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PREFACE
This thesis presents a software system, ChoraLearn, that applies a general inductive 

learning program, the PLSl clusterer, to the problem of harmonization in music. The work 
described represents the first time that a harmonizing program has induced rules from 
examples. The examples it has been given are from the chorale harmonizations of J.S. Bach.

I have tried to accommodate more than one kind of reader, recognizing that there will 
be only a few who have a strong background (or a strong interest) in both machine learning 
and music theory. This preface gives some indication (and there are additional guidelines in 
the body of the thesis) as to what parts of the thesis are aimed at all readers, and what parts 
are likely to interest only some. The latter parts can be skipped without loss of continuity.

Section I of the thesis is a brief introduction that first summarizes previous work on 
harmonization by computer, and then explains what the PLSl clusterer is.

Section II defines some terms, and then outlines what is involved in harmonizing a 
chorale melody. It goes on to specify the particular piece of the task that the current system 
has been learning, which can be described in musical terms as recognizing good two-chord 
progressions.

Section III explains how the system works. Part A explains how the system learns, i.e., 
how the Bach training examples are prepared for the clusterer, and what the clusterer does 
with them. It goes on to explain how the learned rules, as represented in the output of the 
clusterer, are utilized by the system in harmonizing a melody. Part B lists the features that 
are used by the system to describe two-chord progressions. A good choice of features is the 
key to successful learning with the clusterer, because the clusterer deals exclusively with 
descriptions that are in terms of the chosen features. However, the reader with no 
background in harmony may wish to skip this part, and still will be able to follow the rest of 
the thesis.

Section IV presents some harmonizations by ChoraLearn and attempts to evaluate the 
progress the system has made so far in learning to recognize Bach-like two-chord 
progressions. Part E discusses issues that may interest some readers more than others, and 
may be skipped without loss of continuity.

Section V is a proposal for a way to supplement the current learning-from-examples 
machinery with a method for learning from a teacher who can recognize errors in the 
machine’s performance. The proposed methodology may make inductive learning with the 
PLSl clusterer more practical in other problem domains too.

Section VI relates to Section II in considering the task learned by the present system in 
the context of the complete task of chorale-style harmonization.
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I. INTRODUCTION

The first two sections of this introduction summarize previous work relating to 
harmonization by computer. The third section explains briefly what the PLSl clusterer is. 
In the fourth and final section I explain what our objectives were in developing the 
ChoraLearn harmonization system.

A. Computers and Music
Computers have been used in various areas within the broad field of music, including 

analysis, instruction, composition, and electronic sound production. (Hiller, 1970; Roads, 
1980; Gross 1984). Computer composition began here at the University of Illinois with the 
composition of the Illiac Suite in the late 1950’s (Hiller and Isaacson, 1959; Hiller, 1981). 
Artificial intelligence techniques of induction and pattern recognition have been applied to 
some problems in music (Roads, 1980; Michalski and Stepp, 1983), but apparently not to 
composition or harmonization.

B. Computer Harmonization

1. The task
Harmonization o f a chorale or hymn tune is an exercise confronted by nearly every 

student beginning the study of music theory. The task is to take a given melody (soprano 
line) and to write the parts for the alto, tenor, and bass, such that the four voices together 
produce a sequence of chords that is pleasing to the ear. Typically, there is a new chord on 
every quarter-note beat.1 Some of the over 400 Chorale harmonizations by Bach (Terry, 
1929) are often given to the student as good examples. The student, even when strictly 
adhering to the rules and guidelines found in standard texts such as Piston’s (1962), usually 
produces much poorer results.

2. Previously developed systems
Because the textbook rules by themselves are inadequate to achieve Bach-like chorale 

harmonizations, the task of harmonizing a chorale tune seems to be one that would be 
appropriate for a computer system that performs inductive inference, or learns from 
examples. However, previous attempts to produce good (in one case specifically Bach-like) 
chorale harmonizations by computer have used exclusively implementations of rules found in 
books and additional rules provided by the programmers (rather than machine-induced 
rules). The most recent of these are the systems of Ebcioglu (1984, 1986) and Thomas (1985). 
Besides these there was a system of D. G. Champernowne created around 1960 (described in 
Hiller, 1970). A system that performed a task similar to harmonization of a melody, namely 
turning an unfigured bass into a figured bass, was developed by Rothgeb in the 1960’s 
(Rothgeb, 1980).

The previous system closest to ours in conception was written by another University of 
Illinois student, Alberto Segre, while he was on a Fulbright fellowship in Milan, Italy, in 1980 
(Segre, 1981). His system also examined examples of Bach chorales. Although it was 
designed to generate chorales, including the melodies, Segre could have modified it to make it

xAt any given moment, however, one or more of the four lines of music may be moving (changing notes) at a faster than 
quarter-note rhythm. Then the chord for the beat may exist only for the first or second half o f the beat, the other half contain­
ing notes not in the chord, or "nonharmonic tones."



able to harmonize a given mefody, provided the melody were similar enough to the Bach 
examples (i.e., the melody would have to move by intervals that occurred in the examples). 
However, Segre’s system was a rote learning system, meaning that it was restricted to 
rearranging elements that occurred in the Bach examples. Also, it was designed to handle 
only a small number of Bach examples,2 thus limiting the range of its possible outputs. Our 
system can accommodate a much larger number o f examples, and it is not restricted to using 
elements (in our case, chord progressions) found in the examples. The latter ability is 
obviously an advantage for any music composition system, provided of course that the new 
elements are consistent with the style of the examples. ChoraLearn contains a mechanism, 
built around the PLSl clusterer, for inducing, from the examples themselves, which of the 
many possible new elements are likely to be consistent with the style of the examples. We will 
see in Section IV.D. that the clusterer is quite effective in this task. It is the inclusion of such 
an induction mechanism that distinguishes ChoraLearn from other music composition 
programs.

C. The PLSl Clusterer
PLSl is RendelPs simplest implementation of his probabilistic learning system, which is 

particularly effective and efficient in uncertain and incremental learning environments 
(Rendell, 1983; 1986c). The heart of PLSl is the clusterer. Its purpose is to classify and 
describe objects in terms of their degree or probability of class membership. For example, 
the category of objects might be “plans for constructing aircraft.” The clusterer might be 
given a collection of plans for aircraft, and would be told that each of them would result in a 
viable product (positive examples of an aircraft that flies). It would also be given a collection 
of negative examples — aircraft that would never get off the ground. Its job would be to 
induce from these examples a scheme for assigning to any new object (aircraft plan) an 
estimated probability that it belongs to the class of good objects. This learning from  
examples is the discovery of an uncertain or “fuzzy” concept. When a system uses such a 
classification scheme in performing some task, we speak of performing.

The clusterer does not actually deal with objects themselves, but rather with 
descriptions of them. The descriptions must be in terms of a predetermined, finite set of 
features, and each feature must have a finite set of values. For example, a feature might be 
“ratio of wingspan to fuselage length,” and the possible values might be 1, 2, and 3, 
representing “less than one,” “one,” and “greater than one,” respectively. An object 
description can thus be thought of as a feature vector having dimension equal to the number 
of predetermined features. From this point of view, each feature is a dimension of a feature 
space. The two collections of objects (positive and negative, or “good” and “bad” ) are then 
two sets of vectors in a feature space. In uncertain environments, the “good” collection may 
contain a small percentage of bad objects and vice versa.

Segre ran his system with 4 Bach chorales as examples (Segre, personal communication). His system generated all possible 
chorales of a given length, phrasing, and key that could be constructed with elements from the Bach examples before choosing 
one of them. Therefore, increasing the number o f examples, and thereby increasing the number o f available elements, would 
have caused a combinatorial explosion that would have drastically increased the time to generate chorales. ChoraLearn, on the 
other hand, does not take a significantly longer time to harmonize a phrase if its set o f training examples is enlarged. This is be­
cause the "GoodChord" choosing procedure enables the system to generate a relatively small number o f harmonizations, with a 
high probability that some o f them will be good (see Sections IV.C and IV.D). Also, increasing the number o f training examples 
does not necessarily increase the number o f choices for a chord (see Section IV.E.l).
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What the clusterer does is partition the feature space such that good objects with 
similar descriptions are grouped together and isolated as much as possible from bad objects. 
The result is that the feature space is divided into regions, each having an associated utility. 
The utility is the probability of class membership — the number of good points in the region 
divided by the number of total points in the region. Rendell (1986a) has studied such 
learning systems in detail.

D. Objectives of This Project
In ChoraLearn, the system described in this thesis, we have used the PLSl clusterer to 

induce rules of harmonization from examples from Bach (the rules are represented in a set of 
feature space regions that result from clustering). We will present evidence that the clusterer 
has achieved useful learning for the harmonizing system. From the musical perspective, the 
goal of the project has been to demonstrate that, using a modern machine learning tool, we 
can develop a system that induces its own rules of harmonization from a set of examples. 
Such a system has several advantages over rule-based systems, one of them being that the 
style of music it writes is changeable, being determined by the set of examples it is given to 
examine (other advantages will be discussed later).

From an artificial intelligence perspective, the goal is to demonstrate that he PLSl 
clusterer, which has already been applied successfully in several other domains, is a general 
learning tool whose applicability is broad enough that it also can succeed with harmonization. 
As already mentioned (Section B .l), harmonization is a task that cannot be mastered easily. 
Although our current system does not write complete chorale harmonizations, the part of the 
task that it is on the way to mastering is the one which perhaps more than any other 
distinguishes a great harmonization from a mediocre one (see below, Section II.B.2).

H. DEFINITIONS OF TERMS AND TASKS 

A. Definitions of Terms
Several musical terms are used in this paper. Some are used only to explain details to 

the more musical reader. However, it is necessary that we make clear to all readers how we 
will be using certain of the musical terms.

A chord is a set of notes sounded together simultaneously. In this paper the term chord 
will usually mean a melody (soprano) note and a bass note with an associated “ figure,” or 
instruction that partially specifies the alto and tenor notes. This might be called more 
correctly, “a figured bass plus melody note specification for a chord,” but we will simply call 
it a chord.

We will use the term progression to mean a two-chord progression, or sequence, i.e., 
two chords, one following immediately after the other. The first chord of a progression will 
be called Chord, and the second NextChord. A progression will sometimes be referred to as 
an object, because progressions are the objects (see Section I.C above) that so far have been 
examined by the learning machinery of ChoraLearn.

A chorale phrase is a sequence of typically 4 to 10 chords. The last two or three chords 
of a phrase constitute the cadence, a final or temporary stopping point.

