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[Abstract]

Modern methods of measuring the refractive state of the eye include wavefront sensors that 

make it possible to monitor both static and dynamic changes of the ocular wavefront while 

the eye observes a target positioned at different distances away from the eye. In addition to 

monitoring the ocular aberrations, wavefront refraction methods allow measurement of the 

accommodative response while viewing with the eye's habitual chromatic and 

monochromatic aberrations present, with these aberrations removed, and with specific 

aberrations added or removed. A large number of experiments describing the effects of 

accommodation on aberrations and vice-versa are reviewed, pointing out the implications for 

fundamental questions related to the mechanism of accommodation.
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[Introduction]

Accommodation can be thought of as a natural adaptive optics mechanism to improve the 

retinal image quality of objects placed at different distances. It was Thomas Young who 

demonstrated at the beginning of the 19th century that the change in refractive power of the 

eye is due to the crystalline lens.1,2 Currently, it is well known that there are no significant 

changes in corneal power during accommodation,3,4 and only small changes have been 

observed in the sclera.5 In addition to this, Young realised that the refractive power in the 

periphery of his pupil was greater than in the centre, and when he accommodated, the 

refractive power distribution was opposite.1,2 This was the first observation that proved that 

the spherical aberration (SA) of the eye changed its sign with accommodation. 

Two centuries after Young’s discoveries, the measurement of spherical and other 

aberrations of the accommodated eye can be performed in vivo using wavefront sensors. As 

accommodation changes dynamically,6,7 fast wavefront sensors, such as a Hartmann-Shack 

need to be used.8,9 The experimental system should include the possibility of changing the 

vergence of the target (by changing the distance between the eye and the target, or by 

adding lenses), to stimulate subject’s accommodation. There are several commercially 

available devices that can measure aberrations while stimulating accommodation (for 

example, irx3, COAS-HD, WASCA, iTrace) as well as custom-built systems.10 

Figure 1 shows a schematic of the methodology typically used to measure ocular 

aberrations during accommodation in a static procedure. A Badal lens (not shown) is usually 

used so the target always subtends the same visual angle regardless of its optical 

vergence.11 After each change in vergence the target remains static for some time before the 

wavefront is measured to allow time for the subject to accommodate. Step changes in 

vergence (0.5 D in Figure 1), far point (FP), maximum vergence, and target configuration (for 

example, monochromatic/polychromatic, spatial frequency content) vary depending on the 

study. For dynamic studies, the target vergence is usually modified continuously, following a 

predetermined vergence function such as a sinusoidal or a random step function.

Besides the changes of ocular aberrations due to the change in curvature of the external 

surfaces of the crystalline lens of the eye,12 the ocular wavefront may also change due to: 

- displacement and tilt of the lens13

- pupil changes (accommodative miosis)13

- torsions on the eye globe produced by binocular convergence14

- changes of the internal iso-indicial surfaces of the lens.15
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The study of accommodation and its relationship with aberrations can be carried out 

through two time domains: static and dynamic. The term static accommodation refers to the 

steady state condition of accommodation while viewing a stationary target at a fixed distance 

from the eye. But accommodation is never really static, instead fluctuating continuously over 

a small range. These small microfluctuations6,7 of accommodation are a dynamic 

characteristic of accommodation even under static steady state conditions. Dynamic 

accommodation refers to the change in ocular focus that occurs in response to changes in 

accommodative demand, including sudden step changes from one target distance to 

another, sinusoidal changes, and unpredictable sum-of-sines changes in target distance. 

Finally, dynamic accommodation also refers to the ongoing microfluctuations of 

accommodation.6,7 

Knowledge of how aberrations vary with static accommodation provides information 

about the shape of the surface of the lens12 as well as information about its internal 

structure.15 Dynamic accommodation studies usually shed light on fundamental questions 

such as which cues trigger the accommodation system to accurately change the power of 

the lens and accommodate in the right direction,10,16–19 which is of particular interest 

concerning myopia development.20–22 From an applied science perspective, knowledge of 

how aberrations change with accommodation can lead to improved designs of multifocal and 

accommodative intraocular lenses, which imitate the profile of ocular aberrations during 

accommodation. Knowing the effect of aberrations on accommodation can also lead to new 

contact and intraocular lens designs with customised aberration profiles that extend the 

depth of field.23–25

This review examines the relationship between accommodation and ocular aberrations in 

detail. Given the differences in methodologies and the different types of aberrations 

considered by different authors, this manuscript treats static and dynamic accommodation, 

and the effect of monochromatic and chromatic aberrations separately.

