prior, they are usually larger, with a maximum difference in 2013 of 235±92
91 Tg

CO2 yr−1 in August and a maximum difference in 2014 of 551±80
84 Tg CO2 yr−1 in July, although in

spring (March, April, May) 2014 they tend to be smaller than the prior, with a maximum difference

of −194±64
60 Tg CO2 yr−1 in April. Posterior UK NEE from the JULES inversion agrees with the

prior for nine months during the two-year period, the majority of which are between November and

February. Otherwise, the posterior estimate from the JULES inversion is larger than the prior with a

maximum difference in 2013 of 318±70
71 Tg CO2 yr−1 in April and a maximum difference in 2014 of

407±76
72 Tg CO2 yr−1 in July.

Looking at the spring and summer differences more closely, the JULES model has a lower net

spring flux than the posterior, and the CARDAMOM model is either in agreement with or higher than

the posterior estimate of the net spring flux. Generally the models are underestimating the net summer

flux compared to the posterior flux (to the greatest extent in 2014) although the summer estimate from

the JULES inversion in 2013 is not statistically different from the prior. The average spring difference

between the posterior and the prior for the CARDAMOM inversion is −2±89
88 Tg CO2 yr−1 in 2013

and −133±67
63 Tg CO2 yr−1 in 2014, whereas for the JULES inversion it is 219±87 Tg CO2 yr−1

in 2013 and 164±67
65 Tg CO2 yr−1 in 2014. The average summer difference for the CARDAMOM

inversion is 135±111
108 Tg CO2 yr−1 in 2013 and 263±82

83 Tg CO2 yr−1 in 2014, whereas for the JULES

inversion it is 94±104
107 Tg CO2 yr−1 in 2013 and 312±85 Tg CO2 yr−1 in 2014. The prior sink in June

as estimated by the JULES model is nearly twice that of CARDAMOM and posterior estimates tend

to agree with the CARDAMOM prior in this month.

Figure 3.6c shows the daily minimum and maximum in the posterior net biospheric estimates

for 2014. It is worth remembering at this point that while the temporal resolution of the inversion is

flexible, it can go down to a minimum resolution of one day (as explained in Sect. 2.2.4). Therefore,

the diurnal profile of TER and GPP for each model is imposed, however it can be scaled up or
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Fig. 3.6: Posterior UK fluxes in 2014. (a-c) Comparison of monthly fluxes and minimum and maximum daily
values for TER, GPP and NEE respectively resulting from JULES inversion (blue) and CARDAMOM inversion
(orange). (d) Annual CO2 fluxes for TER, GPP and NEE for 2013 and 2014 from CARDAMOM and JULES
inversions. Dark bars denote prior annual fluxes, light bars denote posterior annual fluxes. Uncertainty bars
represent 5th – 95th percentile.
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Fig. 3.7: Posterior net biospheric (NEE) flux maps averaged over winter 2013 (December 2013, January –
February 2014) and summer 2014 (June – August 2014). (a) Winter NEE flux from CARDAMOM inversion.
(b) Winter NEE flux from JULES inversion. (c) Summer NEE flux from CARDAMOM inversion. (d) Summer
NEE flux from JULES inversion.

down from day to day. For both inversions, the posterior NEE flux has a similar profile. Compared

to Fig. 3.1c the inversion tends to a seasonal cycle in daily maximum uptake that resembles that

of the JULES model prior, with a turning point in maximum uptake occurring abruptly between

June and July, a steep gradient in spring and a shallow gradient in autumn. On the other hand, the

seasonal cycle in daily maximum source resembles that of the CARDAMOM model prior, which

has a stronger seasonal variation compared to that of the JULES model prior, albeit with a larger

amplitude. This would suggest that the underestimation in net spring flux seen in the JULES prior is

generally due to the model underestimating the spring source, rather than overestimating the spring

sink. It also suggests that the overestimation in net summer flux in the CARDAMOM prior is possibly

a combination of the model overestimating the summer sink and underestimating the summer source.

The overestimation in the net summer flux in JULES is more likely to be due to an underestimation of

the summer source. However, as diurnal fluxes vary on a scale nearly an order of magnitude larger

than that of the monthly fluxes, it is clear that any relatively small changes in the maximum source

or sink will have a relatively large effect on the daily net flux. Therefore, as was also discussed in

Sec. 2.3.1, the monthly net flux is the more robust result here and conclusions cannot be confidently

drawn from the sub-monthly results.
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Fig. 3.8: Posterior TER and GPP flux maps averaged over winter 2013 (December 2013, January – February
2014). (a) Winter TER flux from CARDAMOM inversion. (b) Winter TER flux from JULES inversion. (c)
Winter GPP flux from CARDAMOM inversion. (d) Winter TER flux from JULES inversion.

3.3.3 Posterior spatial distribution

Figure 3.7 shows mean posterior net biospheric fluxes (NEE) for winter 2013 and summer 2014

from both the CARDAMOM and JULES inversions. In winter 2013, posterior NEE fluxes from

the CARDAMOM inversion are fairly heterogeneous and are largest over south-west Scotland and

east and central England. This posterior spatial distribution is roughly similar to the prior. From the

inversion using JULES prior fluxes, the posterior net biospheric flux is much smoother than it is for

the inversion using CARDAMOM. It is largest in north-west England and almost zero in east England.

The whole of south/central England, Wales, and Northern Ireland have increased posterior winter

fluxes compared to the prior, turning these areas from a net sink in the prior to a net source in the

posterior.

In summer 2014, NEE fluxes from the two inversions display many similarities, with areas of

net source in east, central (extending further south in the JULES inversion) and north-west England

and areas of net sink elsewhere. However, the net sink in the JULES inversion is larger than the

CARDAMOM inversion in Scotland, south Wales, Northern Ireland and south-west England. This

differs from the prior flux maps, which have only very small areas of small net uptake in central

England in CARDAMOM and in east England in JULES. Both the CARDAMOM and JULES

posterior fluxes generally display reduced uptake compared to the prior, except in north Wales.
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Table 3.2: Prior and posterior fit to data statistics for the inversion period 2013-2014. R2 and RMSE are
calculated monthly and averaged over this period. Values in brackets are the posterior fit statistics for the
corresponding net flux inversions. *Weybourne data (from February to December 2013) is used for validation
of the results only and is not included in the inversions.

CARDAMOM inversion

Measurement site Prior R2 Posterior R2 Prior RMSE Posterior RMSE Prior Posterior

mean bias mean bias

Mace Head 0.20 0.59 2.88 1.53 -1.19 0.55

(0.54) (1.62) (0.38)

Ridge Hill 0.26 0.67 3.82 2.09 -1.27 -0.10

(0.61) (2.30) (-0.05)

Tacolneston 0.22 0.61 3.92 2.20 -1.63 -0.25

(0.56) (2.44) (-0.28)

Heathfield 0.21 0.71 4.07 1.88 -1.99 0.11

(0.58) (2.31) (0.21)

Bilsdale 0.20 0.60 4.62 2.02 -3.68 -0.52

(0.55) (2.23) (-0.58)

Angus 0.35 0.67 3.09 1.28 -2.35 -0.01

(0.63) (1.41) (0.00)

All sites 0.22 0.63 3.55 1.90 -1.73 0.02

(0.58) (2.10) (-0.01)

*Weybourne 0.13 0.31 6.17 5.08 2.89 2.25

(0.28) (5.32) (2.37)

JULES inversion

Measurement site Prior R2 Posterior R2 Prior RMSE Posterior RMSE Prior Posterior

mean bias mean bias

Mace Head 0.29 0.66 2.84 1.26 -1.33 0.16

(0.56) (1.44) (-0.01)

Ridge Hill 0.33 0.67 3.86 2.14 -1.14 -0.21

(0.59) (2.41) (-0.05)

Tacolneston 0.24 0.53 4.06 2.71 -1.84 -0.89

(0.52) (2.70) (-0.74)

Heathfield 0.28 0.66 4.07 2.14 -2.43 -0.25

(0.57) (2.38) (-0.23)

Bilsdale 0.33 0.61 4.53 2.10 -3.60 -0.96

(0.62) (2.19) (-0.82)

Angus 0.43 0.67 2.85 1.39 -1.78 0.43

(0.62) (1.55) (0.48)

All sites 0.25 0.58 3.60 2.11 -1.75 -0.27

(0.52) (2.25) (-0.21)

*Weybourne 0.16 0.29 5.85 5.10 2.63 2.07

(0.23) (5.49) (2.56)
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Fig. 3.9: Posterior TER and GPP flux maps averaged over summer 2014 (June – August 2014). (a) Summer
TER flux from CARDAMOM inversion. (b) Summer TER flux from JULES inversion. (c) Summer GPP flux
from CARDAMOM inversion. (d) Summer GPP flux from JULES inversion.

3.3.4 Model-data comparison

Agreement between the data and the posterior simulated mole fractions at the measurement sites used

to constrain the inversion is greatly improved compared to prior simulated mole fractions, with R2

values increasing by a minimum of 0.24 and up to 0.5 (to give values ranging between 0.53 and 0.71)

and RMSE decreasing by at least 1.35 ppm and up to 2.6 ppm (to give values ranging between 1.26

ppm and 2.71 ppm). Table 3.2 shows all statistics for the prior and posterior mole fractions compared

to the observations of atmospheric CO2 concentrations. Overall, looking the the statistics for "All

sites", the fits are relatively similar between the CARDAMOM and JULES inversions, however the

CARDAMOM inversion does provide a slightly better fit by these metrics. In terms of R2, the best

fit to the data is observed at Heathfield in the CARDAMOM inversion and Angus in the JULES

inversion. In terms of RMSE, the best fit to the data is observed at Angus in the CARDAMOM

inversion and Mace Head in the JULES inversion. The smallest posterior mean bias is observed

at Angus in the CARDAMOM inversion and Ridge Hill in the JULES inversion. Therefore, there

are some small spatial differences in how well each of the inversions is able to fit the data but no

clear indication of which areas of posterior flux might be subject to the largest improvement in either

inversion. Figures 3.10 and 3.11 show the residual mole fractions in 2014 and indicate that residuals

are somewhat larger during the summer than the winter.

To test the posterior results against data that has not been included in the inversion, the posterior

fluxes have been used to simulate mole fractions at Weybourne Atmospheric Observatory (see Fig. 1.4a
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Fig. 3.10: Left: Residual mole fractions for prior and posterior modelled CO2 concentrations in 2014 using
CARDAMOM prior biospheric fluxes. Right: Histogram of prior residuals (orange) and posterior residuals
(blue). The mean of the histogram represents the mean bias.
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Fig. 3.11: Left: Residual mole fractions for prior and posterior modelled CO2 concentrations in 2014 using
JULES prior biospheric fluxes. Right: Histogram of prior residuals (orange) and posterior residuals (blue). The
mean of the histogram represents the mean bias.
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Fig. 3.12: Left: Residual mole fractions for modelled CO2 concentrations at Weybourne in 2013 using prior
CARDAMOM and JULES fluxes, and posterior CARDAMOM and JULES fluxes from both the gross (scaling
GPP and TER separately) and net (scaling just NEE) flux inversions. Weybourne data was not included in the
inversions. Right: Histogram of residuals. The mean of the histogram represents the mean bias.
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for location in relation to the other sites and Table 2.1 for site information). The statistics of fit to the

data are given in italics in Table 3.2 and show an improvement in R2 of 0.18 with the CARDAMOM

inversion and 0.13 with the JULES inversion, an improvement in RMSE of 1.09 ppm with the

CARDAMOM inversion and 0.75 ppm with the JULES inversion and an improvement in the mean

bias of 0.64 ppm in the CARDAMOM inversion and 0.56 in the JULES inversion. These results show

that the a posteriori fluxes improve the fit to the data at a measurement station not included in the

inversion. The results are very similar between the two inversions at this site, but suggest that the

CARDAMOM inversion may perform slightly better, at least in this region of the UK. Figures 3.12

shows the residual mole fractions at Weybourne for each of the inversions carried out in this work.