A simplified figured bass harmonization is a written harmonization of a melody, 
consisting of a sequence of figured bass chord representations. The word, “simplified,” is used 
to indicate that the bass line (and associated figures) moves only on quarter-note beats.
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B. Defining the Computer’s Task— Music Perspective
The task of harmonization was briefly explained in Section I.B.l. I will explain here 

more precisely what we wanted the computer to do. I will present this "definition of the 
task" twice, first in a simplified way for the reader who is not concerned with the musical 
details and rationales, and then more fully. Finally, I will briefly discuss the significance of 
the chosen task definition.

1. Simple explanation
The computer’s task was to make a classification scheme for progressions, using a set of 

progressions taken from Bach’s chorale harmonizations as the ciollection of "good objects” (see 
Section I.C above). It was then to construct simplified figured bass harmonizations3 for a 
given melody (except for the last two or three notes, which belong to the cadence4 ) by joining 
together progressions that were Bach-like according to this classification scheme (and that 
also satisfied the constraints imposed by the particular melody). It would be left to another 
system (a "second level subsystem"— not yet developed) to choose the best harmonizations for 
a short melody (soprano line of a phrase) by using a classification scheme for phrases. In 
other words, the objects for this other system would be phrases rather than individual 
progressions).

2. Musically detailed explanation
Harmonizing a chorale phrase is a process that is usually done in well-defined stages. 

First, some basic decisions must be made. One is what kind of cadence (end of phrase) 
formula to use. Another is what key (or keys) to harmonize the phrase in. By this I do not 
mean register (as in "Give me 'Melancholy Baby' in the key of G-flat"), but rather I am 
referring to the fact that a short sequence of notes (some chorale phrases are only 4 or 5 notes 
long) can be understood in more than one key. For example, the sequence f g a g  can be 
understood as being in the key of C major, or F major, or B-flat major, to name only 3 of 
the possible keys. It is also possible to change keys (modulate) in the middle of a phrase.

After these decisions are made, the next step typically is to write what is called a figured 
bass. This is a bass line, with figures (numbers) indicating the harmony (chord type) that is 
to be formed by the four voices on each beat. Sometimes movement of a voice (or voices) on 
the half—beat is also indicated by the figures. The final step is then to fill in the inner voices 
(tenor and alto).

For the present study I chose one part of the chorale phrase harmonization process for 
the computer to learn. That part is the construction of a simplified figured bass 
harmonization (defined below) for the noncadential portion of a phrase. I chose the 
noncadential portion because the cadence tends to fall into one of a fairly small number of

3 Because a figured bass does not specify precisely the alto and tenor notes (see Section A, above), the final output o f the 
system was routed only to a music notation graphics system (and not to a sound synthesizer). Some organists are skilled in read­
ing figured bass. Such an organist can improvise the alto and tenor parts from a figured bass score. Otherwise, someone who 
has studied harmony must fill in the alto and tenor parts before the music can be performed. ChoraLearn has a module that fills 
in the alto and tenor parts in a simple, regular way, but it is a temporary kluge —  it does not involve any learning from the ex­
amples.

4The task for the current system did not include the generation o f a cadence. Rather, the first chord o f the cadence (that a 
human would have had to write for the given melody) was given to the computer as a starting point from which to join progres­
sions extending backwards towards the beginning o f the phrase (the way the program did this is explained in Section III A 2 
below).
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well-defined categories. Thus the cadence should probably be treated separately from the 
rest of the phrase, and, as a separate problem, it would seem to be easier (and less 
interesting) than the problem of harmonizing the rest. Writing the bass line (with figures) for 
the noncadential portion of a phrase can be regarded as the heart of chorale harmonizing. 
More than any other part it is the one that distinguishes a great harmonization from an 
ordinary one. As Riemenschneider (1941) has noted, Bach’s harmonizations owe their power 
especially to their strong bass lines. In fact, there are chorale melodies for which Bach wrote 
only a figured bass, leaving the organist to improvise the exact placing of the inner voices 
(Terry, 1929; Riemenschneider, 1941).

Figure la shows an example of a chorale phrase fully harmonized by Bach. Figure lb 
shows his figured bass harmonization for the same chorale (and corresponding exactly to the 
fu}l harmonization). I decided to simplify the task for the computer still further, by defining 
a simplified figured bass. This is made by reducing the bass line to quarter-note harmonic 
tones and removing figures that pertain to eighth-note movement. The simplified version of 
the figured bass in Fig. lb is shown in Fig. lc. To illustrate the meaning of a figured bass to 
the reader who has not studied music theory I have also provided Fig. Id, which shows 
explicitly the chords implied by the simplified figured bass in Fig. lc. In other words, Figs, lc 
and Id contain the same information. However, the chords in Fig. Id have in all cases the 
alto and tenor parts as close to the soprano as possible. This is a simple, regular way to meet 
the specifications given by the figured bass, but it often results in bad voice-leading. A 
composer, or an organist experienced in playing from a figured bass score, would not fill in 
the inner voices in such a regular fashion, [For this reason, all the output presented in 
Section IV is in the Fig. lc format, although our system was also capable of generating files 
for the music graphics program that would have resulted in output in the Fig. Id format.]

Thus the task for the computer can be summarized as follows: given a chorale phrase 
melody, the key in which to harmonize it in, and the cadence (harmonized), write a simplified 
figured bass for the rest of the phrase. The task is illustrated graphically in Fig. le. The 
first part of the figured bass in Fig. lc is missing in Fig. le, and this is the job o f the
computer to write. The notes and figures in Fig. le are what is given to the computer as an
input.

I restricted the problem still further by limiting the domain to phrases that are to be 
harmonized in a major key (the phrase in Fig. 1 is in minor) without modulation. 
Furthermore, I decided to divide the process of learning to write a good simplified figured 
bass into two stages. In the first stage the computer is to learn only what constitutes a good 
progression, i.e., going from one chord (as defined by the figured bass plus the melody note) 
to the next. The second stage would require a second level subsystem, which would deal with 
attributes of a whole phrase. At this writing, only the first level (progression level)
subsystem has been developed. That is why the notes in Fig. le include only the first of the
cadence chords. The first level subsystem needs to examine only the first cadence chord, and 
that only for the purpose of choosing the figured bass for the soprano note immediately 
preceding it. The other cadence chords need never be examined.

5
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5

Printed using the CERL Interactive Music System (217-333-0766). 
Print of "Figure 1." in "imstemp8 on 12/10/86 at 2:5 8 : 5 0 pm.

Figure 1. Several representations o f a chorale phrase (a, b, c, d, and e are explained in the 
text).
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3. Significance

The present study deals only with an isolated part of the chorale harmonization 
problem, but it is a fundamental part, which can be regarded as forming a foundation for 
much of the rest. It is an underlying premise of the present study that if the PLSl clusterer 
can be used successfully to learn the restricted task I have defined, then it could also be used 
in a similar manner to learn most, if not all, of the other parts of the chorale harmonization 
problem, such that piecewise, the whole problem could be learned by machine. It would be 
unthinkable to use the PLSl clusterer to learn all the parts at once. The overall size of the 
problem has been estimated by. Ebcioglu (1986) to be almost 103°° (number of possible 
chorales for a typical chorale melody).

C. The Task as Concept Learning— Artificial Intelligence Perspective 

1. Restating what is being learned

From the preceding section we can see that what the current ChoraLearn system does in 
terms of learning is learn the single concept, "Bach-like progression" (assuming that the 
examples it is given are from Bach). The system uses its understanding of this concept when 
it classifies trial objects (two-chord progressions) as either Bach-like or non-Bach-like. The 
not yet implemented second level learning subsystem (discussed above, Section B) will have to 
learn the single concept, "Bach-like phrase." The phrases that the corresponding second level 
classification subsystem will be given to classify are those generated by the current system,
1. e., phrases composed of progressions classified by the current system as Bach-like.

2. Assessing the amount of learning

After a learning system has been developed, it is the job of the researcher to determine 
whether the learning has been effective, and, if possible, to quantify the amount of learning. 
If the learning element of the system is the PLSl clusterer, this job can be described also as, 
determining the usefulness of the classification scheme arrived at by the clusterer" (see 

Section I.C). v

As we will see below (Section III.A.2), ChoraLearn uses the classification scheme as a 
final step in limiting its choices of progressions. Here, I will just give a simplified summary of 
the procedure. The system uses "generate and test” to choose (two-chord) progressions. 
About 300 trial progressions are generated for each progression that the computer chooses to 
be part of a harmonization. The trial chords go through three screenings before those that 
remain are classified according to the scheme from the clusterer. This sequential reduction of 
the number of possible choices for a progression is represented graphically in Fig. 2.

7



Figure 2. Graphical representation of the process of reducing the number of possible choices for a 
progression (object). The set marked CB is the set of objects classified as Bach-like according to the 
scheme created by the clusterer. The set marked TB is the set of objects that are truly Bach-like.

Referring to that figure, we see that measuring the usefulness of the classification scheme 
amounts to determining how much closer the set of progressions classified as Bach-like comes 
to being coincident with the set of truly Bach-like progressions than does the set of 
progressions submitted to be classified (reduced from the originally generated set by the 
preliminary screens). In other words, we want to determine how much the clusterer has 
accomplished towards learning the concept "Bach-like" progression. We have attempted to 
make this measurement in two ways: by recruiting a Bach expert to examine some of our 
system’s output for quality, and by seeing if our system would be capable of generating some 
of the harmonizations Bach wrote. This two-part evaluation of the learning done by the 
clusterer will be explained in Sections IV.D.l and IV.D.2.

