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Abstract

Maintaining situational awareness of what is happening within a computer network is
challenging, not least because the behaviour happens within computers and communications
networks, but also because data traffic speeds and volumes are beyond human ability to
process. Visualisation techniques are widely used to present information about the dynamics
of network traffic. Although they provide operators with an overall view and specific
information about particular traffic or attacks on the network, they often still fail to represent
the events in an understandable way. Also, visualisations require visual attention and so are
not well suited to continuous monitoring scenarios in which network administrators must
carry out other tasks. Situational awareness is critical and essential for decision-making
in the domain of computer network monitoring where it is vital to be able to identify and
recognise network environment behaviours.

This thesis presents SoNSTAR (Sonification of Networks for SiTuational AwaReness), a
real-time sonification system to be used in the monitoring of computer networks to support
the situational awareness of network administrators. Together with a new way of reducing
traffic complexity, called “IP flow”, SoNSTAR provides an auditory representation of all the
TCP/IP protocol traffic within a network based on the different traffic flows between network
hosts. SoNSTAR narrows the gap between network administrators and the cyber environment
so they can more quickly recognise and learn about the way the traffic flows within their
network behave and change. SoNSTAR raises situational awareness levels for computer
network defence by allowing operators to achieve better understanding and performance
while imposing less workload compared to visual techniques. SoNSTAR identifies the
features of network traffic flows by inspecting the status flags of TCP/IP packet headers.
Different combinations of these features define particular traffic events.

These events are mapped to recorded sounds to generate a soundscape that represents the
real-time status of the network traffic environment. Listening to the sequence, timing, and
loudness of the different sounds within the soundscape allows the network administrator to
monitor the network and recognise anomalous behaviour quickly, without having to continu-
ously look at a computer screen. Evaluation showed that operators were able to monitor and
recognise network attacks better with SoNSTAR than with Snort, a leading visual intrusion
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detection system, and with lower reported cognitive workloads. Accuracy of recognition was
highest when using both Snort and SoNSTAR together (97.14%). The results clearly show
that accuracy improved when using sonification. When using sonification, the mental and
perceptual workloads required were less than when using visualisation alone (45% vs. 58%).
The pressure participants felt due to the pace of the monitoring task was less when using
SoNSTAR (31% vs. 65%). Frustration rate showed improvement when using SoNSTAR
(36% vs. 71%). The very act of listening to the traffic generates a fast discovery process
leading to new knowledge of malicious behaviours that is not possible with current algorith-
mic approaches. SoNSTAR enabled the user to explore distributed, parallel and horizontal
behaviours that are similar to normal behaviours. An experiment using the 11.39 GiB ISOT
Botnet Dataset, containing labelled botnet traffic data, compared the SoNSTAR system with
three leading machine learning-based traffic classifiers in a botnet activity detection test.
SoNSTAR demonstrated greater accuracy (99.92%), precision (97.1%) and recall (99.5%)
and much lower false positive rates (0.007%) than the other techniques. The knowledge gen-
erated about characteristic botnet behaviours could be used in the development of future IDSs.
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Chapter 1

Introduction

1.1 Background

Technology has changed the way in which computer networks are treated, with national
governments increasingly viewing them as a war fighting domain alongside the traditional
sea, land, air, and space domains [47]. Cyber domain operations know no national boundaries
[79] and understanding where these operations happen is important for a greater appreciation
of the cyber environment [158].

The US Department of Defence has defined ‘cyberspace operations as a global domain
within the information environment consisting of inter-dependent network information
technology infrastructures, including the internet, telecommunications networks, computer
systems and embedded processors and controllers’ [61, p. 126].

Exploring and finding better ways to understand actions and behaviours in the cyber
environment could provide network administrators with the advantage of better situational
awareness over adversaries and their future attack plans. Cyber operations are complex and
can be divided into three main areas [47]:

• Defence: These activities represent approximately 80% of the operational spectrum.
This includes the entire work done for the purpose of security protection in order
to identify adversaries and stop any malicious or attack activities and to maintain
information about the current state of the network. These operations include action
taken in the network to monitor, analyse, detect, protect and respond to attacks or
unauthorised actions [79]. Some organisations even hire white-hat hackers (known
as ethical hackers) to perform penetration testing and other testing methodologies to
ensure the security of an organisation’s information systems.
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• Exploitation: These activities include any preparatory operation conducted to enable
future malicious or attack activities. This foot-printing could include port scans or
probing to identify vulnerable network components along with other preparations
such as spying for the information necessary to make decisions about an attack or
injecting a bot or intrusion or trojan into the victim or enemy system or network for
the purpose of future intended attacks. These operations include acquiring security
passwords or active foot-printing by physical access to victim data-centres or any
network component or any building and do not need to be confined to the digital world
[6, 79, 151].

• Attack: These activities represent the overt phase where attack operations start to
affect their targets [158]. This happens when an attacker has identified the target for
an attack and made necessary preparation for this purpose such as (FUD, RAT, Root
kit and Key loggers) or have acquired security passwords enabling them to perform
the intended action. These operations include actions taken to destroy or otherwise
incapacitate enemy networks or to steal or change information [6, 30, 36].

While the Internet exposes computer networks to multiple threats from the outside
world, it is still considered that internal threats are more dangerous to network security
[162]. For most of today’s network administrators, it is essential to be able to monitor
their network activity in real-time to be able to obtain a current overview of their network
environment. Additionally, it is important to be able to quickly adapt to problems as they
arise which requires high levels of situational awareness. Computer network operators face
new challenges to maintain real-time situational awareness using technology [118]. This
research focuses on the first goal of obtaining and maintaining a real-time overview of
network behaviour.

Network measurement tools include software and hardware methods to gather data and
analyse traffic at different protocol levels. Network traffic analysers underpin real-time data
collection and online analysis. The majority of these systems use graphical displays to
represent live traffic data. Other measurement software, such as Tcpdump and Wireshark
sniff network data in real-time and store it. Once the system has collected and stored the
traffic data, it can be analysed offline [163].

1.2 Research motivation

Visualisation has been used as a tool for monitoring networks in order to raise situational
awareness levels [47]. The static and dynamic visualisation of total and subtotal traffic
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information (such as bandwidth, speed and current performance) do not allow administrators
to acquire a deep and clear understanding of their current network state [51]. This is because
attacks can appear like normal traffic and there are no specific rules that could enable
administrators to set their network up to prevent or monitor all attacks. Furthermore, each
network is unique and what is normal behaviour in one network may be anomalous in
another [118]. Therefore, network administrators need tools to provide information in a way
which helps them to build a solid understanding of their network environment’s behaviour.
Unfortunately, existing popular tools such as intrusion detection systems (IDS) and firewalls
do not specify why and how certain events happened.

Visualisation and IDS systems do not provide the protocol flow granularity required to
understand how flows are behaving inside a network or why a security system generates
false positive alerts or why specific alarms were raised . IDSs detect intrusions and record
them to log files which network administrators then have to inspect to try to understand the
situation [17, 102]. Many IDSs send an email to the administrator for each intrusion record
or incident and the volume of emails increases with the scale of the network. It is quite
difficult to understand the relevance of aggregate records when receiving only the alarms
for individual intrusion records. Modern attacks are sophisticated and can involve a range
of techniques and methods [44]. Thus, real time situational awareness is required for an
overall understanding of the situation especially when real time intelligence and intuitive
solutions are required. The graphical user interfaces (GUIs) of today’s visualisation network
monitoring and IDS systems present information very superficially. For example, the time
sequence of numbers of intrusions or incidents of the whole traffic domain may be visualised
as polygonal charts. The operator may be required to perform many operations to explore
detailed information, but in many cases network administrators are too busy to monitor the
GUI. Moreover, when using visualisation tools administrators must look at a screen. Loss of
concentration, visual fatigue, temporal demand and frustration increase when monitoring
a screen for a long period. Extra screens will be required for additional staff. In addition,
the huge volumes of data which need to be processed and presented cannot be visualised in
real-time unless data reduction techniques are used.

Hildebrandt [72] proposed enhancing visualisation monitoring with sonification tech-
niques because humans are sensitive to even small changes in the rhythms and sequences of
sounds. Sonification may be defined as:

. . . the use of non-speech audio to convey information. More specifically, sonifica-
tion is the transformation of data relations into perceived relations in an acoustic
signal for the purposes of facilitating communication or interpretation [99, p. 5].
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This makes sonification highly suitable for conveying information that changes over time. In
the last few years there have been several attempts to develop network sonification systems
in order to support network monitoring.

In order for sonification to serve network monitoring purposes, it has to allow adminis-
trators to have a clear understanding of what is going on in their network environment so
they can take appropriate action and prevent malicious activities and misuse of resources.
The traffic volumes passing through today’s networks are huge which makes it more difficult
for them to be represented visually. However, if we enable people to sense and interact with
the cyber environment and let the human brain do part of the processing work and to adjust
the sound generated to ease analysis this may allow more about the cyber environment to be
learned.

The question this research addresses is how can sonification be used in the maintenance of
real-time situational awareness to provide the protocol flow granularity required to understand
network environment behaviour? As a solution to this issue network administrators need a
real-time monitoring tool to facilitate the acquisition and maintenance of security situational
awareness. Such a tool could help with:

• Increasing the understanding of cyber environment which is a vital task for network
management and diagnosis.

• Maintenance of network security and situational awareness of malicious events such
as intrusions attacks.

• Maintenance of network connectivity and health through monitoring, understanding,
and tuning.

1.3 Research aims and objectives

The overall aim of the thesis is to use sonification to support network operators in overcoming
situational awareness challenges in computer networks and explore alternative approaches
to improve network security threat detection and monitoring in order to raise cyber security
situational awareness levels. The approach proposed in this research has the following
characteristics. It creates and develops a real-time sonification monitoring system that
represents network events using sound based on flow features. Furthermore, it introduces a
new type of flow reduces the number of flows required to be sonified to represent the network
state. It allows the user to recognise changes in the traffic activities and detect malicious
activities as soon as they occur. It provides a demonstration of detecting botnet activity.
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In this thesis, the scope is limited to developing SoNSTAR which is a monitoring
system as part of a security situational awareness solution. As well as supporting real-time
monitoring, SoNSTAR can also read stored traffic datasets in the pycap format for offline
review. In addition, SoNSTAR generates log files of its activities to support the learning
process.

The main target of the research is TCP/IP network traffic as it represents most of the
traffic which passes through computer networks [138, 142].

1.3.1 Objectives

The objectives in support of the overall aim are as follows:

• Study existing network security and monitoring tools.

• Investigate and analyse normal and malicious traffic mechanisms.

• Review the literature on sonification and network sonification research.

• Identify the parameters that might be affected by intrusions and traffic behaviour
changes.

• Design and develop a network sonification solution.

• Conduct experiments for testing the proposed solution.