3.4 Discussion

3.4.1 Inversion performance

Solving for both TER and GPP separately allows the JULES-prior and CARDAMOM-prior inversions

to converge to a similar posterior solution. Using two very different prior NEE flux estimates, two

similar posterior NEE flux estimates are produced that have a similar seasonal amplitude, and agree

on the majority of monthly and all annual fluxes within the estimated uncertainties. This indicates

that the results are driven primarily by the data and are less strongly influenced by the prior. However,

when the same inversion is carried out that scales NEE instead of the gross fluxes (Fig. 3.13) the two

posterior flux estimates do not converge on a common result. The posterior seasonal cycles remain

relatively unchanged compared to the prior and annual net biospheric flux estimates tend to be similar

to, or larger than, the prior. These annual net biospheric flux estimates are therefore 3 – 39 times

smaller than the inversion that separates GPP and TER, meaning the posterior estimates from the two

types of inversions do not overlap, even within estimated uncertainties. An evalutation of the statistics

of how well the NEE inversions fit the data (Table 3.2) shows that they do not perform as well as the

separate GPP and TER inversions. However, this is to be expected to some degree, because separating

the two sources gives the inversion more degrees of freedom to fit the data.

As recommended by Tolk et al. (2011) and discussed in Sect. 2.3.1, this method only hopes to

achieve an improved estimate for the net fluxes rather than the gross GPP and TER fluxes themselves.

The correlation between the spatial and temporal distribution of GPP and TER can be seen in summer

and winter flux maps (Fig. 3.8 and 3.9) and in the posterior annual flux estimates in Fig. 3.6d, in

particular where JULES TER and GPP show similarly large differences from the prior. This could

also be a result of the imposed diurnal cycle, as it would appear the posterior TER flux in the JULES

inversion is tending to a higher daily minimum, matching that of the CARDAMOM prior, and may

ultimately be trying to move towards a smaller diurnal variation in TER. However, because the whole

diurnal cycle must be scaled, the daily maximum TER must also increase and may mean the GPP

must increase, causing increased uptake to compensate for the increased source from TER. Allowing

flexibility on sub-daily timescales may lead to similar estimates of GPP and TER between the two
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Fig. 3.13: Posterior monthly net UK CO2 flux (emission to the atmosphere is a positive flux) for the inversion
that scales only NEE rather than GPP and TER separately. Orange and blue monthly fluxes are posterior net
biospheric (NEE) fluxes. Prior biosphere fluxes from JULES and CARDOMOM are shown in dashed orange
and blue lines respectively. Shading represents 5th – 95th percentile. The bar charts represent annual net UK
CO2 flux for 2013 (left) and 2014 (right). Hashed bars denote prior annual fluxes, solid bars denote posterior
annual fluxes. The bar colours correspond to the line colours: left hand bars for each model are NEE fluxes,
right hand bars for each model are total fluxes (NEE + fixed sources). Uncertainty bars represent 5th – 95th
percentile. CA – CARDAMOM. JU – JULES. NEE prior PDF (xNEE ) has Gaussian uncertainty distribution and
its standard deviation hyper-parameter (σxNEE

) has a uniform distribution with a range reflecting an absolute
uncertainty of approximately 40–400 Tg (see Table 2.3 for the comparable set-up for the separate GPP and
TER inversion).
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inversions with different priors. However, questions remain over whether there is enough temporal

information for this to be the case.

The fact that common monthly and annual posterior net biospheric flux estimates are reached

when the prior biospheric fluxes are spatially and temporally different would suggest that the choice

of prior is not necessarily a major factor in guiding the inversion result for this network, when GPP

and TER are scaled separately. In this respect, it is also particularly encouraging that the seasonal

cycles in the posterior diurnal range are similar for both inversions (Fig. 3.6c).

3.4.2 Differences between prior and posterior NEE estimates

The posterior seasonal cycle in both inversions differs significantly from the prior. This implies that

the biospheric models used to obtain prior GPP and TER fluxes are either over- or under-estimating

the strength of some processes, or they are omitting some processes altogether. The largest differences

between the posterior solution and the prior model output are seen in spring and summer. In Sect. 3.3.2

it has been shown that spring differences arise from an underestimation of the net spring flux in the

JULES model and a correct/overestimation of the net spring flux in CARDAMOM. However, in

summer (particularly in 2014) the posterior net UK fluxes are higher than both priors in July and

August.

One process that occurs during the months July and August is crop harvest. This is not taken

into account in either of the models of the biosphere used in this work, thereby providing a possible

explanation for the differences between the posterior and prior in these months. Harvest typically

occurs between July and September and arable agricultural land covered 26% of the UK in 2013 and

2014 (DEFRA, 2014, 2015), so there is potential for unaccounted activity in this area to cause large

changes to net CO2 fluxes. The areas of net source in summer (shown in Fig. 3.7) do also coincide

with areas of large-scale agriculture (e.g. east and central England). Crop harvest potentially changes

the biosphere in the following ways. Firstly, crops mature en masse, leading to an abrupt loss of

productivity. Secondly, during harvest there is an abrupt removal of biomass and input of harvest

residues on the field. This increases litter input that is readily available for decomposition, increasing

heterotrophic respiration. Thirdly, when the field is ploughed the soil is disturbed, which will again

increase heterotrophic respiration. Finally, when the crop is no longer covering the soil surface this

layer can become drier and the energy balance is altered. In Smallman et al. (2014), the reduction

in atmospheric CO2 concentration due to crop uptake is reported for 2006 to 2008 and an abrupt

increase in atmospheric CO2 can be seen between June (peak sink) and August, where CO2 uptake

from crops is halted as a result of harvest. This may explain the abrupt shift from net sink to net zero /

net source observed between July and August in CARDAMOM in 2013 and June and July in both

models in 2014. The earlier net sink to net source transition time in 2014 does coincide with a year of

early harvest (DEFRA, 2015). Later in the summer, there may be some plant regrowth in ploughed

fields leading to increased GPP. This would be consistent with the shallower gradient observed in

net biospheric fluxes between September and October 2013 in the CARDAMOM posterior estimate,
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between August and September 2014 in the JULES posterior estimate and the decrease in net flux

observed between July and September 2014 in the CARDAMOM posterior estimate.

If agricultural activity is the source of the July, August, September difference between prior and

posterior UK NEE estimates, then it could amount to emissions of 4 – 10% of currently reported

annual anthropogenic emissions in 2013 and 17 – 19% in 2014. However, other explanations for

this difference could be large uncertainties in the seasonal disaggregation of anthropogenic fluxes,

uncertainties in the transport model, or a combination of over and underestimation of other biospheric

processes.

3.4.3 Implications for UK CO2 estimates

The results of UK biospheric CO2 fluxes using this set-up suggest the UK biosphere is roughly in

balance, whereas prior estimates from models of the biosphere estimate a net sink. Even when an

uncertainty on our anthropogenic fluxes of 10% is assumed (a conservative estimate), inversions using

both models still give mean posterior estimates that are larger than their respective priors (see Fig. 3.5).

Therefore, when using models of the biosphere to contribute to inventory estimates of CO2 emissions,

care must be taken to attribute sufficient uncertainties to model estimates, otherwise the amount of

CO2 taken up by the biosphere on an annual basis may be overestimated. Methods, such as the one

described here, could provide an important constraint on the UK’s biospheric CO2 fluxes as carbon

sequestration processes, such as reforestation, and other land use change activities are increasingly

used as policy solutions to contribute to carbon targets.

3.5 Conclusions and future work

Here, the framework developed in Chapter 2 that takes advantage of recent innovation in atmospheric

inverse modelling and a relatively dense regional network of measurement sites is used to estimate net

biospheric CO2 fluxes in the UK . Two inversions are carried out using prior flux estimates from two

different models of the biosphere, CARDAMOM and JULES. Fluxes of GPP and TER are scaled

separately in the inversions. Despite significant differences in prior biospheric fluxes, monthly and

annual posterior flux estimates are found to be consistent, suggesting that the choice of model to

provide biospheric CO2 flux priors in the inversion is not a major factor in guiding the inversion result

with this framework and network.

Further to the conclusions of "Test 2" in Chapter 2, NEE is found to be more robustly derived

if GPP and TER are solved separately, and then combined a posteriori. These results suggest that

inversions that scale only NEE could be underestimating net CO2 fluxes, as posterior estimates are 3 –

39 times smaller than those obtained using an inversion where GPP and TER are separated.

The UK biosphere is found to be roughly in balance, with annual net fluxes (averaged over the study

period) of –8±79 Tg CO2 yr−1 and –64±85 Tg CO2 yr−1 according to the CARDAMOM and JULES
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inversions respectively. These mean annual fluxes are systematically higher than their respective

priors, implying that net biospheric fluxes are underestimated (i.e. GPP fluxes are overestimated

or TER flues are underestimated) in the models of the biosphere used in this study. The posterior

seasonal cycles from both inversions differ significantly from the prior seasonal cycles and have a

reduced amplitude of 90% and 76% of the prior amplitude in 2013 according to the CARDAMOM

and JULES inversions respectively, and 85% of the prior amplitude in 2014 according to the JULES

inversion. However, the posterior seasonal cycle amplitude from the CARDAMOM inversion in 2014

is increased by 122%. These results suggest an overestimated net spring flux in the JULES model

and an overestimation of the net summer flux in both models of the biosphere. It is proposed that the

difference seen between the prior and posterior flux estimates in summer and early autumn could be a

result of the disturbance caused by crop harvest, leading to abrupt reduction in plant CO2 uptake and

increase in respiration sources, as crop harvest is not taken into account in either model. However,

this hypothesis is just one of a combination of uncertain factors that could lead to the differences seen,

so further work would be needed to investigate the importance of crop harvest in UK CO2 emissions.

This work represents a first step towards looking at the UK biospheric CO2 budget with a

hierarchical Bayesian trans-dimensional MCMC inverse modelling framework. Further work is

required to robustly constrain biospheric CO2 fluxes, through comparison with other model set-ups.
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Chapter 4

European-scale carbon dioxide flux

estimation

4.1 Introduction

During this PhD project, the opportunity arose to take part in a regional-scale inverse modelling inter-

comparison project focussing on European biospheric CO2 fluxes. This project is called EUROCOM

and is funded via the Swedish Research Council and the French-Swedish collaborative agreement on

Climate, Environment and Energy (https://eurocom.icos-cp.eu). Participating with EUROCOM has

provided a chance to test the inversion set-up set out in Chapter 2 with a different, longer dataset, a

larger domain and a more mature model of prior biospheric fluxes. It has also enabled a platform to

compare the results of the system presented here to other state-of-the-art systems of greater maturity.

Estimating European scale CO2 fluxes from the terrestrial biosphere is important because all

European countries have pledged to reduce emissions of CO2 in response to the Paris Agreement and

a significant portion of mitigation efforts include increasing carbon uptake from the biosphere. The

ability to accurately quantify terrestrial sources and sinks will enable individual countries and Europe

as a whole to track their progress in achieving the emissions reduction targets proposed during the

process of the Paris Agreement.