It should be kept in mind that the current system strings together progressions to make 
phrases. The importance of what the current system has learned about progressions must 
ultimately be judged by how much that learning will contribute to the task of generating 
Bach-like phrases. A quantitative estimate of this contribution is presented in Section 
IV.D.3. The number of possible ways to harmonize a phrase is obviously much greater than 
the number of ways to harmonize a single note (harmonizing a single note is what the current 
system does when it chooses a progression— see Fig. 5). If phrases were to be constructed

8



using progressions chosen randomly from one of the larger sets in Fig. 2, then obtaining a 
Bach-like phrase would be about as probable as obtaining Hamlet’s soliloquy from the 
proverbial monkey at a typewriter. For example, with the original set of 300 progressions 
(largest set in Fig. 2), the number of possible phrases containing 5 (noncadential) progressions 
is 300 , or 2X10 . By limiting the choices for each progression to those that are for the most 
part Bach-like, the current system increases the likelihood of obtaining a Bach-like phrase. 
The achievement could be likened to giving the monkey a typewriter that typed a word out 
of Shakespeare’s vocabulary for every key stroke. However, while the monkey’s chances of 
replicating Hamlet’s soliloquy would still be next to nil, our current system’s chances of 
replicating a Bach phrase are not too bad, as we shall see in Section IV.C.

m . CHORALEARN: THE METHOD

A. Overview of the System
As explained by Buchanan et al. (1978), a learning system can be thought of as 

consisting of a few basic elements, two of which are a learning element and a performance 
element (see above, Section I.C). In ChoraLearn the learning so far has been entirely from 
Bach examples, and so there has been no interaction between the learning and performance 
elements except, obviously, that the performance element has utilized the output of the 
learning element. The overall system is schematized simply in Fig. 3. Figure 1 diagrams the 
system in more detail.

examples 
from Bach LEARNING

feature space regions 
created by dusterer

melody to 
harmonize

HARMONIZING
(PERFORMING)

melody with 
simplified figured 
bass harmonization

Figure 3. Summary diagram of ChoraLearn.

The learning element consists of several Pascal programs: the PLSl clusterer and programs 
to prepare the input files for the clusterer and to reformat the output for use by the 
performance element. The performance element is a single Pascal program that takes a 
melody and a first cadence chord (see Fig. le) and, with reference to the clusterer output, 
produces a simplified figured bass harmonization of the melody. (The output was fed to the 
music notation graphics system of CERL Music/PLATO at the University of Illinois.)
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1. Learning

As explained in Section I.C, the clusterer needs to be given feature vectors for a 
collection of good objects and for a collection of bad objects in order to partition the feature 
space, and in so doing create a classification scheme. The good objects for our system were 
301 progressions from Bach chorale harmonizations (each progression was either typed in 
according to a numeric code, or played in from a synthesizer keyboard). The collection of 
bad objects was created by having the computer generate all alternative progressions (within 
certain constraints) for each Bach progression. This collection included a small number of 
good progressions also, since, it is safe to say, there is usually more than one Bach-like 
progression that can be used in a particular place. Therefore we will no longer refer to the 
objects in this collection as bad objects, but rather as non-Bach objects.5

The clusterer was run and it output a list of feature space regions with associated 
utilities (see Introduction). Another program, Reformat, stored this list in a form in which it 
could be used by the performance element of ChoraLearn.

[The rest of this section explains in more detail (for the most part musical detail) how the 
Bach and non-Bach collections were created, and may be skipped without loss of continuity.]

Phrases were chosen from chorales at the beginning of the Riemenschneider (1941) 
collection of four-voiced chorales. The phrases had to satisfy the constraint that they lie 
within the problem domain, i.e., they had to be in a major key and not modulate. Each 
phrase, from first chord to first cadence chord, was input to a chord file editor as a sequence 
of four-voice quarter-note chords (the key was also input). The quarter-note chords were 
obtained by my reducing each phrase to a form similar to that shown in Fig. Id, the only 
difference being that instead of the alto and tenor notes being as close to the soprano note as 
possible, they would be the notes that Bach actually wrote. For the most part this reducing 
process consisted simply of disregarding nonharmonic tones, but in many cases there was 
eighth—note movement such that the first and second halves of the beat could be analyzed as 
two separate chords. In such cases I had to decide which was the more important chord. 
Whenever this decision was difficult, I chose the chord of the first half of the beat.

The four notes of each chord were represented simply as numbers, which were either 
typed in or played in (via a synthesizer-computer interface). The chord file editor stored the 
key as well as a description of each chord in the phrase (the description included the actual 
input values for the four notes as well as figured bass information extracted from them: type 
of triad or seventh chord, and inversion). The chord file editor also screened the input. First 
of all, only triads and seventh chords were accepted. The editor would prompt me to 
complete ambiguous chord descriptions. For example, is a particular seventh chord with a 
missing third based on a major or minor triad? Or, is a particular triad with a missing fifth 
to be analyzed as diminished or minor? A second screen (called MajorKeyScreen) accepted 
only those chords that were in the key. In addition to triads and seventh chords built on the 
seven scale degrees, those chords included secondary dominant chords and all diminished 
seventh chords. MajorKeyScreen does not accept second inversions of triads (six-four

5 One of the nice things about the PLSl clusterer is that it can make a useful classification scheme even when it is given 
collections of “good” and “bad” objects that contain some wrongly classified objects (i.e., it still functions when the environment
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chords). It also rejects any chord that has the leading tone in both soprano and bass, and any 
inversion of a seventh chord if the soprano doubles the bass. In the first 23 chorales of the 
Riemenschneider collection, among the phrases that are in major keys and do not contain 
modulations (except possibly at the cadence), two had to be rejected because they contained 
secondary VII s chords, and one had to be rejected because it had a noncadential six-four 
chord for a quarter-note harmony (there were also two six-four chords in chorale 7, and two 
in chorale 11, each on the second beat of a three-beat measure, which I just skipped over). 
MajorKeyScreen is thus a bit too restrictive.

After the file of Bach phrases was prepared using the chord file editor, a program called 
Histos (not shown in Fig. 4) read through the file, examining each chord progression, and 
made tabulations of the number of times each value of certain features occurred (the features 
will be explained in Section B). These tabulations were used in some cases to set bounds on 
feature space dimensions,6 and in some cases for grouping and/or reordering of values of 
nominal features (this was done by hand, but the latest version of the PLS clusterer reorders 
nominal feature values automatically on the basis of frequency of occurrence). A program 
related to Histos, MakeHistosFile, stored the same tabulations in a file that could be read by 
the system (programs plslnput and Harmonize— see Fig. 4) for automatic conversion of 
primitive measures to feature values (for certain features— for others it was not necessary).

The program plslnput read the Bach chord file again to create an input file for the 
clusterer. The input file consisted of two lists of feature vectors, a "Bach list" and a "non- 
Bach list." These lists were constructed by the program as follows. For each object in the 
file (recall that an object, or progression, consists of two successive chords, "Chord" and 
"NextChord") the program calculated the feature vector and added it to the Bach list. Then 
it generated all other possible MajorKeyScreened chords (about 60) that had the same 
soprano note as did Chord of the Bach progression. Each of these, considered together with 
NextChord, was a new object, and its feature vector was also calculated. If this feature 
vector was within the bounds of the feature space, it was added to the non-Bach list. (As 
stated above, the feature space bounds were determined from the preliminary tabulations 
obtained from the chord file. Of the roughly 60 objects whose Chords passed the 
MajorKeyScreen, the number that were in bounds was on the average 4 or 40, depending on 
which set of features was used—see below, Section IV.B.)

2. Performing (harmonizing)

The performance element took as input a melody with a first cadence chord (Fig. le).7 It 
wrote a figured bass for the melody notes, starting with the last note (the note immediately 
preceding the first cadence chord), in the following manner (see Fig. 5 for a cartoon of the 
method). Trial objects were generated corresponding to every possible chord containing the 
last melody note (there were usually about 300 such objects). Each object consisted of one of 
the trial chords (Chord) and the first cadence chord (NextChord). As mentioned above 
(Section II.C.2 see Fig. 2), the initial set of trial objects was reduced by some preliminary 
screens. The first screen eliminated cases in which the bass note of Chord was not at least

aTo help the clusterer, for some features, values that never occurred in the Bach training examples were made '’out o f 
bounds (see Section B).

The remaining chord (or chords) o f the cadence also had to be supplied by the user, but it (they) was (were) not con­
sidered by the current harmonizing system (see above, Section U.B.2).
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some minimal distance below the melody note (e.g., a fifth for triads and a seventh for 
seventh chords in root position). The second screen, the MajorKeyScreen mentioned above, 
reduced the number of possibilities to about 60. The third screen was the bounds of the 
feature space. After these preliminary screens, the output of the clusterer (from the learning 
stage) was used in the final screen: the feature vector was calculated for each of the objects 
remaining after the preliminary screens, and the progression was given the utility of the 
feature space region into which the vector mapped. [The regions were found simply by going 
sequentially through the region file until the region containing the object’s feature vector was 
found. For improved efficiency, the file was ordered so that the most frequently encountered 
regions were at the beginning.] After one of the positive-utility progressions was chosen (see 
next paragraph), the Chord of' that progression became NextChord for the next set of 
progressions to be evaluated, namely those having Chords containing the next to last melody 
note as the soprano note. This whole process was iterated until Chord contained the first 
melody note of the phrase.

Figure 5. Cartoon of performance (harmonization). The object boxed by a dashed line is a 
progression, that which is being evaluated. The possible choices for the progression differ from each 
other only by what goes inside the space surrounded by question marks, the figured bass harmony for 
Chord (the figured bass and soprano note in the left half of the box constitute Chord, those in the 
right half, NextChord).

ChoraLearn can generate harmonizations for a phrase in two modes: “tree mode,” in 
which every harmonization that could be constructed with positive-utility progressions 
(objects) is generated with a depth-first algorithm (Rich, 1983), and “choosing mode,” in 
which a single such harmonization is generated, with the choice for each progression8 being

*In a sense it is a figured bass harmony for the soprano note of Chord that is being chosen at any given point. The har­
mony for the soprano note o f NextChord will have been chosen already, and the two soprano notes will have been input by the 
user. However, the harmony o f Chord is not evaluated by itself, but as part o f the progression. Therefore, I will always speak 
o f choosing a progression rather than choosing a harmony. The reader should keep in mind that the choice is always from 
among objects differing from each other only in the harmony o f Chord (see Fig. 5).
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made completely randomly, or randomly with a weighting formula, from among the 
positive-utility objects. In the choosing mode, if there are no objects with positive-utility (a 
dead end), ChoraLearn will “back up” (move towards the cadence chord) three notes (or until 
it reaches the note preceding the first cadence chord if the latter were less than three notes 
away) and reharmonize from that point. Dead ends occurred more often with some sets of 
features than with others.

In addition to the two doubling rules contained in MajorKeyScreen (Section 1 above), 
the performance element contained one other explicit rule: “do not accept a sequence of 5 
bass notes with none more than a whole step from the first.” The purpose of this rule was to 
screen out some boring bass contours. When the second level subsystem, which will use 
features of a whole phrase (see above, Section ILB) is implemented, this rule will be 
superfluous (moreover, some Bach bass lines violate this rule).

B. Features
Rendell (1986b) has analyzed the role of features in tasks such as playing checkers or 

solving the fifteen puzzle. He estimates that of the knowledge that is represented in a feature 
space after clustering, less than half lies in the clustering itself, the rest being in the feature 
definitions. The choice of features is therefore important.