• System validation and results analysis.

• Create a user manual to help people understand how to use the system.

• Train users to use the system and understand the sonification and analyse the outcome.

Fig. 1.1 illustrates the research approach phases. The system development approach used
to plan, structure, and control the process of creating and developing SoNSTAR prototyping.
Phase 3 in Fig. 1.1 illustrates SoNSTAR framework development steps.

1.4 Thesis contributions

The thesis introduces a sonification monitoring solution called SoNSTAR (Sonification of
Networks for SiTuational AwaReness) which includes the protocol flow granularity required
to understand network events inside any network environment. We created a new type of
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Fig. 1.1 Research Approach
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flow, called “IP flow” which is a series of packets and uniquely identified using source and
destination IP addresses, and protocol. In addition, the system is enhanced through the
use of data reduction methods in order to be able to represent massive volumes of network
traffic. It achieves this by using the concept of IP flow to reduce the number of traffic flows
requiring sonification, and reducing the number of sounds to be generated by sonification,
thus playing the sounds for similar events only once in each time window. Moreover, the
system is interactively adjustable and flexible to be behaviour-specific to suit targeted users.
As such, the user is capable of tuning the system and establishing thresholds, features and
events to suit the user’s environment. Furthermore, the system can explore a specific network
environment and understand the normal behaviour of that specific network, separate from the
generally understood ‘normal’ behaviours of other networks. This thesis makes three main
contributions as follows:

1. The SoNSTAR system itself and the supporting evaluations in Chapters 4 and 5.

2. The introduction of the concept of IP flow which, together with feature construction
methods and techniques for representing multiple identical events with a single sound,
reduces the complexity of network traffic such that it becomes possible to monitor all
the traffic passing through the network.

3. The use of sonification in the discovery of malicious network behaviours, demonstrated
in Chapter 6 with a specific case study dealing with botnet activity.

In Chapter 4, a new sonification monitoring solution, called SoNSTAR, is introduced.
The work’s novelty consists of sonifying in real-time extracted features of network traffic
based on the control flag status of packet headers without looking into the payloads. The
techniques developed to handle the interaction of the user with the system aim to increase
situational awareness levels. SoNSTAR inspects the flag status of each packet in a flow
and extracts features by periodically counting each packet type as well as the number of
flows, and then uses this information to control the resulting soundscape. The system is
complementary to visualisation systems and more situationally informative than visualisation
methods, which can provide only limited goal-oriented information. This type of sonification
which allows the representation of large traffic volumes by representing traffic flow and
IP flow states to reduce the amount of information presented to the user, has not been
demonstrated before. The majority of network sonification systems for intrusion detection
rely on network metadata extracted from data volumes, packet size and time, source and
destination IP addresses and ports or logs generated by network IDS. To approve the new
system design, the proposed solution is initially evaluated in terms of the potential of using
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packet counts based flag state to represent and understand the cyber environment and to show
how packet types are structured into IP flow. The results of the evaluation have demonstrated
that the flag’s packet counts clearly provide information about the state of the traffic, and that
the packet counts and number of flows change according to the traffic behaviour. The number
of flows was huge and as such, could not be checked visually in real time. Therefore, the
sonification option is essential. Furthermore, the sound design solution is initially evaluated
to confirm whether the sounds generated by SoNSTAR are recognisable by users and could
be easily comprehended and whether they reduce the workload of the user. The results have
shown high detection and accuracy rates and acceptable false positive rates. The NASA-Task
Load Index data have also shown encouraging results. SoNSTAR has provided interesting
knowledge about network activity that could greatly help users to know how events occur
and how network behaviour and flow state change.

Chapter 5 presents an experimental study to evaluate the advantages that SoNSTAR
could bring to intrusion detection in order to raise the cyber security situational awareness.
The results of the experiment demonstrated the superiority of the proposed sonification
approach over using visual monitoring alone, and showed that using sonification with a
visual IDS increases cyber security situational awareness. Although the system could be
evaluated manually by conducting comparisons against log files, this experiment aimed to
evaluate the practicality of using sonification in live monitoring tasks. The results suggest
that using SoNSTAR to explore new events and features brings benefits to IDSs and network
monitoring in general. Accuracy, precision and workload rates have confirmed that SoNSTAR
provides a significant advance in the field of sonification for network security. Furthermore,
SoNSTAR evaluation has proven its sonification capabilities as a monitoring tool. Network
vulnerabilities can be discovered by SoNSTAR and its user can predict and discover possible
attack attempts at an early stage and detect novel attack patterns to allow a zero-day attack.
Therefore, users can become aware of the attacks that might target their network, which
supports situational awareness.

Finally, in Chapter 6, reports on an experiment to investigate how SoNSTAR could be
used to enhance existing IDSs and protect this vulnerable environment of function-specific
networks against botnets. Most botnet detection systems perform deep packet inspection
(DPI) on the entire network traffic, which requires unencrypted payloads. Other systems
target botnet behaviour based on Domain Name System (DNS) traffic. Since the latest
distributed denial of service (DDoS) attacks and botnets are capable of launching application
layer attacks to evade current detection systems, research reported in the most recent literature
advises developing detection techniques based on the application layer of the OSI network
model. In this experiment, SoNSTAR, which is based on packets’ headers, interactive
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sonification and exploring traffic for parallel, distributed, repetitive, horizontal and vertical
behaviours events and mapping them into sound, managed to detect all of the targeted
behaviours. A technique has been developed to collect more features in order to target
botnet behaviours and deal with flow traffic, thus allowing the detection of repetitive flow
patterns generated by hosts. In addition, the proposed approach used by SoNSTAR has
demonstrated better results compared to a number of existing methods using the same dataset.
SoNSTAR was also used to discover new botnet features and patterns that could allow it to
help to develop IDSs. Furthermore, these features and events could also be used by IDSs to
allow faster detection instead of performing DPI to examine all packets, which represents
a huge task for high-speed networks and costs the system significant memory capacity and
processing power. Instead, SoNSTAR uses a method to collect selective status information
and extract features periodically to free memory and save processing power. These selective
features are sonified and provide a real example of using sonification in monitoring to allow
users to gather more information about the network environment.

1.5 Thesis overview

This thesis investigates the use of sonification as a monitoring tool for computer network
security and situational awareness purposes. It describes situational awareness for the cyber
domain and the most commonly used security measures. Furthermore, it discusses the
previous work carried out in the field of sonification of computer networks. The thesis
then goes on to describe a computer network monitoring sonification system for situational
awareness purposes. Experiments to determine whether the system proves useful for cyber
security situational awareness purposes are then described and the results are subsequently
discussed. The thesis consists of seven chapters, the first being this introduction. The rest of
the chapters are organised as follows.

Chapter 2 provides an overview of situational awareness within the cyber environment. It
briefly looks into the difference between incident response and real-time analysis of network
traffic. It describes the common approaches used in monitoring to provide a sense of network
situational awareness. Furthermore, it discusses the background and concepts behind existing
computer network security and monitoring systems. The chapter then introduces network
protocols and provides a summary of the TCP/IP protocol. Finally, a taxonomy of malicious
behaviour related to network traffic is provided.

Chapter 3 introduces sonification concepts and includes a discussion of current sonifica-
tion approaches and techniques. In addition, the chapter surveys the use of sound in various
computer network monitoring studies and applications such as NetSon, InteNtion, Stetho
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and self-organised criticality sonification (SOCS). The chapter concludes by describing the
different sonification approaches and scenarios and their different data levels of extraction
and the state of research of using sonification for cyber security situational awareness and
shows where the SoNSTAR system fits within this research field.

Chapter 4 describes the SoNSTAR system that is created for this research as a maint tool
for monitoring network traffic and as an additional tool to support existing security settings.
It outlines the user specifications and requirements for the system. The chapter concludes
by describing the primary design of SoNSTAR and the two primary experiments used to
demonstrate the SoNSTAR extracted features and sound mapping design and discussing the
results.

Chapter 5 describes an experiment conducted to evaluate the performance of SoNSTAR
against the Snort intrusion detection system in real-time. It investigates the performance
and situational awareness level that are required to support the purpose of SoNSTAR as a
monitoring tool. Moreover, the procedures followed in the experiments and the results are
also discussed.

Chapter 6 provides an introduction to using SoNSTAR to recognise botnet behaviours
and support existing IDSs to target botnet events based on new features. This is achieved
through utilising sonification in order to provide the protocol flow granularity required to
understand botnet events inside an environment. Furthermore, the chapter studies networks
according to the expected motivations behind an attack and specific network vulnerabilities.
It describes new features and four additional algorithms to process them to target parallel,
distributed, repetitive, horizontal and vertical behaviours and discusses the extension of the
SoNSTAR system and its use in this work to target botnet behaviour. Finally, the procedures
followed in the experiments and the results obtained are presented and discussed.

Chapter 7 reviews the material presented in the previous chapters and draws conclusions
from the evaluation of the SoNSTAR system and the work presented in the thesis as a whole.
Finally, recommendations for further work and research are provided.



Chapter 2

Computer Network Security and
Situational Awareness

2.1 Situational awareness (SA)

Endsley defined situational awareness (SA) defined as: ‘the perception of elements in the
environment within a volume of time and space, the comprehension of their meaning, and the
projection of their status in the near future’ [45, p. 36]. Because it exists within computers
and communication networks the cyber environment severely constrains human perception
and so we are reliant on tools to provide perceptual access to what is happening within the
network. Vickers et al. described the situation thus:

Many tools on which we rely for situational awareness are focused on specific
detail. The peripheral vision (based on a range of senses) on which our instinc-
tive threat models are based is very narrow when canalised by the tools we use to
monitor the network environment. The majority of these tools use primarily vi-
sual cues (with the exception of alarms) to communicate situational awareness to
operators. Put simply, situational awareness is the means by which protagonists
in a particular environment perceive what is going on around them (including
hostile, friendly, and environmental events), and understand the implications of
these events in sufficient time to take appropriate action [159, p. 13].

SA allows the network administrator to be aware of a network’s current state. This situa-
tional perception includes situation recognition and identification [82]. Laing and Vickers
[101] explained situational awareness as a process of becoming aware of the immediate
environment and grasping how temporal/spatial events (over which one may or may not have
control) will affect the environment.
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This enables a network administrator to assess network activities for both current and
future impacts through understanding the cyber environment, tracking activities of legitimate
or adversarial actors. According to Endsley’s model [45] SA consists of three phases of
recognition, comprehension and projection to reach a resolution. Therefore, malicious
activities and the exploitation of the network cyber environment have to be recognised and
detected as soon as possible. Security conclusions or resolutions have to be made to prevent
future attacks and the misuse of network resources. Other non-successful attack activities
or anomalies have to be recognised and identified as quickly as possible in order to acquire
more knowledge about the cyber environment.