Europe is a complex region due to the heterogeneity of land-use over small spatial scales. Since

1980 the scientific community has made a concerted effort to estimate Europe’s biospheric CO2

budget. Thus far, attempts have come from a number of different methods and results range widely

from a net sink of −5600 Tg CO2 yr−1 to a small net source of 1000 Tg CO2 yr−1 (Fig. 4.1).

The first attempts came out of global inverse modelling studies and inter-comparisons such as

Transcom. Initially these studies produced very diverse estimates for the global land sink (the net flux

of CO2 into the biosphere), which led to the development of intercomparisons to try to understand

the source of these discrepancies. The latest Transcom results for Europe from Peylin et al. (2013)

are shown in Fig. 4.1 along with those of other global inverse modelling studies (Gurney et al., 2004;
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Fig. 4.1: Estimates of European biospheric CO2 budget from previous studies. The majority of uncertainty
estimates from the previous studies are 1σ , however it is sometimes difficult to calculate comparable uncertainty
estimates.

Janssens et al., 2003; Luyssaert et al., 2012; Schulze et al., 2009), which demonstrates the large range

of estimates (from −5060 to 40 Tg CO2 yr−1).

As the resolution of inverse modelling studies has improved and in-situ measurement networks

have developed, scientists have taken a more focussed approach to estimating the European biospheric

CO2 budget using regional inverse modelling techniques (Kountouris et al., 2018a; Peters et al., 2010).

These regional studies shown in Fig. 4.1 are at the upper end of the estimates produced by the global

studies and suggest that Europe could be a net source of biospheric CO2 or a net sink.

However, a weakness of global inverse modelling is that it lacks spatial resolution as fluxes are

found on continental scales, and inverse modelling in general is criticised for poor spatial distribution

of in-situ observations (Bruhwiler et al., 2011). To solve these problems, inversions using satellite

data were developed to take advantage of the better spatial coverage of data achieved using thermal

infrared spectroscopic satellite measurements of atmospheric CO2 concentrations that are sensitive

to tropospheric emisisons (Nassar et al., 2011) and near-infrared measurements (Houweling et al.,

2015; Reuter et al., 2014). The scale of these measurements is also better representative of transport

model scales. Results from these studies found that Europe may be a considerable sink of biospheric

CO2, which is at the lower end of estimates from global inverse studies and up to double the sink at

the lower end of estimates from regional inverse studies. Alternative methods to deduce Europe’s

biospheric CO2 budget using satellites include estimates of above-ground biomass (ABC) from passive
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microwave satellite measurements (Liu et al., 2015). These results agreed with other satellite studies

and found that the largest area of uptake is in eastern Europe.

Many bottom-up studies have also estimated the European biospheric CO2 budget, shown in

Fig. 4.1, and arrive at very different results spanning the range of results from global in-situ, regional

in-situ and satellite inversions (Janssens et al., 2003; Luyssaert et al., 2012; Schulze et al., 2009).

These studies have used inventory and eddy flux covariance data to build their estimates. Land Surface

Models (LSMs) such as ORCHIDEE (Krinner et al., 2005) and JULES (Best et al., 2011; Clark et al.,

2011) also provide bottom up estimates and these roughly lie in the middle of the range of results.

The disagreement between these different methods is puzzling and the question of how the

community should proceed is concisely discussed in Reuter et al. (2016). If the majority of the large

sink seen by satellites is indeed in eastern Europe, then the lack of a dense network of measurement

stations in this area could explain why regional inverse modelling studies are missing this sink and

arriving at larger estimates for the net CO2 budget. Therefore, further developing the measurement

network in eastern Europe could help to confirm this sink (Chevallier et al., 2010; Reuter et al., 2014).

However, due to the inability to collect satellite data during cloudy conditions, there are biases in

the satellite data that may not be accounted for. This has been suggested as another source of the

discrepancy between satellite and in-situ data inversions (Feng et al., 2016) but cannot be proven

without additional measurements. The inter-annual variability of the European biospheric carbon

budget should also be considered as the studies presented here all cover different time periods, ranging

from 1985 to 2015, and there is evidence for European, and indeed global, sources and sinks to be

affected by large-scale meterological phenomena such at the North Atlantic Oscillation and the El

Niño Southern Oscillation (Bastos et al., 2016). However, in an inversion comparison carried out by

Chevallier et al. (2014) that investigated the difference between assimilating in-situ and satellite data

over the same time period, the size of the sink was increased in inversions that included satellite data.

Along with the need for additional in-situ measurements and a call for improved satellite retrieval

algorithms and inverse modelling techniques from Reuter et al. (2016), there is also space for a

concerted collaborative effort to improve the estimates from regional inversions since the number of

regional inverse studies remains fairly small. EUROCOM takes a similar form to that of Transcom

and is the first regional inversion inter-comparison focussed on Europe. It aims to further knowledge

of the European biospheric CO2 budget by taking advantage of the Integrated Carbon Observing

System (ICOS) network. In Europe, researchers benefit from relatively dense coverage of tall tower

and surface sites and flask data and this data is being amalgamated into a single accessible dataset

through ICOS. Seven different inverse systems are participating in the project from different institutes

across Europe. Whilst the dataset (from ICOS) and prior anthropogenic emissions (from EDGAR)

are provided, the modelling groups are free to make their own choices about the inversion set-up,

prior biospheric fluxes and atmospheric transport model. The work presented here contributes to

EUROCOM by incorporating an additional atmospheric transport model (NAME) and an innovative

inverse modelling set-up using hierarchical Bayesian trans-dimensional MCMC.
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Fig. 4.2: The EUROCOM domain and location of atmospheric measurement stations used in this study. Shaded
areas show the regions used for the analysis in Section 4.3.3.

4.2 Method

The EUROCOM project is mostly very flexible in terms of the inverse modelling set-up. Therefore,

the method used for the work of this chapter, and to contribute to EUROCOM, is based on the method

developed in Chapter 2. However, here the sub-domain is extended to cover the common EUROCOM

domain and many more measurement sites from the ICOS network are incorporated from across

Europe. Different prior and fixed fluxes have been used since the anthropogenic emissions dataset

is dictated by the EUROCOM protocol and involvement in the project has granted access to new

biospheric flux datasets.

4.2.1 Data

Data has been used from 15 tall tower and surface stations, collected between 2011 and 2015. This

data is provided by the ICOS network, and in some cases where the ICOS validation process has not

been completed the data is described as "pre-ICOS" (see Table 4.1). The stringent quality controls

of ICOS ensure that the data are comparable across the network. For more information on the

standard set-up required to become a labelled ICOS atmospheric station, see the ICOS Stakeholder

Handbook 2013 (at https://icos-atc.lsce.ipsl.fr/doc_public). The data from ICOS are hourly averaged

and measurement uncertainty is derived from the sub-hourly standard deviation of the continuous

data.

Figure 4.2 shows the location of the sites used in this work and Table 4.1 gives further site

information. The majority of the sites are located in central and western Europe, with few sites in the

north, east and south. Although not all ICOS stations have been used in the first stage of inversions

with this set-up, this is generally representative of the spread of ICOS stations and ICOS is working

hard to expand the network in these areas. As can be seen in Fig. 4.3, not all sites are available over
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Fig. 4.3: The data availability and data points remaining following "local-lapse" filtering for each measurement
site used in the inversion.

Table 4.1: Site information.

Site Site code Country Location Inlet height Elevation ICOS

(m above) (m above) status

(ground level) (sea level)

Mace Head MHD Ireland 53.326 ◦N, 9.904 ◦W 15 5 ICOS

Pallas PAL Finland 67.973 ◦N, 24.116 ◦E 5 565 ICOS

Smear/Hyytiala SMR Finland 61.847 ◦N, 24.295 ◦E 125 181 ICOS

OPE OPE France 48.562 ◦N, 5.504 ◦E 120 390 Pre-ICOS

Heidelberg HEI Germany 49.417 ◦N, 8.674 ◦E 30 116 ICOS

Hegyhatsal HUN Hungary 46.950 ◦N, 16.650 ◦E 115 248 ICOS

Ridge Hill RGL UK 51.998 ◦N, 2.540 ◦W 90 204 ICOS

Trainou TRN France 47.965 ◦N, 2.112 ◦E 180 131 Pre-ICOS

Tacolneston TAC UK 52.518 ◦N, 1.139 ◦E 56 180 ICOS

Kasprowy KAS Poland 49.232 ◦N, 19.982 ◦E 5 1989 ICOS

Angus TTA UK 56.555 ◦N, 2.986 ◦W 222 400 ICOS

Lampedusa LMP Italy 35.510 ◦N, 12.610 ◦E 5 45 Pre-ICOS

Schauinsland SSL Germany 47.920 ◦N, 7.920 ◦E 12 1205 ICOS

Cabauw CBW Netherlands 51.971 ◦N, 4.927 ◦E 200 -1 ICOS

Lutjewad LUT Netherlands 53.404 ◦N, 6.353 ◦E 60 1 ICOS
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the time period, therefore at any one time data from a minimum of 7 or a maximum of 13 sites may

be incorporated into the inversion.

4.2.2 Atmospheric transport model

The NAME LPDM has been used in this work with the same footprint disaggregation as developed in

Chapter 2. Data was averaged to two-hourly to match the temporal resolution of the NAME footprints

and the measurement uncertainty used was an average of the hourly measurement uncertainty over

the month. As for the work in the previous chapters, a "local-lapse" filter has been applied to the data

to remove data points during times of low wind speeds and stable atmospheric conditions. In some

cases the ICOS data product had been pre-filtered slightly differently to the GAUGE and UK-DECC

data (used in Chapter 3) from the same sites to remove some of the larger concentration peaks that are

present in these other datasets. For example, some of the higher concentrations seen at Mace Head

data in November 2014 had been removed in the ICOS product.

4.2.3 Prior biospheric fluxes

The land-surface model ORCHIDEE (Krinner et al., 2005) has been used as an estimate of prior

biospheric fluxes in this work. This is a more mature model with a longer timespan of available model

output compared to the models JULES and CARDAMOM used in the work in Chapters 2 and 3.

Three-hourly fluxes of GPP and Net Biome Production (NBP) were provided at 0.5◦ resolution. In

contrast to NEE, NBP is the net amount of carbon in the ecosystem (as opposed to the flux to the

atmosphere) resulting from the combination of photosynthesis and respiration processes (this part is

known as net ecosystem production), and crucially it also includes the loss of organic matter related

to non-respiratory processes (IGBP Terrestrial Carbon Working Group, 1998). These non-respiratory

processes include insect damage, fire and human disturbance such as harvest and forest management.

TER was found by removing GPP from NBP.

Since this element of human disturbance was omitted in the biospheric flux priors provided

by JULES and CARDAMOM in Chapter 3 and potentially resulted in the under-estimation of

summer/harvest time fluxes, it is of interest to compare the use of ORCHIDEE as a prior (with

disturbance) to the use of JULES or CARDAMOM (without disturbance). JULES was chosen since

it has high resolution over the whole domain, as opposed to CARDAMOM, which is only high

resolution over the UK.

As for the work in Chapters 2 and 3, the prior biospheric fluxes were separated into their positive

(TER) and negative (GPP) components, which was found to give a more data-driven result. However,

an additional test was carried out using the ORCHIDEE NBP fluxes since the additional disturbance

information in the prior may influence the performance of a gross vs net flux inversion. Analysis

focusses on the aggregated net fluxes, as opposed to the gross fluxes, as this is believed to be more

robust.
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4.2 Method

Fig. 4.4: EDGAR v4.3 anthropogenic emissions used to remove the anthropogenic component from the data
prior to the inversion. (a): Average 2015 emissions map. (b): Monthly total Europe emissions for 2015 with
shading representing the diurnal range.