In developing a system that utilizes the PLS1 clusterer, an appropriate set of features 
may be determined by experimentation. The user begins by defining and programming those 
features deemed useful from a priori considerations. The clusterer will dismiss any features 
that in fact will not discriminate good from bad examples (for a given set of examples and a 
given set of clusterer parameters). Moreover, by observing the deficiencies in the current 
performance, the user may elaborate the feature set appropriately.

The following features were used to construct the feature sets that were used in the tests 
that will be discussed in the next section. The explanations are mainly for the reader who 
has some knowledge of harmony. For others, it is sufficient to keep in mind that the features 
are used to describe objects that are progressions. Each feature, with the exception of 
Features 7 and 8, is a basic part of the musical description of Chord or NextChord, or else 
describes the change in pitch of the soprano or bass in going from Chord to NextChord. 
Feature 8 is sort of a cheat— a rule disguised as a feature. Feature 7 is also sort of a cheat, 
being a check of whether a partial specification of the progression, called the harmonic 
progression, occurred in the training examples. Because use of Feature 7 amounts to a 
partial look-up of the progression, it limits the range of progressions that can be induced as 
being Bach-like. Feature 8 was included in every feature set, while Feature 7 was omitted 
from some of them, including the currently most “advanced” one.
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1. Feature Is Basslnterval
The Basslnterval is defined as the movement of the bass from Chord to NextChord, i.e., 

the difference: NextBassTone -  BassTone (measured in half-step units). This feature had 17 
values, corresponding to the 17 different Basslntervals found in the set of training examples. 
The Basslntervals were ordered approximately from greatest descending interval to greatest 
ascending interval, but with a couple of adjustments made on the basis of the frequency of 
occurrence (in the training example set) of a particular Basslnterval. The purpose of these 
adjustments was to make it possible for progressions having different frequently occurring 
Basslntervals to be clustered together (by the PLSl clusterer) without having to include 
progressions having infrequently. occurring Basslntervals. The resulting order is shown in
Fig. 6.

procedure CalcFeatl# 
var BassX:integer# 
begin

Basel:=NextBassTane—BassTone# 
if (abs(BassI)>12) 

then Featl:=20 
else case BassI of

-10: Featl: =1

•CBassTone# NextBassTone: integer^}

A
'»b

end;

-8: Featl:=2
-6: Featl:=3
-7: Featl:=4
-5: Featl:=5
-4: Featl:=6; {CURRENT
-3: Featl:=7; {Bach. 12
-2: Featl:=8; { 9-1-86
-1: Featl: =9
0: Featl:=10
1: Featl:=11
2: Featl: =12
3: Featl:=13
5: Featl: =14
4: Featl:=15
7: Featl:=16
12: Featl: =17

— 12# -11# -9. 6. 8# 9, 10# 11: Featl: =20 
end#

{CalcFeatl>

VALUES FROM > 
(303 objects)}-

Figure 6. Code for Feature 1.

The intervals listed on the bottom, all given the feature value of 20, did not occur in the 
training examples (downward skip of octave, major seventh, major sixth, upward skip of 
tritone, major and minor sixth, major and minor seventh). Any trial object having a value of 
20 for Feature 1 was considered to be out of the feature space bounds (see Section A above).
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2. Feature 2: BassRegister
Bach’s bass range was from 1 to 27 (in my convention, 25 is middle C and 1 is two 

octaves below it). This range was divided into five registers (five feature values). In later 
feature sets only two registers (feature values) were defined: the value 1 for very low notes (1 
to 5) and the value 2 for all other notes.

3* Feature 4s SopranoRegister
- The soprano range (25 to 45) was divided into 4 segments.

-4. Feature 5s Sopranolnterval

The Sopranolnterval was defined similarly as the Basslnterval (Section 1 above), but the 
intervals were grouped to form 7 feature values: rarely or never occurring upward skips, 
frequently occurring upward skips, upward steps, no movement, downward steps, frequently 
occurring downward skips, rarely or never occurring downward skips.

5c Feature 8as BassScaleElement

The BassScaleElement was one of the twelve degrees of the chromatic scale (tonic =  1, 
leading tone =  12). These were ordered according to their frequency of occurrence in the set 
of Bach training examples (Fig. 7).

procedure CalcFeat6a (Key, BassTone; in te g e r !  var Feat6a
V  OCCUrrence b a s* note s c a le  e lem ent}  var BSE: in te g e r !

begin ^

case=BSEBofST°ne+12)~ <Ke,i m°d 12) > mod + *
■Cmost common}1: 

5: 
1 0 : 

6 : 
12 : 

8 : 
3: 
7: 
9: 

11 : 
2 : 
4: 

end 
end;

Featóa:=1 
Feat6a:=2 
Featóa:=3 
Featóa:=4 
Featóa:=5 
Featóa:=ó 
Featóa:=7 
Featóa =8 
Featóa:=9 
Featóa:=10; 
Featóa:=11; 
Featóa:=20

<C alcF eatóa}

G

-CCURRENT VALUES FROM } 
-CBach. 12 (303 objects)} 
■C 9-1-80 >

Figure 7. Code for Feature 6a.

Degree 4 (lowered third degree) did not occur in the training examples (which 
major keys) and was given the value 20, putting it out of feature space bounds.

were all in
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8. Feature 7: HarmonicProgression
The HarmonicProgression was defined as the sequential harmonic analyses of the Chord 

and NextChord. The harmonic analysis of a chord was in turn uniquely specified by the 
BassScaleElement, the type of triad (major, minor, or diminished), the inversion, and the 
kind of seventh (major or minor third higher than the fifth), if there was one. This 
information was represented in a four-digit code.9

To assign a feature value to an object, the HarmonicProgression was calculated and 
looked-up in a table containing all the HarmonicProgressions of the training examples. 
Frequently occurring HarmonicProgressions were given a value of 1, infrequently occurring 
harmonic progressions were given a value of 2, and those not in the table were put out of 
feature space bounds. Inclusion of this feature thus restricts the range of progressions that 
can be induced, and it was therefore not included in the most advanced feature set (see 
Section IV.C).

7. Feature 8: parallel and hidden fifths and octaves
Feature 8 is the only feature that took the form of a rule. If an object had parallel fifths 

or octaves between the soprano and the bass, it was assigned a Feature 8 value of 3. If it had 
a hidden fifth or octave between soprano and bass it was assigned a Feature 8 value of 2.10 
Otherwise it was assigned a Feature 8 value of 1. None of the objects in the Bach training 
examples had a Feature 8 value of 3, so this value was made out of feature space bounds. 
There were, however, two cases of Feature 8 value 2 in the training examples (both hidden 
fifths). A nice result of clustering, then, would be if objects having a Feature 8 value of 2 
were evaluated to have a positive utility only if they were similar to the two Bach examples.

8. Features 9, 10,-and 14: SopranoChordElement and BassChordElement
Features 9 and 10 specified the chord element (root, third, fifth, or seventh) of the 

soprano and bass respectively of Chord. Feature 14 specified the chord element of the bass of 
NextChord.

9. Features 11 and 13a: Triad
Feature 11 specified whether Chord was based on a major, minor, or diminished triad 

(augmented triads were screened out by MajorKeyScreen). Feature 13a did the same for 
NextChord.

10. Feature 12: Seventh
This feature specified whether Chord was a seventh chord, and if so, whether the 

seventh degree was a major or minor third above the fifth.

®The entire job of ChoraLearn, as stated above, is to learn what constitutes a good progression. A progression, i.e., the 
object consisting o f Chord and NextChord, consists of the HarmonicProgression plus the two soprano notes.

10Piston’s (1962) definitions were used: a hidden fifth is a fifth approached by similar skipwise motion; a hidden octave is 
an octave approached by downward skipwise motion in both voices, or by upward motion o f both voices (except if soprano 
moves upward by half-step and bass by skip).
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IV. CHORALEARN: TESTS AND RESULTS
In this section some of the results obtained using ChoraLearn will be discussed. The 

feature sets used were as follows (see previous section for explanations of individual features):

TABLE 1
COMPOSITION OF FEATURE SETS

Feature Set F eatures

2 1, 2 (5 values), 4, 5, 6a, 7, 8, 9, 10
3 1, 2 (5 values), 4, 5, 6a, 8, 9, 10, 11, 12
4 1, 2 (2 values), 5, 6a, 7, 8, 9, 10
5 1, 2 (2 values), 5, 6a, 8, 9, 10, 11, 12
6 1, 2 (2 values), 5, 6a, 8, 9, 10, 11, 12, 13a, 14

[Feature Set 1 was used in very preliminary tests, and will not be discussed.]

A. Choosing a Progression: “OKChord,” “GoodChord,” or “BestChord”
Up to the present state of development, ChoraLearn has been learning how to evaluate,

or classify, single progressions (a progression consists of a Chord and a NextChord __ see
above). It can string progressions together, choosing those that it classifies as Bach-like, to 
create a harmonization for the noncadential portion of a phrase. The objective has been to 
be able to generate, for a given phrase, a set of such harmonizations that is likely to include 
some that are overall Bach-like (see above, Section II.C.2).

One set of harmonizations that the present ChoraLearn can generate is simply the set of 
all harmonizations that can be constructed with progressions having positive utility (the 
“tree mode” mentioned in Section III. A. 2). In this case utility is reduced to a boolean 
function (this is not always done in other applications of the PLSl clusterer).

 ̂ number of possible ways to harmonize a phrase with k noncadential melody notes is
N  , where N  is the number of positive-utility progressions for a given melody note and 
NextChord. (Using the melodies of the training examples and Feature Set 6, I obtained, with 
the help of a program, an average value of 3.6 for N  .) Thus, for long phrases, the size of the 
set of all possible harmonizations is unmanageably large (e.g., if * is 10, the estimated 
number of possible harmonizations is about 4X10).

There are several ways to generate a smaller set of harmonizations. I will discuss now 
only two of the ways that have been implemented in ChoraLearn. One way w,as simply to 
choose at random one of the positive-utility progressions for each successive melody note. A 
harmonization generated this way I called an “OKChord” harmonization. ChoraLearn could 
be asked to generate as many OKChord harmonizations as desired to create a set of arbitrary 
size. The other way was similar, except that the random choice was weighted such that the 
probability of a given progression being chosen was proportional to its utility divided by the 
sum of the utilities of all the possible progressions (for the given soprano note and 
NextChord). A harmonization generated this way was called a “GoodChord” harmonization.
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[The rest of this section is for the reader interested in machine learning details, and may be 
skipped without loss of continuity.]

