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Computational Resources of Miniature Robots:

Classification & Implications

Stefan M. Trenkwalder1

Abstract—When it comes to describing robots, many roboticists
choose to focus on the size, types of actuators or other physical
capabilities. As most areas of robotics deploy robots with large
memory and processing power, the question “how computational
resources limit what a robot can do” is often overlooked.
However, the capabilities of many miniature robots are limited
by significantly less memory and processing power. At present,
there is no systematic approach to comparing and quantifying
the computational resources as a whole and their implications.

This paper proposes computational indices that systemati-
cally quantify computational resources—individually and as a
whole. Then, by comparing 31 state-of-the-art miniature robots,
a computational classification ranging from non-computing to
minimally-constrained robots is introduced. Finally, the impli-
cations of computational constraints on robotic software are
discussed.

Index Terms—Performance Evaluation and Benchmarking;
Software, Middleware and Programming Environments; Control
Architectures and Programming; Swarms.

I. INTRODUCTION

ROBOTIC Systems are machines that interact with their

environment [1]. These systems contain sensors and

actuators to interact with and a computational system to coor-

dinate and manage interactions. Typically, robotic systems are

categorised by their physical properties (e.g., size), operation

environment (e.g., grounded, airborne), the field of application

(e.g., medical, industrial) or the number of robots (e.g., single,

multi-robot systems) as shown in [1]–[3]. While the robots

depend on their physical properties to perform actions, a

minimal amount of computational resources is required to

control the desired sequence of actions.

The computation is commonly performed by an embedded

system that operates one or multiple microprocessor units

(MPU). A single MPU can provide anything from a few

billions of Instructions Per Second (IPS) with gigabytes of

memory (e.g., Intel i7-9700 with 1.6 · 1011 (floating-point)

IPS and ≤ 128 GB of RAM) to only a few million IPS

with a few kilobytes of memory (e.g., ATMega 328 with

≤ 2.0·107 (integer) IPS and 2 kB of RAM). By decreasing the

computational resources (i.e., IPS and memory), less complex

Manuscript received: January 09, 2019; Revised April 02, 2019; Accepted
May 16, 2019.

This paper was recommended for publication by Editor Dezhen Song upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by the DOC Fellowship of the Austrian Academy of Sciences.

1S. M. Trenkwalder is with the Department of Automatic Control
and Systems Engineering, The University of Sheffield, Sheffield, UK
stefan@trenkwalder.tech

Digital Object Identifier (DOI): 10.1109/LRA.2019.2917395.

software can be deployed. Until now, this relationship has not

been investigated.

This paper provides the following contributions:

1) A list and comparison of 31 miniature robots.

2) Computational indices systematically quantifying mem-

ory and processing power.

3) A classification of robots based on the proposed indices.

4) Requirements analysis of common robotic system soft-

ware1 and tasks for miniature robots.

In the next section, computational indices are proposed

allowing a classification of robots. Section III discusses current

robotic system software with a focus on their computational

requirements. Robotic tasks are presented in Section IV.

Finally, conclusions are presented in Section V.

II. COMPUTATIONAL QUANTIFICATION & CLASSIFICATION

This work focuses on devices based on a random-access

machine (i.e., a type of Turing machine) as defined in [4].

A device must include a processor that executes instructions

on registers and can access any memory element at any time.

While this covers the majority of devices (in particular robots),

other systems—such as quantum computers or biological

systems (e.g., animal brains)—are not considered in this work.

Until now, computational resources have only been inves-

tigated in [5] which classifies devices used in the Internet-

of-Things and wireless sensor networks. [5] uses solely a

device’s memory (RAM and ROM) to classify devices into

Class 0 (≪ 10 kB and ≪ 100 kB), Class 1 (∼ 10 kB

and ∼ 100 kB), and Class 2 (∼ 50 kB and ∼ 250 kB) of

constrained devices—referred to as CCD 0, 1, and 2. When

applying this classification to robots as shown in Table I, it can

be seen that many robots exceed the classification; therefore,

the classification is insufficient for robotics.