Boyd’s OODA (observe, orient, decide, act) loop theory [4] has added more depth to the
understanding of situational awareness. Boyd’s theory is based on his study of the decision
making of combat pilots and the first stage (observe) involves taking in information about
some features of the environment. The second stage (orient) refers to directing attention
towards an adversary. The decide stage involves deciding upon the next actions. Finally, the
fourth stage (act) involves implementing the decision. Boyd concluded that American pilots
won their battles because they had better training which made them better at deciding and
acting [22, 47].

As ‘humans are inherently visual beings’ [102, p. 65], several visualisation monitoring
tools have been introduced to provide a sense of network situational awareness. No system
can implement the best security measures without interaction with people. Huge efforts
have been made to allow security analysts to observe the current state of their computer
networks. However, it is difficult to maintain high SA levels [102]. The real-time monitoring
of the end-to-end flows and connections in a network is vital to allow better observation and
orientation for faster decisions and actions so as to maintain healthy network resources in the
face of constant changes in attack methods, motives and behaviours. In general, this work
requires high experience and intelligence. In this research it is important to discover whether
people’s listening skills allow them to use a sonification system to recognise network attacks.
Everyday life suggests that humans are capable of processing auditory streams to become
aware of significant events in their immediate environment through their experience and
intelligence, and this might make them capable of using sonification for maintaining SA of
sensitive cyber environments [82].

To help improve situational awareness and threat assessment, information fusion tech-
niques have been developed which combine data from multiple sources and include physical
sensors and human observers alike [118].

A separate IDS does not have complete information or knowledge to detect intrusions
[51]. Integrating evidence of available security systems is the focus of multi-source data
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fusion systems, where numerous and varied security controls are joined to deliver accurate
situational awareness in the computer network [117]. Offline information monitoring tools
might be important but do not support situational awareness because they do not allow
the administrator to recognise events and changes in behaviour immediately. A security
system using real-time monitoring for situational awareness is essential for providing the
administrator with the network current state.

The monitoring solution introduced in this research (SoNSTAR) targets this type of
monitoring to support existing security tools, acting as an additional tool aimed at raising SA
levels.

2.1.1 Importance of SA

Malicious activities and exploitation of the network cyber environment have to be recognised
and detected as soon as possible. Then, plans need to be made and measures put in place
to prevent reoccurrences of these attacks and misuse of network resources. Port scans and
connection failure in the TCP protocol, for instance, represent a sign of change environment
behaviour. These non-success activities or anomalies have to be recognised and identified in
order to acquire more knowledge about the cyber environment [82, 142].

Performance forecasts for network resources based on historical performance measure-
ment or real time monitoring information are important to support SA. This monitoring will
enable the administrators to characterise and forecast the performance deliverable at the
application level from network resources. Such forecasts could be successfully used to help
with the maintenance of applications’ performance and services. The real-time monitoring
of end-to-end quality of service of network and bandwidth is important in the network
administrator which will allow control of misuse of the network resources and will keep
bandwidth balanced in the network [85, 102, 170]. This view means SA of network activity
required to be maintained to ensure an appropriate response to attacks and management of
network resources.

The impetus behind the development of these security tools was generated by a number
of factors such as:

• The immense technological progress in the domain of network security.

• The necessity to maintain a healthy network 24/7.

• Wider changes in attack methods, motives and behaviours.

• None of the existing security systems can provide the best security measures without
the interaction with a human operator [7, 102].
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For example, in September and October of 2012, the websites of six banks suffered from
a cyber attack which caused days of slowdowns and even a complete break in their services.
Security analysts declared the reason was malicious denial-of-service attacks. The reason
behind this attack was to overwhelm the banks IT infrastructures in order to stop legitimate
customers to use the bank services [37]. This led to a new invention (the “Corero First Line
of Defence” device) introduced as a first-line defence before firewalls. Sonification might
have helped with the bank’s attack problems by providing the administrators of the bank with
immediate recognition of malicious behaviours at the point the attack began as well as of the
normal behaviour patterns used in this attack to evade detection.

2.2 Network SA and monitoring

Attack and malicious activity volumes in the cyber environment are currently growing at
a rapid pace. Security analysts expend large efforts to observe their computer network’s
current state. However, they are having trouble maintaining high SA [102]. There is a
pragmatic need to find acceptable substitutes to the old methods of protecting and monitoring
a network in order to have real-time situational awareness influences and stands behind the
rapid development of network security tools [118]. Numerous visualisations systems have
been developed and designed to increase analysts’ security SA in addition to the typical
network security systems. The monitoring solution introduced in this research (SoNSTAR)
is designed to act as an additional tool to provide current and deep information about the
status of the packets moving in the network connections according to flows generated within
the network or the internet. Network monitoring today can be roughly split up into two
categories as follows.

2.2.1 Types of monitoring

• Incident response:

SA is carried out after network abuse or an attack to assess the damage. For instance,
enterprises perform retrospective SA to understand what has happened for forensic
investigation or postmortem analysis [30].

Most of the available tools on the market use log files. Many types of router log
schemes exist, but most of them use the Cisco NetFlow logs or have much in common
with NetFlow. NetFlow aggregates network traffic by transforming packet info into
flows. Flows are uniquely identified using source and destination IP addresses, source
and destination ports, and the protocol, input interface and TOS (type of service) fields.
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The accumulated information about the flow is recorded in the router. However, each
router has a cache where the flow records are stored. Because of the high speeds of the
traffic involved, the storage mechanism only samples packets and not all the flows are
preserved [34].

Incident response is concerned with investigating something that already has happened,
and about which nothing can be done. The reason behind such analysis is to find
evidence of what has happened. An incident response check allows the administrator
to go through the data several times and examine any suspicious and interesting flows
which are found. It is used to analyse an attack, identify details and provide reports
and results which might be presented as evidence in a court of law [30].

• Real-time monitoring:

A real-time monitoring system is a monitoring system where the accuracy of the system
behaviour depends not just on the logical outcomes of the computations but also on
the physical time when these outcomes are produced [94].

It is essential for administrators to recognise the traffic volume of their network
and the state of the network components [159]. Real-time monitoring is vital to
conduct live network traffic analysis to distinguish normal and anomalous behaviours.
An environment that supports SA should allow a network administrator to quickly
evaluate high-level information such as the cause of an attack [45]. SoNSTAR is a real
time monitoring system. Real-time monitoring is an ongoing process, which returns
information about the network states with a low latency so that the administrator can
respond to the attacks.

Real time cyber SA aims to collect information about the current state of the network
in order to have perception. An SA system provides information about the current
state, attributes and dynamics those related to the component of the environment. SA
takes in classifying information into an understood picture and provides the basis for
comprehension and projection [82].

2.3 Typical network security systems

Network security tools, monitoring systems, and sensors are usually installed at the network
gateway. In addition, monitoring software might be installed to provide extra information
about network traffic. Fig. 2.1 illustrates a router that provides internet connection to a
network. For the most part, a network’s first-line safeguard is the firewall, which can be
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Fig. 2.1 Illustration of a typical network topology (based on [37])

software or hardware based which goes about as a network traffic filter by analysing data
packets to prevent or to permit traffic based on a set of rules. Firewalls are most commonly
installed at the network gateway. Web application firewalls (WAF) might also be installed.
WAFs are designed to keep the servers and applications safe and performing well and,
because of that, many successful attacks nowadays are not at the network level, but at the
application level. However, attacks still have an effect on the network layer [17].

Other security gadgets can be installed behind the firewall. Intrusion detection systems
(IDS) are considered the second line defence. Network administrators use IDS software
or sensors that inspect traffic on the network and wait for malicious events to occur. A
wide range of monitoring tools is available for users to raise security levels and analyse
and monitor the network environment behaviours internally which is considered the third or
fourth line defence [17].

Intrusions are defined as ‘attempts to compromise confidentiality, integrity, or availability
of data, or to bypass the security mechanisms of an IT system’ [2, p.147]. An IDS monitors
the network assets in order to detect misuse or anomalous behaviour. Intrusion prevention
systems (IPS) are similar to IDS but with small extra functions. An antivirus program is
likewise fundamental, protecting against malicious software, including classic viruses, RATs,
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malware, worms, zombies and trojan horses. Anti malware software and spyware utilities
ought likewise to be considered [29, 140].

2.4 IDS technologies

IDSs are classified as active and passive, and come in two broad types: network-based (NIDS)
and host-based (HIDS) [44]. An active IDS is configured to provide real time response to
attacks and automatically block them, while a passive IDS is configured to provide real
time monitoring of network traffic activity and to send alerts to an operator according to
any vulnerability and attack. Network intrusion detection systems use a network appliance
with a network interface card, while host intrusion detection systems are usually installed,
for example, on a server or workstation that is intended to be monitored. A host-based IDS
can only monitor individual servers or workstations using software applications and cannot
monitor the whole network [44].

2.4.1 IDS detection methods

Most detection methods (especially IDS) depend on packet headers, the payload, or a
combination of both to detect attacks and malicious activity. In anomaly-based systems
(ABS) analysis of the packet’s payload is used to differentiate between normal traffic and
anomalous activity. Signature-based systems (SBS) rely on matching patterns against a
database of the signatures of known attacks. The advantage of anomaly-based systems is that
unlike signature-based systems, they can detect attacks without any delay since new attacks
can be detected as soon as they happen, while signature-based systems cannot detect novel
attacks and can only match against known attack signatures [44, 144]. While anomaly-based
systems can detect novel attacks they generate more false positive results and so risk blocking
legitimate activity. Anomaly detection methods can only be as good as the anomalies they
were programmed to detect. IDSs classify traffic activities as normal or anomalous and an
alarm is triggered for anomalous events. Alerts generated are saved into a log file which
can be accessed by the operator. Dealing with IDS logs could be used to investigate false
positives depending on how much time the operator can invest and how much security he or
she needs [44, 125]. Identifying the state of traffic from encrypted applications is a critical
issue for numerous network tasks. In-depth packet inspection requires decryption in most
cases, and this would affect any detection mechanism especially when trying to operate in
real time [3, 18, 145].
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These ways work to an extent, however, they can be defeated by a sophisticated attacker,
For example, the attacker crafting the traffic may have access to the same IDS tools that the
target network is using, and may be able to create a bespoke attack to specifically avoid their
security measures. Unless the network administrator creates their own unique baseline of
specific network traffic according to it is functionality, the IDS will continue to fail to detect
attacks or might generate more false positive which could be costly in both time and money
to maintain.