In considering the relative merits of a GoodChord harmonization and an OKChord 
harmonization, one must recognize that some potentially important information is lost in 
reducing utility to a boolean function. Recall from Section I.C that the utility of a region is 
the number of good objects divided by the total number of objects in the region. In 
ChoraLearn, the feature space was filled with Bach progressions and all possible alternatives 
to them (see Section III.A.l). Thus, in our system, the utility of a region is the number of 
times Bach used a progression from that region divided by the number of times he could have 
used one in that region (in the training example situations).11 Thus it makes sense for 
ChoraLearn to preferentially choose progressions with high utilities. Of course, we could also 
have made this choice deterministic, i.e., chosen the highest utility progression every time, 
but there would be only one such “BestChord” harmonization. We know that we need to 
generate a set of harmonizations because the choice of a good harmonization will require 
examining global as well as local features (the second level subsystem, mentioned above).

Preliminary tests with two fragments of chorale phrases (not included in the training 
examples), using a program that calculated the average utility of the chords in each possible 
harmonization, showed (in both cases) that the Bach versions had average utilities that were 
near the highest possible. The GoodChord choosing procedure also produced versions with 
high average utilities, sometimes reproducing the Bach version. The BestChord version had 
in one case the highest average utility, and in the other, the second highest (in neither case 
was it the same as the Bach version).

B. Pruning the Set of Possible Choices for a Progression:
Examples Obtained with Two Different Feature Sets

In this short section we will get an idea of the actual sizes of the sets of available 
progressions as they are successively reduced by the screening operations of ChoraLearn (see 
Fig. 2). The final screen is the classification according to feature space regions. The next to 
final screen is the feature space bounds. The number of progressions it screens out depends 
very much on the feature set. In particular, if Feature 7 is included in the set, the bounds are 
very restrictive (they screen out a lot of progressions). This leaves less work for the clusterer 
to do, but the disadvantage of not allowing the system to generalize as much (see Section 
III.B.6) is a real one, as will be seen in the next section (see also footnote in section D below).

[The rest of this section gives representative numbers for the sizes of the sets of available 
progressions, and elaborates further on the important differences between feature sets that 
include Feature 7 and those that do not. It may be skipped without loss of continuity.]

llFollowing this line o f thinking, one might think it possible to extract rules from those regions that had a 1.0 utility, be­
cause Bach used a chord from such a region every time he could (in the training examples). In fact, in the results I have exam­
ined, there were at most two such regions in any clustering of a space containing 150 to 300 Bach objects, and each of these re­
gions had only 5 or 6 objects in it. Furthermore, the 5 or 6 points were not always closely related, and the regions were very 
dependent on the feature set and the number o f training examples. Such regions thus seemed rather to represent fortuitous in­
teractions o f feature sets and training examples than consistent practices o f Bach.
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An example of an OKChord harmonization using Feature Set 2 is shown in Fig. 8. Let 
us consider the fourth text entry below the music. It contains some information about how 
Chord no. 4 was chosen. The total number of trial Chords generated was 294. Of these, 63 
passed the MajorKeyScreen (see Section III) for the key of D. Of these 63, only 6 were in the 
feature space bounds, and of these 6, 3 were in regions having positive utility ( good 
regions). The chord chosen had a utility of 0.3636 ( “Eval” is the utility multiplied by ten 
thousand). In going from the MajorKeyScreened chords to the positive utility chords, the 
problem has been reduced from choosing one chord out of 63 to choosing one chord out of 3.

Figure 9 shows an output similar to the one shown in Fig. 8. However, it comes from a 
trial in which Feature Set 3 was used. Looking at the text entries, we see that there is a big 
difference between Fig. 8 and Fig. 9 in the number of objects that were in feature space 
bounds. The number in bounds in the first entry of Fig. 9, 38, is typical for Feature Set 3.

The major difference between Feature Sets 2 and 4, on the one hand, and Feature Sets 
3, 5, and 6 on the other, is that the former include Feature 7, which refers to the list of 
HarmonicProgressions found in the training examples, whereas the latter rely on Features 11, 
12, 13a, and 14, which, together with some of of the other features, contain the information 
to partially specify a HarmonicProgression.12 With Feature Sets 2 and 4, in order for a trial 
object to be in feature space bounds, it had to have a HarmonicProgression identical to the 
HarmonicProgression of one of the training examples. This is a very restrictive condition, 
and for this reason the number of in-bounds trial objects was so small with Feature Sets 2 
and 4. The greater amount of work done by the clusterer with Feature Set 6 (lacking the 
restrictive Feature 7) than with Feature Set 4 is seen in the number of in-bounds non-Bach 
training objects (11,802 vs. 1,399) and in the cpu time for clustering (62 min vs. 7 min).

C. Some Harmonizations Generated by ChoraLearn Using Feature Set 8
In this section and the next we will concentrate on the system’s performance using 

Feature Set 6, the most advanced of the feature sets, and a set of 301 Bach training 
examples. Here I present some computer-generated harmonizations, and in the following 
section I present an evaluation, partly based on them, of the learning done by the clusterer. 
In this section we will see that, at least for a short phrase, a small set of harmonizations 
generated by ChoraLearn has a good chance of containing some that are overall Bach-like.

We asked the computer to generate all possible harmonizations (using progressions that 
map into positive-utility regions) for the first phrase of the chorale “O Gott, du frommer 
Gott.”

The results are shown in Fig. 10. In addition to the figures below the bass notes, which 
are the figures of the figured bass, there are also some numbers and letters in between the 
treble and bass staves. These numbers mark the progressions that were induced, i.e., the

12The components o f the HarmonicProgression specification that cannot, in general, be found from a feature vector in 
Feature Set 3 or 5 are three o f the four that constitute the harmonic analysis (see Section ID. B. 6) o f NextChord. Only the 
BassScaleElement of NextChord is computable from the BassScaleElement o f Chord and the Basslnterval (going from Chord to 
NextChord). In Feature Set 6, Features I3a and 14 specify the NextChord Triad and BassChordElement respectively, leaving 
only the NextChord Seventh unspecified. The fact that the HarmonicProgression is not completely specified by the features in 
Feature Sets 3, 5, and 6 did not affect the number of trial objects that were in feature space bounds; i.e., even if one o f these sets 
had contained features that together completely specified the HarmonicProgression, that set would still not be similar to the sets 
that contain Feature 7. Feature 7, in fact, does not specify the HarmonicProgression. The procedure that calculates a Feature 7 
value for a progression must compute the HarmonicProgression on the way, but finally the progression gets one of only three 
possible Feature 7 values.
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Figure 8. Example of a harmonization generated with Feature Set 2.
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progressions whose feature vectors are not represented in the Bach training examples. There 
are 19 such progressions, though many of these occur more than once. The first time one of 
these progressions occurs it has either a “v” or a “p” underneath it. A “p” indicates that the 
HarmonicProgression of the progression did not occur in the Bach training examples; i.e., it 
had a Feature 7 value of 3. A “v” indicates that the HarmonicProgression did occur in the 
training examples, although the particular feature vector did not. We asked a musician 
well-acquainted with the chorales of Bach (hereafter referred to as “the Bach expert” ) to 
examine briefly the marked progressions. She said she could imagine that all but five of them 
might have been used by Bach in some context in a chorale.13 These five, some of which she 
considered weak or questionable, are identified by a “b” (for “bad” ) next to the “v” or “p.” It 
should be noted that the twelve progressions marked with a “p,” of which only two were 
marked bad, could not have been induced using a feature set that included Feature 7.

We also asked the Bach expert to make a quick survey of the set of harmonizations to 
see if she could imagine that any of the whole-phrase simplified figured bass harmonizations 
had been written by Bach (actually, the cadence in each case, consisting of the last two 
chords, was copied from Bach, not generated by computer). She judged five of them to be 
Bach-like. These are marked with a “B” at the beginning of the phrase.

It is interesting to note that the two harmonizations consisting entirely o f progressions 
whose feature vectors occurred in the Bach training examples (versions 27 and 28) were not 
among the five that the Bach expert judged to be Bach-like. If we assume that this was not 
just an oversight of our expert, it illustrates two things: (1) the value of being able to 
produce progressions similar to, but not identical to, those in the training examples (i.e., 
being able to induce good progressions), and (2) the necessity of eventually being able to look 
at features of a whole phrase, or at least a measure, of music.

Another thing to note in Fig. 10 is that the third chord from the end, which was not a 
cadence chord, is the same in every version. This is because it was the only chord, which, 
considered together with the first cadence chord following it, mapped into a positive-utility 
region. This was not the chord that Bach used, and so the Bach version (actually, there are 
two Bach versions of this phrase, which differ only in the first chord) is not included in Fig. 
10. If, however, we replace the third chord from the end by the corresponding chord from 
Bach’s version, then the rest of the progressions (working towards the beginning) in the Bach 
version all map into positive-utility regions, and so could be generated by ChoraLearn 
(actually, this is true only for one of the Bach versions — in the other one, the first 
progression evaluated to zero). In fact, it appeared as one of the first ten versions generated 
with the GoodChord choosing procedure (see Section A above). These are illustrated in Fig. 
11 (the Bach version is number 7). This might not seem very impressive, since the computer 
is only generating three chords. However, if we assume an average of 40 in-bounds 
progressions for each choice and were to choose randomly from them, the chances of getting a 
particular result in 10 trials is about one in 6,500. We tried to see if we could reproduce 
Bach in another case, in which the computer had to generate four progressions, and for which 
there were three Bach versions that would be possible to reproduce. In this case, a Bach 
version did not occur in the first 10 trials, but did in the first 30 trials. The chance of one of 
the three Bach versions occurring in 30 trials if the computer chose at random from in-

in some cases it was difficult for the Bach expert to decide whether Bach might have used a particular progression 
somehow, somewhere or not.
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bounds chords is about one in 30,000. These figures indicate that the choices influenced by 
the clusterer’s action are much better than random. In other words, the system has learned
something from the Bach examples. Further quantitative evidence for this is presented in the 
next section.

Figure 12 shows the first 10 GoodChord versions of a phrase from an Indonesian folk 
song (the fermata in the middle of the line does not represent a cadence). In this case, almost 
every feature vector did not occur in the training examples because the melody is quite 
different from any of the Bach examples (v and p have the same meanings as in the previous 
two figures). Nevertheless, even to an untrained ear, the harmonizations sound considerably 
more like Bach than do harmonizations constructed by randomly choosing in-bounds 
progressions.

