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ABSTRACT

We introduce a form of neutral Horizontal Gene Transfer
(HGT) to Evolving Graphs by Graph Programming (EGGP).
We introduce the Û × Ú evolutionary algorithm, where Û

parents each produce Ú children who compete with only their
parents. HGT events then copy the entire active component of
one surviving parent into the inactive component of another
parent, exchanging genetic information without reproduction.
Experimental results from 14 symbolic regression benchmark
problems show that the introduction of the Û×Ú EA and HGT
events improve the performance of EGGP. Comparisons with
Genetic Programming and Cartesian Genetic Programming
strongly favour our proposed approach.
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1 INTRODUCTION

Recombination of genetic material is commonly viewed as a
key component of a successful GP (Genetic Programming)
system. Koza [12] recommends that most offspring be pro-
duced by crossover, rather than by asexual reproduction and
mutation. In contrast, CGP (Cartesian Genetic Program-
ming) [15] traditionally uses the elitist 1 + Ú evolutionary
strategy, where all offspring are produced by asexual repro-
duction and mutation; variation and the ability to leave local
optima are a byproduct of neutral drift in the neutral parts
of the genome [16].
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EGGP (Evolving Graphs by Graph Programming) [1] is a
recently introduced graph-based GP approach that operates
directly on graph-structured individuals, rather through some
‘cartesian’ grid encoding as used in CGP and PDGP (Parallel
Distributed Genetic Programming) [19]. Each EGGP indi-
vidual (graph) has an ‘active’ component that contributes
directly to the fitness, and a ‘neutral’ component that can
drift without affecting the fitness. Like CGP, existing work
on EGGP has used only asexual reproduction and mutation.
Here we extend EGGP to incorporate Horizontal Gene Trans-
fer (HGT) ‘events’, where the genetic information of one
parent is shared with another. Our system operates using
the elitist ‘Û × Ú’ EA, such that in each generation there are
Û parents, which each produce Ú children, which compete
only with their own parent. This is effectively Û parallel 1+Ú

EAs, with genetic information shared horizontally between
elite individuals. To avoid disrupting elitism (by modifying
the active components of individuals) or sharing junk (by
copying neutral components of individuals), we copy only the
active components of one parent onto the neutral component
of another; it may later be activated through mutation.

EGGP’s individuals, represented as (non-encoded) graphs,
are directly modified through the probabilistic graph pro-
gramming language P-GP 2 [2]. This direct approach eases
the conception and implementation of graph-based opera-
tions. For example, using edge mutations that consider all
possibilities that preserve acyclicty, rather than only those
possibilities that preserve the ordering of some Cartesian
grid, has been shown to offer faster convergence for standard
digital circuit benchmark problems [1]. Additionally, it is
possible to incorporate domain specific knowledge, such as
Semantic Neutral Drift [3], where logical equivalence laws
are applied directly to individuals to create neutral drift in
their active components.

Here we replace neutral components with new material
directly. This is inspired by Horizontal Gene Transfer (or Lat-
eral Gene Transfer) found in nature. HGT is the movement
of genetic material between individuals without mating, and
is distinct from normal ‘vertical’ movement from parents to
offspring [11]. HGT plays a key role in the spread of anti-
microbial resistance in bacteria [7] and evidence has been
found of plant-plant HGT [26] and plant-animal HGT [20].
The mechanism of HGT in transferring a segment of DNA
into another individual’s DNA may have a clear analogy
when considering bit-string based Genetic Algorithms such
as the Microbial GA [8], the equivalent analogy is not as
obvious when dealing with graphs. Hence we use the term
metaphorically: when we refer to HGT, we mean the move-
ment of genetic material between individuals without mating.
This is the new mechanism we present in this work.
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Our approach is not the first work to recombine and share
genetic information in graph-like programs. PDGP uses Sub-
graph Active-Active Node (SAAN) crossover [19] to share
material within a population of Cartesian grid-based pro-
grams. A number of crossover operators have been used in
CGP, including uniform crossover [14], arithmetic crossover
on a vector representation [4], and subgraph crossover [10].
Empirical comparison [9] shows that these crossover operators
do not always aid performance, and that CGP with mutation
only can sometimes be the best performing approach. Current
advice [15, 23] is that the ‘standard’ CGP approach remains
to use mutation only. Our recombination features no modifi-
cation of active components and does not produce children;
nevertheless HGT events followed by edge mutations may
perform operations very similar to PDGP SAAN crossover
[19] and CGP subgraph crossover [10]. However, our precise
mechanism, where active components are pasted into neutral
components without any limitations to accessibility, does not
obviously translate to PDGP and CGP, which are limited to
Cartesian grids.

The rest of this work is organised as follows. In Section 2
we introduce EGGP with a new feature: depth control. In
Section 3 we describe our Horizontal Gene Transfer approach,
and the Û × Ú EA. In Section 4 we describe experimental
settings for comparing our HGT approach to the existing
EGGP approach, and to CGP and GP. In Section 5 we
present the results of our experiments.