4.2.4 Fixed CO2 fluxes

Anthropogenic and ocean fluxes are forward modelled and removed from the data prior to the inversion.

In this EUROCOM study the ocean fluxes are from Takahashi et al. (2009), and a common prior

anthropogenic dataset has been provided. This dataset (shown in Fig. 4.4) is based on EDGARv4.3

CO2 emissions from 2010, updated using BP fuel consumption statistics from 2016, with temporal

extrapolation and disaggregation based on MACC-TNO (described in the CO2 release and Oxygen

uptake from Fossil Fuel Emission Estimate (COFFEE) dataset, Steinbach et al., 2011).

4.2.5 Inversion set-up

The inversion set-up used here is the same as the one set out in Chapter 2, with some small differences.

Firstly, as prior information was only available at a three-hourly temporal resolution (see Section 4.2.3),

once NAME footprints, prior fluxes and basis functions had been combined into the Jacobian matrix

(see Sect. 1.4.5), the matrix was averaged to six-hourly temporal resolution along with the data.

Secondly, the sub-domain is slightly larger to cover the whole of Europe and instead of fixing PFTs

over the whole sub-domain, the area has been split up into 4 regions and 6/7 PFTs within which fluxes

can be scaled up or down (Fig. 4.5).

Three inversions are carried out. Two inversions use ORCHIDEE prior biospheric fluxes, one of

which scales the gross fluxes separately and the other scales the net flux. The third inversion uses

JULES prior biospheric fluxes and scales the gross fluxes separately. The JULES output only covers

2013–2014 so the JULES inversion is shorter than the ORCHIDEE inversions, which cover the full

2011–2015 time period.
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Fig. 4.5: The extent of the NAME domain, EUROCOM sub-domain (inner box) and regions within which
PFTs may be scaled up or down.

4.3 Results

Analysing the inversion results over different scales reveals the regions in Europe that the set-up is

able to resolve. Results are presented on the resolution of the inversion (the grid scale), at European

scale and at smaller regional scales, alongside the fit of posterior modelled mole fractions to the data.

4.3.1 Grid scale fluxes

Figures 4.6 and 4.7 show the seasonal average prior and posterior fluxes respectively over the time

period of the inversion (note the JULES inversion is a shorter time period than the inversions that use

the ORCHIDEE prior). For much of the year, posterior results from the ORCHIDEE inversions using

gross and net fluxes are very similar, although the gross flux ORCHIDEE inversion in spring (March,

April, May) shows slightly stronger extremes. The posterior fluxes from the JULES inversion, on

the other hand, show different spatial patterns. Notably, there is a sink over the Alps in spring and

autumn (September, October, November), stronger sinks in the Republic of Ireland, central France,

north Germany and Italy in spring, a weaker eastern European source in autumn and a small sink in

France in winter (December, January, February). These differences broadly reflect the differences

between the prior spatial distribution of ORCHIDEE and JULES fluxes (Fig. 4.6) suggesting that the

inversions have not been able to spatially redistribute the fluxes to arrive at a common configuration.

However, in summer (June, July, August), the inversions using gross fluxes from ORCHIDEE

and JULES do show spatial similarities, albeit with stronger extremes in the JULES inversion, and a

stronger source estimated over Spain in the ORCHIDEE inversion. Areas of small sink to net zero

fluxes in the ORCHIDEE inversion tend to be areas of small source in the JULES inversion. The

ORCHIDEE net flux inversion results for summer are more evenly distributed over the continent,

however they also see the same strong source in Spain as the ORCHIDEE gross flux inversion
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Fig. 4.6: Prior fluxes averaged over the period of the inversion for each season (2011–2015 for ORCHIDEE,
2013–2014 for JULES).

estimates. Therefore, in some circumstances it must be possible for this system to change the spatial

distribution of fluxes.

The ORCHIDEE net flux inversion has relatively smooth scaling factors across Europe (Fig. 4.8)

owing to the fact that there are fewer degrees of freedom scaling only the NEE. All areas are scaled

down. The comparative heterogeneity of the ORCHIDEE gross flux and JULES inversions is therefore

due to the competing positive and negative processes. The ORCHIDEE gross flux inversion has mostly

scaled down the prior fluxes, like the ORCHIDEE net flux inversion, with the exception of areas of

Scandinavia in spring and autumn and some areas of south/central Europe. The JULES inversion

scaling is much more heterogeneous. In spring, fluxes are mostly scaled down except in central

Europe and Scandinavia. In summer, central and east Europe are scaled up whereas everywhere

else is scaled down. In autumn, most fluxes are scaled up from the prior except in some areas of

Scandinavia. Finally in winter, most areas have been scaled up except for Portugal, southern Spain,

the United Kingdom and the Republic of Ireland. In particular, there is a large area of increased fluxes

in central/eastern Europe compared to the prior.

4.3.2 European scale fluxes

The "European scale" in this context is all of the land in the sub-domain (see Fig. 4.2) apart from

North Africa. Figure 4.9 shows the monthly European fluxes for each of the three inversions. The

posterior estimates are mostly in agreement within the estimated 90 percentile confidence interval; The
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Fig. 4.7: Posterior fluxes averaged over the period of the inversion for each season (2011–2015 for ORCHIDEE,
2013–2014 for JULES). "ORCHIDEE" represents the gross flux inversion and "ORCHIDEE NEE" represents
the net flux inversion.
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Fig. 4.8: Posterior scaling maps indicating how grid cells have been scaled compared to the prior. Light blue
areas are where the fluxes have been scaled down (become a smaller sink or a smaller source) and red areas
have been scaled up (become a stronger sink or source). Dark blue areas (numbers below zero) show where
the flux has changed sign (a sink becomes a source or vice versa). "ORCHIDEE" represents the gross flux
inversion and "ORCHIDEE NEE" represents the net flux inversion.
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ORCHIDEE inversions agree in all months and the JULES inversion agrees with both the ORCHIDEE

gross and net flux inversions in 20 out of 24 months. Where the JULES inversion doesn’t agree

with the ORCHIDEE inversions it predicts a smaller source in winter and a smaller sink in summer

in 2014. The ORCHIDEE gross flux inversion generally agrees well with the net flux inversion,

except in summer 2013 where it estimates a smaller sink of −2775 Tg CO2 yr−1, averaged over

JJA, as opposed to −6579 Tg CO2 yr−1 for the ORCHIDEE net flux inversion. This is in contrast

to the findings of Chapter 3, where the gross and net flux inversions gave very different results, and

will be discussed further in Section 4.4.3. In relation to prior fluxes, the ORCHIDEE inversions

estimate a much reduced maximum summer sink, with the greatest reduction in June 2013 where the

ORCHIDEE gross flux inversion gives a monthly flux of 13% of the prior flux and the ORCHIDEE

net flux inversion is 30% of the prior. Averaging over all summer months the flux is reduced by 8943

Tg CO2 yr−1 in the gross flux inversion and 7363 Tg CO2 yr−1 in the net flux inversion. The autumn

and winter source is also somewhat reduced. In autumn the reduction is greatest in 2011 where the

posterior flux is 5073 Tg CO2 yr−1 smaller than the prior in the gross flux inversion and 5954 Tg

CO2 yr−1 smaller than the prior in the net flux inversion. On average, the posterior winter source is

reduced compared to the prior by 2164 Tg CO2 yr−1 in the gross flux inversion and 2747 Tg CO2

yr−1 in the net flux inversion. Meanwhile, April and August fluxes are often similar. Autumn and

Winter fluxes from the JULES inversion are generally higher than the prior, by on average 1502 Tg

CO2 yr−1 in autumn and 1197 Tg CO2 yr−1 in winter. The JULES prior also seems to over-estimate

the spring sink in 2013 by 3046 Tg CO2 yr−1.

On an annual scale (Fig. 4.10) there is less agreement between the inversions, although within

the uncertainties, which are comparatively large, the estimates do agree. The ORCHIDEE gross

flux inversion predicts that Europe is a source of biospheric CO2 and, over the 5 year period of

the inversion, estimates an annual biospheric CO2 source for Europe of 779±1568 Tg CO2 yr−1

(uncertainty is 1σ ). The ORCHIDEE net flux inversion predicts Europe to be a smaller source, or a

sink in 2011 and 2014, compared to the gross flux inversion leading to a smaller average annual flux

of 235±1449 Tg CO2 yr−1. Annual European fluxes from both inversions are always larger than the

prior, by on average 1472 Tg CO2 yr−1 in the gross flux inversion and 928 Tg CO2 yr−1 in the net flux

inversion, although prior values do sit within the uncertainties. The JULES inversion estimates that

Europe is a sink of biospheric CO2, although a smaller one than predicted by the JULES prior, giving

an average annual flux (over the two years of the inversion) of –485±1068 Tg CO2 yr−1. Given the

uncertainties however, these results are all consistent with a net zero flux from the European terrestrial

biosphere.

The relatively large discrepancies in annual values compared to monthly values highlights the

sensitivity of the European biospheric CO2 budget to small changes in monthly estimates. The

amplitude of the seasonal cycle is on average 18170 Tg CO2 yr−1 for the ORCHIDEE gross flux

inversion, 17708 Tg CO2 yr−1 for the ORCHIDEE net flux inversion and 12338 Tg CO2 yr−1 for

the JULES inversion, one to two orders of magnitude larger than the annual estimates. The large
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Fig. 4.9: Monthly posterior fluxes from the three inversions (solid lines) compared to the prior (dashed lines).
Shaded areas represent the 5–95 percentile range. "Posterior ORCHIDEE" represents the gross flux inversion
and "Posterior ORCHIDEE NEE" represents the net flux inversion.

Fig. 4.10: Annual prior and posterior net fluxes (NEE). Uncertainty bars represent the 5–95 percentile range.
"Posterior ORCHIDEE" represents the gross flux inversion and "Posterior ORCHIDEE NEE" represents the
net flux inversion.
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Fig. 4.11: Left: Prior monthly fluxes and diurnal range for ORCHIDEE and JULES. Right: Posterior monthly
fluxes and diurnal range for the three inversions using ORCHIDEE gross and net fluxes and JULES gross fluxes.
"Posterior ORCHIDEE" represents the gross flux inversion and "Posterior ORCHIDEE NEE" represents the
net flux inversion.

uncertainties in fluxes on the European scale is likely due to the inability of the inversion to constrain

the fluxes in certain areas where there is limited data. This will be explored in the following sections.

At the diurnal temporal scale, the results of the three inversions are also fairly different (Fig. 4.11b).

The ORCHIDEE gross flux inversion has comparatively little day to day variability in diurnal range

in contrast to that of the ORCHIDEE net flux inversion, which frequently increases or decreases

by an order of magnitude, whilst the monthly results are very similar. The net flux inversion has

fewer degrees of freedom, therefore it may have to make some unnecessarily large changes to the

diurnal range at certain times to give the desired monthly average flux. The JULES inversion has

a much smaller posterior diurnal range than the other two inversions, averaging 2761 Tg CO2 yr−1

in minimum months (January 2013 and December 2014) and 41115 Tg CO2 yr−1 in maximum

months (June 2013 and 2014), whereas the diurnal range for the ORCHIDEE gross flux inversion

is on average 7348 Tg CO2 yr−1 in minimum months (typically January) and 78514 Tg CO2 yr−1

in maximum months (typically June). However the overall profile is somewhat similar, with a less

pronounced seasonal cycle in the daily maximum source. Yet, in comparison to the prior diurnal

range for ORCHIDEE and JULES (Fig. 4.11a), the posterior diurnal fluxes are approaching a similar

magnitude; the difference between the months of maximum diurnal range in the ORCHIDEE and

JULES priors, which is 85624 Tg CO2 yr−1 on average, is reduced to 44% giving an average difference
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Fig. 4.12: Average seasonal cycle over the period of the inversion (2011–2015 for ORCHIDEE, 2013–2014
for JULES). "Posterior ORCHIDEE" represents the gross flux inversion and "Posterior ORCHIDEE NEE"
represents the net flux inversion.

of 37399 Tg CO2 yr−1 between the months of maximum diurnal range in the ORCHIDEE and JULES

posteriors. The posterior results are closer to that of the JULES prior in the daily maximum sink and

somewhere between the two priors in the daily maximum source.