2.5 Monitoring systems detection methods

Several types of monitoring systems use network usage patterns for detection, measuring and
summarising usage statistics based on user-defined parameters, and contrasting measurement
aggregates with predefined thresholds and then responding when thresholds are met or
exceeded or following queries from a security analyst [20]. Detection methods can take
different approaches depending on the system detection targets. Some use statistical methods
to model data according to its statistical properties and use this information to estimate
whether a test sample represents the same distribution or not [109]. Some systems train
neural networks for detection and classification based on previously detected features and
malicious patterns [88]. Other modern detection systems involve reinforcement learning
techniques. Here, the neural network is used with a learning algorithm as a classification
technique, which showed powerful capabilities. In addition, utilising a reinforcement learning
algorithm improves the capability of the detection system [122, 153].

2.6 Network traffic measurement

Network traffic measurements provide essential information for network administrators to
support network management. Network traffic measurement is the process of measuring
the amount and type of traffic on a specific network. This is very important with respect to
effective bandwidth management. Collecting information about the packets transmitted over
the network including their time info, IP address, contents etc allows these detailed packet
level measurements to be used to monitor network and user behaviour and network traffic
distribution [49, 163].
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2.6.1 Types of measurement

Network measurement infrastructures support two types of measurement data collection
techniques: active and passive measurement. Active measurements require injecting test
packets into the network traffic. Passive measurement collects data directly from the network
[27].

2.6.2 Network measurement and monitoring tools

Network measurement tools include hardware and software approaches. Measurement
tools collect data and analyse traffic at different protocol levels. Many network traffic
analysers support multilayer protocol analysis. Network traffic analysers support real-time
data collection and online analysis, and the majority of these systems use graphical displays
to represent live traffic data. Other measurement software, such as tcpdump and Wireshark,
collect and store network data in real-time after which it can be analysed offline [163]. The
majority of measurement tools include [81, 85, 93, 102, 170]:

• a user interface (e.g., web, graphical, console);

• online and/or offline traffic graph representation, monitoring network behaviour and
reporting against predefined rulesets;

• identification of sender and receiver IP addresses (both local and remote), port numbers,
protocols, time, and bandwidth quotas;

• presentation of information as static visualisations (graphic or tabular) of traffic totals
and subtotals traffic, and often support traffic shaping, content filtering, usually release
alarm and notification;

• support for network mapping and discovery.

2.7 Security systems functionality and limitations

Security systems are complex, and what one system can detect another may not. Any type-
based approach (e.g., header-based, payload-based) cannot represent a solution to detect and
monitor modern attacks. For example, header-based systems are appropriate to detect attacks
and threats directed at vulnerabilities in the network and transport layers and other probing
attempts that are used before the attack happens. On the other hand, payload-based systems
are more suitable for attacks at the application level which have started gaining importance
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due to the increase of web-based services (e.g., electronic government and electronic business
systems). However, payload-based systems have an issue with application protocols such as
SSH and SSL because of encryption. A possible solution is to use a host-based system to
access data after decryption but this also has a problem of causing overhead on the monitored
host. Moreover, this problem will become more important when IPv6 starts replacing IPv4
because it uses cryptography to adds authentication and confidentiality to the packets [44].

Most of the real-time monitoring tools currently available focus on connection and traffic
statistics. For example, most of them capture the network traffic in real time, analyse it, and
produce statics such as bandwidth usage and display the data received and sent by every
host in a network in various ways. They try to provide the network administrator with
numbers and graphs representing traffic sizes (measured in bytes) from specific categories
such as total traffic sent and received and the number of alarms, the number of IP addresses,
the number of current connections, the number of active devices, the number of offline
devices, the number of internal and external connections and the usage of downloads and
uploads of each user. However, this information might be important but it does not allow the
administrator to recognise novel events and behaviour changes. There is a need to develop
real-time monitoring systems capable of showing changes as they happen through packet
level inspection and giving an indication to the administrator about immediate events and
behaviours within the traffic [2, 44, 85, 88, 153, 170].

2.8 Network traffic

Before looking at the malicious network attacks, we will briefly look at some of the essential
information about network traffic and Internet protocols.

It is important to monitor TCP packets because they comprise most of a network’s traffic.
TCP traffic can be monitored because TCP packets carry a state flag which show each
packet’s function [138]. It is more difficult to monitor the state and functionality of UDP
traffic because the UDP protocol is connectionless; there is no handshake mechanism to
establish a communication channel and so there is no mechanism to guarantee the delivery
of packets, their reception in the correct order, or the prevention of packet duplication. For
DNS traffic, it would be a good idea to start by monitoring DNS server response errors to
a queried domain because it is designed to respond with answers to the queries against its
DNS domain records database. ICMP traffic has some complications because it supports the
other protocols by generating responses to errors with IP operations. ICMP errors are routed
to the source IP address of the packet [48, 95, 136, 142].



2.8 Network traffic 21

Table 2.1 List of monitored failure types [136]

Protocol Type Description of the failure

TCP
i TCP SYN sent, but got TCP resets (RSTs)
i TCP SYN sent, but got ICMP unreachable
t TCP SYN sent, but timed out

UDP i UDP sent, but got ICMP unreachable
t UDP sent, but timed out

DNS i A DNS server sends error response to a queried domain

There are different ways hosts can respond (or fail to respond) leading to a failure to
establish a connection and these should be considered when dealing with network traffic.
Table 2.1 shows two types of failure. Type (i) failures can be detected immediately and the
timeout, Type (t), failures need time to be detected [136].

2.8.1 TCP/IP introduction

Transmission Control Protocol/Internet Protocol, or TCP/IP, is part of the Internet protocol
suite. As this protocol plays a central role in network traffic, a brief overview is now given. In
the network layer of the Internet, the most common datagram type used is Internet Protocol
version 4 (IPv4), though IPv6 is now experiencing increased usage [95]. Fig. 2.2 shows the
structure of an IPv4 datagram.

Fig. 2.2 Illustration of the structure of an IPv4 datagram header (based on [95]).
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IP datagrams are constructed by a source host which also allows it to insert false identity
information, a practice known as “spoofing”. The most common IP datagram protocols are
TCP, UDP and ICMP [48, 136].

These protocols are divided into two classes: connection oriented and connectionless.
A connectionless protocol only writes a destination in the packet and despatches it with no
checking to see if packets have arrived at their destination or if they arrived in the correct
order. Familiar connectionless protocols are UDP and ICMP [48].

A connection oriented protocol ensures that the packets arrive in the right order. TCP is
such a protocol. The TCP datagram header has various counters and flags which are used to
maintain the state of the connection. The flags play a central role in both network denial of
service attacks and probes [48].

The TCP header has six flags: URG, ACK, PSH, RST, SYN, and FIN. One of the
significant roles that flags play in the TCP protocol is to start and close connections. A
mechanism known as the three-way hand shake is required to establish a TCP connection
between source and destination and is illustrated in Fig. 2.3 where the initiating source is the
client and the destination is a server. The first step in the process is the client host sends the
server a TCP packet with its SYN flag set. When the server receives the connection request
packet it will allocate some resources for handling the connection. Next, the server host
replies to the client with a packet in which the SYN–ACK flag is set to indicate acceptance of
the connection. The third message is the client sending the server a packet with ACK flag set
indicating acknowledgment of agreement. In this way, the hand shake process is successfully
finished and a connection (also known as a “socket”) is established. If the destination is
unable or unwilling to establish a connection with the source, it will send back a packet with
either the RST–ACK flag set, or an “ICMP Port Unreachable” packet [95].

Fig. 2.3 Illustration of the three way handshake (based on [95]).
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After the exchange of data and at the end of the connection either side will terminate
the connection by using a four-way handshake, where both source and destination send two
packets with the ACK and FIN flags set. A normal TCP flow will therefore always contain at
least ACK, SYN, and FIN packets in both directions [48, 95, 136, 142]. All of this process is
controlled by TCP flags. The status of these flags carries the important information about a
packet’s role in the connection.

2.9 Malicious network activities

A majority of networks today rely on security systems which have been installed at the gate-
way, such as firewalls and IDSs. However, network administrators still use other supporting
monitoring systems to allow them to understand more about their network environment.
While the firewalls and IDSs protect and monitor the network from external threats, the other
tools monitor the network for issues, intrusions, and attacks from inside. Moreover, they
monitor problems resulting from overloaded and crashed servers. Also, problems related to
traffic distribution and connections in the network and the attacks generated from inside the
local network are not seen as malicious and are hidden to IDSs. Therefore, administrators
use a combination of tools in order to monitor their network [44, 142].

Firewalls, IDS, IPS, and packet filtering devices have limited capabilities to detect and
block activity. Some attackers depend on volumetric attacks (e.g., SYN flood and HTTP
GET floods) and these systems are not designed to deal with them, they just simply freeze up.
Other attacks might be “low and slow”, employing small traffic volumes which may appear
to be completely normal but which put pressure on the infrastructure leading to network
devices experiencing strain due to the volume of requests leading, potentially, to failure (as
in distributed denial of service attacks). Some of these security devices do not support packet
reassembly where the signature is split over multiple datagrams and some attacks use highly
fragmented traffic to exhaust system resources [114].

2.9.1 Categories of intrusion

To increase human understanding of malicious attacks taxonomies have been developed to
categorise intrusions, the most widely used being the DARPA evaluation taxonomy which
divides intrusions into four groups [104]:

• Probing (PRB): Generally used to gain information about the host. (e.g., port-scan,
ping) where an attacker scans a network or host to gather information or to discover
known vulnerabilities.
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• Denial of service (DoS): Make a service unavailable to other users. (e.g., ping-of-
death, SYN flood, DDoS).

• Remote to Local (R2L) attacks: Unauthorised access from a remote machine gaining
illegal access to a local account or service. Usually attackers try to gain access to a
remote machine by sending packets to a network to generate a vulnerability on that
machine to allow them to gain access as a local user of that machine.

• User to Root (U2R) attacks: An unprivileged user gains super user rights through a
vulnerability illegally granting root access.

Probes, DoS, and DDoS attacks can be detected from the behaviour of network traffic. It
is difficult, but not impossible, to detect R2L and U2R attacks because they happen at the
application layer in the OSI model. It is possible to get indications that R2L or U2R attacks
are occurring. For example, if a remote attacker were trying several passwords through SSH,
one would see many short connections on port 22 on the victim’s machine. A U2R attack
might be detected if the attacker added and started new services on the victim’s machine or
server [103, 142].

Although these malicious intrusions belong to different categories, they are interconnected
and some attacks and malicious activities could contain two or more of them. It is important
to Internet service providers (ISP) and web service providers (WSP) to detect both probes
and DoS attacks immediately to identify attackers. Identifying DoS and DDoS attacks in the
early stage is important to maintain network service. These types of attacks are more easily
detected by the ISP or WSP than by the clients. Probes are also important for them, as this
provides information about possible future attacks from the hosts where the probing attacks
originate [103, 142].