A. Computational Indices

As computational devices are primarily defined by process-

ing power and memory, this paper proposes a memory, MI ,

and a processing index, PI , as

MI = log (1 + m) , (1)

PI = log




1 +

∑

i

ni fi ei
︸ ︷︷ ︸

IPS per MPU




 , (2)

1System software is software that manages/operates the device without
implementing a specific application or behaviour (see Section III for more
details).
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where m is the available primary memory2 in bytes and ni,

fi, and ei are the number of cores, the clock frequency, and

the average instructions per clock cycle3 of an MPU, i.

While each index classifies the magnitude of a compu-

tational resource, an individual resource is not sufficient to

classify a system for two reasons. Firstly, an increase in a

single resource would not necessarily improve a system. For

instance, an e-puck robot does not have enough memory

to store a single image of its onboard camera. Increased

processing power would not enable the robot to load and

process a single frame. Secondly, a single algorithm can be

implemented prioritising memory consumption or execution

time while performing the same action. Ideally, a metric needs

to be developed that incorporates the dependency between

memory and processing power.

In cryptoanalysis, [6] introduced an execution-time-memory

trade-off. It is a general solution to calculate a one-way

function inverter4. This trade-off describes that an algorithm

can speed up by using a larger look-up table with precalculated

values. Due to the complexity of one-way function inverters,

this method can be applied to a large variety of problems in

the complexity class NP, even outside of cryptoanalysis. [6]

estimates this trade-off as

mt2 = k = const., (3)

where m and t are the used memory and processing time for

a given implementation. Note that k is algorithm-specific and

composed of multiple parameters (see [6] for more details).

To investigate the impact of the robots resources, let m

be set to the maximum available memory, mmax, and the

processing power changed from p′ to p. This results in

mmax (t
′

min
)2 = mmax

(

tmin

p

p′

)2

= k′, (4)

mmax p
2 =

k′ (p′)2

t2
min

= const., (5)

where the memory and the square of the processing power

are constant for a given algorithm and response time, tmin. In

other words, any algorithm satisfying (3) can be implemented

on any system satisfying (5) in such a way that the imple-

mentations have the same processing time. As a result, these

systems can be seen as equally computationally powerful.

By combining (1), (2), and the logarithm of (5), this work

proposes the computational index,

CI = MI + 2PI . (6)

The computational index was applied to 31 state-of-the-art

robots, which are listed in Table I.

2Note that m is the size of the primary memory (i.e., RAM), where the
processor has direct random access as described by a random-access machine.
Data on the secondary (e.g., FLASH, hard drives) or tertiary memory (e.g.,
SD Cards, cloud storage) requires transfer to the primary memory before
accessing it. Therefore, the primary memory is the defining factor.

3Note that ei is not always available or documented. Commonly, high-
performance MPUs offer high values (e.g., AMD Ryzen 7 1800x: ei = 10.6)
while microcontrollers have values around 1 (e.g., DSPic30F: ei = 1.05). If
ei cannot be determined, it is set to 1 as the worst-case value.

4A one-way function is a function of at most polynomial (P) complexity,
where its inversion is NP-hard (i.e., nondeterministic polynomial).
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Fig. 1. Histogram of the computational index values, CI , based on 31
miniature robots of Table 1. The values populate two sets highlighted by
colour. Note that CI is logarithmic, and the gap between the two sets indicate
magnitudes higher computational resources.

B. Robot Classification

Table I compares 31 state-of-the-art mobile miniature

robots, where a robot is considered miniature if it is milli-

metre- to decimetre-sized as used in literature (e.g., [22], [33],

[40]). Note that nano- and micro-robotics also use the term

miniature (e.g., [41]). As these robots do not compute similarly

to a random-access machine and only react to introduced

environmental changes, they are considered non-computational

devices.

When applying (1), (2), and (6) to Table I, it shows that

the values of CI populate two regions, 17–22 and 24–29, as

illustrated in Fig. 1. The existence of two distinct regions

suggests that robots can be grouped5 into two sets referred

to as severely-constrained (CI ≤ 23) and weakly-constrained

robots (CI > 23). As described before, robots that do not

compute (e.g., [41], [42]) are referred to as non-computational

robots. Similarly, robotic systems accessing infrastructure that

exceed the capabilities of any individual computer system

by magnitudes (e.g., [43]) are referred to as minimally-con-

strained robots. To simplify the referencing, let class C0, C1,

C2, and C∞ refer to non-computational, severely-constrained,

weakly-constrained, and minimally-constrained robots respec-

tively. Note that this classification is shown in Table I.