The average seasonal cycle (Fig. 4.12) highlights the prior/posterior and inter-inversion differences

(bear in mind here that the JULES inversion is only averaged over two years whereas the ORCHIDEE

inversions are averaged over five years). Again, the ORCHIDEE inversions have a much shallower

seasonal cycle than that of the ORCHIDEE prior; the amplitude of the ORCHIDEE prior is 34389

Tg CO2 yr−1 compared to 16622 Tg CO2 yr−1 in the gross flux inversion and 15943 Tg CO2 yr−1

in the net flux inversion. This is closer to the amplitude of the JULES prior seasonal cycle, 12107

Tg CO2 yr−1, and the amplitude of the JULES posterior seasonal cycle is 11721 Tg CO2 yr−1.

However, posterior autumn and winter fluxes fall between the two priors and the JULES prior over-

estimates uptake in spring by 2077 Tg CO2 yr−1. The main differences between the gross and net flux

ORCHIDEE inversions are clearer here and show that despite many similarities, the posterior results

from the gross flux inversion indicate a smaller sink in June and July.

4.3.3 Regional scale fluxes

Six regions have been identified as part of the EUROCOM project in order to assess fluxes on smaller

spatial scales. These are described in Fig. 4.2. Figure 4.13 shows the monthly fluxes in each of the six

regions and the annual total fluxes for each region can be found in Fig. 4.14.

At a first glance, it is possible to see that between the regional results there is a lot of variation

in uncertainty estimates and level of agreement between the three inversions. Western and central

Europe are the most well constrained, with 90 percentile confidence intervals of around 600 Tg CO2

yr−1 and 900 Tg CO2 yr−1 respectively, whereas fluxes in south-eastern and eastern Europe have
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Fig. 4.13: Monthly prior and posterior fluxes for each of six regions over the EUROCOM area. Shading
represents 5–95 percentile range. "Posterior ORCHIDEE" represents the gross flux inversion and "Posterior
ORCHIDEE NEE" represents the net flux inversion.

98



4.3 Results

Fig. 4.14: Annual prior and posterior fluxes for each of six regions over the EUROCOM area. Uncertainty bars
represent 5–95 percentile range. "Posterior ORCHIDEE" represents the gross flux inversion and "Posterior
ORCHIDEE NEE" represents the net flux inversion.
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Fig. 4.15: Normalised uncertainty reduction over EUROCOM subdomain for the ORCHIDEE inversion.
Uncertainty reduction is defined in Eq. 4.1

comparatively large uncertainties, with 90 percentile confidence intervals of around 1900 Tg CO2

yr−1 and 2100 Tg CO2 yr−1 respectively. This reflects the distribution of atmospheric measurement

stations used in this study, where all bar three of the stations are in central and western Europe (see

Fig. 4.2). A further two are in northern Europe and one in southern Europe. The uncertainty reduction

in the ORCHIDEE inversion is shown in Fig. 4.15 and is defined as follows:

Uncertainty reduction = 1−

(

90%ile rangeposterior

90%ile rangeprior

)

(4.1)

Figure 4.15 confirms that the largest reduction is in central and western Europe and appears to

show that there has been a large uncertainty reduction everywhere with the winter fluxes seeing the

least improvement. However, prior uncertainties are large, especially in summer months because they

scale with the size of the fluxes, so lilac colours may still signify large uncertainties.

In central Europe, the monthly fluxes of all three inversions, shown in Fig. 4.13a, are in good

agreement within the estimated uncertainties; the ORCHIDEE inversions agree in 58 out of 60 months

and the JULES inversion agrees with the ORCHIDEE gross and net flux inversions in 23 and 22 out

of 24 months respectively. Annual estimates, Fig. 4.14a always agree on the sign of the net flux and

the means of the two ORCHIDEE inversions mostly agree very well, within 80 Tg CO2 yr−1, except

in 2015. All annual estimates agree within the estimated uncertainties.
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Western Europe is the only region where a consistent discrepancy can be seen between the

ORCHIDEE gross and net flux inversions (Fig. 4.13b). This occurs around summer in all years

and patterns in the gross flux inversion somewhat resemble those seen in the inversion results in

Chapter 3. The JULES inversion agrees with the ORCHIDEE gross flux inversion in all months

within the estimated 90 percentile range, whereas there is only agreement with the ORCHIDEE net

flux inversion in 16 out of 24 months. The annual fluxes ( Fig. 4.14b) show a large difference between

ORCHIDEE gross and net flux inversions, where the net flux inversion estimates a sink of −232 Tg

CO2 yr−1 on average (range is −324- −177 Tg CO2 yr−1) and the gross flux inversion estimates a

larger net flux of −26 Tg CO2 yr−1 on average (range is −148 - 101 Tg CO2 yr−1). JULES inversion

annual fluxes are a larger sink than the ORCHIDEE net flux inversion in 2013 and fall between the

ORCHIDEE gross and net flux inversion estimates in 2014. The disagreement of the JULES inversion

to either of the ORCHIDEE inversions is largely due to smaller winter fluxes.

Monthly fluxes in the other regions have larger uncertainties. In northern Europe (Fig. 4.13c)

the fluxes agree in most months, however there is a discrepancy as large as a factor of 1.9 over the

maximum summer uptake. In southern, eastern and south-eastern Europe the monthly fluxes are much

more variable compared to the other regions and the seasonal cycle is harder to identify, particularly

in 2011 and 2012 in south and south-eastern Europe. Annual fluxes for these regions show a variety

of estimates from all three inversions with no clear pattern. Annual fluxes from the JULES inversion

estimate a net sink everywhere, except in eastern Europe where it estimates a net source. This is

consistent with the posterior gridded fluxes in Fig. 4.7 that show the main source of increased winter

fluxes is over central/eastern Europe.

4.3.4 Model-data comparison

Table 4.2 gives an overview of how well each of the inversions is able to fit the observed data.

According to these statistics, the ORCHIDEE gross flux inversion gives the best fit to the data across

all sites. The JULES and ORCHIDEE NEE inversions have a very similar R2 fit across all sites

however the JULES inversion has a better fit to the data in terms of RMSE. Mean bias statistics are

similar across all three inversions. The JULES inversion generally fits data slightly better at sites in

north west Europe, whereas the ORCHIDEE gross flux inversion fits the data best at sites everywhere

else.

To give some illustration of Table 4.2, observations and prior and posterior modelled mole

fractions are shown in Figures 4.16 and 4.17 for the ORCHIDEE gross flux and the JULES inversions

at three measurement sites, Pallas (PAL), Heidelberg (HEI) and Mace Head (MHD). Using an R2

statistical comparison, the ORCHIDEE inversion has the best prior and posterior fit to the data at PAL

and HEI and the JULES inversion has a better fit to the data at MHD. Prior ORCHIDEE modelled

mole fractions tend to under-estimate concentrations in late spring and early summer as a result of

over-estimated uptake in these months. These are corrected during the inversion and lead to the

smaller summer uptake seen in the monthly fluxes. This also occurs to a lesser extent in the JULES
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Table 4.2: Fit to the data statistics for the three inversions averaged over the period of the inversion (2011–2015
for ORCHIDEE, 2013–2014 for JULES). Grey shading highlights the sites for which mole fractions and
residual histograms are plotted in Figs. 4.16, 4.17 and 4.18. "ORCHIDEE" represents the gross flux inversion
and "ORCHIDEE NEE" represents the net flux inversion.

JULES

Site Prior R2 Post R2 Prior RMSE Post RMSE Prior Bias Post Bias

MHD 0.22 0.65 1.55 1.13 0.59 0.45
PAL 0.33 0.74 2.88 1.49 2.63 0.22
SMR 0.20 0.66 2.92 1.80 1.08 -0.48
OPE 0.18 0.56 3.85 3.03 0.46 -1.34
HEI 0.17 0.46 6.55 4.91 2.75 0.94
HUN 0.23 0.64 5.07 3.31 0.64 -2.01
RGL 0.31 0.72 2.80 1.84 0.79 -1.00
TRN 0.19 0.49 4.46 3.68 1.17 -0.01
TAC 0.25 0.63 2.89 2.10 0.53 -0.15
TTA 0.29 0.61 2.33 1.71 1.52 -0.67
SSL 0.28 0.57 4.07 3.34 -0.22 -3.12
CBW 0.24 0.50 3.92 3.27 0.51 -0.70
LUT 0.26 0.57 4.17 3.17 2.90 1.98
All sites 0.23 0.55 4.07 3.07 1.05 0.06

ORCHIDEE

Site Prior R2 Post R2 Prior RMSE Post RMSE Prior Bias Post Bias

MHD 0.19 0.63 1.72 1.07 0.72 0.21
PAL 0.45 0.81 3.35 1.15 3.85 -0.10
SMR 0.28 0.77 3.75 1.56 0.94 -0.45
OPE 0.25 0.67 4.76 2.55 1.16 -1.41
HEI 0.23 0.51 6.36 4.52 2.56 0.78
HUN 0.27 0.73 5.23 2.76 1.03 -1.90
RGL 0.33 0.69 3.19 1.82 0.54 -1.27
TRN 0.27 0.61 4.37 2.98 0.70 -1.04
TAC 0.33 0.70 3.05 1.79 0.45 -0.61
KAS 0.18 0.53 7.18 3.55 -1.09 -3.63
TTA 0.26 0.58 2.60 1.44 0.82 -0.84
LMP 0.22 0.44 3.48 2.00 0.22 -0.14
SSL 0.25 0.55 4.78 3.15 -0.13 -2.96
CBW 0.29 0.53 4.47 3.38 -0.07 -0.75
LUT 0.33 0.52 4.38 3.48 1.63 1.37
All sites 0.29 0.61 4.55 2.95 0.88 -0.04

ORCHIDEE NEE

Site Prior R2 Post R2 Prior RMSE Post RMSE Prior Bias Post Bias

MHD 0.19 0.59 1.58 0.99 0.40 0.29
PAL 0.45 0.75 3.19 1.49 3.31 -0.13
SMR 0.28 0.72 3.57 1.85 0.54 -0.49
OPE 0.25 0.57 4.47 2.97 0.71 -1.42
HEI 0.23 0.48 6.03 4.79 2.03 0.81
HUN 0.27 0.66 4.96 3.24 0.52 -1.88
RGL 0.33 0.65 3.00 1.96 0.14 -1.31
TRN 0.27 0.55 4.21 3.23 0.32 -1.01
TAC 0.33 0.65 2.88 1.93 0.04 -0.65
KAS 0.18 0.59 7.22 3.35 -1.72 -3.66
TTA 0.26 0.55 2.42 1.50 0.38 -0.86
LMP 0.22 0.46 3.22 1.81 -0.09 0.46
SSL 0.25 0.52 4.66 3.31 -0.60 -2.94
CBW 0.29 0.50 4.35 3.51 -0.62 -0.74
LUT 0.33 0.50 4.15 3.59 1.29 1.42
All sites 0.29 0.56 4.38 3.14 0.44 -0.05
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Fig. 4.16: Mole fractions from the ORCHIDEE gross flux inversion at Mace Head (MHD), Heidelberg (HEI)
and Pallas (PAL).
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Fig. 4.17: Mole fractions from the JULES inversion at Mace Head (MHD), Heidelberg (HEI) and Pallas (PAL).

prior modelled mole fractions for PAL (Fig. 4.17c). In both inversions, the majority of the higher

mole fractions seen at HEI have not been represented (Figs. 4.16b and4.17b) and unsurprisingly HEI

has the worst fit to the data of these three sites for both inversions.