The influence of aberrations on the subjective and objective amplitude of 

accommodation

The amplitude of accommodation (AA) can be measured objectively as the dioptric change 

between the FP and the near point (NP). However, the eye does not present a constant 

refractive power across the whole pupil due to astigmatism and other higher-order 

aberrations (HOAs), and theoretically numerous FPs and NPs exist depending on the region 

of interest examined within the pupil. Therefore, HOAs influence the AA. A number of 

objective methods (metrics) for determining accommodation or AA from wavefront analysis 

have been applied.26,27 All of them show smaller objective AA values than the subjective AA 
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obtained as the dioptric difference between the subjective far and near points. Three optical 

reasons have been proposed to explain such differences:

Typically, subjective AA is measured after correcting any distance ametropia and 

computed as the inverse of the distance to the NP with respect to the spectacle plane. 

However, using this reference plane without performing the corresponding mathematical 

correction overestimates subjective AA, especially in young myopic subjects.28

The metric chosen to calculate the subjective AA can cause a false accommodative 

error. For instance, positive SA (typical in an unaccommodated eye) can cause the objective 

measurement of the FP to be more myopic than the subjective one,29,30 and as a 

consequence an accommodative lead will be observed (Figure 2). On the other hand, 

negative SA (typical in the accommodating eye), can result in a smaller objective maximum 

accommodation than observed with the subjective method, which translates to an apparent 

accommodative lag12,29,31,32 (Figure 2).

It has been demonstrated that the eye uses its depth of field both in far and near 

vision in order to increase the subjective AA.33 In addition to the limitation imposed by 

photoreceptor sampling and photonic noise, depth of field occurs because of the presence of 

HOAs when the pupil is larger during relaxed accommodation,24 and as a consequence of 

the accommodative miosis.34

Monochromatic aberrations and static accommodation

During accommodation, not only is the defocus term modified, but other monochromatic 

aberrations vary too. The change in monochromatic aberrations during accommodation has 

been studied extensively.29,35–38 In general, all monochromatic aberrations change with 

accommodation, however, this change is generally small and subject-dependant.37

The change in astigmatism is generally small,39 although there are some exceptions 

where the magnitude and axis vary significantly with accommodation.40,41 Changes in 

astigmatism with accommodation may be due to an increase in lens tilt caused by the 

combined effects of a slacker zonular tension and gravity.42 Astigmatism can also change 

with accommodative miosis in the presence of HOA, although this potential explanation has 

not been verified to date.

Third-order aberrations (that is, coma and trefoil) may also vary during 

accommodation, but not systematically,36,37 and in many eyes these aberrations remain 

relatively stable over the range of accommodation demands.35,42,43 
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In the case of fourth-order SA, there is agreement between numerous studies about 

its well-defined trend, becoming less positive (or more negative) with increasing 

accommodation.29,35,36 As mentioned earlier, this was originally discovered by Young,1,2 

although he did not give it the name of SA. After Young, many others reported this 

change,29,35,36 which has been proven to be generated because the hyperbolic shape of the 

surfaces of the crystalline lens.12 Usually, in the relaxed eye corneal positive SA is larger 

than the absolute value of the crystalline lens SA (negative value), so the total eye has a 

slight positive SA. However, when the eye accommodates the crystalline lens increases its 

SA negative value, and the total SA of the eye becomes negative (see Figure 3). Therefore, 

generally speaking, the relaxed eye has positive SA and the accommodated eye has 

negative SA. However, there are exceptions to this rule. For instance, the eye may have 

negative SA when relaxed which becomes more negative during accommodation; or it may 

have a large positive value of SA which decreases during accommodation but never 

becomes negative. But in any case, SA decreases with accommodation for a fixed pupil 

size.

There are no other systematic changes in any HOA except sixth-order SA, which 

increases during accommodation.12,44 However, the values of that aberration are usually very 

small, and in many cases fall below the experimental errors. 