D. Evaluation of the Learning Done by the Clusterer 

1. The need for two different measures

The concept that ChoraLearn has been learning is "Bach-like progression." We would 
like a quantitative estimate of how much closer the set of Bach-like-according-to-the- 
clusterer progressions comes to being identical to the set of truly Bach-like progressions than 
does the set of all in-bounds progressions. A straightforward way to obtain such an estimate 
is to test the system. The test should consist of two parts. In one part, the system should be 
allowed to generate objects (two-part progressions). Its performance would be measured by 
the fraction of these objects that are good (Bach-like). In the other part of the test, the 
system should evaluate a set of good (Bach) objects. Its performance in this part would be 
measured by the fraction that it correctly classifies as good.

It is easy to see the necessity of two parts or measures. If a system were judged only 
according to how few bad objects it generates, then a system could be too restrictive, i.e., 
capable of generating only a very limited number of progressions, and yet be considered to be 
good. On the other hand, if a system were judged only according to how many good objects 
it is capable of generating, then a system could be not restrictive enough, i.e, capable of 
generating many good objects, but also many bad objects, and yet be considered to be good.

2. The teat

For Part I of the test, we used the set of 28 possible harmonizations that the system 
wrote for phrase I of “O Gott, du frommer Gott,” because these were evaluated for us by a 
Bach expert (Fig. 10). In these harmonizations, the system generated a total of 32 different 
progressions. Of these, 13 had feature vectors identical to progressions in the training 
examples, and so were assumed to be good. Of the remaining 19, 14 were judged to be 
Bach-like by the expert. Thus 27, or 84%, of the computer-generated objects were good.

. In the current Mustering (using Feature Set 6), 9.1% of the total in-bounds points are in 
positive-utility regions. We assume that the percentage of points that would be in positive- 
utility regions _ in a completely correct clustering would be approximately the same, 
therefore, 9% is a rough estimate of the proportion of good objects that would be venerated 
by a system that accepts any object in the space (no learning). [We could get approximately 
the same estimate from Fig. 9 by dividing the number of progressions in “good” regions by 
the number in the feature space bounds, because Feature Set 3 is similar to Feature Set 6.1

For Part II of the test, 30 progressions from Bach chorales not in the training examples 
were evaluated by ChoraLearn (using the same clustering as for Test I). Of these, 24 (80%)

27



2

2

Figure 11. The first ten GoodChord choice harmonizations of the first three notes of the 
phrase in Fig. 10.
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were correctly evaluated as being good (positive utility).14 Of the remaining six, one had a 
movement of the bass that was outside feature space bounds, and two others had a chord 
that was not MajorKeyScreened as one of its chords (Chord or NextChord). Thus, a perfect 
clustering, within the given constraints, would have resulted in a score of 90%. A 
nonrestrictive system with no clustering at all, i.e., a system that accepts any object in the 
feature space, would also get a score of 90%.

Adding the scores from the two tests together, we get the composite scores of 99 (out of 
200) for the nonclustered system, 164 for the clustered system, and 190 for a perfect system. 
Normalizing, we find that the clusterer, with the current set of training examples, has gone 
71% of the linear distance from considering everything in the feature space to be good15 to 
having learned perfectly which points in the space are good and which are not. We anticipate 
that the proposed feedback mechanism, which is described in Section V, will enable the 
system to go most of the remaining distance.

The test scores mentioned above for the current system may not seem very impressive, 
but in fact they represent learning that has made a very substantial contribution towards the 
— ̂  ° r being able to generate Bach-like harmonizations for a phrase. This is explained in the 
following section.

14 Five o f the correctly evaluated Bach progressions had HarmonicProgressions that were not in the training examples, and 
therefore would have had a zero utility according to a system that used a feature set containing Feature 7.

16 If, instead o f taking a completely nonrestrictive system as a zero-learning baseline, we take an almost completely res­
trictive system, e.g., one that has learned one progression by rote and considers everything else to be bad, we get a similar result. 
That is because such an “almost no learning” system would score 100 on Part I (assuming that the phrase(s) it were given to har­
monize allowed it to use its single learned progression) and zero, or close to zero, on Part II, yielding again a composite score of 
about 100.
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Figure 13. Abstract representation of the sets of harmonizations that could be constructed with 
different sets of progressions. The exponent k is the number of non-cadential chords in the phrase. 
The CB region represents the set of harmonizations that are constructed from progressions that are 
each classified as Bach-like (positive-utility progressions). The TB region represents the set of 
harmonizations that are piece-wise Bach-like (constructed from progressions that are each truly 
Bach-like). The starred region represents the harmonizations that are overall Bach-like. The 
representative numbers 40 and 4, for in-bounds and positive-utility progressions respectively, are 
specific to Feature Set 6.

3. Importance of the learning done so far
Recall that the goal of the system thus far has been to be able to generate a set of 

piecewise-Bach-like harmonizations for a phrase, so that a future second-level subsystem will 
be able to select a smaller set of overall-Bach-like harmonizations using a feature space 
constructed from more global features than those of the current progression-level subsystem.

It follows that we want the phrases generated by the present system to have a 
reasonable probability of being overall-Bach-like. This goal obviously becomes more difficult 
to achieve as the length of the phrase increases. Figure 13 illustrates abstractly what the 
sytem accomplishes. As the number k of noncadential chords in the phrase grows, so do the 
relative differences in size between the various regions. I have assumed again that the 
average number of truly Bach-like progressions is approximately the same as the average
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number of positive-utility progressions available (given a NextChord and a soprano note for 
Chord) when Feature Set 6 is used. (As mentioned earlier, this average is 3.6. Here, I have 
rounded it off to 4.) The number of overall-Bach-like phrases, 3*, was roughly extrapolated 
from the information in Fig. 10 from our Bach expert that for k— 4, 5 of 20 piecewise-Bach- 
like phrases were overall Bach-like.

The probabilities of generating overall-Bach-like phrases of different lengths are 
estimated in Table 2. The column on the far right contains the estimates for a system that 
has perfectly learned to recognize Bach-like progressions. The column to the left of it is for 
the current system, and was calculated using the 84% score on Part I of the test mentioned 
above (the probability of generating a phrase with all progressions Bach-like is 0.84*, and the 
probability of^generating an overall Bach—like phrase given that all its progressions are 
Bach-like is 3 /4  ). I assumed that the imperfection represented by the less than perfect 
score on Part II of the test, while limiting slightly the variety of possible Bach-like results, 
would not appreciably affect the proportion of generated phrases that would be overall 
Bach-like (increasing the number of available Bach-like progressions would increase the 
number of possible overall Bach-like phrases, but also the number of possible non-Bach-like 
phrases with all progressions Bach-like).

Looking at Table 2, we easily can see the great advantage of the current clustering 
(positive-utility progressions) over choosing randomly from in-bounds progressions. For a 
phrase with ten noncadential notes the advantage is the difference between a probability of 
0.01 for generating an overall-Bach-like phrase versus a probability of 6X10 , a factor of
2X10 . The importance of improving upon the 84% correctness (measured on Part I of the 
test) of the current system is not so obvious. Making the score perfect would only increase 
the probability that a phrase is overall Bach-like by a factor of 2 for short phrases (3 or 4 
noncadential chords), and a factor of 6 for longer phrases (8 to 10 noncadential chords). In 
fact, however, it is very important to decrease the probability of generating a non-Bach-like 
progression. The reason is that such progressions cannot be screened out in the second 
(phrase) stage of learning, because that stage will operate in a space of features of a whole 
phrase (more global features). An 84% Bach-like progression rate means that even for a 
short phrase (4 noncadential chords) the probability that it will be marred by at least one 
non-Bach-like progression is 50%. It should be recognized also that the average listener 
usually will be more disturbed by a bad two-chord progression than by a flaw at a more 
global level (thus, finishing the job of screening out non-Bach-like progressions is of more 
basic importance for the quality of the music than implementing the phrase stage of 
learning).

From the analysis in this section we conclude that the learning done by the clusterer in 
our current system has made a very substantial contribution towards the goal of being able 
to generate Bach-like harmonizations of a chorale phrase melody.
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TAULE 2
ESTIMATED PROBABILITY OF GENERATING A BACH-LIKE PHRASE

phrase length 
(non eadential 

chords)

No. o f possible phrases
no. of 

Bach-like 
phrases

Probability
using

in-bounds
progressions

using
positive-utility 

progressions

using
Bach-like

progressions

with
in-bounds

progressions

with
positive-utility

progressions

with
Bach like 

progressions
k 40* 4* 3 7 4 0 * 0.84* x 3 * /4 * 3* /4*
1 40 4 4 3 0.08 0.63 0.75
2 2X10 16 16 9 0.01 0.40 0.56
3 6X10 64 64 27 4 X 1 0 '4 0.25 0.42
4 3X10 3X 102 3X 102 81 3X10 5 0.16 0.31
5 1X10 i x i o 3 i x i o 3 2X 102 2X10 * 0.10 0.23
6 4X10 4X103 4X103 7X102 2X10 7 0.06 0.18
7 2X10 2X104 2X104 2X 103 1X10 * 0.04 0.13
8 7X10 2 7X 104 7X104 7 X I0 3 1X10"® 0.02 0.10
9 3X10 3X10S 3 X I0 S 2X 104 8X10 U 0.02 0.08

L K> 1X10 1X10® 1X10® 6X 104 6 X 1 0 "12 0.01 0.06 !

E. Other Points of Discussion

1. Effect of increasing the number of training examples
Using Feature Set 2 and Feature Set 3, I tested ChoraLearn first with a set of 155 

training examples, and then again when the set was increased to 301. Two things were 
expected to increase along with the training example size: the number of possible 
harmonizations for a chorale phrase (using positive-utility chord progressions) and the 
correctness ( “Bach-likeness” ) of the chord progressions.

In the case of the Feature Set 3 version, the number of possible harmonizations 
increased substantially. This was not the case with the Feature Set 2 version. In the latter 
case, the limiting factor was Feature 7 — the trial object had to have a HarmonicProgression 
that occurred in the training examples in order to have a positive utility. The number of 
different HarmonicProgressions increased only modestly by doubling the number of training 
examples. On the other hand, the total number of objects input to the clusterer doubled 
(because the number of Bach objects doubled, the number of non—Bach objects necessarily 
doubled also -  see Section III. A. 1). Because of this increase in the total number of objects, 
the Bach objects could be concentrated in smaller regions, i.e., the size of the positive—utility 
regions shrank (reason explained in next paragraph). As a result, the number of possible 
harmonizations of the test melody actually decreased (from 11 to 10).