2.9.2 Probes

The purpose of a probing attack is to discover the vulnerabilities and available services on
one or more target hosts. On a computer network, attackers use probes to collect information
about a network prior to the main attack. The attacker uses the information gained from
a probe to identify the operating system (OS) and applications running on the targets and
then proceeds to exploit their weaknesses. Therefore, it is important to study this kind of
malicious traffic. Detecting probes provides indications of attacker intent and what they are
interested in and what hosts are expected to be targeted in future attack plans [58].

A probe is commonly called a ‘scan’, and they are classified according to the technique
used to perform them [58]:
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• Host scan: One or more ports are scanned on a single host.

• Port scan: One or more ports are scanned on more than one host.

There is an expanding requirement for effective security monitoring systems to detect
and stop illegal accesses. Common intrusion techniques start with attackers probing a set of
hosts and ports to explore any open ports or locate vulnerable servers on a network. This
behaviour aims to gain unauthorised access to a target host (R2L). This is often followed
by more damaging attacks and exploits. Detecting these types of scans is very important to
identify sources of intrusion before any malicious attacks take place. The identification of
scanning sources could lead to exposing other types of suspicious behaviour. Therefore, the
port scan is seen as the first step of an attack [52, 83].

Port scan

Computer ports provide virtual data connections that can be used by programs to exchange
data directly. The most frequently used transport layer protocols are TCP and the user
datagram protocol (UDP), in which each packet header has specific source and destination
port numbers. Some applications use specifically reserved ports numbers for receiving
service requests from client hosts. The well-known ports are defined and assigned by the
Internet Assigned Numbers Authority (IANA). On most systems these ports can be used only
by system processes or programs executed by privileged users [38].

Scanning a port on a target machine can have one of two results, either the port is open or
closed. The flows between the attacker’s machine and the victim’s machines will be different
for each situation. Therefore, for each scan type, the flow is expected to take the behaviour
of at least two patterns. If there is no host at the IP address being scanned there will be only
the flows coming from the attacker and no response will be received from the target [52].

Probes most commonly use the TCP protocol as it is connection oriented. However,
there are connectionless probes using, for example, UDP and ICMP. The most well-known
scanning programs are Nmap, Ipsweep, Mscan, Satan, SAINT, Hping3 and portsweep [112].
Port scanners can be classified into two categories [52]:

• Brute force scanners: In a brute force scan, all the ports in a specified range on the
target machine are scanned sequentially.

• Stealth scanners: Stealth scans do not establish a full connection with the victim’s
machine. Instead, they send one packet with a specific flag set to the targeted ports and
based on the replies it can be understood whether the ports are open or not [52].
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Stealth scanning is a wide term. However, it is commonly associated with scans that
avoid detection. Avoiding detection is subject to the current state of technology [52].
Therefore, today’s stealth scans nowadays might not be so classified in future. For
example, the Nmap tool performs three types of scans: Null, stealth FIN, and Tree scan,
which used to be considered stealthy but, because they are now easily recognisable,
they are no longer considered to be stealth scans.

The idea behind these port scans is that closed ports are required by RFC 793 to reply
to these packets with “ACK RST”. Therefore, if a port does not respond, it would be
considered open or the machine does not exist. Machines running the Windows OS
machine do not conform to RFC 793 at this point, and will not respond to these packets
[52, 58].

Scans take different types and patterns as follows [52, 58, 77, 112]:

• TCP connect scan:

Also, called open scanning, a TCP connect scane is performed using a full three-way
TCP/IP handshakefor each of the targeted ports. In this type of scan, a huge number
of flow connections on several ports are established on the victim’s machine. The
establishment of the flow connection at a port means that the corresponding port is
open.

If the scanner identifies an open port, generally it will receive a SYN-ACK, PSH,
or FIN packet from the victim’s machine, depending on the service running on the
scanned port. The scanning machine might terminate the connection by sending an
RST to the victim’s machine.

Once a connection to the scanned ports has been established and the open ports
identified, the connection is terminated. Since a full connection has been established
during the scanning process, TCP protocol options such as sequence and timestamp
can be used for attack detection purposes.Thus, if a certain host establishes a large
number of connections with multiple ports in a very short period of time, it can be
inferred that a TCP connect scan is incoming from that particular host.

• SYN scans: The SYN stealth scan, also known as the “half-open scan” is linked to
the TCP connect scan. Here, a large number of SYN packets is sent from the scanning
machine to the destination host. When they arrive at open ports, if the victim’s machine
replies with a SYN-ACK packet to accept the connection, then it means the target
port is open. The scanning machine does not complete the connection establishment
handshake process and ends the connection. If the SYN packet arrives at a closed port,
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the victim’s machine replies with an RST SYN packet. Often, the SYN scan sends
only two packets to each scanned port. This scan type can be quickly recognised if
there is a large number of SYN packets incoming from a particular host.

• ACK scan: In this type of scan, a number of ACK packets arrive at the victim’s
machine. Usually, this scan is carried out in order to map firewall settings. The
attacker sends an ACK packet with random acknowledgement and sequence numbers
to particular ports. If a reply of RST comes back, this port is considered as “unfiltered”.
If there is no reply or ICMP error is received then that port will be considered “filtered”.
This type of scan is used to detect filtered services and the type of firewall on the
victims network.

This scan type can be quickly detected if there is a high number of ACK packets
incoming from a particular host. Also, It can be identified even in the case it is
incoming from multiple hosts when there is a sudden increase in incoming packets
with the ACK flag set and corresponding RST replies.

• FIN scan: In a FIN scan a larger number of FIN packets arrive at the victim machine.
If the victim responds with an RST packet, it means that the port is closed as open
ports directly ignore FIN packets. This type of scan can be immediately detected if
there is a high number of FIN packets incoming from a particular host.

This scan type bypasses the traditional network filters and firewalls. The attack’s
purpose is to recognise active services and the filtered and unfiltered ports in the hosts.

• NULL scan: In this type of scan, a high number of packets with no flags set arrive at
the victim machine. If a reply of RST comes back, the port in question is considered
as close. If reply is received then the port is considered open as open ports ignore such
null packets. This type of scan can be simply recognised if there are a high number of
null packets incoming from a particular host.

• XMAS scan: In the XMAS scan the packet flags FIN, PSH, and URG are set. If a
reply of RST’packet comes back, the port is considered closed. If there is no reply
the the port is considered open as open ports ignore these packets. This type of scan
can be simply recognised if there are a high number of packets with the FIN, PSH and
URG flag set incoming from a particular host.

• UDP scan: In this type of scan, a high number of zero-byte UDP packets arrive at
the victim machine. This scan identifies which services are running on the victim’s
machine. This attack’s purpose is to recognise vulnerable UDP services on the victim’s
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network. The attack could be discovered by watching for multiple zero-byte UDP
packets within a particular time window.

• ICMP scan: The scan happens by sending ICMP echo requests to particular hosts to
see if hose particular host machines are on or off.

• Fragmentation attack: In this type of scan the attacker bypasses the rules set by
firewalls by splitting packets into small fragments and sending each part individually.
The packets pass the firewall as rules intended to block individual parts are not available.

This can be identified if there is a high number of packets with a header containing
strings that are too short.

Flow characteristics of a scan

The characteristics of a traffic flow depend on the type of port scan used. However, there are
some common characteristics as follows.

• Inexpected increase in the number of one or two packet message types in a connection.

• Flows are small and do not contain much data transferred between hosts.

• Flow characteristics are different for open and closed ports.

• The RST packet is often sent as a reply when a port is closed.

• Packets are incoming with particular flags set which identify their purpose.

Port scans exhibit the following specific characteristics:

• Many packets incoming from a particular host to many target hosts.

• The same set of ports is sequentially scanned for each different target host.

• The victim machine receives many flows at different ports.

• A sudden increase in the number of incoming flows into the victim machine.
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2.9.3 Denial of service

A denial of service attack (DoS) is ‘an explicit attempt by attackers to prevent legitimate
users of a service from using that service’ [84, p. 2]. The main reason for this type of attack
is the exhaustion of system resources to make the service unavailable by exploiting system
vulnerabilities or consuming the traffic connection bandwidth.

Some types of DoS attacks use hidden software called “bug” to exploit the victim’s device
and to disable the service. This type of exploitation cannot be discovered from the TCP/IP
packet header unless the software bug is in the network or the transport layer. Often, these
bugs use a higher layer than the network layer (such as the application layer) to perform the
exploit. It is difficult to identify a DoS attack based on software exploits from the traffic flows
because they behave as normal flows. However, it could be identified from the behaviour
change of the requested services [58, 112]. For example, a sudden increase in a server load.
Fig. 2.4 shows a classification of DoS attacks.

Fig. 2.4 Illustration of Classification of Denial of Service attacks.

Flooding is another technique used to perform DoS attacks. This technique aims to
overwhelm the victim machine with traffic by consuming its bandwidth so that service
provided by the victim machine is damaged or useless. This type of attack could be detected
based on its characteristics which are different from normal traffic. The flooding attack
has two forms, single called DoS and multi-sourced called DDoS. DoS is a single source
attack requiring the sending of packets directly from the attacker machine to the victim
machine. DDoS is a multi-sourced attack requiring the sending of packets from multiple
attacker-controlled machines to the victim machine. DDoS attacks are performed using
botnets. A single-sourced attack can look like it is incoming from several sources by spoofing
the source IP addresses [58, 77].
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Fig. 2.5 Illustration of a reflection attack using the TCP three-way handshake by spoofing the source
addresses.

Distributed denial-of-service (DDoS)

DDoS is a multi-sourced attack in which many machines are coordinated to launch an
attack on victim machines. To start this attack, the attacker has to have a control over some
compromised machines on the Internet (called “zombies”) or make other machines on the
Internet send packets to the victim machine as replies to spoofed packets (called “reflectors”)
[58, 77] (see Figs. 2.5, 2.6).

Fig. 2.6 Illustration of a reflection attack on a single victim machine using multiple servers.
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DDoS and other advanced cyber-attacks are becoming more common against every type
of organisation and institution with a public web presence. They are easy to carry out
because there is no requirement to actually penetrate the network as their goal is simply
to prevent legitimate users from accessing web services. A related issue is where business
competitors are continuously visiting their website to gather information on web pages to
compare prices to stay competitive. Although this is not denial-of-service attack it is still
traffic that consumes IT resources. Unless the administrators have a clear idea about what
is going on in their network and perform an action to prevent misuse of resources and to
stop any damage, the situation might become worse and the network could suffer outages
[58, 112].

Fig. 2.7 Illustration of a typical network topology under attack.

Fig. 2.7 illustrates a typical network topology under attack using volumetric or other
attacks, including advanced evasions, SYN floods, server side exploits and other low and
slow application layer DDoS attacks [37]. The most popular DoS attacks are [58, 112]:

• Land: In this DoS attack, the attacker sends SYN packets which have been manip-
ulated. The source and destination IP address are the same. Often this attack is
performed against badly configured networks and uses zombies for carrying them out.
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Such an attack could be identified by recognising packets with the same source and
destination IP addresses.