There are a few studies that have shown how some aberrations influence static 

accommodation. In particular, Khosravi45 showed that the accommodation response to a 

grating stimulus in the presence of astigmatism depends on the orientation of the grating, but 

for multiple orientations, the accommodation response usually corresponds with the circle of 

least confusion. A different study used adaptive optics to study the effect of one micron of 

coma or fourth-order SA on the accommodation response, finding that those aberrations 

may increase the accommodation error, especially when positive SA was induced.46 The 

effect of fourth- and six-order SA on the accommodation response has also been studied 

theoretically by other researchers32 with the hypothesis that the change of SA during 

accommodation may play a role in myopia development. Their explanation is based on the 

fact that the combination of negative SA (typical in the accommodated eye) with negative 

defocus (hyperopic image, or lag of accommodation) increases visual detection of the letters 

although it reduces image contrast, which may promote growth of the eye.

Chromatic aberration and static accommodation

In a non-cyclopleged eye, even when the target vergence is kept constant, the level of 

accommodation fluctuates continuously over a small range of approximately ±0.50 D at 
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temporal frequencies ranging up to a few cycles per second.6,7 Chromatic dispersion of light 

by the optical components of the eye47–49 results in retinal images of polychromatic objects 

with subtle colour fringes at the edges that reliably indicate whether the image is focused 

behind or in front of the retina.47–49 These colour fringes change substantially when the eye 

changes focus (Figure 4). When red light is focused on the retina, blue light is focused in 

front of the retina, and a fuzzy blue colour fringe is formed at the image edge, so under-

accommodation (hyperopic defocus) is characterized by a red colour fringe, while over-

accommodation (myopic defocus) results in a blue colour fringe. These colour cues provide 

reliable directional signals for accommodation.50–54

Fincham50 was the first investigator to remove the effects of chromatic aberration by 

using monochromatic light and by placing a specially designed achromatizing lens in front of 

the eye. He used a coincidence optometer to measure accommodation while trial lenses 

were placed in front of the subject's eye and found that accommodation was impaired in 

some subjects when chromatic aberration was removed. By the mid-1980's high-speed 

recording of accommodation was available55 to test Fincham's hypothesis that chromatic 

aberration provides a cue for static accommodation. Subjects viewed stationary targets at 0 

D, 2.5 D and 5 D in white and monochromatic light, and in white light with chromatic 

aberration reversed by a specially designed lens.52 When chromatic aberration was 

removed, some subjects had difficulty accommodating and when chromatic aberration was 

reversed, so that blue light focused further back in the eye than red light, accommodation 

was severely impaired, and some subjects accommodated in the wrong direction when 

chromatic aberration was reversed.

Next, computer-generated images that simulated hyperopic and myopic defocus with 

and without the effects of longitudinal chromatic aberration (LCA)53 or transverse chromatic 

aberration (TCA)54 were used to drive accommodation for near and far distances. These 

simulated images were viewed through small pinhole pupils to eliminate the normal blur 

feedback from trial-and-error microfluctuations6,7 of accommodation that were believed to be 

essential for effective accommodation. Accommodation responded readily to these static 

simulations of LCA, and accommodation was not adversely affected by simulations of LCA 

that included typical amounts of TCA. 

Some authors have argued that chromatic aberration does not play a role in 

accommodation because when an isoluminant target is used (that is, a red target on a green 

background or vice-versa, both with the same luminance), accommodation is not 

induced.56,57 However, this conclusion may not be valid58 since colour and luminance signals 

are mixed in a single neural channel rather than separate channels.59,60 Furthermore, it is 
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well known that many other visual functions fail under isoluminant target conditions, 

including form, colour, motion, and depth perception.59,61,62 Further investigations are 

required in this field.

The magnitude of longitudinal chromatic aberration depends on the refractive index 

and dispersive power of the ocular media. The crystalline lens of the eye has a gradient 

refractive index structure (GRIN) with maximum refractive index at the centre and a 

minimum at the periphery.63–65 During accommodation it becomes more convex, especially 

the anterior lens surface, and there is also a change in the distribution of the gradient 

refractive index that produces a small increase in the equivalent refractive index of the whole 

lens. The increase in the equivalent refractive index is approximately 0.0013 per dioptre of 

accommodation.63–65 This is accompanied by a small increase of the chromatic aberration of 

the eye amounting to approximately 3% per dioptre of accommodation.49 Charman 

measured an increase of approximately 0.2 dioptres of chromatic aberration between 422 