The reason why the positive—utility regions shrank in size with an increase in number of 
objects has to do with a PLSl clusterer parameter, mintotal, that specifies the minimum 
total number of objects that a region may contain. This parameter was set at 5 for both the 
small and large sets of training examples. Thus, for example, in the case of a Bach object 
that is far away from any other Bach objects, just increasing the average density of non-Bach 
objects in the space will have the effect of making the region containing the Bach-object and 
its 4 nearest non-Bach neighbors smaller. The problem of choosing the right value for 
mintotal will be discussed in Section 3, below.
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By looking at the Feature 8 dimension, it was easy to see that the smaller positive- 
utility regions resulting from the increased number of training examples with Feature Set 2 
were more correct. With the smaller number of training examples (large regions), every 
region in the space spanned both of the two in-bounds values of Feature 8. In other words, 
no region boundaries separated the half of the space in which every object has a hidden fifth 
or hidden octave from the other half of the space, even though there was only 1 Bach object 
with a hidden fifth (and none with a hidden octave). In contrast, with the larger number of 
examples (smaller regions), there were very few positive-utility regions that allowed the value 
of Feature 8 corresponding to a hidden fifth or hidden octave.16

2. The problem of extraneous features
After running the clusterer with Feature Set 2, I checked to see if three Bach objects 

that were not in the set of training examples mapped into positive-utility regions (this job 
can be done quickly using a little program called TestEval). One of them did not, although 
its harmonic progression was the same as that of two objects that were among the training 
examples. I then determined that it missed being in a positive-utility region because of its 
value for Feature 2 (bass register). So I simplified Feature 2, distinguishing only the very low 
bass notes from the rest (making Feature 2 have 2 possible values instead of 5), and got rid of 
Feature 4 (soprano register) altogether. Using this new feature set (Feature Set 4), the 
clusterer partitioned the space so that the Bach object that evaluated to zero before, now 
mapped into a positive-utility region. On the other hand, changing Feature Set 3 in the 
same way (to create Feature Set 5) resulted in the same Bach object being moved from a 
positive—utility to a zero—utility region. This was determined to have been a case of 
serendipity.17

10 Among these regions, obviously, were the regions containing the Bach objects with hidden fifths (there were now 2). 
Many of the other regions that allowed the value o f Feature 8 corresponding to a hidden fifth or hidden octave were regions in 
which it was actually impossible for a hidden fifth or hidden octave to occur because of the ranges o f Features 1 and 5.

l7Removing a feature from a set has two effects, which influence how many objects will be in positive-utility regions in op­
posite ways. The distinguishability o f different good objects is decreased, which tends to decrease the proportion of objects in 
positive-utility space, and the distinguishability o f good objects from “bad” objects is also decreased, which tends to increase the 
proportion o f objects in positive-utility space. With Feature Set 3, there were many regions containing exactly one good object. 
Because of the minimum total points rule (see Section 1 above) each o f these regions was forced to be large enough to include at 
least 5 points altogether (adding good and “bad” ). Removing Feature 4 and simplifying Feature 2 resulted in some o f the form­
erly different good points becoming indistinguishable from each other. Thus there were fewer positive-utility regions, and some 
o f the regions that contained only 1 good point were replaced by regions containing 2 or more, so that they needed to include 
fewer “bad” (non-Bachi points. The overall effect was a decrease in the proportion o f objects in positive-utility space and thus 
fewer possible harmonizations. (The particular Bach object in question was in a region containing one good training point, using 
Feature Set 3. In Feature Set 5, that good point became indistinguishable from another good point, and so they obviously were 
in the same region. Both of these training objects differed from the test object with regard to their values of Feature 9, soprano 
chord element, and that is why the test object moved from a positive-utility region to a zero-utility region.) In contrast, with 
Feature Set 2, there were fewer regions containing very small numbers o f good points, and therefore the second effect o f removing 
a feature, the decreased distinguishability o f good and “bad” objects, predominated. Thus there was an increase in the number 
o f “bad” points included in positive-utility space, with an outcome of a greater number o f possible harmonizations.

It should also be noted that a serendipitous effect could result from any kind of change in the clusterer’s input, whether it 
be a change in the training example file, a change in the mintotal parameter, or an alteration in the feature set. This is due to 
the fact that the clusterer does not, in general, create optimal clusterings, and the particular outcome, especially when we are 
concerned with zero utility vs. positive utility, can be substantially different (although approximately equally good) as a result of 
small changes. The clusterer makes successive optimal splits of regions, starting with the whole space (Rendell, 1983). But each 
split is permanent. In other words, when the splitting is finished, the clusterer does not go back and try different initial splits to 
see if the final clustering might be improved (another system, PLS2, which has been used in other domains, optimizes clusterings 
with respect to performance— see Rendell, 1985). Thus, if, for example, the addition o f one good point to the training examples 
were to result in the first split occurring perpendicular to the feature X dimension instead o f to the feature Y dimension, the final 
clustering might be significantly different.
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Extraneous (irrelevant or weakly relevant) features separate otherwise similar objects. 
Because of random effects, a system using a feature set that contains extraneous features will 
in general require more training examples for a given amount of learning than a system using 
a similar feature set but without the extraneous features.

3» Concept learning with noisy data— how to tune the learning system for best 
results

If all of the “non-Bach” feature vectors given to the clusterer were non-Bach-like, then 
it would have been best to partition the feature space in such a way that the Bach and non- 
Bach vectors would have been completely segregated in separate regions. However, surely 
some of the non-Bach vectors were in fact Bach-like (see Section IH.A.l). Therefore, in order 
not to make the regions containing Bach vectors (positive-utility regions) overly restrictive, 
it is a good idea to allow them to contain some non-Bach vectors as well (actually, since 
there were probably many non-Bach vectors coincident with Bach vectors, it would have 
been impossible not to allow it).

A PLSl clusterer parameter “tsubalphaclus” determines how significantly different two 
parts of a region must be (in terms of the respective numbers of Bach and non-Bach vectors 
in them— a statistical calculation is performed) in order for them to be separated by a new 
partition (splitting the original region to create two new ones). The parameter “mintotal” 
already mentioned above (Section 1) can also be adjusted ad hoc to deal with noisy data. By 
putting a lower limit on the total number of vectors that a region may contain, a mintotal 
value prevents a too-small group of Bach vectors from being isolated. In all the results 
discussed here, tsubalphaclus was set at zero (meaning that a minimally significant difference 
was sufficient for splitting) and mintotal at 5. In this section I discuss some effects of varying 
mintotal.

For a given set of training examples and a given feature set, there must be an optimum 
value or optimal range of values for mintotal. Obviously, increasing the minimum number of 
objects that a region may have will result in fewer and larger regions. This, in turn, will 
result in a larger portion of feature space being contained in positive-utility regions. Since 
we are using utility essentially as a boolean function (Section A above), this means more 
possible Chords for a given soprano note and NextChord. The effect of increasing mintotal 
with Feature Set 6 and the set of 301 Bach training examples can be seen in Table 3.
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TABLE 3
EFFECTS OF VARYING THE CLUSTERER PARAMETER MINTOTAL
mintotal cpu time no. of regions no. of possible

for clustering in feature space harmonizations*
(min-.sec)

5 62:12 295 28
6 57:08 265 80
7 56:58 ' 245 122

10 53:47 204 not measured
20 41:32 129 not measured
30 35:45 97 1406

*of a test phrase requiring 4 chords to be filled in by ChoraLearn (only positive-utility 
progressions were accepted)

The test phrase used to generate the data in Table 3 was phrase 1 of “O Gott, du 
frommer Gott” (No. 291 in the Riemenschneider collection — the same phrase harmonized in 
Figs. 10 and 11). Of the 4 Bach objects corresponding to the 4 chords that were to be filled in 
by computer, only one had a feature space description identical to one of the Bach objects in 
the set of training examples (using either Feature Set 4 or Feature Set 6). The other three 
did, however, have HarmonicProgressions that occurred in the training examples. With 
Feature Set 4, it was possible to find a value for mintotal that was large enough so that all 
three of those objects mapped into positive-utility regions, but was also small enough that 
some regions were separated by boundaries along the dimension of Feature 8 (an indication of 
discrimination -  see Section 1 above). This was not possible with Feature Set 6.

The value for mintotal could have been adjusted to achieve the highest score on a tw o- 
part test like the one described in Section D above. Such a calibration of the clusterings was 
not performed in the present study. As we will see in Section V below, the clusterings of the 
Bach data that have been discussed here should be regarded as a “rough sketch” of the 
concept “Bach-like progression.” No matter how we choose the clustering parameters, the 
result will need refinement. In Section V a way of achieving such a refinement will be 
proposed.

4. Sources of bias
As Watanabe (1969) has proven, and Mitchell (1980) reiterated, bias, which influences 

what generalizations will be made from a set of examples, is essential (unavoidable) in 
making any generalization. In this small section, I wish to point out just two of the sources 
of bias in ChoraLearn.

The choice of features is an obvious source of bias. The choices of features I made were 
based on my limited knowledge of music and my own biases as to what was important. In 
addition, I made a decision that the system should be quite general in the melodies it could 
harmonize. Therefore, I avoided using soprano scale element as a feature, for then if a

37



melody contained scale elements that were rare or absent from the training examples, it 
would be difficult, or, impossible for the system to harmonize it. Similarly, the interval 
between consecutive soprano notes (Feature 5) was given only 7 possible values, with 
intervals absent from the training examples being grouped together with rare intervals.

Another source of bias is due to the definition of the problem (Section II.B). The 
problem was chosen as a piece of the larger problem of generating a complete chorale from a 
given melody. This larger problem might have been broken up quite differently, if, for 
example, one were to have used Schenkerian analysis as in Ebcioglu’s (1984, 1986) expert 
system.

V. PROPOSED USE OF FEEDBACK FROM AN  EXPERT USER

A. The Problem
In the preceding sections I have explained that in ChoraLearn’s use of the PLSl 

clusterer, any hyperrectangle (region) in the clustered feature space that has a positive utility 
is considered essentially good (see especially Section IV.A). Ideally, we would like to have a 
perfectly partitioned feature space, i.e., one in which the feature vector for every good object 
is located in a good (positive-utility) region, and in which the feature vector for every bad 
object is located in a bad (zero-utility) region. The importance of being able to come closer 
to this goal than we currently are was emphasized in Section FV.D.