• SYN flood (Neptune): This attack uses a half open TCP connection. The attacker
floods the victim with SYN packets and receives SYN ACK replies but does not
complete the connection with ACK. These requests cause denial of access to legitimate
user requests and causes victim server or machine failure. This attack could be
recognised by the increase of SYN packets coming from the same host in short time
window.

• Process table: This attack is often used against Unix systems where an attacker tries
to assign a new process for all incoming TCP/IP connections. The system process
table is often filled completely with legitimate commands which are prevented from
being executed. This attack results in a temporary failure of services. This attack could
be recognised by looking for the number of active connections on a single port.

Flow characteristics of a DoS attack

Common characteristics of a DoS attack which can be detected from the traffic are:

• Sudden increase in traffic (increase in the numbers of flows).

• Changes in the traffic pattern and behaviour (e.g., server can not respond to all the
requests).

• Packets incoming with particular TCP header flag combinations.

2.9.4 Overview of modern attacks

Nowadays, cyber attacks are complicated and most of them are done at the application
level. Usually, prior to the attack, the attacker performs some foot-printing, which might
involve probing attacks, to gather information on the target. Furthermore, malware (software
designed to infiltrate or damage a computer system without informing users or raising their
suspicions) is used extensively. It includes the use of viruses, worms, key-loggers, and Trojan
horses [6, 151].

The most popular attacks use Remote Administration Tools (RAT) (also called “Remote
Access Trojan”) which consist of two main components, a client, and a server. RATs have
to be fully undetectable (FUD) by antivirus programs. The user of an infected computer
often has no idea that somebody else is controlling their device because nothing is visibly
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happening on their machine and all the processes are running in the background. Usually, a
RootKit tool is installed on the infected machine to hide this process from the list of processes
in the task manager. RATs can be transported in many ways such as through spam email,
malicious websites, and USB sticks. Depending on the RAT’s type and function they can also
spread via other malware to infect other computers and devices and control anything on them.
Furthermore, RATs can be used to conduct any other type of malicious activity including
making an attacker anonymous and allowing them to steal information such as passwords
and user data or perform DDoS attacks as part of a botnet network. The most popular RATs
are Cybergate, Darkcomet, Blackshades and jRAT. C++ RATs are generally considered to be
the most utilised type because they do not require the .NET framework and support multiple
operating systems such as macOS, Linux, Android, and Windows [6, 30, 36].

Phishing attacks are used to obtain data such as usernames, passwords, and credit card
information [126]. A traditional phishing attack is performed using spam email spoofing
or SMS messaging and involves providing URL links to redirect users to a fake website
that resembles a known legitimate one. Today’s DNS servers keep changing on the user’s
router. When that happens, all the requests the user makes on their browser get redirected.
For example, when a user types the URL of a specific website, they will be redirected to a
similar website which looks identical to the requested one. As such, when the user types
their login or credit card information, somebody else can access and steal this information.
In this context, spam is popular and can be used to send a bulk of electronic messages such
as emails, instant messages, and mobile messages. Furthermore, phishing can also be carried
out through botnets [65, 66].

Key-loggers can be installed on an infected machine. They can be configured to send
reports of all keystrokes to an email address. Key-loggers can even extract existing informa-
tion such as taking screenshots and sending them to a specific email address. For example,
Key-loggers can be programmed to send a screenshot of the user’s device every five seconds.
Today’s key-loggers are very advanced to the extent that they have a large number of fully
configurable options [132, 147].

SQL Injections involve simply passing SQL queries to HTTP requests. If they are not
properly formatted by the PHP code on the server side, they can present a serious a problem.
Often, this is a one of the primary considerations of all web developers [35].

Botnets represent an everyday threat to Internet users. Botnets involve command and
control instructions, where the bot master remotely controls bots in the compromised victim’s
machines (slave bots or zombies). Botnets can be implemented in a number of ways
depending on the protocol used (e.g.,TCP, Telnet, IRC, PSP and others). Furthermore, a botnet
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can be used for many different purposes including most of the attacks previously mentioned.
The most popular botnet types are Storm, Waledac, Conficker, Zeus and BredoLab [36, 66].

In general, most of the aforementioned attacks are used to gain illegal access to other
computers or networks and access users’ information, accounts, financial data, or attempt
to penetrate the security measures of a system or network. This includes any activity that
may be used for penetration including port scans, stealth scans, or other foot-printing used to
gather information [6, 151].

These different types of malicious activities require different methods of detection and
investigation. Monitoring and analysis of traffic could help to recognise characteristics of
such sophisticated attacks and these characteristics include:

• Sudden increase in traffic (increase in the number of flows).

• Changes in traffic patterns and behaviour.

• Repeated unusual flow characteristics.

• Unusual robotic flow behaviour.

• Unusual traffic behaviour compared to the known normal behaviour baseline of a
specific network or machine.

• Unusual IP addresses and communication hosts.

• Unusual traffic entering and leaving a network.

• Probing or DDoS flow characteristics are also seen as part of sophisticated attacks.

2.10 Summary

This chapter has focused on the cyber environment and discussed the importance of situ-
ational awareness for network administrators. In addition, it has provided an overview of
typical network security systems. The chapter has also detailed the types of monitoring, the
technology used for detection and the security systems functionalities and limitations, in
order to show where our proposed system fits within the existing security tools. Furthermore,
it has described the most common types of network protocols and traffic behaviour. Finally,
the chapter concluded by defining the various attack types and some of the characteristics of
malicious behaviour encountered on today’s networks.



Chapter 3

Sonification

3.1 Introduction

Kramer et al. stated that the sector of sonification is now in a role to leverage the new
computer audio technology to fix numerous existing problems of scientific display [99].
Sonification is used to translate relationships in information or data into sounds that enable
the listener to comprehend the information or data relationships. Sonification is applied
in diverse fields including as audio engineering, computer science, music, and security.
The motivations of sonifying information rather than a visualisation have been discussed
extensively in the literature. As a conclusion, sonification may be most appropriate when
the data or information intended to be displayed is complex and has changes over time and,
especially, where it might include warnings for immediate action. This involves environments
where the operator is unable to continuously monitor a visual display or might be busy with
another task. The function of sonification was described in categories of alarms, alerts, and
warnings; status, process, and monitoring messages; data exploration; and art, entertainment,
sports, and exercise [76, 161].

3.1.1 Brief summary of the history of sonification

The Morse code (invented around 1837) is probably the oldest example of sonification. In
the early 20th century, the Geiger counter was invented in order to create a sonic signal that
indicated the levels of radiation detected by the instrument. Actually, within the research
community, several sonification systems have been presented and described since the 1990s.
They are different in their scope of features and limitations, as some of them were designed
as laboratory equipment, meant for different specialised cases. One of earliest examples of
sonification research was conducted by Pollack and Ficks [123] (in the year 1954) and was
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concerned with evaluating the information transmission properties of auditory stimuli. They
have evaluated two types of mappings of multidimensional data into the parameters of sound.
Another early example of sonification was Speeth’s [143] (in the year 1961) work to develop
am auditory representaiton that allowed the differentiation of earthquakes from underground
bomb blasts based upon seismic measurements [50].

In 1913, Dr. Edmund Fournier d’Albe [40] of the University of Birmingham used
selenium scanning devices (photosensors) to detect black print and then convert it into
audible output. In 1977, Chambers, Mathews, and Moore [33] conducted research in the field
of three-dimensional audio as a way to improve scatter plots. In 1982, Sara Bly [19] advanced
and developed a method of parameter mapping sonification based on multi-dimensional data
sets. A decade later, the inaugural International Conference on Auditory Display (ICAD)
was an important milestone for sonification in general. Since then, the amount of research
related to cognition and sonification has increased, the development of models and methods
of sonification and the creation of methods in various application areas.

The most recommended and popular books in the area of sonification are Kramer’s 1994
volume [96] which contains expanded versions of the papers presented at the first ICAD
and Hermann et al’s 2011 sonification handbook [70] which provides an overview of the
key research areas in the fields of sonification and auditory display. Also, Kramer et al.
[99] introduced the Sonification Report: Status of the Field and Research Agenda, which
provides a summary of sonification research including the then current status of the field
of sonification and auditory display and a proposed research agenda. The International
Conference on Auditory Display (ICAD) is still considered as one of the most popular
international conferences for this research area which focuses on auditory displays and the
array of technology, perception, and applications of sonification.

Over the past few years there have been a number of special editions of journals dedicated
to the field of sonification. The 2005 IEEE Multimedia special issue [75] presented a
series of articles dealing with topic of interactive sonification. In the same year, an issue
of ACM Transactions on Applied Perception [100] republished a number of key papers
formerly presented at the first ten ICAD conferences. In 2014 Organised Sound published an
issue on sonification from the perspective of electroacoustic composition [134]. Interactive
Sonification was the theme again for another IEEE Multimedia special issue in 2015 [42]. In
2016 the Journal on Multimodal User Interfaces [89] presented a special issue of expanded
versions of papers selected from the ICAD 2015 conference dealing with recent advances
in auditory display. Finally, the topic of the sonification of real time data was explored in a
special issue of Displays in 2017 [160].
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3.1.2 Sonification techniques

Sonification approaches are mainly based on the following techniques.

Auditory icons

Auditory icons are brief communicative sounds that can represent objects, actions, functions,
or processes. Auditory icons take advantage of associating the sound and its intended
meaning based on the user’s prior knowledge of sound sources and causes. This technique is
mostly used for alarm, warning and navigational signals [55].

Earcons

Earcons are hierarchically-organised non-verbal audio messages. They are usually used
when there is no a clear association between the sound and its intended meaning. They are
‘composed of motives, which are short, rhythmic sequences of pitches with variable intensity,
timbre and register’ [23, p. 472]. In earcon-based approaches auditory signals or signs are
combined to form more complex messages, just as sentences are formed from combining
spoken words. [71].

Parameter mapping sonification

The most common technique is parameter mapping sonification which comprises the mapping
of facts features onto acoustic parameters of sonic activities (such as level, pitch, duration,
and onset time) [76]. There are two types of parameter mapping sonification[76]:

• Discrete sonification: this involves applying a sound event for each data vector and
key data features are mapped according to time.

• Continuous sonification: similar to the discrete type but acoustic parameters of a
continuous sound stream are changed according to the data and key data features are
mapped according to time.

Moreover, the user can interact with the mapping in two ways:

• Interactive data selection: this involves controlling in real time what datasets or data
properties are to be sonified.

• Mapping interactions: this involves adjusting the parameter mappings to alter aspects
of the mapping such as ranges, conditions, scaling laws, time periods, etc.
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The user can then form judgements as to whether changes to the mappings or data
selection have improved their understanding of the data.