2 EVOLVING GRAPHS BY GRAPH
PROGRAMMING (EGGP)

EGGP is a graph-based GP approach where individuals are
represented directly as graphs, rather than through some
encoding, and are manipulated through graph programming
[2]. In this Section, we describe the EGGP approach including
details of its representation, initialisation, mutation operators
and a new extension, depth control. To distinguish between
the original EGGP [1] and EGGP with depth control, we call
the former EGGP and the latter EGGP𝐷𝐶 .

2.1 Representation

In EGGP an individual is a graph. The graph contains in-
dexed input and output nodes, each corresponding to a par-
ticular input or output of a given problem. All other nodes
are function nodes associated with functions from a chosen
function set 𝐹 . If a node 𝑣 is associated with function 𝑓 ∈ 𝐹

and the arity of 𝑓 is 𝑎
)︃

𝑓
[︃

, then 𝑣 has exactly 𝑎
)︃

𝑓
[︃

outgoing

edges, which indicate the inputs that that function node
takes. These outgoing edges are ordered; each edge is labelled
with an integer to indicate its position in the order. Order-
ing removes ambiguity when dealing with non-commutative
functions such as division and subtraction. Output nodes
have exactly one outgoing edge, indicating that the function
computed for that output is given by the behaviour of the
node targeted by this single outgoing edge. Output nodes
must have no incoming edges, as this would induce some
undefined recurrent behaviour.

𝑖1 𝑖2

EXP SUB SIN

MUL EXP ADD ADD

MUL COS MUL

𝑜1
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Figure 1: An example EGGP individual. The single output

computes the function 𝑜1 = 𝑒𝑖1−𝑖2 ×
)︃)︃

𝑖1 − 𝑖2
[︃

+ 𝑒𝑖1−𝑖2

[︃

Here, the graph is restricted to be acyclic; this ensures
that the evolved function is non-recursive. (This constraint
could be relaxed to evolve recurrent programs, as in recurrent
CGP [22].) An individual is therefore a DAG, with all output
nodes as roots, and all input nodes as leaves. Input nodes can
be both roots and leaves and other function nodes can also
be roots; e.g. if they are targeted by no function nodes or
outputs. Wherever there is no directed path from an output
node to some node 𝑣, 𝑣 and its outgoing edges are said to be
‘neutral’, as it does not contribute to the behaviour of the
individual. EGGP can undergo ‘neutral drift’ on its ‘neutral’
components in a similar manner to CGP [16].

An example EGGP individual is given in Figure 1. There
is a single output node, 𝑜1, and two input nodes, 𝑖1 and 𝑖2.
neutral nodes and their outgoing edges are coloured grey and
dashed respectively; this is a visual aid only. Edge ordering
starts at 0; the two outgoing edges of the active SUB node
indicate that this node computes the function 𝑖1 − 𝑖2, rather
than 𝑖2 − 𝑖1.

2.2 Initialisation

To generate an individual in EGGP, we begin by creating
a graph with 𝑖 input nodes corresponding to the 𝑖 inputs
associated with a given problem. The parameter 𝑛 describes
the fixed number of function nodes in each individual solution.
To generate these 𝑛 nodes, we repeatedly pick some function
𝑓 from the function set 𝐹 and create a new node 𝑣𝑥 associated
with that function. We then insert edges connecting 𝑣𝑥 to
any existing node (chosen uniformly at random) until 𝑣𝑥’s

outdegree matches the function’s arity 𝑎
)︃

𝑓
[︃

. We repeat this
process until there are 𝑛 function nodes. When using depth
control, the inserted edges may only target nodes that would
not lead to the individual exceeding the specified maximum
depth. Finally, we insert 𝑜 output nodes corresponding to
the 𝑜 outputs associated with a given problem; each is then
connected at random to any other (non output) node in
the individual. This approach to initialisation guarantees
the generation of an acyclic individual, and in the case of
depth control, that generated individuals do not exceed the
maximum depth.
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2.3 Mutation

2.3.1 Node Mutation. Node mutation is performed by
picking uniformly at random a function node to mutate,
and changing that node’s associated function to some other
function chosen at random. Then two fix-up operations are
performed.

Firstly, the outdegree (number of outgoing edges) of the
mutated node is corrected to match the new function’s arity.
If the node’s outdegree is greater than the new function’s
arity, edges are chosen uniformly at random and deleted until
the outdegree and arity match. If the node’s outdegree is less
than the new function’s arity, edges are inserted targeting
valid nodes chosen uniformly at random. A valid node is
a node that preserves acyclicity and maximum depth (see
Section 2.4). For the original form of EGGP, preserving a
maximum depth is not a consideration when choosing a node
to target.

Secondly, we reorder the node’s outgoing edges. We remove
all ordering information from the node’s outgoing edges, and
assign a new valid random ordering. This process avoids bias
in non-commutative functions; for example a node computing
𝑥 + 𝑦 can be mutated to compute 𝑥 − 𝑦 or 𝑦 − 𝑥.

2.3.2 Edge Mutation. Edge mutation is performed by pick-
ing uniformly at random an edge to mutate. We then identify
all valid targets for that edge (those nodes which preserve
acyclicity and maximum depth, excluding the edge’s existing
target), and redirect the edge to target one of these nodes
chosen uniformly at random. In the original form of EGGP,
preserving a maximum depth is not a consideration when
choosing a node to target.