Figure 4.18 shows histograms of residual prior and posterior modelled mole fractions for the

same three sites and for all three inversions. Prior modelled mole fractions at PAL stand out as being

frequently under-estimated using both ORCHIDEE and JULES priors but this is corrected in the

posterior modelled mole fractions, which gives it the smallest posterior bias of the inversions at these

three sites of –0.1 to 0.22 ppm. The bias at HEI, on the other hand, is between 0.78 and 0.94 ppm.

4.4 Discussion

4.4.1 The system’s ability to estimate European scale fluxes

Estimates for the European biospheric CO2 budget from this work are all in agreement within the

estimated uncertainties and mean results range from a small net source of 779±1568 Tg CO2 yr−1

(ORCHIDEE gross flux inversion, uncertainty is 1σ ) to a small net sink of –485±1068 Tg CO2 yr−1

(JULES inversion). However, with the uncertainties straddling zero, these results are all consistent

with a biosphere in balance, where sources equal sinks. The fit to the data is generally good and

the ORCHIDEE gross flux inversion is able to best fit the observations. The fit of the JULES and
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Fig. 4.18: Residual mole fraction histograms for all three inversions at Mace Head (MHD), Heidelberg (HEI)
and Pallas (PAL). "ORCHIDEE" represents the gross flux inversion and "ORCHIDEE NEE" represents the net
flux inversion.
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ORCHIDEE net flux inversions are not significantly worse, consistent with the fact that the posterior

estimates agree across all three inversions.

The uncertainties in the results presented here are large; the one standard deviation uncertainty

on the annual European flux is typically 200 - 600 % of the flux itself. Analysis of regional fluxes

reveals that this system is able to best constrain fluxes from western and central Europe, which is

mostly due to the comparative density of measurement sites in these areas. Therefore, the European

budget itself is not well constrained and highlights the need to include measurements from sites that

can represent fluxes in poorly constrained areas. Such sites could include Monte Cimone in Italy, La

Muela in Spain, Bialystock in Poland, Norunda in Sweden and Birkenes in Norway. One problem

is that the dates and times that data are available do not always overlap in a way such that there is

always a good spatial distribution of measurement data, so extending the time period of the inversion

to maximise the chances of finding a good distribution of sites in any one month may help. There is

also a need to continue measurements from existing sites and develop new long standing measurement

sites, particularly in areas of southern, south-eastern and eastern Europe.

4.4.2 Differences between prior and posterior NEE flux estimates

Compared to prior ORCHIDEE and JULES fluxes, the posterior Europe, and some regional, totals

from all inversions resemble each other very closely. According to these results, the ORCHIDEE

prior strongly over-estimates the summer sink and slightly over-estimates the winter source, however

the timing of the seasonal cycle is generally well modelled (except for western Europe). On the other

hand, the JULES prior under-estimates the winter source of CO2 and spring uptake is too early in

2013. This leads to posterior results with a much weaker seasonal cycle than that predicted by the

ORCHIDEE prior and improved timing of the seasonal cycle as compared to JULES.

4.4.3 Gross vs. net flux inversions

In general, the gross and net flux inversions do follow the results of Chapter 3 in that the mean annual

total from the gross inversion is slightly higher than the mean annual total from the net inversion,

however they are in much better agreement here than in previous work. This could be due to the

inclusion of disturbance fluxes in the ORCHIDEE prior, giving a better profile of diurnal net fluxes

with the spring vegetation growth and autumn die-back occurring at the appropriate time, even if

the magnitudes are too large (because uptake has been scaled down a lot in the inversion). The

average seasonal cycle over Europe also indicates that the ORCHIDEE gross flux inversion finds

a reduced summer sink in June and July, as found in Chapter 3. However the difference is small,

perhaps indicating that there is not much to be gained from separately scaling the gross fluxes in the

inversion. The JULES inversion gives mean annual total results that are slightly smaller than both of

the ORCHIDEE inversions (1264 Tg CO2 yr−1 smaller than the ORCHIDEE gross flux inversion and

720 Tg CO2 yr−1 smaller than the ORCHIDEE net flux inversion), but within the uncertainties there

is agreement on an annual scale between all of the inversions.
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4.5 Conclusions and future work

On the monthly scale, the three inversions tend to agree well over Europe as a whole and over the

central Europe region, however in western Europe both gross flux inversions show a similarly reduced

summer sink in all years of the study, by on average around 900 Tg CO2 yr−1. This was also seen in

the work of Chapter 3 and it was thought that additional summer fluxes could be coming from harvest

disturbance. There are two contributing elements here. Firstly, there is the difference between how the

gross and net fluxes are dealt with in the inversion. Secondly, there is the fact that the ORCHIDEE

prior should take into account fluxes from human disturbance, such as harvest. Both JULES and

ORCHIDEE gross flux inversion posteriors in western Europe are larger than the ORCHIDEE net

flux inversion posterior in June and July indicating that this is a signal that cannot be replicated by

the ORCHIDEE net flux inversion. However, this is also a signal that is not seen in the ORCHIDEE

prior, which either suggests that the ORCHIDEE prior is wrongly estimating disturbance fluxes or still

omitting some element of disturbance, or that the higher summer fluxes are not due to disturbance.

The fact that this is only seen in western Europe monthly fluxes and not elsewhere could be due to

higher levels of disturbance in western Europe, or a denser network of sites in this region that is better

able to resolve changes to the prior seasonal cycle.

On the diurnal scale, the profiles of European fluxes for the three inversions have converged

somewhat on a similar result, resembling each other more closely than the prior diurnal profiles.

For example the ratio of the average diurnal range for June between the JULES and ORCHIDEE

posteriors is reduced by over 40% from 3.3 to 1.9. A more realistic profile is achieved with the

gross flux inversions as there are less occurrences of large day-to-day variability in the diurnal range

compared to the net flux inversion, indicating that fluxes at this temporal scale are best resolved by

separating the gross fluxes. The main discrepancy between the JULES and ORCHIDEE posteriors is

in the daily maximum source.

4.4.4 European biospheric CO2 estimates in the context of previous studies

In the context of the previous studies discussed in Section 4.1, the results of this work are on the upper

end of estimates for the European biospheric CO2 budget, shown in Fig. 4.19. Mean estimates all

lie within the results of Peters et al. (2010), which is also a regional inversion study using in-situ

measurements and the 1σ range of the results presented here is also comparable to that of many of

the studies. A major difference between the results presented here and the previous studies is the time

period of the analysis. As discussed in Section 4.1, inter-annual variability can play a major role in

the European biospheric CO2 budget, so differences in these results could be reflecting this.

4.5 Conclusions and future work

This chapter has taken the method developed in Chapter 2 and investigated its suitability for biospheric

CO2 flux estimation over a larger region (Europe) with more data. The results from three different

inversions (gross and net flux inversions using prior biospheric fluxes from ORCHIDEE and a gross
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Fig. 4.19: The results of this study (grey bars showing 1σ uncertainty and black line showing mean) along with
estimates of European biospheric CO2 budget from previous studies. The majority of uncertainty estimates from
the previous studies are 1σ , however it is sometimes difficult to calculate comparable uncertainty estimates.

flux inversion using prior biospheric fluxes from JULES) give a spread of results ranging from a

small net source to a small net sink, however they all agree within their estimated uncertainties.

European biospheric CO2 fluxes are found to be 779±1568 Tg CO2 yr−1 (uncertainty is 1σ ) with the

ORCHIDEE gross flux inversion and 235±1449 Tg CO2 yr−1 with the ORCHIDEE net flux inversion

over 2011–2015. The JULES inversion estimated European biospheric CO2 fluxes of –485±1068 Tg

CO2 yr−1 over 2013–2014. These results are consistent with a net zero CO2 flux from the biosphere

over Europe and fit within the context of previous estimates for Europe’s biospheric CO2 budget,

albeit at the upper end of estimates.

The areas best constrained in this work are western and central Europe, owing to the comparative

density of measurement sites in these regions. To improve overall Europe estimates, future work

should incorporate available data from more sites and more measurement sites are needed in southern,

south-eastern and eastern Europe. Also, the time period of the study should be extended (at least from

2006–2015) to allow additional data that has been collected between 2006–2011 to be included.

This study has revealed some interesting developments to the conclusions made in Chapters 2

and 3. Mostly, only a small difference is seen between the gross and net flux inversions except over

western Europe where the density of measurements is greatest. This could mean that the gross flux

inversion is only able to add additional information where there are enough measurements. However,

since the ORCHIDEE prior biospheric fluxes include information about human disturbances such as

harvest, it may be that this additional information is what is required to improve net flux inversions

and the differences seen in western Europe could be due to poor estimation of disturbance or natural
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biospheric fluxes in this area from ORCHIDEE. Monthly fluxes from the JULES inversion agree

well with the ORCHIDEE inversions and agree with the ORCHIDEE gross flux inversion in western

Europe, which indicates that using a prior with no disturbance does not necessarily affect the posterior

results when using a gross flux inversion. A synthesis of the results from this chapter and Chapter 3

follows in Chapter 5 and investigates some remaining questions.
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Chapter 5

Synthesising the results of UK and

European CO2 flux studies

5.1 Introduction

This synthesis chapter serves to bring together the results from Chapters 3 and 4. Both chapters use

the method developed in Chapter 2. However, Chapter 3 presents the results of a study focussed on the

UK, using a dense network of sites in and around the UK, and Chapter 4 is focussed on Europe, using

a different network of sites with fewer in the UK, and a different prior flux model. In this chapter,

the results of both studies will be compared, using a common flux area over the UK only, to evaluate

whether they are consistent.

The main differences between the set-ups used in Chapters 3 and 4 are set out in Table 5.1.

Chapter 3 concluded that the prior fluxes over-estimated the summer sink, possibly because they were

missing biospheric CO2 fluxes linked to human disturbance. In addition, carrying out the inversion

with gross fluxes gave a consistent picture between two inversions with different priors, whereas using

net fluxes in the inversion did not. This supported the results of a synthetic test in Chapter 2, where

a gross flux inversion was able to find the "true" fluxes and a net flux inversion was not. The main

conclusions from Chapter 4 were that on a European scale, the set-up used was best able to constrain

fluxes in western and central Europe. There was less difference seen between ORCHIDEE gross

and net flux inversions, possibly because ORCHIDEE includes disturbance fluxes, except in western

Europe. It was speculated that the difference in western Europe could be due to poor estimation of

disturbance or natural biospheric fluxes in these areas in ORCHIDEE compared to other parts of

Europe. Alternatively, a denser network of measurement sites in this area may be able to better resolve

detailed changes to the seasonal cycle, implying that ORCHIDEE could also be poorly estimating

disturbance or natural biospheric fluxes elsewhere but this cannot be resolved using the data available.
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Table 5.1: Distinguishing features of the inversion set-ups used in Chapters 3 and 4. Measurement sites "near"
the UK are included as they are likely to provide some constraint on UK fluxes.