Model-based sonification

In model-based sonification the sonification designer constructs a virtual model the structure
of which is driven by the dataset. The user then excites the model and the sounds it emits
provide information about the underlying dataset. This sonification model facilitates the
auditory perception of critical structures in the data. This kind of sonification has a tendency
to involve high data dimensionality and high numbers of data points [76].

Audification

Audification is typically applied to large datasets with periodic components that lie outside
the human audible frequency range of 20 Hz – 20,000 Hz. In audification the data values
are scaled to lie within the audible frequency range. For example, low periodicity seismic
data can be audified in order to categorise seismic events [76]. Generally audification is not
an interactive or real time technique and the entire dataset is usually required in advance.
Therefore, it was not considered for use in this research.

3.1.3 Interactive sonification

This section concerns human interaction with sound. Not all sonification requires inter-
action; for example, monitoring tasks and alerting systems offer rich information to the
user separately from any actions the user might be carrying out [76]. However, often the
user will wish or need to control the sonification process on the basis of the data values
being represented by it; this is known as interactive sonification. Hermann and Hunt [76, p.
274] defined interactive sonification as ‘the discipline of data exploration by interactively
manipulating the data’s transformation into sound’ and as ‘the use of sound within a tightly
closed human-computer interface where the auditory signal provides information about data
under analysis, or about the interaction itself, which is useful for refining the activity’ [69, p.
20].

Human Computer Interaction (HCI) (see Fig. 3.1) is defined as ‘a discipline concerned
with the design, evaluation and implementation of interactive computing systems for human
use and with the study of major phenomena surrounding them’ [69, p. 20]. This consider
studying human interaction with computer systems or computer networks to transform data
or network traffic into sound for the purposes of interpreting that data or traffic.
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Fig. 3.1 Illustration of Interactive Sonification [76, p. 274]

Often interaction involves the operator, the operator’s requirements and activities in
response to recognised sounds, the means and methods of controlling a sonification system,
and how the operator and the sonification system form a closed loop [76].

Hermann and Hunt [69] observed that musical instruments in particular are a good
example of interactive systems in which sound plays a crucial role in coordinating the user’s
activities. In interactions with physical systems, they say, the feedback is natural in the
sense that it reflects a coherent picture of the temporal evolution of the system. For example,
this could represent the temporal state of the data under investigation to learn more about
the data or for interpreting the state of the data changes with time, rather than for musical
expression. In turn, the resulting understanding would affect the listener’s activities, reactions,
and decisions just as humans have built up experience over thousands of years of developing
and performing with musical instruments [69].

3.1.4 Soundscape

The soundscape, introduced by Schafer [133], is one form of sonic organisation which, can
be used in sonification. Sounds are a continuous and active property of all landscapes. For
example, the sounds of vocalising and stridulating animals and the non-biological sounds of
running water and rustling wind emanate from natural landscapes. The soundscape term has
been used by various disciplines to represent the relationship between a landscape and the
composition of its sound [121].

A significant number of the basic principles of soundscape ecology is derived from those
of landscape ecology. Soundscape ecology is generated from the ecological sounds and
spatial temporal patterns as they are created from landscape environment, where each sound
has special ecological characteristics. For example, listening to natural sounds and human
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caused sounds around us provides information about our surroundings. However, urban
soundscapes are seen as containing less acoustic information than natural soundscapes [13].

Ecology is is the study of the relationship between individuals and communities within
their living environment. Therefore, soundscape ecology studies the effects of the acoustic
environment created by those living within it due to their responses and behavioural charac-
teristics. The reason behind it is to identify imbalances which may have harmful or malicious
effects. Soundscape composition is a reflection on the changing soundscape focusing on
disappearing sounds and the increase in overall volume in present and future soundscapes
[1].

3.2 Sonification for Process monitoring

Many processes and activities require monitoring. It is important to be able to monitor in
real-time in order to be able to quickly deal with arising problems or unexpected events.
Various visualisation and sonification techniques have been applied to monitoring situations.
Real-time sonification has been studied in many areas of process monitoring applications
such as industrial production processes, weather change, business process, computer program
execution, network and web-server behaviour. Sonification was was shown to allow people
to perceive more information than those who had visual feedback alone [72, 156].

Our auditory perception has many characteristics that make sonification suitable to
process monitoring. Hildebrandt [72]suggested the following areas in which sonification
might help.

• Acceleration of response to critical situations: In order to be ready to receive infor-
mation regarding critical situations without delay, in progressive visualisation-based
process monitoring users must focus their active attention to their observation appli-
cation at all times. On the other hand, in most real life conditions there no operator
will conduct process monitoring continuously as technicians and operators will mainly
work on other tasks with process monitoring as a secondary activity. In such cases,
auditory alerts will enable users to get immediately informed about vital situations,
even without actively paying attention. Moreover, sound is processed quicker than vi-
sual signals, permitting us to reduce reaction times, which can be vital for time-critical
situations which may occur throughout process execution.

• Constant awareness of process states with minimal distraction from other task: Soni-
fication monitoring offers operators more physical freedom. However, it also allows
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them to focus their visual attention on alternative tasks whilst at the same time lis-
tening to a sonification. As sounds are often processed more passively than visual
information, auditory process monitoring can enable an unobtrusive perception of
process states without distracting users from other tasks. As our sound perception is in
a position to habituate to regular soundscapes, such a sonification will stay unobtrusive
throughout ordinary operation, whereas even tiny changes in sound over time are able
to immediately grab our attention in case of process deviations or undesired process
behaviour.

• Anticipating critical situations: Current process control systems are based on the
concept of alarms and alerts, which are transmitted either visually or using simple audio
signals when a predefined threshold value has been reached. In a production scenario,
this can be the case when the inventory level of the resource falls below the critical
level, or when the temperature sensor of a device measures a critical temperature,
indicating impending hardware failure. However, there are many drawbacks. On the
one hand, if rules are set to determine the values of highly charged alerts that require
strong evidence before the positive ratings are issued, potential critical situations such
as device failure without alerting may occur. On the other hand, if the values are defined
too liberally, meaning they risk high false positive rates, the overflow (in many cases
unnecessary) alerts and alarms may result in increased user information loading. In
such cases, frustrated users may decide to ignore alerts and alerts altogether. Moreover,
in many scenarios, engineers cannot identify all the states and values that could lead to
a predetermined critical situation. But even if all possible critical situations are covered
by forecasts and warnings, operators may in most cases prefer to inform them even
before the situation becomes critical, and thus the ability to anticipate, avoid and avoid
the problem. Continuous awareness of countries and values through the surrounding
auditory information systems can enable such expectations from critical situations.

3.2.1 Types of monitoring

Vickers [156] identified three categories of monitoring activity, namely direct, peripheral,
and serendipitous-peripheral. In direct monitoring, the operator is directly engaged with the
system being monitored and their attention is focused directly on the system as he takes notes
of the system state. In peripheral monitoring, the operator’s primary focus is elsewhere on a
primary task, with their attention being switched to the monitored system either at their own
discretion or at specified time periods or intervals. In serendipitous-peripheral monitoring ,
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the operator’s focus is on a primary task whilst information that is useful but not required is
presented on a peripheral display and is monitored indirectly [156].

Whilst visualisation can be used in direct monitoring tasks (due to the fact our visual
attention is focused on the display), it may not be so powerful in peripheral or serendipitous-
peripheral monitoring conditions. It is in the monitoring of peripheral information that
auditory displays come into their own, for the human auditory system does not need a
directional fix on a sound source in order to perceive its presence [156].

3.2.2 Process monitoring review

Sonification has been applied in various disciplines, especially for purposes of real-time
monitoring. In plants and factories machine maintenance technicians have been listening to
the acoustic patterns machines produce for decades. They are often able to assess whether
the machine is about to collapse, or a machine parts needs to be replaced soon, by listening to
the frequencies and patterns of sounds produced by the machine. However, using sonification
techniques, these inherent characteristics of sound can be utilised and made available to a
wider range of people. On the one hand, sonification can reduce the need for the expertise
necessary to analyse vibration significantly, as data can be collected and filtered according to
the needs of individual user information while at the same time improving the sound resulting
from our cognitive abilities. On the other hand, users who need to monitor production
processes (such as engineers) often work at offices away from the factory floor, for example.
In the control rooms. These rooms can contain systems that produce a large number of audio
alerts that are often seen as stress. If the mechanisms of how sound can be better understood,
sonification can help reduce the need for such obtrusive auditory alerts while at the same time
conveying better awareness of the process situations in a more enjoyable and less stressful
manner [72].

The first factory auditory process monitoring was built by Gaver, Smith and O’Shea
[56]. The system was called ARKola and and provided a multi-modal sonification of a
simulated soft bottling plant [156]. In this factory simulation, in an effort to avoid pauses and
bottlenecks, users manually controlled the adjustments and settings of many interconnected
devices or machines. Events such as liquid spills were sent to the user by appropriate sounds
when they occurred. This example shows how sonification can guide operator attention in
monitoring processes.

Rauterberg and Styger [128] used sonification for monitoring a production process of an
assembly line of computer numeric control (CNC) robots. The original version of the system
used visualisation techniques only but then was later enhanced with auditory feedback. They
built a simulation of an assembly line by creating auditory icons and arranged their sonic
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spectra such that perceptual masking would not occur. The CNC simulator could produce up
to thirty-eight sounds at any one time. The results suggest that the additional sound feedback
enhanced the operator performance and rises positively some mood aspects [156].

Tran and Mynatt [152] introduced a sonification system based on the user’s own musical
preferences to monitor home environments. It is a serendipitous-peripheral monitoring
application. The system enabled the real-time monitoring of activities around the house.
Schmandt and Vallejo [135] introduced a sonification system called ListenIN. The system
was designed to have multi-domestic purposes, one of them being to detect crying babies.
The system was based on classified domestic noises and sound matching.

Hermann, Drees, and Ritter [68] used sonification to present auditory weather forecasts
in a regular radio programme. Bakker, van den Hoven, and Eggen [9] conducted a search for
ways to leverage human auditory perception skills in interactive systems. They presented
three demonstrations, called AudioResponse, EntranceSounds and RainForecasts, each of
which conveyed different information. For example, The RainForecasts demonstration
provided, once every half-an-hour, audible information about the short term rain forecasts
for the city used in the experiment.

Donald Knuth, mentioned as early as 1949, used the interference generated by the
computer’s CPU to allow the execution of running programs to be followed by listening to
an appropriately tuned AM radio. A computer (the Manchester Mark 1 computer ) had its
circuit wired to an audio channel in order to allow audio-enabled debugging [156]. Vickers
and Alty [157] has proposed using music in HCI as a way to use sonification for computer
program debugging.