2.3.3 Mutation Rate. The mutation rate of an individual
is 𝑚𝑟. Certain mutations may prevent other mutations. For
example, mutating one edge to target some node may then
prevent other mutations of that node’s outdoing edges with
respect to preserving acyclicity. Therefore, iterating through
the individual and considering each node or edge in turn for
mutation may introduce bias. So our point mutations first
choose a random point to mutate, and then mutate it.

We calculate the number of node or edge mutations to
apply based on binomial distributions. For an individual
with 𝑣𝑓 function nodes and 𝑒 edges, with mutation rate 𝑚𝑟,

we sample a number of node mutations 𝑚𝑣 ∈ B
)︃

𝑣𝑓 , 𝑚𝑟

[︃

and edge mutations 𝑚𝑒 ∈ B
)︃

𝑒, 𝑚𝑟

[︃

, where B
)︃

𝑛, 𝑝
[︃

indicates
a binomial distribution with 𝑛 trials and 𝑝 probability of
success. We then place all 𝑚𝑣 +𝑚𝑒 mutations in a list, and
shuffle the list, applying mutations in a random order. While
this approach is likely to have some biases, it guarantees
reproducible probabilistic behaviour. The overall expected
number of mutations is 𝑚𝑟

)︃

𝑣𝑓 + 𝑒
[︃

.

2.4 Depth Control

Here we introduce the notion of depth control to EGGP.
This prevents mutations that would cause a child to exceed
a given maximum depth 𝐷. We annotate individuals with
information regarding the depth associated with each node.

The ‘depth up’ 𝑢 (or ‘depth down’ 𝑑) of a node is the length
of the longest path from that node to a root (or leaf) node.

We label each node 𝑣 with the values
)︃

𝑢, 𝑑
[︃

. An exception is
made for output nodes, which have 𝑢 = −1 as their outgoing
edges are not considered part of the ‘depth’ of the individual.

Once an individual has been annotated, we can identify
pairs of nodes that, if an edge were inserted between them,
would cause the individual to exceed the maximum depth
𝐷. If we wish to insert an outgoing edge for node 𝑣1, then
we eliminate any other node 𝑣2 as a viable candidate on the
following criteria: If the depth up value of 𝑣1 is 𝑢1, and the
depth down value of 𝑣2 is 𝑑2, then it is impossible to insert
an edge and preserve the maximum depth 𝐷 if 𝑢1+𝑑2+1 > 𝑑:
we have a path of length 𝑢1 from 𝑣1 to a root node, and a
path of length 𝑑2 from 𝑣2 to a leaf node, hence the overall
path from a root to a leaf would be 𝑢1+𝑑2 +1, which exceeds
𝐷. If 𝑢1 + 𝑑2 + 1 ≤ 𝑑, inserting an edge from 𝑣1 to 𝑣2 would
preserve 𝐷.

We use this strategy in both edge mutation and node
mutation. In edge mutation, we use annotations to identify
invalid targets for the mutating edge. In node mutation, we
use annotations to identify invalid targets for new edges to
be inserted for the mutating node. We give an example of
depth preserving edge mutation in Figure 2; an edge of an
individual is mutated, but all possible targets that would
break acyclicity or a maximum depth 𝐷 = 4 are ignored.

3 HORIZONTAL GENE TRANSFER IN
EGGP

In this Section we describe the introduction of Horizontal
Gene Transfer events (HGT) to EGGP. HGT events involve
the transfer of active material from a donor to the neutral
region of a recipient (Section 3.1). To accommodate the need
for multiple surviving individuals, we introduce the Û × Ú

EA (Section 3.2) as an alternative to the 1 + Ú algorithm
previously used in EGGP.

3.1 Active-Neutral Transfer

HGT involves the movement of genetic material between
individuals of a population without reproduction. Given a
population 𝑃 , we choose a donor and recipient individual.
We copy the entire active component of the donor (excluding
output nodes); we remove sufficient neutral material at ran-
dom from the recipient to fit this active component within
the fixed representation size. The copied active component
is inserted into the recipient’s neutral component, where it
remains neutral until it is activated by some mutation. This
type of HGT, which we refer to as ‘Active-Neutral Transfer’,
is guaranteed to preserve the fitness of both the donor and
recipient, preventing it from disrupting the elitism of the
EA. The intention is to promote the production of higher
quality offspring by the recipient, by activating its received
genetic material through mutation. This process is mutually
beneficial; the donor has a mechanism for propagating its
genes, while the recipient stands to improve the survivability
of its own offspring.
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i i

o

This individual is to undergo
an edge mutation preserving
acyclicity and a maximum
depth 𝐷 = 4.

i

)︃

4, 0
[︃

i

)︃

3, 0
[︃

)︃

0, 1
[︃

)︃

2, 1
[︃

)︃

0, 4
[︃ )︃

0, 3
[︃

o

(1) The individual is annotated
with depth information. Each
node has an associated ‘depth
up’ value 𝑢 indicating the length
of the longest path to a root
node (excl. outputs), and a
‘depth down’ value 𝑑 indicating
the length of the longest path
to a leaf node. These are listed
as a pair

)︃

𝑢, 𝑑
[︃

for each node.