Sites in UK Sites near UK Priors Basis functions Temporal resolution of

data in inversion

Chapter 4 Ridge Hill (RGL) Mace Head (MHD) CARDAMOM gross flux PFTs over subdomain 2-hourly

Tacolneston (TAC) CARDAMOM net flux

Heathfield (HFD) JULES gross flux

Bilsdale (BSD) JULES net flux

Angus (TTA)

Chapter 5 Ridge Hill (RGL) Mace Head (MHD) ORCHIDEE gross PFTs over west Europe 6-hourly

Tacolneston (TAC) Cabauw (CBW) ORCHIDEE net

Angus (TTA) Lutjewad (LUT) JULES gross

Trainou (TRN)

5.2 UK CO2 fluxes using UK and European networks

5.2.1 Seasonal cycle

Figure 5.1 shows the monthly fluxes over the UK from gross and net flux inversions from Chapters 3

and 4. The Chapter 4 results over the UK are similar to those seen over the western Europe region, in

that the ORCHIDEE net flux inversion has lower fluxes in June and July than the gross flux inversion.

Whilst the JULES inversion does not agree with the ORCHIDEE gross flux inversion as closely as it

does over the western Europe region (the inversions are in agreement in all months over the western

Europe region and just 15 out of 24 months over the UK region), it does show similarities e.g. where

the gross flux inversions both indicate that fluxes reduce between July and August 2014 whereas the

net flux inversion has a steady increase of fluxes in the second half of the year.

Comparing the results across the two studies, there are similarities between the seasonal cycles of

gross flux inversions. Both studies see an abrupt increase in fluxes between June and July 2014 and a

decrease or much shallower increase between July and September 2014. The main differences are that

uptake in May, June and July 2013 range between –565 and –381 Tg CO2 yr−1 and in Chapter 3 the

maximum uptake in 2014 is in June whereas in Chapter 4 it is in May. The July "peak" in 2014 ranges

between around –120 and 180 Tg CO2 yr−1 in the results from both chapters. However, within the

estimated uncertainties the four gross flux inversions often all agree within the estimated 90 percentile

ranges (in 12 out of 24 months) and, importantly, the JULES inversions from Chapter 3 and 4 both

agree within the estimated 90 percentile confidence interval in all months except January and May

2014.

Despite overestimating the winter source and the maximum summer sink, the timing of the

seasonal cycle in the ORCHIDEE prior is in best agreement with that of the gross flux inversions.
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Fig. 5.1: Monthly prior and posterior biospheric CO2 fluxes from Chapter 3 (top) and Chapter 4 (bottom) over
2013–2014. Shading represents 5th–95th percentile.
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Fig. 5.2: Diurnal flux range over 2013–2014. (a-c) shows results from Chapter 3, (d-f) shows results from
Chapter 4. (a and d): prior fluxes. (b and e): posterior results from gross flux inversions. (c and f): posterior
results from net flux inversions. The sub-daily fluxes were averaged to 6-hourly before the diurnal range was
computed as ORCHIDEE is available at 3-hourly temporal resolution and CARDAMOM and JULES are
available at 2-hourly temporal resolution.

According to the posterior results, it seems to get the right timing for the growth of the spring uptake

in March, April and May and provides the best fit to the summer/autumn increase in NEE during

July, August and September, with the points of inflexion of the seasonal cycle occurring in April and

July in 2013 and March and July in 2014. This means that the ORCHIDEE net flux inversion, whilst

overestimating the sink in June and July, provides a better fit to the ORCHIDEE gross flux inversions

than the JULES and CARDAMOM net flux inversions from Chapter 3. The JULES prior, on the other

hand, estimates the spring uptake to be too early and the CARDAMOM prior estimates the spring

uptake to be too late, according to the posterior results, with the spring points of inflexion of the

seasonal cycles occurring in March of both years for JULES and April of both years for CARDAMOM.

The summer/autumn increase in NEE occurs too late in both CARDAMOM and JULES, with the

autumn points of inflexion of the seasonal cycles occurring in August of both years for JULES and

September of both years for CARDAMOM.
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5.2.2 Diurnal range

In Chapter 4, the diurnal range of the posterior gross flux inversions (Fig. 5.2e) resemble each other

well in maximum daily uptake, but less so in the maximum daily source. This is in contrast to the

results of Chapter 3 (Fig. 5.2b), which resemble each other well in both the maximum daily source and

uptake. The ORCHIDEE net flux inversion from Chapter 4 agrees somewhat with the corresponding

gross flux inversion, as does the CARDAMOM net flux inversion from Chapter 3, however this is

certainly not the case for the JULES net and gross flux inversions of Chapter 3.

Common features across the posterior diurnal ranges from gross flux inversions in both chapters

(Fig. 5.2b and 5.2e) are their similar magnitude and general profile. From a qualitative examination, a

second minimum seen in the ORCHIDEE prior in 2014 around September (Fig. 5.2d) may also be

appearing in the posterior results of the gross flux inversions.

5.2.3 Annual estimates

The annual flux estimates for all inversions from Chapters 3 and 4 are shown in Fig. 5.3. The NEE

results of the three inversions in Chapter 4 agree within the uncertainties in 2013 and 2014, however

they are in better agreement in 2014. The posterior TER and GPP fluxes from the gross inversions

also agree well. From Chapter 3, the JULES net flux inversion is the only one that does not always

agree with the other NEE estimates within the uncertainties. The TER and GPP fluxes of the two

gross flux inversions from Chapter 3 do not agree.

Across the two studies, all NEE estimates agree within the estimated uncertainties except the

JULES net flux inversion from Chapter 3. The JULES gross flux inversions from the two studies

agree on the NEE, GPP and TER fluxes within the estimated uncertainties. Gross flux inversions all

estimate that the UK source and sink fluxes are balanced, giving net zero flux from the biosphere,

except for the JULES gross flux inversion from Chapter 4. The net flux inversions all estimate that

the UK biosphere is a sink, albeit a fairly small one, of −210±56
60 Tg CO2 yr−1 in the JULES NEE

inversion to −56±47 Tg CO2 yr−1 in the ORCHIDEE NEE inversion, averaged over the two years.

This is generally consistent with the findings that net flux inversions estimate smaller fluxes than

gross flux inversions, however the difference between the results of the two types of inversions is not

statistically significant.

5.3 Discussion and conclusions

In general, the results are consistent across the studies in Chapter 3 and 4. The main difference

between these two set-ups is the data used. Perhaps the extra constraint of data from the atmospheric

measurement sites at Heathfield and Bilsdale is responsible for the estimation of larger May fluxes in

2014 and smaller summer uptake in 2013 in the results from Chapter 3? Or perhaps the inclusion

of data outside the UK in the Netherlands and France (as in Chapter 4) is responsible for giving the
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Fig. 5.3: Annual NEE, GPP and TER fluxes from Chapters 3 and 4. Bars represent 5th–95th percentile.
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opposite results? Both set-ups have estimated posterior uncertainties of the same magnitude, therefore

it is impossible to say whether one or other of these set ups is giving a better constrained result.

One question that remained from Chapter 4 was whether the ORCHIDEE prior was wrongly

estimating disturbance fluxes in western Europe (as the seasonal cycle was well estimated elsewhere)

or whether the dense network of sites in this region was allowing additional levels of detail to be

resolved in the seasonal cycle. It is clear from this chapter that the ORCHIDEE prior does provide a

better estimate of the timing of the seasonal cycle compared to JULES and CARDAMOM, however,

it maybe has not quite captured the timing of the shut-down of the summer sink in the UK (and west

Europe) as estimated by the gross flux inversions. Whether this is also the case in other areas of

Europe, but cannot be seen due to the relative sparsity of data, is still an open question.

To respond to both of the questions above, a sensitivity study could be carried out for the UK

using different combinations of measurement sites in the UK and nearby areas in the inversion. This

may be able to pinpoint which sites are responsible for certain features in the seasonal cycle. If the

responsible sites are uniquely situated in, for example a specific eco-region or representative of a

range of eco-regions, then this may help to identify useful locations for future measurement sites

across Europe.

It is also clear that using a prior with a good estimate of the timing of the seasonal cycle means

there are fewer stark differences between net and gross flux inversions as were seen in Chapter 3.

Therefore, in these cases, using a net flux inversion may be sufficient to estimate fluxes on an annual

scale. However, some detail may be missed at the monthly and daily scales.

117





Chapter 6

Conclusion

Human activity is causing rising atmospheric CO2 concentrations, leading to an increase in global

mean temperature and a changing climate. According to the latest IPCC report, the global community

has only 12 years to put in place the policies needed to limit warming to 1.5◦C above natural levels and

avoid some of the catastrophic effects of climate change (Masson-Delmotte et al., 2018). Monitoring

biospheric CO2 fluxes at global, continental and regional scales is important for two reasons related to

climate change. Firstly, to track the success of mitigation policies that involve sequestering CO2 in the

biosphere, thought to contribute to 25% of international pledges made through the process of the Paris

Agreement (Grassi et al., 2017). Secondly, to track how the biosphere is responding to increased CO2

concentrations in the atmosphere and climate change, which are likely to have a mixture of positive

and negative effects on biospheric sources and sinks.

Top-down methods at global, continental and regional scales that use atmospheric measurements

of CO2 in an inverse modelling set-up are able to evaluate the carbon cycle as a complete system.

As such, the development of these methods is important for taking stock of the current state of the

biosphere and tracking progress towards emissions targets and mitigation efforts at a variety of scales.

In particular, regional inverse modelling has a useful role to play in estimating biospheric fluxes at

scales that are relevant to national policy making, evaluating emissions targets and verifying other

bottom up estimates compiled to understand national emissions.

This thesis works towards the first top-down estimates of UK biopsheric CO2 fluxes and includes

the contribution to a regional inverse modelling comparison project that focusses on European

biospheric CO2 fluxes. The development of this system is a first step towards more ambitious

atmospheric CO2 inversions that can be carried out using UK and European data networks, such as

those to evaluate anthropogenic CO2 fluxes.

Up to now, the hierarchical Bayesian trans-dimensional MCMC inversion framework described in

Chapter 1 has been developed and used for GHGs of predominantly anthropogenic origin, with no

diurnal cycle and a flux that cannot be negative. In Chapter 2, this framework was adapted to the unique

characteristics of CO2 fluxes, which have a strong diurnal cycle and co-located anthropogenic and

119



Conclusion

biospheric sources and biospheric sinks. One of the major changes was to introduce a disaggregation

of the footprints from the LPDM NAME to enable correct simulation of the timing of the diurnal

cycle in the forward model. A set of synthetic tests, using "true" fluxes created with one model of

biospheric fluxes (CARDAMOM) and prior fluxes from a different model (JULES), were used to

explore a number of changes to the initial framework and to find the optimum set-up for estimating

biospheric CO2 fluxes using the UK’s UK-DECC and GAUGE measurement networks.