nm and 633 nm when accommodating six dioptres.49

In another study, Jaskulski et al66 studied the accommodation response to three 

target vergences for three different wavelengths and white light, all having the same 

luminance. They found a shift in refractive error for each colour condition corresponding to 

the defocus shift created by the LCA, but the accommodation responses did not change 

significantly. However, Kruger et al. found that some subjects accommodated less 

accurately in monochromatic light when stationary targets were positioned significantly 

closer or further away than the subject's resting position of accommodation.52

Monochromatic aberrations and dynamic accommodation

How does the visual system know when to accommodate or disaccommodate and by how 

much? Researchers have been trying to answer to this fundamental question for a long time, 

and still there is not a completely satisfactory answer. It is well known that the visual system 

makes use of information from the outside world, such as the intensity and wavelength of 

light reflected from objects, as well as information about the interaction of light with the optics 

of the eye itself, such as the effects of inaccurate refraction and chromatic dispersion. This 

information that the visual system uses in order to change the accommodation state 

accordingly is typically referred to as "cues" for accommodation.67 For example, from the 

disparity between the two signals, or images, formed by the two eyes, the visual system is 

able to interpret depth,68 and depth perception guides accommodation.50,69 Nonetheless, 

most people are able to accommodate correctly under monocular conditions. The reason for 

this is that the visual system can extract depth information from monocular cues. Some of 
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these monocular cues are apparent distance,70,71 changing size,72–74 and interposition of 

objects.71 But even when all these monocular cues that allow the visual system to interpret 

depth are removed, many people are still able to change their accommodation state 

appropriately. How is this possible with the lack of external cues? In this case, the visual 

system uses information extracted from the image formed on the retina, or from the way light 

rays reach the retina (optical cues for accommodation). It is known that an out-of-focus 

retinal image of a perfect eye without astigmatism and HOAs can trigger accommodation.75 

However, there are other optical cues that are based on the fact that images formed at the 

retina differ if they are focused in front (myopic defocus) or behind the retina (hyperopic 

defocus) (see upper part of Figure 5). Even-order monochromatic aberrations, which 

generate different images for different signs of defocus16,76 may also play a role. Irregularly 

shaped pupils,16,77 and the Stiles-Crawford effect,78–80 can lead to different retinal images of 

the object depending upon if they are formed in front of or behind the retina.16

One aberration that has always been linked to accommodation has been spherical 

defocus. Phillips and Stark75 demonstrated that blur alone could trigger accommodation with 

a remarkable experiment using a sophisticated system at the time. In their experiment, the 

only way in which the eye could accommodate was by trial and error, or how Phillips and 

Stark referred to it, the eye was constantly “hunting”, searching for the correct direction of 

accommodation. The recorded responses were at times in the wrong direction, and then 

changed rapidly towards the correct direction. Their main conclusion that blur alone drives 

accommodation, however, seems too far-fetched from their measurement in a single subject 

who usually responded in the wrong direction to a sudden change in target vergence. 

Recent work by Del Águila-Carrasco et al10 suggests that accommodation responds to the 

actual changes in target vergence, and not changes in blur alone. A similar experiment19 to 

that of Phillips and Stark agreed somewhat with their results, nevertheless, when target blur 

was changed quickly, some participants’ accommodation was worse or even absent. An 

interesting conclusion of this work is that accommodation works much better when changes 

in light vergence were present than when there were only changes in target blur.

The majority of studies about the effect of monochromatic aberrations on dynamic 

accommodation have been carried out recently, thanks to the development and 

implementation of adaptive optics (AO) in vision.81,82 Using AO technology, some or all the 

aberrations of the eye can be corrected, or different amounts of them can be induced in real 

time. Since some of the ocular monochromatic aberrations change with accommodation,29,35–