One way to help might be to increase the number of training examples. However, 
imperfections in the features might demand a lot of data. [The features used by ChoraLearn 
are mostly rather “primitive,” i.e., they are for the most part basic features rather than 
appropriately chosen conglomerates of basic features,18 and they have “rough” spots, i.e., the 
adjacency of feature values along a dimension does not always imply a high degree of 
similarity.] And even a system with nearly perfect features may demand more data than are 
easily available. For example, a human expert harmonizing a chorale in the style of Bach 
draws on her knowledge not only of Bach’s chorale harmonizations, but of Bach’s other 
works, of the works of Bach’s contemporaries and predecessors, and of rules that were 
established by the time of Bach. If Bach had harmonized only one chorale, it would still be 
possible to talk about harmonizing chorales in the style of Bach, but the data contained in 
the one chorale harmonization would clearly be inadequate.

B. One Solution
To improve the performance of ChoraLearn, a human Bach expert could provide some 

feedback. A simple way to provide feedback takes advantage of the way the clusterer works.
The presence of even a single Bach progression ( “good point” ) in a region makes the region 

acceptable. Similarly, truly “bad points” could carve out “bad regions.” 19 For practical 
purposes, we only need to eliminate bad subregions that lie within the current good regions.

11 Being primitive, the features are highly interdependent, i.e., the “goodness” o f a particular feature value depends upon 
the values o f the other features. (My use o f the term, interdependent, is perhaps misleading. Two features could be independent 
random variables and yet be interdependent in the sense I mean.)

19 The non-Bach progressions in the input file for the clusterer cannot serve as the desired bad points. They clearly con- 
tain some good points, since Bach could have written, and sometimes did write, several different harmonizations for a chorale 
phrase.
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[I will explain the method as it would work with ChoraLearn, but its generality will be 
obvious.] The expert user (human Bach expert) would give ChoraLearn a melodic phrase to 
harmonize. She would then examine a set of output harmonizations. When she found a 
progression she thought would be bad (un-Bach-like) in every conceivable context, then the 
feature vector for that progression would be added to a list of bad progressions.

The proposed feedback-handling system would do two things with a vector on the “bad 
list.” First, it would check if the vector were also on the Bach list (from training examples). 
If so, then it would remove it from the Bach list, perhaps first prompting the expert user to 
think again about the quality of progressions having the feature vector in question. In this 
way, mistakes that were in the training example file could be corrected.20

The other thing that the system would do with objects on the bad list is use them for a 
separate clustering against the objects on the Bach list. In other words, in a fresh copy of the 
feature space, the good objects (Bach list) and the newly discovered bad objects (but not the 
non—Bach objects from the original feature space) would be mapped and then clustered. 
Because of the checking procedure described in the previous paragraph, no bad object could 
map into the same point as a good object. When the PLSl clusterer partitions the space 
(with the clustering parameter, mintotal, set to 1), each of the resultant regions will contain 
either good points or bad points, never a mixture.21

In subsequent performances (uses of ChoraLearn to harmonize a melody), the new 
feature space would be used as follows. If a trial object maps into a positive-utility region in 
the first feature space (which may have been changed due to removal of bad objects from the 
Bach list and reclustering), then it is mapped into the new feature space. If there it maps 
into a region containing bad points, it is unacceptable (reevaluated to zero utility); otherwise, 
it is acceptable. Use of this new feature space as a final screen in this way has the nice 
characteristic of being partly deterministic and partly probabilistic. It is deterministic in 
that no object having the same feature vector as the object that was deemed bad by the 
expert user can ever again be acceptable. It is probabilistic in that some other feature vectors 
that are clustered together with discovered bad points also become unacceptable. These are 
“induced” bad points.

The user can also easily add new, supplementary, objects to the Bach list. If the 
melodic phrase she gives to ChoraLearn to harmonize is a phrase that Bach harmonized (but 
is not in the original training examples), then she can ask the system to check if the vector of 
each progression of the Bach version is in the current Bach list. If not, she can simply add 
the phrase to the Bach example file.22

This cycle of testing and correcting may result in an improved system that is capable of 
generating most of the progressions Bach would have used, and only very rarely generates a 
bad progression. A key aspect of the proposed feedback mechanism is that an expert user 
will be able to improve the program without doing any programming.

20 This procedure depends on the feature set being complete enough to distinguish always a bad object from a good one.

21 In truth, certain configurations could result in a mixed region, but the likelihood of such a configuration occurring is re­
mote. If such an instance were to occur, the system could decide to classify the region as bad and sacrifice the ability to use the 
good points.

If it is a concern of ours that the utilities o f the regions reflect the frequency with which Bach used objects in them, then 
it is better to add a whole phrase, with associated non-Bach objects, than just a single progression.
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One might think that it would be most efficient to deal only with Bach points and bad 
points, and to omit the clusterer’s action on Bach and non-Bach points. This is probably not 
the case. The initial running of the clusterer achieves a great deal, and does so rather 
rapidly. As we have already mentioned, our current clustering (based on 301 Bach 
progressions) eliminates 91% of in-bounds progressions. The expert user therefore needs to 
identify only a very restricted set of bad objects: those that map into the small portion of the 
feature space that the clusterer thinks is good. Thus, in the new system we are proposing, 
learning from a set of training examples makes a rapid sketch of the concept, and learning 
from feedback given by an expert user fills in the details with a fine brush.

VI. WHERE DO W E GO FROM HERE? A  BRIEF SUMMARY OF THE TASKS 
THAT REMAIN FOR A  COMPLETE CHORALE-WRITING PROGRAM

I have approached the task of making a chorale out of a given melody in a way similar to 
that of Thomas in her rule-based system, Vivace (Thomas, 1985); i.e., by deciding that it 
should be broken up into modular subtasks. The subtask of writing a figured bass for the 
noncadential portion of a phrase I have divided further into the serial operations of writing a 
simplified figured bass (quarter notes only) and then adding eighth notes where appropriate. 
The first of these, writing a simplified figured bass for a phrase, I decided to attack by first 
generating a set of simplified figured basses that are piecewise good (from one note to the 
next) and then from these selecting those that are overall good. So far, ChoraLearn has come 
close to succeeding in producing a set of piecewise good simplified figured bass harmonizations 
for the noncadential portion of phrases in major keys.

At this point, we could also very easily extend the performance to minor keys. All that 
is needed is a MinorKeyScreen (analogous to the MajorKeyScreen described in Section III.A. 1) 
and a set of training examples in minor keys.

The proposed feedback-from-an-expert-user mechanism described in the last section is 
expected to remove the errors in the piecewise good harmonizations. When this is completed, 
there remain some decisions to be made as to how to proceed in finding overall-Bach-like 
harmonizations of phrases. For example, in the case of long phrases, it might be efficient to 
first select measures (sequences of three or four chords) that are overall Bach-like and use 
these to build sets of phrases that are measure-wise Bach-like, from which overall-Bach-like 
phrases would subsequently be selected. An alternative would be to have a wider “sliding 
window (the current system has a “window” that is two chords wide, because it examines 
features of two-chord progressions, but such a window could be widened to examine three or 
four chords of a developing phrase). However, this sliding window alternative would involve 
more second-level evaluations than the measure-by-measure approach.23

The other major subtasks, besides writing figured basses for noncadential portions of 
phrases, are filling in the middle voices (alto and tenor) and writing the cadences. Then there 
is the problem of joining the phrases together. This might be achieved simply as follows: 
consider the soprano note of the final cadence chord of a phrase (phrase A) as the first note of

23I am assuming that two feature spaces would be involved: the current one, which uses a tw o-chord-w ide window, and a 
new one that would use a wider window. One might imagine that we could instead use just one large feature space that had all 
the features o f the current feature space plus additional features to extend the descriptions to longer sequences o f chords. I be­
lieve, however, that this would drastically slow down learning, i.e., the number of training examples would have to increase 
greatly. It is important in attacking large problems like chorale harmonization to keep each o f the modular subtasks to a 
manageable size (divide and conquer).
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the next phrase (phrase B). Then accept only harmonizations of phrase B that have as their 
first chord the same chord as the already determined final cadence chord of phrase A.

Finally, there is the most global task of deciding what key to harmonize each phrase in, 
and where to make modulations (changes of key).

Probably none of the remaining pieces of the chorale-writing task is more difficult than 
the one that ChoraLearn now can almost do correctly, after being exposed to only a small 
number of training examples. The possibility of being able to develop a complete chorale- 
writing system based on learning with the PLS1 clusterer is therefore likely.

v n . CONCLUSIONS

Ebcioglu, in his 1986 thesis on his rule-based harmonization system, stated that it is 
unreasonable to expect that an artificial system could be developed that would be capable of 
“writing its own rules.” What we have seen with ChoraLearn indicates that a machine 
learning system can achieve something in the problem domain of harmonization. Ebcioglu’s 
argument is that the task is too large. But like most large tasks, the task of chorale writing 
can be broken down into smaller, manageable tasks (Ebcioglu’s system appears to be able to 
do all of them in an almost Bach-like style). We have started with a piece of the task that is 
manageable for the PLSl clusterer, but which is nontrivial (see Section I.D). Of course, the 
refinement method we suggested in Section V, using feedback from an expert user, means 
that a live body will be used to help ChoraLearn “write its own rules.” Still, there is an 
important conceptual and also practical distinction to be made between what we are 
proposing and the use of rule-based methods. What we are proposing with user feedback is a 
way that an expert user can improve the system without having to write new code and 
without having to extract rules himself.

Because a learning approach to chorale writing (or to any problem) makes inherently 
fewer programming demands than a rule-based approach, it should prove cheaper and faster 
to develop. There are two additional advantages of our approach over a rule-based one. 
First of all, once the system is developed it has great flexibility; a different set of training 
examples (e.g., from a different composer) will rapidly result in a system that harmonizes in a 
different style. Second, the feature space representation of rules used by the clusterer might 
be able to represent some “rules” of Bach’s (or another artist’s) style that would be quite 
complex and, therefore, difficult for a music theorist or programmer to discover and 
formulate in words. As D. Michie has been quoted as saying (Lamb, 1984), “Really expert 
knowledge is intuitive, and it is not necessarily accessible to the expert himself.” Thus, it is 
possible that the learning by clustering approach will ultimately yield a performance that is 
truer to the master. Also, the rules discovered by the clusterer (which can be translated into 
logic or natural language) will be of potential interest to the musicologist, composer, or any 
other serious student of music, because they will help answer questions like, “What is it that 
makes Mendelssohn sound like Mendelssohn and not like Brahms?”
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