i

)︃

4, 0
[︃

i

)︃

3, 0
[︃

)︃

0, 1
[︃

)︃

2, 1
[︃

)︃

0, 4
[︃ )︃

0, 3
[︃

o

(2) An edge to mutate is chosen
at random and marked (green)
alongside its source node 𝑠 and
target node 𝑡.

i

)︃

4, 0
[︃

i

)︃

3, 0
[︃

)︃

0, 1
[︃

)︃

2, 1
[︃

)︃

0, 4
[︃ )︃

0, 4
[︃

o

(3) Invalid candidate nodes for
redirection are identified. If a
node 𝑣 has a directed path to
𝑠 it is marked invalid (red), as
targeting it would introduce a
cycle. If the depth down value
of a node 𝑣 is 𝑑𝑣 and the depth
up value of 𝑠 is 𝑢𝑠, when 𝑢𝑠 +

𝑑𝑣 + 1 > 𝐷, 𝑣 is marked invalid
(blue), as targeting it would ex-
ceed the maximum depth.

i i

o

(4) The edge 𝑒 (now shown
in red) is mutated to tar-
get some randomly chosen un-
marked (non-output) node, pre-
serving acyclicity and maximum
depth 𝐷. Finally, all annota-
tions are removed.

Figure 2: An example of edge mutation preserving acyclicty
and depth. Some annotations from step (1) are omitted for
visual clarity.

Once material has been transferred, there are a number of
possible consequences: the neutral donor material can drift,
or become active, through mutation. In this way it is possible
for processes such as SAAN crossover in PDGP [19] or block
based crossover in CGP [10] to arise out of Active-Neutral
transfer followed by mutation.

Our strategy for choosing a donor and recipient is as follows.
A recipient is first chosen based on a uniform distribution over
the population 𝑃 , excluding the best performing member. We
refer to this ‘best performing member’ as the ‘leader’, which
we exclude from receiving genetic material so that it can
undergo neutral drift without any disruption. Throughout
the evolutionary process, it is likely that the leader will change
several times, meaning that the entire population is likely
to receive genetic material at some point. Once a recipient
is chosen, a donor is selected from the population excluding
the recipient based on a roulette wheel. The donor may be
the leader, allowing the leader to propagate its own genes
to other members of the population. The use of a roulette
wheel means that any individual can donate material, but
the better performing individuals are more likely to do so.

We give an example of Active-Neutral transfer in Figure 3.
The entire active component of a gene donor is copied into
the neutral material of the recipient while maintaining the
overall representation size.

3.2 The µ × λ EA

We cannot use Active-Neutral transfer with the 1+Ú algorithm
except for sharing genetic material between the offspring;
this is likely to be ineffective as direct offspring have much
material in common. We therefore introduce the Û × Ú EA,
a special case of the Û + Ú algorithm. In each generation of
the Û × Ú EA, there are Û parents. Each of the Û parents
generates Ú offspring, and compete for survival only with
their own offspring. Without HGT, this effectively creates
multiple parallel 1 + Ú algorithms.

In each generation we perform a single Active-Neutral
transfer operation with probability 𝑝𝐻𝐺𝑇 . We then follow
the procedure set out in 3.1 by selecting a gene recipient
from the Û parents (ignoring the best performing parent,
the ‘leader’) and selecting a donor from the remaining Û − 1
parents by roulette selection.

4 EXPERIMENTS

Here we detail our experimental settings for benchmarking
our HGT approach, EGGP𝐻𝐺𝑇 , on various symbolic regres-
sion problems. We compare EGGP𝐻𝐺𝑇 to: standard EGGP;
the depth control variant EGGP𝐷𝐶 ; the depth control variant
using the Û × Ú algorithm (and no HGT), EGGPÛ×Ú. These
experiments allow us to test the following null hypotheses:

– 𝐻1: there are no statistical differences when using
the depth control variant EGGP𝐷𝐶 in comparison to
standard EGGP.

– 𝐻2: there are no statistical differences when using the
Û × Ú algorithm for EGGP in comparison to the 1 + Ú

algorithm, with both approaches using depth control.



Evolving Graphs with Horizontal Gene Transfer GECCO ’19, July 13–17, 2019, Prague, Czech Republic

i i

o

A gene recipient is chosen
at random, excluding the
leader.

i i

o

A gene donor is chosen by
roulette selection. The donor
cannot be the recipient.

i i

o

Sufficient inactive material is
removed from the recipient
to create space.

i i

All active material is copied
from the donor, excluding
outputs.

i i

o

The active material from the
donor is inserted as inactive
material in the recipient.

The recipient now contains
the donor’s genetic material,
but neither individuals’ se-
mantics have changed.

Figure 3: An example of Active-Neutral transfer. The active material of a donor is copied into the neutral material of a recipient.
Neither individuals’ semantics is changed by this process. Grey nodes and dashed edges indicate the neutral material of individuals;
they do not indicate any actual information stored on the individual. The donor’s function nodes are shown as squares for clarity.

– 𝐻3: there are no statistical differences when using the
HGT approach for EGGP in comparison to using the
Û × Ú algorithm without HGT, with both approaches
using depth control.