37 it is essential that their correction is performed in real time. By correcting particular 

monochromatic aberrations and evaluating the accommodative response of the eye, it is 

possible to assess the effect of these aberrations on accommodation, if any. Recent studies 
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manipulating the eye’s natural aberrations suggest that the eye does not use monochromatic 

aberrations for accommodation,17,83–85 since no significant differences were found between 

the response with natural aberrations present, or corrected. In a recent experiment,17 the 

accommodative response of 2 out of 8 subjects seemed to increase slightly when 

astigmatism was present while other monochromatic aberrations were corrected. A different 

approach has been used to elucidate whether certain monochromatic aberrations do provide 

a cue for dynamic accommodation.18 The approach consists of blurring the target 

computationally using different combinations of the subject's own monochromatic 

aberrations together with defocus, and measuring the accommodation response in open-

loop conditions (without feedback). Results from these simulation experiments suggest that 

the eye does not use monochromatic aberrations to detect the sign of defocus, since a large 

number of participants did not respond to the simulations, and the few who showed some 

response, could not follow the changes in blur properly.18 Nevertheless, these studies were 

carried out on relatively small populations, thus larger sample sizes need to be evaluated in 

order to draw firm conclusions.

Chromatic aberration and dynamic accommodation: the chromatic cue

Fincham's original findings50 were confirmed in monkeys86 and in a series of experiments in 

humans in which the longitudinal chromatic aberration of the eye was doubled, neutralized 

and reversed58,73,74 while a Maltese cross target, viewed in a Badal optical system, moved 

sinusoidally towards and away from the eye at 0.2 Hz oscillating between 1 D and 3 D of 

accommodative demand (Figure 6). Doubling the amount of chromatic aberration had no 

adverse effect on accommodation, neutralising chromatic aberration reduced the response 

for most subjects, and reversing chromatic aberration so that red light focused further 

forward in the eye than blue light severely impaired the dynamic accommodative response 

(Figure 6). Subjects accommodated poorly to sinusoidally moving targets in narrowband 

monochromatic light, their response improved as the bandwidth of the light increased, and 

the response was best in broadband "white" light.51,87,88 

Using sinusoidally moving sine-wave grating targets, accommodation responded to 

an intermediate band of spatial frequencies between 1 and 8 c/deg, with peak sensitivity to 

the effects of chromatic aberration between 3 and 5 c/deg.89,90 Even very small amounts of 

normal chromatic aberration (for example, 0.25 D) improved dynamic accommodation gain, 

while small amounts of chromatic aberration in the reversed direction significantly impaired 

the dynamic response.91 It was also established that both dynamic gain and the accuracy of 

static accommodation were improved by the presence of chromatic aberration.52
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All of these dynamic accommodation experiments were performed under normal 

"closed-loop" conditions where blur feedback from small oscillations of accommodation was 

available. But the presence of blur feedback can mask the true nature of the stimulus cue, 

and it was important to repeat these experiments under "open-loop" conditions without blur 

feedback from oscillations of accommodation and without trial-and-error changes in focus. 

Effective dynamic accommodation responses with high dynamic gains in the absence of blur 

feedback confirmed that chromatic aberration provides a highly reliable directional signal for 

dynamic accommodation.92

This series of dynamic accommodation experiments established that ratios of the 

contrasts of the red, green and blue components of the retinal image provide the optical 

signals that drive accommodation. Calculations of the cone-contrasts measured by long- 

middle- and short-wavelength-sensitive cones93 and empirical tests of this theory94 proved 

that it was ratios of L-, M- and S-cone-contrasts that provide the directional signals that drive 

dynamic accommodation in two colour directions: red-green and blue-yellow.

Another series of experiments showed that isolated short-wavelength-sensitive-

cones (S-cones) drive dynamic accommodation on their own, without any input from L-cones 

or M-cones.95–97 In the first of these experiments, accommodation was monitored 

continuously to a sine-wave grating target (3 cpd; 0.53 contrast) moving with an 

unpredictable sum-of-sines motion in a Badal stimulus system under two experimental 

conditions: a "blue" condition (420 nm blue grating + 580 nm intense yellow homogeneous 

adapting field) and a "white" condition (broadband white grating). Mean dynamic gains for 8 

subjects were reduced by 50% in the "blue" condition compared to the "white" condition.95 