C. Discussion

When comparing the proposed classification to [5], it can

be seen that the classes of [5] consistently fall into C1,

ergo, the classifications are compatible. However, [5] defines

fuzzy ranges6 which makes this classification ambiguous and

difficult to apply consistently. In comparison, the proposed

classification uses ranges that were chosen based on empirical

data of 31 robots.

When plotting the computational resources of Table I with

non-miniature robots, Fig. 2 reveals that miniature robots tend

to provide fewer resources than non-miniature robots used in

research (e.g., iCub) or commercially (e.g., Parrot AR.Drone

2.0). Furthermore, a gap between the two sets of robots is

shown in Fig. 1 and 2. This gap can be explained by the fact

that many C1 robots use microcontrollers providing integrated

5Note that the threshold is the middle of the gap between the two sets.
6For instance, it is not clear into which class a PIC18F67K40 with 3.5 kB

of RAM and 128 kB of ROM falls.
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TABLE I
COMMON MINIATURE ROBOTSA , THEIR COMPUTATIONAL RESOURCES, AND CLASSIFICATION. NOTE THAT Entert., Educ., Med., AND Reconf. STAND FOR

ENTERTAINMENT, EDUCATIONAL, MEDICAL, AND RECONFIGURABLE, RESPECTIVELY.

Application Group MIRobot MPU/MCU Cores
MPU

Arch. Freq. RAM ROM Environment Type Network Size CCDb
PI

CI Class

AIBO ERS-7 Entert. 7.8
[7] MIPS R7000 1 64 bit 576 MHz 64 MB 4 MB Ground Quad-Pedal - Single > 2 8.8 25.3 C2

Colias ATMega 168 1 8 bit 20 MHz 1 kB 16 kB Wheeled 3.7
[8] ATMega 644 1 8 bit 20 MHz 4 kB 64 kB Ground Educ. Infra-Red Multi-Robot 0 7.9 19.5 C1

CrazyFly 2.0 Single 5.3
[9] STM32F405RG 1 32 bit 168 MHz 196 kB 1 MB Air Quatcopter Bluetooth Multi-Robot > 2 8.2 21.7 C1

Droplet Wheeled 3.9
[10] Xmega128A3U 1 8 bit 32 MHz 8 kB 128 kB Ground Research Infra-Red Multi-Robot 1 7.5 18.9 C1

e-puck Bluetooth 3.9
[11] dsPic30 1 16 bit 7 MHz 8 kB 144 kB Ground Wheeled Infra-Red Swarm 1 6.8 17.6 C1

Elmenreich’s robot 3.3
[12] ATmega328p 1 8 bit 8 MHz 2 kB 32 kB Ground Hexapedal Infra-Red Multi-Robot 0 6.9 17.1 C1

Evo-bot Wired 3.9
[13] PIC24 1 16 bit 16 MHz 8 kB 128 kB Floating Reconf. (CAN) Multi-Robot 1 7.2 18.3 C1

GRITSBot Atmega 328 1 8 bit 8 MHz 2 kB 32 kB ANT 3.5
[14] Atmega 168 1 8 bit 20 MHz 1 kB 16 kB Ground Wheeled Infra-Red Swarm 0 7.4 18.4 C1

GoPiGo Educ. Single 9.0
[15] Rasberry Pi 3 4 64 bit 1.2 GHz 1 GB 8 GB Ground Wheeled - Multi-Robot > 2 9.7 28.4 C2

HyMod Modular Wired 4.8
[16] ARM Cortex M4 1 32 bit 72 MHz 64 kB 256 kB Ground Wheeled (CAN) Multi-Robot 2 7.9 20.5 C1

I-Swarmc Modular 3.3
[17] Synopsys 8051 1 8 bit 12 MHz 2 kB 8 kB Ground Wheeled Wired Swarm 0 7.1 17.5 C1

Modular 3.0
Jasmined ATMega168 1 8 bit 20 MHz 1 kB 16 kB Ground Wheeled Infra-Red Swarm 0 7.3 17.6 C1

Khepera IV WiFi 8.7
[18] ARM Cortex-A8 1 32 bit 800 MHz 512 MB 4 GB Ground Wheeled Bluetooth Multi-Robot > 2 9.2 26.5 C2