– 𝐻4: there are no statistical differences when using the
HGT approach for EGGP in comparison to standard
EGGP.

We test these null hypotheses for each benchmark problem.
From these tests, we build an image of how the various
features contribute to the performance of EGGP𝐻𝐺𝑇 , and
clarify whether the added HGT feature is truly improving
performance by isolating it from the other new features.

We also compare our HGT approach to two other ap-
proaches from the literature: Genetic Programming (GP)
[12] and CGP [15]. These experiments allow us to test the
following null hypotheses:

– 𝐻5: there are no statistical differences when using
EGGP𝐻𝐺𝑇 in comparison to GP.

– 𝐻6: there are no statistical differences when using
EGGP𝐻𝐺𝑇 in comparison to CGP.

Again, we test each of these null hypotheses for each
benchmark problem. 𝐻5 and 𝐻6 allow us to measure the
progress made by introducing HGT to EGGP in comparison
to other approaches in literature.

4.1 Benchmark Problems

We benchmark the approaches on 21 synthetic symbolic re-
gression problems [17]. That work justifies the exclusion of
Grammatical Evolution (GE) [18], as it finds that GP gener-
ally outperforms GE on these problems. For all 21 problems,
see [17]; one example is:

𝐹7
)︃

𝑥1, 𝑥2
[︃

=

)︃

𝑥1 − 3
[︃4
+

)︃

𝑥2 − 3
[︃2
+

)︃

𝑥2 − 3
[︃

)︃

𝑥2 − 2
[︃4
+ 10

(1)

These benchmarks were introduced in response to various
criticisms of the GP community for ‘arbitrarily’ chosen bench-
mark problems, and the reasoning for their design is set out
in detail in [17]. We view these problems as good measures
of performance of a GP system. Of the 21 problems, 9 take
2 inputs, 1 takes 3 inputs, 8 take 5 inputs, 1 takes 6 inputs
and 3 take 10 inputs. Each function’s input variables are
randomly sampled from the interval [−5, 5].

We use 1000 training samples, 10, 000 validation samples
and 40, 000 test samples. The training data is used to guide
the different approaches, while every solution explored is eval-
uated on the validation data. The globally best performing
individual (with respect to the validation data) is returned
at the end of a run, and then evaluated on the test data to
produce a test performance measure.
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The function set for these problems is that of [17]:

{+, −, ×, ÷, 𝑒
𝑥

, ln 𝑥, sin 𝑥, tanh 𝑥,
√

𝑥} (2)

Each approach has access to the 18 constants −0.9, −0.8, . . . ,
−0.1, 0.1, 0.2, . . . , 0.9. In GP these are constants, whereas in
the EGGP variants and CGP, they are further input nodes.

4.2 Experimental Settings

We evaluate all individuals using the Mean Square Error
(MSE) fitness function.We measure statistics taken over 100
independent runs of each approach on each dataset.

For all EGGP variants, we use a fixed 100 nodes and a
mutation rate 𝑚𝑟 = 0.03. For EGGP and EGGP𝐷𝐶 we use
the 1 + Ú EA with Ú = 4; for EGGPÛ×Ú and EGGP𝐻𝐺𝑇

we use Û = 3 and Ú = 1. This induces a ‘minimal’ version
of the Û × Ú algorithm with Û = 3 being the minimal value
we could choose for Û such that HGT occurs not only from
the ‘leading’ thread, but also between threads, and Ú = 1
being the minimal value for Ú. For EGGP𝐷𝐶 , EGGPÛ×Ú and
EGGP𝐻𝐺𝑇 we set a maximum depth of 𝐷 = 10, and limit
the maximum size to 50 active nodes. The maximum active
size is ensured by removing and replacing any generated
individual that exceeds the maximum size; it is necessary
to prevent errors in the HGT approach where, for example,
the size of the donor’s active component exceeds that of the
recipient’s neutral component (causing the overall number
of nodes to grow when copying the entire active component
over). In practice, this condition is used in very few instances,
as depth control constrains the size. The rate 𝑝𝐻𝐺𝑇 is 0.5.

For CGP, we use the experimental parameters in [25], [15,
Ch.3], at which values CGP outperforms GP on symbolic
regression problems. We use 100 fixed nodes, and a mutation
rate of 0.03. We use the 1 + Ú EA with Ú = 4. We do not use
any of the published CGP crossover operators, as their useful-
ness, particularly on symbolic regression problems, remains
disputed [9], and [15, 23] recommend the 1 + Ú approach. We
also use no form of depth control with CGP, as the approach
is known to have inherent anti-bloat biases [21].

For GP, we use the experimental parameters in [17] with
a minor adjustment. The population size is 500, with 1 elite
individual surviving in each generation. Subtree crossover
is used with a probability of 0.9, and when it is not used,
the ‘depth steady’ subtree replacement mutation operator is
used, which, when replacing a subtree of depth 𝑑 generates
a new subtree of depth between 0 and 𝑑 [17]. Tournament
selection is used to select reproducing individuals, with a
tournament size of 4, and the maximum depth allowed of
any individual is 10. Unusually for GP, we add each new
individual to the population one-by-one, discarding one of
the children produced by each crossover operator. This allows
us to immediately replace invalid individuals with respect to
the maximum depth, guaranteeing that every individual in a
new population is valid and should be evaluated. To initialize
the population, we use the ramped half-and-half technique
[12], with a minimum depth of 1 and a maximum depth of 5.