Both S-cones and LM-cones mediate static and signed step accommodation responses to 

changes in accommodation demand.96 S-cone contrast drives accommodation strongly for 

near, resulting in significant over-accommodation of more than 1 D, but the S-cone response 

is too slow to influence step dynamics when LM-cones participate. The latencies and time 

constants for the accommodation response mediated by S-cones alone to step changes in 

optical vergence are two to three times longer than the latencies and time-constants for 

accommodation mediated by LM-cones.96 Thus the slow accommodation response from S-

cones actually reduces dynamic gain to sinusoidal target motion at 0.2 Hz.97 The directional 

signal from the chromatic mechanism that compares S- and LM-cone- contrasts (S - [L + M]) 

cannot assist accommodation to sinusoidally moving targets.97

Finally, L-cones on their own and M-cones on their own can mediate both static and 

dynamic accommodation: L-cone-contrast reduces the mean accommodation level, while M-

cone-contrast increases the mean accommodation level.98 Mean accommodation level is 
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decreased when L-cone contrast is higher than M-cone contrast, and increased when M-

cone contrast is higher than L-cone contrast.98 In summary, L-cones reduce accommodation 

while both M-cones and S-cones increase accommodation.98,99 The same chromatic cues, 

cone-contrasts and neural mechanisms that control everyday focusing of the human eye, 

also control long-term emmetropization and development of myopia in animals.100

Future directions

The interaction between aberrations and ocular accommodation has been studied 

extensively. Nevertheless, there are still a number of questions that need to be resolved and 

the possibilities for future research on the topic are almost countless. Some areas need 

further work. For instance, more detailed studies about the optics of the crystalline lens and 

its change during accommodation are needed. In particular, those corresponding to the 

changes in its internal structure (iso-indicial surfaces) during accommodation15 and their 

effects on the accommodation response. More detail about the shape of the back surface of 

the lens and its change during accommodation are also needed since current data are not 

precise enough. New imaging technology devices based on OCT probably combined with 

other wavefront technologies will likely allow more accurate determination of these types of 

lenticular changes in the near future. Further investigation into the change in monochromatic 

aberrations during accommodation may lead to improved designs of intraocular and contact 

lenses to compensate for presbyopia.

Another interesting area of research is to determine how the visual system is able to 

detect the sign of defocus and thus, accommodate appropriately. There are still many 

fundamental research studies to perform in this regard. For example, it has not been 

investigated whether not having a perfectly circular pupil is used by the visual system as a 

directional cue for accommodation. Moreover, in the last 5 years theoretical studies have 

been carried out to determine if the sign of defocus can be detected by particular structures 

of the retinal anatomy.101,102 In particular, Vohnsen et al have carried out computational 

simulations to show that there are different distributions of the electromagnetic field along 

the cone when light is focused either before or after the photoreceptor entrance plane, which 

may produce different cone signals.101 Lopez-Gil et al have taken a different geometric 

optics approach based on different shadows that are cast by retinal vessels in the peripheral 

retina when light is focused in front, on, or behind the blood vessel plane.102 Further 

experiments in humans should be conducted to test these theoretical hypotheses of optical 

vergence detection by the retina. The long-term goal of this fundamental research is to 

extend what we have learned about cues for everyday accommodation and the long-term 
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focusing mechanism called emmetropization, which operates to avoid the development of 

refractive errors.

CONCLUSIONS

Accommodation not only changes the refractive power of the eye to improve the retinal 

image quality of objects located at different distances, but also modifies its aberrations. 

Reciprocally, aberrations may influence the accommodation response, increasing, for 

instance, the lag of accommodation. The most significant change in HOA during 

accommodation is that experienced by fourth-order SA, which decreases during 

accommodation, usually changing its value from positive to negative, while chromatic 

aberration changes very little during accommodation. Dynamic accommodation studies have 

shown that monochromatic aberrations do not seem to play a role in accommodation. On the 

contrary, longitudinal chromatic aberration provides a strong signed cue that guides 

accommodation reliably.   
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FIGURE CAPTIONS

Figure 1. Schematic of the methodology for measuring aberrations during accommodation. 

In this example, the stimulus (S) is initially placed 0.50 D beyond the subjective far point, FP, 

(FP +0.50D), where a wavefront (A) is measured. Then, it can be moved to the FP, where 

wavefront B is now obtained. The same procedure is repeated until the stimulus vergence 

reaches the maximum vergence to be measured corresponding in this case to 10.00 D 

closer than the FP (FP -10.00 D), giving the wavefront D. To cover all the intervals of 

accommodation it is assumed that the largest vergence (10.00 D) is closer than the subject’s 

near point.

Figure 2. Typical accommodative response. For an accommodative demand of 0 D, that is, 

when the stimulus is at the FP accommodation of the eye should be relaxed, but usually 

presents an accommodative lead. For vergences larger than 2.00 D, the eye typically 

presents an accommodative lag. Objective amplitude of accommodation is found as the 

dioptric range between the minimum and the maximum accommodation response.