Kilobot 3.3
[19] ATMega328 1 8 bit 8 MHz 2 kB 32 kB Ground Wheeled Infra-Red Swarm 0 6.9 17.1 C1

Lego Mindstorms NXT ATMEL AT91 1 32 bit 48 MHz 64 kB 256 kB - Bluetooth 2 4.8
[20] ATMega48 1 8 bit 8 MHz 512 B 4 kB Main Unit Educ. USB Single 0 7.7 20.3 C1

M-Block STM32F051 Reconf. ANT 3.9
[21] ARM Cortex-M0 1 32 bit 48 MHz 8 kB 64 kB Ground Jumping Bluetooth Multi-Robot 1 7.7 19.3 C1

marXbot WiFi 8.1
[22] i.MX31 (ARM 11) 1 32 bit 533 MHz 128 MB -e Ground Wheeled Bluetooth Multi-Robot > 2 8.7 25.6 C2

MHP 4.8
[23] ARM Cortex M4 1 32 bit 72 MHz 64 kB 256 kB Underwater Modular Infra-Red Multi-Robot 2 7.9 20.5 C1

Micro Quadrotor 4.8
[24] ARM Cortex-M3 1 32 bit 72 MHz 64 kB 128 kB Air Quadcopter ZigBee Swarm > 2 7.9 20.5 C2

Monsun II Bluetooth 7.5
[25] Blackfin BF537 1 16 bit 500 MHz 32 MB 40 MB Underwater UAV Wired Multi-Rrobot > 2 8.7 24.9 C2

mROBerTO Wheeled Bluetooth 4.5
[26] Nordic nRF51422 4 32 bit 16 MHz 32 kB 256 kB Ground Educ. ANT Multi-Robot 2 7.8 20.1 C1

Pheeno ARM Cortex-A7 4 32 bit 900 MHz 1 GB - Wheeled WiFi 9.0
[27] ATmega328p 1 8 bit 8 MHz 2 kB 32 kB Ground Educ. Bluetooth Multi-Robot > 2 9.6 28.1 C2

r-one Infra-Red Multi-Robot 4.8
[28] TI LM3S8962 1 32 bit 50 MHz 64 kB 256 kB Ground Wheeled ZigBee Swarm 2 7.7 20.2 C1

s-bot 7.8
[29] Intel XScale 1 32 bit 400 MHz 64 MB 32 MB Ground Wheeled WiFi Swarm > 2 8.6 25.0 C2

Soft Robotic Fish Research 3.6
[30] ATMega 644 1 8 bit 20 MHz 4 kB 64 kB Underwater Soft ZigBee Single 0 7.3 18.2 C1

Thymio II IEEE 4.2
[31] PIC24 1 16 bit 8 MHz 16 kB 128 kB Ground Wheeled 802.15.4 Swarm 1 6.9 18.0 C1

TurtleBot 3 (Burger) Rasberry Pi 3 4 64 bit 1.2 GHz 1 GB - Wheeled USB 9.0
[32] ARM Cortex-M7 1 32 bit 216 MHz 320 kB 1 MB Ground Educ. Ethernet Single > 2 9.7 28.4 C2

UltraSwarm Wifi 7.8
[33] Intel XScale PXA255 1 32 bit 200 MHz 64 MB -e Air Helicopter Bluetooth Multi-Robot > 2 8.3 24.4 C2

Wanda TI LM3S1960 1 32 bit 50 MHz 64 kB 256 kB Wheeled Infra-Red 7.8
[34] Bluetechnix CM-BF561 2 16 bit 600 MHz 64 MB 8 MB Ground Educ. ZigBee Multi-Robot > 2 9.1 26.0 C2

WolfBot Wheeled WiFi 8.7
[35] ARM Cortex-A8 1 32 bit 1 GHz 512 MB 4 GB Ground Educ. ZigBee Multi-Robot > 2 9.0 26.7 C2

X4-MaG dsPic33F 1 16 bit 40 MHz 8 kB 128 kB RS232 8.7
[36] ARM Cortex-A8 1 32 bit 1.2 GHz 512 MB - Air Quadcopter WiFi Swarm > 2 9.1 26.9 C2

a Robots has been obtained from various sources—including [1], [37]–[39]—and it has been included in this table if it is miniature and mobile and details of their computational capabilities could be
obrained from publications, datasheets, manuals, or project websites. If the robot has not been used in publication within the last 10 years (e.g., Alice) or technical specification is not available (e.g.,
Anki Vector, Cubelets, Dash, Root, and Sphero), the robot has not been included.

b CCD is the class of constrained devices as proposed in [5].
c All details were taken from the I-Swarm project homepage (http://www.i-swarm.org/MainPage/Robots/R Description1.htm).
d All details were taken from the Jasmine project homepage (http://www.swarmrobot.org/GeneralDesign.html).
e Available onboard secondary memory was not specified.

memory, and C2 robots tend to provide MPUs with discrete

memory chips.