For all experiments, the maximum number of evaluations
allowed is 24 950, a value taken from [17] (50 generations with

a population size of 500 and 1 elite individual that does not
require re-evaluating). In GP this is achieved by allowing the
search to run for 50 generations. In EGGP and CGP, we use
the optimisation from [15, Ch.2], where individuals are evalu-
ated only when their active components are mutated; there is
no fixed number of mutations, and the search continues until
the total number of evaluations is performed. There is no
analogous optimisation for GP, as GP individuals contain no
neutral material. This optimisation makes a large difference
to the depth of search; for example, in CGP running on 𝐹1,
the median number of generations is 12 385, but if all individ-
uals are evaluated (rather than only those with active region
mutations), the number of generations would be capped at
6237 (assuming elite individuals are never re-evaluated).

4.3 Implementation

Our implementation of the EGGP variants described here
is based upon the publicly available core EGGP implemen-
tation1. EGGP mutation operators and depth annotation
are prototyped as P-GP 2 programs [2], then re-implemented
in more efficient C code for the actual experiments. There
are currently no known implementations of topological sort
(used to calculate depth) in P-GP 2 that are better than
quadratic time with respect to the size of the input graph,
while such a sort is possible in linear time in C. HGT events
are implemented as P-GP 2 programs.

Our CGP experiments are based on the publicly available
CGP library [23] with modifications made to accommodate
the ‘active evaluations only’ optimisation and the use of
validation and training sets. Our GP experiments are based
on the DEAP evolutionary computation framework [5] with
modifications made to accommodate our crossover strategy,
mutation operator, and use of validation and training sets.

5 RESULTS

Our experimental results are given in Table 1. Results for
benchmarks F13–17, 19, 20 (omitted here) show very little
variety in performance; the results of [17] suggests these are
poor benchmark problems in that the functions are almost
invariant on their inputs. While F1–3 also exhibit relatively
invariant responses, approaches here and in [17] produce a
variety of performances that compel their inclusion. Similarly,
while F4 and F21 do not show a variety of performances,
the functions themselves produce a variety of responses on
different inputs, again compelling their inclusion.

Table 1 lists the median fitness (MF) and inter-quartile
range in fitness (IQR) of each approach on each dataset
over 100 runs. Overall, the lowest MF score is achieved by
EGGP𝐻𝐺𝑇 in 10 cases, EGGP𝐷𝐶 in 2 cases and GP in 2
cases. There are no cases where EGGP, EGGPÛ×Ú or CGP
achieve the lowest MF score.

To test for statistical significance we use the two-tailed
Mann-Whitney 𝑈 test [13], which (essentially) tests the null
hypothesis that two distributions have the same medians
(this non-parametric analogue of the 𝑡-test does not assume

1https://github.com/UoYCS-plasma/EGGP
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EGGP EGGP𝐷𝐶 EGGPÛ×Ú EGGP𝐻𝐺𝑇 GP CGP