Overall, a set-up was achieved that was able to recreate the "true" fluxes well in a synthetic data

experiment. Various tests concluded that: disaggregating footprints back in time for the first 24 hours

is sufficient to correctly simulate the timing of the diurnal cycle in the forward model, balancing

simulation accuracy and computational efficiency; attempting to find an estimate for anthropogenic as

well as biospheric fluxes is not possible with the current atmospheric CO2 concentration dataset due

to the co-location of sources; allowing the data to guide the number of temporal regions as opposed

to the number of spatial regions made a significant improvement to posterior flux estimates due to

the added flexibility in the time dimension (particularly important to cope with rapidly varying CO2

fluxes and boundary conditions); and that including all measurements in the inversion actually gives

an incorrect posterior estimate in summer months, whilst using a filter that only includes times where

the atmosphere is thought to be well-mixed improves the result. Finally, an important finding was

made that a separation of NEE into its positive (TER) and negative (GPP) components (to be scaled

individually in the inversion) is required to give the system the flexibility it needs to find the "true"

solution.

Whilst tests with synthetic data are useful to diagnose the abilities and limitations of a modelling

system, it is only with real data that the actual potential of the system can be exposed. In Chapter 3

the inverse set-up developed in Chapter 2 was applied to the real atmospheric CO2 concentration

measurements from the UK-DECC and GAUGE networks to find an estimate for UK biospheric

CO2 fluxes. The same models of biospheric fluxes as used in Chapter 2, CARDAMOM and JULES,

provided prior constraints in two different inversions in order to assess the impact of the choice of

prior model on the inversion result and the consistency of the underlying processes in those models

with atmospheric CO2 concentrations.

Over the period of the inversions, 2013-2014, the UK biosphere was found to be in balance

as the CO2 sources roughly equalled the CO2 sinks, giving annual net fluxes of –8±79 Tg CO2

yr−1 and –64±85 Tg CO2 yr−1 according to the CARDAMOM and JULES inversions respectively

(uncertainty is the 5th-95th percentile range). Whilst the prior models of biospheric fluxes exhibited

significant differences, the posterior results were consistent between the two inversions, implying that

the set-up can provide a data-driven result. The prior models were found to underestimate spring and

summer fluxes, perhaps highlighting one particular limitation of these models as they do not simulate

fluxes from human disturbance and the larger fluxes inferred by the inversions could be partly due to

increased respiration fluxes during crop harvest. However, when the same inversions were carried out

scaling the NEE as opposed to the GPP and TER fluxes separately, the results between the inversions
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were not consistent and did not change dramatically from the prior mean estimate. This reinforced

the finding in Chapter 2, that separating the GPP and TER fluxes is important in this set-up and can

potentially allow the inversion to resolve changes in the net flux that are not accounted for in the prior

models.

Extending the scope of the inversion to include the whole of Europe to contribute to the EU-

ROCOM intercomparison project enabled a comparison of the results produced here with previous

European biospheric CO2 flux estimates. Using 15 measurement stations from the ICOS data net-

work and prior biospheric fluxes from the ORCHIDEE and JULES models, Chapter 4 focussed on

estimating the whole European biospheric CO2 flux budget, along with regional flux estimates.

European biospheric CO2 fluxes were found to be in balance according to the inversions carried

out here. Using ORCHIDEE prior fluxes (over 2011-2015) the mean annual net flux was 779±1568

Tg yr−1 (uncertainty is 1σ ) and using JULES prior fluxes (over 2013-2014) the mean annual net flux

was –485±1068 Tg yr−1. These results agree with other estimates from regional inverse studies (e.g.

Peters et al., 2010), however they are at the upper end of estimates across a range of different methods.

Given the distribution of measurement sites used in this study, biospheric CO2 flux estimates for

western and central Europe were the best constrained. Whilst there are other measurement sites that

could be incorporated into the work, the distribution used is generally representative of the spread of

sites in the ICOS network and highlights a need to expand the network in other areas.

The work in Chapter 4 also added new insight to the question of separating GPP and TER fluxes.

As ORCHIDEE includes processes of human disturbance, biospheric CO2 flux estimates from the

model are expected to be more realistic. In two inversions that scaled the net and gross fluxes and

used ORCHIDEE as the prior model, there were only small differences between monthly posterior

estimates. This was true in all but one region, western Europe, where the two inversions were mostly

in agreement except in summer where the net flux inversion estimated more uptake than the gross flux

inversion (similar to the findings of Chapter 3). This suggested that when using a prior that includes

disturbance fluxes, carrying out an inversion that scales the net flux may be sufficient. However,

the differences between the gross and net flux inversions in western Europe suggested either that

it is only with a denser network of sites that the benefits of a gross flux inversion can be seen and

ORCHIDEE is poorly estimating disturbance and/or natural biospheric fluxes elsewhere as well,

or that ORCHIDEE is not correctly estimating the disturbance and/or natural biospheric fluxes in

this particular region. The inversion using JULES as the prior biospheric flux model (that does not

include disturbance fluxes) agreed with the ORCHIDEE gross flux inversions at the times where the

ORCHIDEE gross and net flux inversions disagreed, implying that whether or not the prior model

accounts for disturbance has minimal impact on the result in a gross flux inversion.

As the inversion domains for the estimates of UK and European biospheric CO2 fluxes overlap, it

would be expected that the fluxes found over the UK in the European study (in Chapter 4) should be

consistent with the fluxes found over the UK in the UK-focussed study (in Chapter 3). Chapter 5 served

to bring the results of Chapters 3 and 4 together to investigate this and found that they were indeed
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consistent. The main difference between the two inversion set-ups was the number of measurement

sites in and around the UK. Given that the uncertainty estimates on the results from the two set-ups

were of a similar size, it was difficult to say which of the two configurations of sites was best able

to constrain the posterior flux. As in Chapter 4, the net and gross flux inversions using ORCHIDEE

were mostly in agreement, potentially indicating that a net flux inversion is sufficient when evaluating

fluxes on an annual scale if using a prior that includes disturbance fluxes. However, some detail

may be missed when evaluating fluxes on a monthly scale as the net flux inversion estimated a larger

summer sink than the gross flux inversion.

6.1 Future work

Although the results of Chapter 4 are contributing to an intercomparison project of European biospheric

CO2 fluxes, the project is ongoing so the results of the intercomparison have not been presented

here. However, it is through intercomparisons such as this that a more thorough investigation of the

strengths and weaknesses of each set-up can be carried out and the results of the project are sure

to highlight some areas for improvement for the set-up developed in this thesis. Equally, a similar

comparison should be attempted with a focus over the UK to assess the particular ability of this set-up

to evaluate UK biospheric fluxes with data from the UK-DECC and GAUGE networks, and in fact

work along these lines is currently in the preparation stages.

This thesis has also left some specific unanswered questions that further work could help to

answer. Firstly, there is the speculation that the GPP and TER fluxes may be separately resolved if

changes could be made to the diurnal cycle within the inversion. Currently the trans-dimensional

inversion in time is able to split the one month inversion window into smaller chunks of time down to

a minimum daily resolution. If that time could be further broken down into perhaps six-hourly chunks

it is possible that sub-daily fluxes could be scaled to improve the timing or amplitude of the diurnal

cycle and this is worth investigating. However, as it currently stands it is likely that there would not

be enough data available for the inversion to make sub-daily changes to fluxes.

Secondly, it is not known whether the dense network of sites in western Europe is responsible for

the differences seen between the ORCHIDEE net and gross flux inversions or whether ORCHIDEE

is poorly estimating biospheric fluxes in this area. To investigate this question a site sensitivity

analysis could be carried out, trialling different combinations of measurement sites, to see which

sites are responsible for certain features of the seasonal cycle. There are also monthly differences

between the inversion results compared in Chapter 5 that use different sets of measurement sites so

this same sensitivity test could also help to identify where these different sets of sites provide different

constraints. This would help to understand the sites that give information about particular areas of

fluxes and could aid the future identification of new measurement sites across Europe.
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6.2 Outlook

The purpose of developing a top-down inverse method for CO2 flux estimation over the UK was to

advance the scientific community’s ability to report CO2 fluxes to the UK government and to track

changes to the biosphere that might reflect mitigation strategies or the biosphere’s response to climate

change. Neither of these goals are possible yet. To achieve this the inverse system needs to move

towards estimation of anthropogenic emissions and even flux estimates for individual sectors. This

will involve improvements across all components of the inverse modelling framework.

In order to separate source sectors, measurements of co-emitted gases, introduced in Sect. 2.1

(e.g. CO, 14C, APO), must be made routinely at measurement sites across the UK. Incorporating

these measurements into inverse modelling frameworks will help to disentangle the anthropogenic

and biospheric components of the atmospheric CO2 signal. Although the measurement network in the

UK and Republic of Ireland is thought to be relatively dense compared to other regions, there are still

potentially large gaps in what can be inferred about surface fluxes from the measurements at the six

UK-DECC and GAUGE sites. The use of satellite data in atmospheric inversions, from satellites such

as OCO-2, is growing as researchers overcome the problems associated with handling large data-sets

(e.g. Ganesan et al., 2017). Introducing satellite data into CO2 inversions in the UK may improve

understanding of biospheric and anthropogenic fluxes with increased coverage. It would also provide

further insight to the simple site analysis suggested earlier that may decipher which measurements

provide a constraint on which parts of the seasonal cycle.

The uncertainties in the atmospheric transport model are the most difficult to assess and have not

been given much attention in this thesis, since only one atmospheric transport model has been used.

This is another reason why intercomparison projects that compare set-ups using different transport

models are so important. In particular, it is at times of stagnant wind conditions that atmospheric

transport models tend to struggle to represent the actual transport patterns. Inverse studies repeatedly

state that improvements to atmospheric transport models may help to improve results (e.g. Chevallier

et al., 2014; Peylin et al., 2011). Promising developments in studies using measurements of Radon

(222Rn), commonly used as a tracer in atmospheric transport experiments, could help to further

understand the dynamics of transport models and the times at which they are well representing

atmospheric conditions (e.g. Taguchi et al., 2011).

From the range of estimates produced by the models of biospheric fluxes used in this thesis

(JULES, CARDAMOM and ORCHIDEE), it is clear that there is a long way to go to harmonise

bottom-up estimates of biospheric CO2 fluxes. Atmospheric inverse modelling can go some way to

identify the processes in the models leading to inconsistencies with atmospheric CO2 measurements.

However, a more thorough approach would be to couple the transport model and the model of

biospheric fluxes, which would enable parameters in the biospheric flux model to be directly updated

in response to atmospheric measurements and allow a more robust analysis of the uncertainties in the

system. This has been attempted before in carbon cycle data assimilation systems (e.g Kaminski et al.,
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2013; Peylin et al., 2016). However, a dedicated effort to assimilate high resolution data over the UK

could provide important insight to the UK’s biospheric processes on both managed and un-managed

land.

Looking further afield to improving estimates of European biospheric CO2 fluxes, one of the main

limiting factors for inverse modelling studies is the lack of measurement sites in the north, east and

south of Europe. Increasing the number of measurement sites in eastern Europe may shed light on

whether regional inverse modelling studies can infer the same large sink in this area as is found in

inverse modelling studies using satellite measurements (Houweling et al., 2015; Nassar et al., 2011;

Reuter et al., 2014).

To conclude, this thesis takes an important first step in the estimation of UK and European CO2

budgets, through developing an appropriate method and finding estimates for biospheric CO2 fluxes

across different scales. According to the inversion results, both the UK and Europe are found to be in

balance in regards to biospheric sources and sinks, in general estimating less negative fluxes than those

found using models of biospheric fluxes. This work will provide the foundation to future atmospheric

CO2 inversion studies, using NAME within a hierarchical Bayesian inversion framework and also

makes a recommendation to the wider inverse modelling community to consider separately scaling

positive and negative fluxes. Tracking CO2 fluxes using atmospheric inverse modelling approaches

holds a lot of promise and will be a key tool for guiding the world towards the emissions reductions

required for a safe climate in the future.
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