While integrated memory is often limited by the die size and

production methods, discrete memory chips provide a large

amount of memory relatively cheaply. In other words, when

moving from a microcontroller to an MPU, magnitudes larger

amounts of memory are available causing the gap in Fig. 2

(right). In contrast, the processing power transitions from

low (i.e., microcontrollers) to high values (i.e., MPUs) less

distinctively (see Fig. 2 top). Note that these characteristics

can also be seen when comparing 5227 computer systems

(see supplementary material website [44]). As this results
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Fig. 2. Memory indices, MI , and processing indices, PI , of Table I and
common non-miniature platforms (with labels). The top and right plot show a
histogram for MI and PI , respectively. Green and orange indicated severely-
and weakly-constrained robots, respectively.

from deploying two types of systems (i.e., microcontrollers

and MPUs), it is likely that future systems will show similar

characteristics even though the threshold (23) might shift with

further technological advances.

Interestingly, C1 robots are almost exclusively used in

research environments. This potentially stems from the com-

plexity of real-world tasks and the technical hurdles faced (i.e.,

reality gap). Constrained computational resources represent

such a hurdle. This argument is supported by recent work,

such as [45], where computational extensions7 are built for an

existing miniature robot to specifically overcome the reality

gap in evolutionary robotics.

One can argue that, based on Moore’s law, more robots

will be developed with increased computational resources, thus

reducing the latter technical difficulties. However, miniature

robots, such as Robotbees [46] face challenges regarding

size, weight, and power consumption. As microcontrollers

tend to be smaller, lighter, and consume less power than

high-performance multicore processors, it can be expected

that further miniaturisation will continue to create severely-

constrained robots.

III. ROBOTIC SYSTEM SOFTWARE

Let us examine the implications of the computational re-

sources of robots discussed above on their respective software.

Software can be categorised into application software (also be-

haviour or behavioural software) and system software. System

software is an umbrella term for any software that controls and

manages the system itself without implementing a behaviour

or application. Therefore, system software provides a platform

for behavioural software. It commonly aims to reduce devel-

opment time and complexity as well as to improve reusability

and deployability. Typical examples are firmware, operating

systems, middleware, and virtual machines. In robotics, sys-

tem software is commonly a cloud-enabled system software,

middleware, or a virtual machine.

7This work considers a robot with hardware alteration a different robot.

A. Cloud-enabled System Software

To overcome computational constraints, resources can be

outsourced to external devices (e.g., clouds) via a reliable

network. These cloud-enabled systems exist in two forms,

(I) where the behaviour is implemented on a cloud, which

remotely operates robots (i.e., Robot-as-a-Service (RaaS) [43],

[47]) and (II) where the behaviour is implemented on the

robot, which uses the cloud for computation or storage (i.e.,

cloud robotics [48], [49]). Examples are Robot Cloud Cen-

ter [50] (RaaS), Rapyuta [51] (cloud robotics processing), and

RoboEarth [52] (cloud robotics knowledgebase).

Performing remote computation and storage enables a more

cost-efficient robot design due to reduced computational re-

quirements. However, these systems require a reliable con-

nection to the cloud. This is a significant limitation in many

miniature robots as they often provide simple communication

capabilities. As a result, these systems are not feasible for all

cases.

As cloud robotics and RaaS extend the computational power

of single robots, the entire system needs to be considered in

their classification. Since clouds exceed the capabilities of any

individual computer system by magnitudes, such a system is

considered a minimally-constrained robotic system.

B. Robotic Middleware

When accessing another infrastructure is not feasible, local

processing is often a more practical approach. As many oper-

ating systems, such as Windows or Linux, manage resources

and communication, they often lack functionality needed in

robots (e.g., representation in a physical space or actuation

control). Consequently, a broad range of robotic middleware8

has been developed to provide those missing features [53],

[54].