Figure 3. Example of the change of 4th-order spherical aberration with accommodation in a 

young subject with an AA > 12.00 D. In the relaxed eye the value is positive decreasing with 

accommodation and becoming negative. For large values of accommodation demand, 

spherical aberration tends to zero because the subject’s pupil becomes small.

Figure 4. Ray diagrams illustrate under-accommodation (hyperopic defocus) on the top left 

side of the figure and over-accommodation (myopic defocus) on the top right side. In the 

presence of chromatic aberration, under-accommodation produces blur spread-functions 

with a red colour fringe, whereas over-accommodation produces blur spread-functions with a 

blue colour fringe, as can be seen in the bottom row. Adapted from Del Águila-Carrasco.66

Figure 5. Ray diagrams illustrate under-accommodation (hyperopic defocus) on the top left 

side of the figure and over-accommodation (myopic defocus) on the top right side. In the 

presence of monochromatic aberrations, under-accommodation and over-accommodation 

produce different retinal images. Red arrows indicate some of the differences between the 

images. The bottom row shows dynamic accommodation response for one subject while 

viewing a Maltese cross target in a Badal optical system moving sinusoidally toward and 

away from the eye at 0.2 Hz, oscillating between 1.00 and 3.00 D (grey line) with natural 

aberrations present (blue line) and with all aberrations corrected except for defocus (red 

line). Adapted from Del Águila-Carrasco.66

Figure 6. Dynamic accommodation responses for two subjects while viewing a Maltese 

cross target in a Badal optical system moving sinusoidally toward and away from the eye at 
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0.2 Hz, oscillating between 1.00 and 3.00 D (red line) with chromatic aberration of the eye 

normal, neutralised, with monochromatic light and reversed chromatic aberration. 

Accommodation (blue line) responded well with normal chromatic aberration (first row), the 

response was reduced with chromatic aberration neutralized by an achromatizing lens 

(second row), and with monochromatic light (third row); and the response was severely 

impaired when chromatic aberration was reversed (fourth trace). Adapted from Kruger et 

al.57
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Figure 1. Schematic of the methodology for measuring aberrations during accommodation. In this example, 
the stimulus (S) is initially placed 0.5 D beyond the subjective far point, FP, (FP +0.5D), where a wavefront 
(A) is measured. Then, it can be moved to the FP, where wavefront B is now obtained. The same procedure 
is repeated until the stimulus vergence reaches the maximum vergence to be measured corresponding in 

this case to 10 D closer than the FP (FP -10 D), giving the wavefront D. To cover all the intervals of 
accommodation it is assumed that the largest vergence (10 D) is closer than the subject’s near point. 
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Figure 2. Typical accommodative response. For an accommodative demand of 0 D, that is, when the 
stimulus is at the FP accommodation of the eye should be relaxed, but usually presents an unexpected 
accommodative lead. For vergences larger than 2 D, the eye typically presents an accommodative lag. 

Notice that in this example, when the stimulus has a vergence of 5 D, the eye just accommodates 4 D, thus 
showing a lag of 1 D, even though the eye is able to accommodate 5 D. Objective amplitude of 

accommodation is found as the dioptric range between the minimum and the maximum accommodation 
response. 
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Figure 3. Example of the change of 4th-order spherical aberration with accommodation in a young subject 
with an AA>12 D. In the relaxed eye the value is positive decreasing with accommodation and becoming 

negative. For large values of accommodation demand, spherical aberration tends to zero because the 
subject’s pupil becomes small. 
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Figure 4. Ray diagrams illustrate under-accommodation (hyperopic defocus) on the top left side of the figure 
and over-accommodation (myopic defocus) on the top right side. In the presence of chromatic aberration, 

under-accommodation produces blur spread-functions with a red colour fringe, whereas over-
accommodation produces blur spread-functions with a blue colour fringe, as can be seen in the bottom row. 
Figure from Del Águila-Carrasco. Light vergence detection in monocular and monochromatic accommodation 