F MF IQR MF IQR MF IQR MF IQR MF IQR MF IQR

F1 4.45E-3 7.35E-3 6.26E-3 6.45E-3 3.59E-3 1.39E-3 2.47E-3 1.79E-3 5.77E-3 3.40E-3 6.74E-3 4.30E-3

F2 8.17E6 6.05E6 1.41E7 9.95E6 8.06E6 5.02E6 5.94E6 3.06E6 1.28E7 7.86E6 1.73E7 2.54E6

F3 1.18E-2 7.34E-3 1.48E-2 4.27E-3 9.92E-3 3.82E-3 7.22E-3 4.00E-3 1.04E-2 3.56E-3 1.48E-2 4.39E-3

F4 2.58E13 1.05E9 2.58E13 3.57E8 2.58E13 7.51E10 2.58E13 1.96E9 3.55E13 8.35E13 2.58E13 2.35E9

F5 3.96E0 3.56E0 4.48E0 4.30E0 2.30E0 2.61E0 6.90E-1 2.08E0 5.13E0 3.81E0 7.17E0 1.47E0

F6 1.69E1 2.24E1 2.11E1 3.99E1 7.23E0 1.18E1 4.46E0 6.24E0 2.61E0 6.86E0 9.28E0 2.03E1

F7 3.06E2 7.40E2 4.16E2 6.76E2 2.20E2 1.53E2 1.51E2 9.62E1 4.20E2 3.50E2 5.76E2 4.39E2

F8 3.91E-2 7.43E-2 1.03E-1 1.13E-1 2.85E-2 2.00E-2 2.19E-2 1.21E-2 1.09E-1 4.99E-2 4.49E-2 9.59E-2

F9 7.09E2 5.40E3 2.59E3 1.36E4 1.81E2 3.68E2 1.57E2 3.53E2 1.46E2 3.04E1 1.71E2 1.11E3

F10 1.52E-1 2.05E-1 2.36E-1 2.22E-1 1.07E-1 8.30E-2 7.69E-2 5.75E-2 3.22E-1 5.62E-2 1.66E-1 1.42E-1

F11 3.93E1 7.26E1 4.53E1 6.33E1 2.43E1 1.37E1 1.59E1 1.20E1 3.88E1 3.37E1 4.96E1 4.73E1

F12 1.21E3 5.25E2 1.22E3 5.20E2 6.95E2 1.19E2 6.83E2 1.44E2 1.25E3 5.02E1 7.08E2 5.19E2

F18 4.07E4 9.27E3 4.08E4 3.91E4 4.40E3 3.86E4 3.69E-1 2.07E4 4.13E4 3.54E2 1.20E2 4.10E4

F21 1.07E0 6.16E-4 1.07E0 1.38E-5 1.07E0 7.74E-4 1.07E0 6.88E-4 1.07E0 4.90E-4 1.07E0 1.53E-5

Table 1: Results from Symbolic Regression benchmarks as described in Section 4. MF indicates the Median Fitness over observed
runs; the lowest (best) MF result across all algorithms is highlighted in bold. IQR indicates the Inter-quartile range in fitness.

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6
F 𝑝 𝐴 𝑝 𝐴 𝑝 𝐴 𝑝 𝐴 𝑝 𝐴 𝑝 𝐴

F1 0.08 - < Ð 0.76 < Ð 0.71 < Ð 0.76 < Ð 0.92 < Ð 0.91

F2 < Ð 0.70 < Ð 0.76 < Ð 0.68 < Ð 0.71 < Ð 0.87 < Ð 0.95

F3 < Ð 0.68 < Ð 0.82 < Ð 0.70 < Ð 0.72 < Ð 0.75 < Ð 0.91

F4 0.98 - 0.33 - 0.08 - 0.52 - < Ð 0.68 0.89 -

F5 0.06 - < Ð 0.76 < Ð 0.70 < Ð 0.84 < Ð 0.86 < Ð 0.99

F6 0.26 - < Ð 0.78 < Ð 0.63 < Ð 0.84 0.37 - < Ð 0.63

F7 0.12 - < Ð 0.74 < Ð 0.71 < Ð 0.76 < Ð 0.93 < Ð 0.94

F8 ≥ Ð - < Ð 0.75 < Ð 0.62 < Ð 0.77 < Ð 0.95 < Ð 0.79

F9 0.02 - < Ð 0.78 0.77 - < Ð 0.69 0.23 - 0.17 -

F10 0.01 - < Ð 0.74 < Ð 0.65 < Ð 0.76 < Ð 0.99 < Ð 0.81

F11 0.57 - < Ð 0.76 < Ð 0.73 < Ð 0.85 < Ð 0.90 < Ð 0.89

F12 0.85 - < Ð 0.76 0.12 - < Ð 0.81 < Ð 0.89 0.15 -

F18 0.84 - < Ð 0.71 < Ð 0.68 < Ð 0.85 < Ð 0.91 < Ð 0.62

F21 ≥ Ð - < Ð 0.66 0.11 - 0.57 - 0.32 - < Ð 0.62

Table 2: Statistical tests for hypotheses 𝐻1 - 𝐻6. The 𝑝 value is from the two-tailed Mann-Whitney 𝑈 test. The corrected
threshold for statistical significance is Ð = 0.05

14 . Where 𝑝 < Ð, the effect size from the Vargha-Delaney A test is shown; large
effect sizes (𝐴 > 0.71) are shown in bold. Where Ð ≤ 𝑝 < 0.005, 𝑝 is listed as ≥ Ð.

normally distributed data). We use a significance threshold of
0.05 and perform a bonferroni procedure for each hypothesis
giving a corrected significance threshold of Ð = 0.05

14 . Where
we get a statistically significant result (𝑝 < Ð), we also
calculate the effect size, using the non-parametric Vargha-
Delaney 𝐴 Test [24]. 𝐴 ≥ 0.71 corresponds to a large effect
size. These results of these statistical tests for all hypotheses
are given in Table 2.

5.1 Building EGGPHGT : H1, H2, H3, H4

The introduction of depth control (𝐻1) appears to have rel-
atively little effect and is sometimes detrimental. In 12 of
our benchmark problems, we observe no significant differ-
ence when introducing the feature. On 2 problems, standard
EGGP achieves a statistically significant lower (better) me-
dian fitness than EGGP𝐷𝐶 , but never with large effect. These
results indicate that depth control is not necessarily a helpful
feature for EGGP, but never causes EGGP to outperform
EGGP𝐷𝐶 with large effect, and in many cases makes no
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significant difference to performance. This implies that the
performance of EGGP𝐻𝐺𝑇 (discussed later) cannot be ex-
plained by its new depth control feature alone. We suggest
that these results may be due to neutral material contribut-
ing to active nodes’ ‘depth up’ values, preventing the active
component from undergoing certain mutations even if these
mutations would produce an active component of a valid
depth. There may be circumstances where this restriction of
the landscape hinders the performance of EGGP𝐷𝐶 .