This section discusses a selection of robotic middlewares—

Miro, ORoCoS, Player, and ROS. Miro [55], ORoCoS [56],

Player [57], and ROS [58] have been used widely on platforms

for RoboCup, real-time and safety-critical environments, re-

search, and industry and research, respectively. Overall, they

share similar features:

• a layer (Miro and ORoCoS), a control thread (Player),

or dedicated nodes (ROS) abstracting robotic hardware,

which improves portability,

• modular9 software development, which improves reusa-

bility and generality, and

• a large set of often-used algorithms and features of its

domain reducing developmental time and efforts.

While robotic middlewares are widely used, one limitation

of middleware (including any presented in [53], [54]) is

its need for an operating system. Any middleware utilising

Linux10, Windows11, or macOS12 requires at least CI ≥ 26.5,

8A middleware is any software that is executed between an operating system
and an application (i.e., behaviour).

9Miro, OroCoS, and ROS provide a well-defined interface between
modules—CORBA (Miro and ORoCoS), RPC (ROS). This allows develop-
ment with various programming languages and on various systems.

10The requirement is based on Ubuntu Mate 18.04 as it is required for the
current version of ROS (Melodic Morenia).

11The requirement is based on Windows 10 IoT.
12The requirement is based on macOS Mojave 10.14.
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25.6, or 28.6, respectively. This makes middleware unsuitable

for many miniature robots.

C. Robotic Languages & Virtual Machines

Another form of system software gains popularity—

Virtual Machines (VM) executing Domain Specific Languages

(DSL) [59]. A DSL is a programming language providing

frequently-used functions and a high level of abstraction,

which decreases development-time, reduces lines of code and,

consequently, improves software quality [60], [61]. In this

section, ASEBA [62], Buzz [63], Urbi [7], and Supervisory

control framework [64] are discussed as they have been used

on mobile miniature robots.

VMs are system software that interpret source code (Urbi),

bytecode (ASEBA and Buzz), or a generated finite-state ma-

chine table (supervisory control). While Urbi interprets scripts

directly, the compilation to bytecode allows a higher execution

efficiency13 as repeated syntactic and semantic analysis can be

avoided. While the use of a VM increases the portability of

the code, it is also a limitation as interpreted code—except

the calling of library functions—has a reduced execution

efficiency as shown in [61], [65]. For example, [62] reports

an average execution efficiency of 1

70
for ASEBA scripts.

Overall, the VMs of ASEBA, Buzz14 and supervisory

control have been implemented directly on robots with a

computational index of at least 17.7, 17.2 and 17.2 (i.e., C1

robots), respectively. In comparison, the Urbi VM has been

implemented on robots with a computational index of 25.3

(i.e., C2 robots). Note, Urbi is also a middleware as it requires

an operating system (APERIOS15).

D. Discussion

When comparing the robotic system software and their class

of guaranteed deployability (CGD)16 as shown in Table II, it

can be seen that each type of system software focuses on

a different group of robots. Cloud-enabled system software

is executed on infrastructure that exceed the capabilities of

any individual robot. As a result, robots can use a large set

of features and models, can utilise knowledge databases, and

can perform time-consuming calculations. Robotic middleware

is designed for robots with operating systems (i.e., weakly-

constrained devices). It utilises operating system features and

often provide additional development tools, libraries, sim-

ulators, and other features. Robotic languages and virtual

machines, on the other hand, are programming environments

to describe a robot’s behaviour. As the VMs only translates

DSL commands to a robot’s action, they can be deployed on

many severely-constrained robots.

13In this work, execution efficiency describes how many instructions are
needed for a single DSL instruction. As supervisory control uses events
triggering the execute operations, execution efficiency cannot be applied.

14The considered Buzz implementation is based on BittyBuzz providing a
smaller but limited version of the Buzz VM [66].

15APERIOS is a Proprietary Real-Time Operating system developed by
Sony for the Aibo robot [7].

16The CGD is the class of the robot with the smallest CI that was capable of
executing the respected software based on an extensive literature search. Note
that a specific CGD indicates that no evidence was found that the respected
software can be deployed on a robot with less resources.