2017. 
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Figure 5. Ray diagrams illustrate under-accommodation (hyperopic defocus) on the top left side of the figure 
and over-accommodation (myopic defocus) on the top right side. In the presence of monochromatic 

aberrations, under-accommodation and over-accommodation produce different retinal images. Red arrows 
indicate some of the differences between the images. The bottom row shows dynamic accommodation 

response for one subject while viewing a Maltese cross target in a Badal optical system moving sinusoidally 
toward and away from the eye at 0.2 Hz, oscillating between 1 and 3 D (gray line) with natural aberrations 
present (blue line) and with all aberrations corrected except for defocus (red line). Figure adapted from Del 

Águila-Carrasco. Light vergence detection in monocular and monochromatic accommodation 2017. 
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Figure 6. Dynamic accommodation responses for two subjects while viewing a Maltese cross target in a 
Badal optical system moving sinusoidally toward and away from the eye at 0.2 Hz, oscillating between 1 and 

3 D (red line) with chromatic aberration of the eye normal, neutralized, with monochromatic light and 
reversed chromatic aberration. Accommodation (blue line) responded well with normal chromatic aberration 

(first row), the response was reduced with chromatic aberration neutralized by an achromatizing lens 
(second row), and with monochromatic light (third row); and the response was severely impaired when 
chromatic aberration was reversed (fourth trace). Adapted from Kruger et al. Chromatic aberration and 

ocular focus: Fincham revisited. Vision Research 1993;33:1397-1411. 
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Figure 1. Schematic of the methodology for measuring aberrations during 
accommodation. In this example, the stimulus (S) is initially placed 0.50 D beyond 
the subjective far point, FP, (FP +0.50D), where a wavefront (A) is measured. Then, it 
can be moved to the FP, where wavefront B is now obtained. The same procedure is 
repeated until the stimulus vergence reaches the maximum vergence to be measured 
corresponding in this case to 10.00 D closer than the FP (FP -10.00 D), giving the 
wavefront D. To cover all the intervals of accommodation it is assumed that the largest 
vergence (10.00 D) is closer than the subject’s near point.
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Figure 2. Typical accommodative response. For an accommodative demand of 0 D, 
that is, when the stimulus is at the FP accommodation of the eye should be relaxed, 
but usually presents an accommodative lead. For vergences larger than 2.00 D, the eye 
typically presents an accommodative lag. Objective amplitude of accommodation is 
found as the dioptric range between the minimum and the maximum accommodation 
response.

Figure 3. Example of the change of 4th-order spherical aberration with 
accommodation in a young subject with an AA > 12.00 D. In the relaxed eye the value 
is positive decreasing with accommodation and becoming negative. For large values 
of accommodation demand, spherical aberration tends to zero because the subject’s 
pupil becomes small.
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Figure 4. Ray diagrams illustrate under-accommodation (hyperopic defocus) on the 
top left side of the figure and over-accommodation (myopic defocus) on the top right 
side. In the presence of chromatic aberration, under-accommodation produces blur 
spread-functions with a red colour fringe, whereas over-accommodation produces blur 
spread-functions with a blue colour fringe, as can be seen in the bottom row. Adapted 
from Del Águila-Carrasco.66
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Figure 5. Ray diagrams illustrate under-accommodation (hyperopic defocus) on the 
top left side of the figure and over-accommodation (myopic defocus) on the top 
right side. In the presence of monochromatic aberrations, under-accommodation and 
over-accommodation produce different retinal images. Red arrows indicate some of 
the differences between the images. The bottom row shows dynamic accommodation 
response for one subject while viewing a Maltese cross target in a Badal optical system 
moving sinusoidally toward and away from the eye at 0.2 Hz, oscillating between 
1.00 and 3.00 D (grey line) with natural aberrations present (blue line) and with 
all aberrations corrected except for defocus (red line). Adapted from Del Águila-
Carrasco.66
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Figure 6. Dynamic accommodation responses for two subjects while viewing a Maltese 
cross target in a Badal optical system moving sinusoidally toward and away from the 
eye at 0.2 Hz, oscillating between 1.00 and 3.00 D (red line) with chromatic aberration 
of the eye normal, neutralised, with monochromatic light and reversed chromatic 
aberration. Accommodation (blue line) responded well with normal chromatic 
aberration (first row), the response was reduced with chromatic aberration neutralized 
by an achromatizing lens (second row), and with monochromatic light (third row); and 
the response was severely impaired when chromatic aberration was reversed (fourth 
trace). Adapted from Kruger et al.57.
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