Comparing EGGPÛ×Ú and EGGP𝐷𝐶 (𝐻5) we find that
the introduction of the Û × Ú algorithm yields a statistically
significant lower median fitness and a large effect size on 12
of the 14 problems. On 1 problem (F4) there is no significant
difference, and on 1 problem (F21) EGGP𝐷𝐶 achieves a
statistically significant lower median fitness, but without
large effect. Overall, our study of 𝐻2 provides substantial
evidence that the Û × Ú algorithm aids the performance of
EGGP, and should potentially be adopted generally.

The differences between EGGP𝐻𝐺𝑇 and EGGPÛ×Ú (𝐻3)
are more subtle than the comparison of 𝐻2, but there is a
prevalent trend. The introduction of HGT yields a statistically
significant lower median fitness in 10 problems, 3 of which
occur with large effect, and no significant differences on the
other 4. These results suggest that HGT is, generally, a
beneficial feature capable of yielding major differences in
performance. We observe no instances where HGT leads to a
significant decrease in performance.

Overall, the results from studying our hypotheses 𝐻1, 𝐻2
and 𝐻3 allow us to explain the success of EGGP𝐻𝐺𝑇 in
comparison to GP and CGP (discussed in Section 5.2) as
a composition of the core EGGP approach, the use of the
Û×Ú EA and the introduction of Active-Neutral HGT events.
Each of our 3 new features has been added to our overall
approach in isolation, allowing us to isolate the beneficial
properties of Û × Ú and HGT events. The role of depth
control remains unclear from our investigations; it appears
to be an unhelpful feature alone but may interact with the
HGT process with respect to maintaining smaller individuals.
An extended investigation into the role of depth control in
our designed approach is desirable in the future.

𝐻4 compares our final proposed approach EGGP𝐻𝐺𝑇

to our original EGGP approach. The proposed approach
achieves a statistically significant lower median fitness in 12
of the 14 problems; 11 of which occur with large effect. On
the 2 remaining problems, we observe no significant differ-
ences. Therefore the combination of our 3 features – depth
control, Û×Ú and horizontal gene transfer – lead to a marked
improvement over standard EGGP for the studied problems.

5.2 EGGPHGT vs. GP & CGP: H4, H6

EGGP𝐻𝐺𝑇 achieves a statistically significant lower median
fitness in comparison to GP (𝐻5) on 11 problems, 10 of which
show a large effect. On the other 3 problems, we observe no
statistical differences. On a clear majority of the studied
problems, EGGP𝐻𝐺𝑇 significantly outperforms a standard
GP system, and is never outperformed by that GP system.

EGGP𝐻𝐺𝑇 achieves a statistically significant lower median
fitness in comparison to CGP (𝐻6) on 11 problems, 9 of
which show a large effect. On 3 of the other 4 problems, there
is no significant difference, and on only 1 problem (F21) is
there a statistical difference favouring CGP, but without large
effect. Hence we have EGGP𝐻𝐺𝑇 significantly outperforming
CGP under similar conditions on a majority of benchmark
problems, and only outperformed on 1 problem.

Collectively, these results place EGGP𝐻𝐺𝑇 favourably in
comparison to the literature. Although our experiments are
not exhaustive – they are not the product of full parameter
sweeps, but rather are testing approaches under standard
conditions – they demonstrate that EGGP with Horizon-
tal Gene Transfer is a viable and competitive approach for
symbolic regression problems.

6 CONCLUSIONS & FUTURE WORK

In this work we have introduced a new and effective form of
neutral Horizontal Gene Transfer in the EGGP approach. Our
approach utilises Active-Neutral transfer to copy the active
components of one elite parent into the neutral material
of another. Experimental results show that both HGT and
the introduction of the Û × Ú EA lead to improvements in
performance on benchmark symbolic regression problems.
Comparing the final approach, EGGP𝐻𝐺𝑇 , to GP and CGP
yields highly favourable results on a majority of problems.

These results have implications for broader research in
evolutionary algorithms and genetic programming. The reuse
and recombination of genetic material is generally assumed
to be a useful feature of an evolutionary system (e.g. GP
crossover [12]), but our Active-Neutral HGT events achieve
reuse without altering the active components of individuals.
Hence our approach contributes evidence to the notion that
neutral drift aids evolutionary search [6]. Active-Neutral HGT
events move beyond neutrality through mutation; we are effec-
tively biasing the neutral components of individuals towards
areas of the landscape we know to be ‘good’ with respect to
the fitness function. While this is empirically beneficial here,
it remains unknown whether this neutral biasing is helpful
outside of the EGGP approach. Our favourable comparisons
with GP and CGP support this direction of thought; GP
offers recombination without neutral drift, whereas (vanilla)
CGP offers neutral drift without recombination.

Our work here opens up a number of avenues for further
research. It is desirable to investigate the influence of pop-
ulation parameters Û, Ú and the HGT rate 𝑝𝐻𝐺𝑇 on the
performance of the described approach. Here, we have cho-
sen small values of Û and Ú and a relatively high 𝑝𝐻𝐺𝑇 ; it
is therefore interesting to consider whether larger values of
Û and Ú help or hinder the HGT process, and whether it
is necessary to introduce multiple HGT events in a single
generation when using larger populations. Additionally, an
investigation isolating depth control from HGT would help
clarify whether HGT is more useful when individuals are
smaller or larger.
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