TABLE II
COMMON ROBOTIC SYSTEM SOFTWARE AND THEIR CLASS OF

GUARANTEED DEPLOYABILITY (CGD).

System Software CGD

A. Cloud-enabled System Software

Robot Cloud Center [50] C∞

Rapyuta [51] C∞

RoboEarth [52] C∞

B. Robotic Middleware

Miro [55] C2

ORoCoS [56] C2

Player [57] C2

ROS [58] C2

C. Robotic Languages & Virtual Machines

ASEBA [62] C1

Buzz [63] C1

Urbi [67] C2

Supervisory Control [64] C1

Generally, each type of system commonly provides (I)

abstraction of hardware allowing fast high-level development

and (II) modular design capabilities allowing fast adaptation

to changes (in particular, Miro, ORoCoS, ROS, ASEBA,

Urbi, and Supervisory control). While system software for

minimally-constrained and weakly-constrained robots offers

large sets of libraries, system software for severely-constrained

robots often does not. This could stem from a higher availabil-

ity of weakly-constrained robots and, therefore, larger commu-

nities (e.g., ROS). Also, it is likely that reduced computational

resources hinder the development and deployment of generic

and less hardware-optimised libraries.

Generic features and libraries could be implemented in

DSLs, which ensures portability. However, the reduced exe-

cution efficiency could impact the behaviour of a robot. One

approach to improve the execution efficiency is to move from

DSL VMs to DSL compilers allowing the code to be executed

directly on the hardware. This would (I) provide a good level

of abstraction by the DSL, (II) prevent the inefficient execution

on a VM, and (III) allow the implementation of large sets of

libraries and features. On the other hand, it might negatively

impact development times due to repeated recompilation and

increased difficulty of debugging.

The largest difference between severely- and weakly-

constrained robots is that the majority of behaviours on

severely-constrained robots are still implemented directly

without system software. This is likely to be a consequence of

the computational constraints of the robot and the subsequent

need of efficient execution. As discussed in the previous para-

graph, one approach to overcome this is the execution of com-

piled DSL code. Alternative approaches could involve other

system software, such as embedded operating systems similar

to sensor network operating systems [68] (e.g., TinyOS [69] or

Contiki [70]). Overall, this indicates that more engineering and

research efforts are required to improve software engineering

methods on severely-constrained robots.

IV. ROBOTIC TASKS

Finally, in this section, the implications of computational

resources on tasks performed by miniature robots are inves-
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TABLE III
COMMON RESEARCH TASKS IN SWARM ROBOTICS AND THEIR CLASS OF

GUARANTEED DEPLOYABILITY (CGD). A COMPREHENSIVE DESCRIPTION

OF THE SWARM ROBOTICS TASKS CAN BE FOUND IN [37], [71], [72].
NOTE THAT THE CGD IS BASED ON THE CITED WORK.

Tasks CGD

(I) Spatially-Organising Behaviours
Aggregation [73] C1

Pattern Formation [74] C1

Object Clustering [75] C1

(II) Navigation Behaviours
Collective Exploration/Mapping [76] C2

Collective Movement [77] C1

Collective Transport [78] C1

(III) Collective-Decision Making
Consensus Achievement [79] C1

Task Allocation [80] C1

(IV) Other Collective Behaviours
Collective Fault Detection [81] C1

Human-Swarm Interaction [82] C1

(V) Complex Multi-Task Behaviours
Foraging [83] C1/C2

Search and Rescue [84] C2

Surveillance [85] C2

tigated. Candidate tasks can be taken from reconfigurable

or swarm robotics as the majority of miniature robots are

deployed in these areas. While reconfigurable robotics mostly

investigates the creation of shapes and operability of assem-

bled robots, swarm robotics provides a large variety of tasks

motivated by potential future applications and, hence, these

are used in this section.

Generally, swarm robotics research investigates the solving

of tasks with large numbers of robots, a lack of central

infrastructure, and sole access to local information. An ex-

tensive list of swarm robotics tasks can be found in [37], [71],

[72]. Based on [71], a task can be a (I) spatially-organising

behaviour, (II) navigation behaviour, (III) collective decision-

making algorithm, (IV) other collective behaviour, and (V)

multi-task behaviour.

Table III shows swarm robotics tasks and their CGD. It can

be seen that solutions for individual tasks, (I)–(IV), can be

performed by C1 robots, the only exception being collective

exploration/mapping. This behaviour was implemented on

robots with CI ≥ 25.6 (i.e., C2 robots). Tasks composed of

multiple individual tasks, (V), tend to require more powerful

(i.e., C2) robots.

One such task, foraging, is a canonical class of tasks that

can combine exploration, mapping, navigation, path-planning,

object-recognition, decision-making, and transport [86], [87].

It is notable that versions of foraging are suitable for C1

robots (e.g., [83]). However, in these cases, the deployment

of a system is limited to special environments allowing im-

plicit path-planning/navigation (e.g., via pheromone tracks).

Systems without such restrictions consistently use C2 robots.

Surveillance, as well as search and rescue, are used in

swarm robotics [84], [85]. However, both tasks are consistently

performed by C2 robots. In many cases, it can require the per-

forming of simultaneous localisation and mapping (SLAM),

object-recognition, and navigation, which themselves are non-

trivial (e.g., SLAM requires a weakly-constrained robot [88]).

Overall, it has been demonstrated that severely-constrained

robots are in many cases capable of performing individual

tasks. However, when the complexity increases (i.e., multi-

task behaviours), tasks are only performed within a simplified

environment or by weakly-constrained (i.e., more powerful)

robots. This suggests that severe computational constraints are

a hurdle hindering a system from performing more complex

behaviours in more realistic environments.

V. CONCLUSION

This work focuses on an often overlooked property of

robots, the computational resources and their implications

on software. Firstly, computational indices were proposed

to systematically quantify the resources of a system. Then,

a classification was introduced categorising the entire spec-

trum of robotics into non-computational, severely-constrained,

weakly-constrained, and minimally-constrained robots. Based

on the data of 31 state-of-the-art miniature robots, it was

shown that miniaturisation tends to reduce a robot’s computa-

tional resources. This results in a large proportion of miniature

robots being severely-constrained. The severely-constrained

resources restrict a robot to system software lacking extensive

libraries and features and limit robots to perform single

individual behaviours within a simplified environment. As

miniaturisation will continue to produce severely-constrained

robots, more research efforts are required to enable the robots

to perform complex tasks in a complex environment.

Note that there are early research efforts toward compu-

tation-free17 control [73]. However, it requires a specialised

environment and many technical challenges still need to be

overcome for it to be deployed in a real-world environment.

Alternative approaches to overcome the computational lim-

itations could include (I) outsourcing computation to external

infrastructures similar to cloud-enabled system software, (II)

reducing computation by designing mechanisms similar to

micro- and nanorobotics, or (III) distributing computation

across multiple robots. As described in this work, cloud-

enabled system software, (I), is only suitable for a small

number of robots with robust communication to a central

infrastructure. The design of hardware/physical mechanisms,

(II), would allow actions without computation which is an

efficient approach. On the other hand, it lacks the flexibility

of software as it potentially requires redesigning of the system

when a change to the task or environment occurs. Combining

resources across robots, (III), is a general approach that can

be used for a multitude of problems. However, it requires

robust communication, adequate resource management, and

new methods of designing behaviours. Consequently, further

research on these aspects could enable (I) as well as (III) for

miniature systems.

Potential future work includes: (I) extending the computa-

tional index to incorporate the benefits of parallel processing

17Note that computation-free in [73] only refers to “without arithmetic
operations.” As the controller is a Mealy automata it performs computation.
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and floating-point units; (II) analysing more robots includ-

ing non-miniature robots; and (III) statistically analysing the

computational indices for each task, which could reveal more

details on the requirements of different approaches.

ACKNOWLEDGMENT

The author thanks Izabela S. Stopinska, Dr Gabriel Kapell-

mann Zafra, and Dr Yuri Kaszubowski Lopes for their feed-

back and input.

REFERENCES

[1] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin,
Germany: Springer, 2016.

[2] A. Dobra, “General classification of robots. Size criteria,” in Proc.

2014 IEEE Int. Conf. Robot. in Alpe-Adria-Danube Region (RAAD).
Piscataway, NJ: IEEE, 2014, pp. 1–6.

[3] IEEE, “Robots grouped by IEEE,” https://robots.ieee.org/learn/
types-of-robots/, 03 2019, accessed on: 15-Mar-2019.
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