A business process is an organised set of activities or tasks that are designed for the
sake of reaching a business goal [73]. During business process monitoring, firms need
to keep informed about the performances of the currently executed process and critical
events that happen during the execution. Hildebrandt [72] proposed a multi-modal solution
that combines sonification and visualisation. During normal operation, the system will
sonify occurring events, notifications, and alerts as sound events in real time for the users.
The users will be able to give the level of detail and types of events they are interested in.
Simultaneously KPIs (Key Performance Indicators) are sonified by continuously updated
sound streams. Several types of events will be sonified with various sounds, enabling the
users to choose if they direct their immediate attention to their process monitoring application
in order to take appropriate actions. The results suggest that sonification is extremely suitable
to enhance visualisation in business process monitoring.
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3.3 Sonification for network monitoring

Visualisation has been used as a tool for monitoring networks in order to maintain operator
situational awareness to make data perceptible. Goodall [62] identified several potential
issues of network and computer systems security which may benefit from information
visualisation:

• detecting anomalous activity;

• discovering trends and patterns;

• correlating intrusion detection events

• computer network defence training;

• offensive information operations;

• seeing worm propagation or botnet activity;

• forensic analysis;

• understanding the makeup of malware or viruses;

• feature selection and rule generation;

• communicating the operation of security algorithms.

Each of these areas may also benefit from the application of sonification techniques.

3.3.1 Sonification for security situational awareness

Sonification is introduced to support the perception phase of situational awareness to enable
a listener to recognise changes in activities and patterns to enhance comprehension and
projection as part of the situational awareness process. Auditory perception has advantages
as it is well suited to monitoring activities and it enables the human brain to participate
in the processing required to identify certain patterns. This opens up possibilities for it
as an alternative or complement to visualisation techniques. Sound may allow a network
administrator to continue monitoring the network while performing other tasks [156] which
may, in turn, decrease frustration and visual fatigue rates. The concept of changed network
behaviour as an indicator of unhealthy activity or intrusion attempts is a reasonable motive
for using sonification [11]. Sonification can have advantages over visualisation in different
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sectors. For example, real-time sonification using parameter mapping methods is used in the
health sector. A recent study showed positive results and a high potential for using real-time
auditory feedback-oriented training devices for fitness training or physical rehabilitation to
increase the awareness of physiological responses [168].

There is a continuing threat of intrusion, denial of service attacks or numerous other
abuses of network resources which require the monitoring of traffic flows passing through a
network [44]. The size of modern network traffic volumes makes it much harder to present
real-time information visually [47]. However, there is no clear consensus yet about the
patterns of cyber-attacks [82]. The assumption is that these behaviours and the rhythm
associated with each type of attack should sound different or at least provide an indication of
some features of any attack. Therefore, auditory feedback could be used to for the exploration
traffic data in order to improve the situational awareness of a security system as well as its
usability (efficiency, effectiveness and user satisfaction).

3.3.2 Interactive sonification for monitoring

Mechanics routinely use sound to examine the internal state of engines as whenever a user
sensor interact with a physical component, a sound is made. It confirms the sensor’s initial
contact with the object but also informs us about its properties. The same concept, when
applied to a monitoring system, would allow the user to have the best control of the sounds
generated according to the user needs and targeted behaviour. The user also could change the
type of information or features to be represented by sound. Moreover, the user may increase
or decrease the total sound or selected sounds or even mute them. The change made by the
user would affect the feedback sounds generated by the system. Sounds inform and warn the
user about the current state of the system and data being sonified. Interactive sonification for
computer networks can be implemented in two ways [120]:

• Interactive sonification of stored traffic data: This involves a previously saved dataset
which could be explored interactively while sound is being generated.

• Interactive sonification of traffic data generated in real time: in this case the sounds
are generated as the data traffic are gathered in real time. The changes in the traffic
behaviour are instantly transformed into changes in sound and the user might interact
to manipulate conditions or choose which data to sonify.
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3.3.3 Sonification system design for network monitoring concept

When designing a sonification system for the purpose of monitoring a system or network
activity to gather types of administratively useful information, the design will involve a
number of conditions and requirements. The sound should be non-fatiguing to enable it to be
listened to for a long period, changes in status have to be easily grasped and accidental events
have to be immediately noticed [91]. Despite the close relationship between communities of
sonification, there are no agreed design guideline for sonification or listening sound concepts
[64].

Designing a sonification system for network monitoring requires knowledge of computer
networks in multiple areas and sound design alternatives as well as a clear understanding
of how users will use the system. A user-friendly sonification system is required to allow
users to specify data mappings and to interact with the sound generated in order to observe,
orient, decide and act. One approach could be to use a soundscape to transform the network
environment to a (familiar) acoustic scene such as using the sounds of different birds and
natural events in a forest.

A good sonification system design using known synthesised or recorded sounds would
allow the user to make links between the meaning of the sounds and the events happening
within the network environment. This requires knowledge of how best to convey the features
of network events using recorded sounds. For example, a normal forest behaving normally
on a normal day would have sounds with normal birds or animals, perhaps with a very
light breeze. These events can be used to describe the normal state of a computer network
environment. However, human-made sounds or weather such as rain, heavy rain and thunder
or sounds from fire and dangerous animals could reflect anomalous events happening within
the environment. Indeed, Ballora et al. commented that efficient sonification of network
events or behaviour could be expected to sound different during intrusion attempts [11].
Recorded sounds provide high potential for using a natural soundscape to create an interactive
acoustic environment.

3.3.4 Overview of existing sonification systems for network monitoring

There have been several attempts to investigate the use of sonification in network monitoring
applications and sonification has the potential to allow a higher level of SA. However, there is
no clear idea about the pattern of cyber-attacks [82]. The assumption is, therefore, such that
in sonification, the behaviours and the rhythms of each type of attack should sound different
or at least that sonification should provide an indication of some features of the attack.
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Vickers et al. [159] applied sonification to the inherent self-organised criticality observed
in network traffic. Standard packet capture tools were used to gather network traffic, which
was then passed to SOCS, the self-organised criticality sonification system, to sonify the log
returns of packet sizes at regular user-specified intervals. The extracted log returns provided
information on the behaviour changes in the network. Knowledge of this information could
be used to detect unwanted behaviour. This system has potential to support both network
traffic measurements and intrusion detection tools.

Worrall [167] described the NetSon project from its exploratory stage to the real-time
sonification of network metadata. This project used the information extracted from data
volumes by employing sampling techniques to extract a small group of data packets using
the sFlow tool [80, 119]. This method provides information about the network flow rate by
carrying out a sonification of sFlow packets data of the traffic from printers, servers and load
balancing traffic. Furthermore, NetSon uses a parameter mapping sonification based on a
melodic pitch structure. NetSon also provides information to identify internal and external
IP addresses. This tool could be used to support network traffic measurement tools or to
identify and classify IP addresses for security purposes.

Mancuso et al. [108] used sonification to help “cyber defenders” to detect evidence of
cyber attacks by simply using data collected by Wireshark. The data was used offline and
the source and destination IP addresses were sonified using pairs of sequential musical notes
separated by 100 ms, while the packet size was used to control the loudness of the sound
generated. An experiment revealed no improvement in the operator performance when using
sonification. However, it could be argued that sonification should be tailored such that traffic
with specific signatures should sound different from other normal packets, or that sounds
should be generated only for malicious signatures. This may enhance the performance and
reduce the stress of the operator.

Wolf and Fiebrink [165] developed an offline sonification tool called SonNet, which
consisted of a code interface for sonifying computer network data. The prime motivation
behind SonNet was to lower the practical barriers between artists and sound designers
interested in accessing network data to create music. SonNet involves packet sniffing and
offers network state analysis and easy access to computer network data for composers.
The tool supports the sonification of data using the UDP and TCP protocols. Furthermore,
SonNet extracts network data at various levels from packet level information to network state
information. Level 1 contains information about a single packet, level 2 contains information
generated by computing and analysing the single packet information, and level 3 contains
information about multiple packets.
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Rutz et al. [130] introduced the SysSon platform for developing sonification applications
for different types of users from domain scientists to sonification researchers, composers
and sound artists. This system can be used as an engine to run real-time sounds based on
available data. Rutz et al. also used SysSon based on climate data. SysSon is capable of
addressing network traffic data based on metadata, features or information that can be derived
from network traffic.

InteNtion (Interactive Network Sonification) [60] is a project targeted at mapping network
activity to musical aesthetics. Data collected from the analysis conducted by the SharpPCap
library (part of WinCap to C# environment) [111] is converted into MIDI messages and
then sent to dedicated synthesisers to generate mixed sounds. The whole process results
in an interactive soundscape. Furthermore, the system uses IP Internet protocols including
TCP/UDP segments, and very low-level packet information such as the packet size, source
and destination IP addresses and the type of service. However, the work and mapping carried
out at this stage is still considered to be experimental. The system needs more development
and better mapping to support network traffic monitoring. However, it provides an innovative
way to monitor a network by using the entire data flow to create music.

Earlier work done by Ballora and Hall [12] explored the detection of intrusion signatures
and patterns using human aural and visual recognition abilities to detect intrusions in real-
time. IP addresses and return codes were used to generate sound as an informative and
unobtrusive listening environment to develop web traffic SA. Ballora et al. [11] conducted
another sonification experiment with a computer network based on socket connections using
information such as the date and time of exchanges and the sender’s and receiver’s IP
addresses and port numbers. Ballora et al. [10] also described the use of sonification in
the detection of anomalous events. However, there is still a need to reflect the overall SA
required by network administrators. Sonification should enable the listener to differentiate
between normal and anomalous network behaviour. As such, cognitive processes would
allow an administrator to recognise different sound patterns from the network behaviour and
translate them into an understanding of what is actually happening in the network.

Garcia-Ruiz [54] proposed a multimodal human-computer interface to analyse malicious
activities during forensic analysis of IDS log files. Two prototype sonification systems were
built that map attacks already identified in the IDS log files to sound. Garcia-Ruiz [53]
developed the multimodal technology to be used for teaching students to analyse the network
traffic data in logs and to identify patterns of network attacks.

Gopinath [63] proposed to study the effectiveness of sonification in network intrusion
detection systems to support Snort. Jlisten is an open source tool to sonify Java programs.
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Jlisten was used to sonify several events in Snort for the purpose of investigating the usage of
sonification in these systems.

Kimoto and Ohno [91] introduced the Stetho network sonification system, which was
aimed at system administrators. Stetho is a C language program linked with the TiMidity++
software to generate MIDI sounds. NetSound was built on top of Stetho as a tool for
end users. Stetho uses network traffic information to generate sounds, which provides the
network administrator with useful information about the traffic. Furthermore, Stetho reads
the tcpdump commands, then uses them in regular expressions to generate corresponding
MIDI events. Stetho also processes each packet in the traffic. However, Stetho failed to detect
all events and intrusions. Delays in sound generation and poor MIDI messages generated
further problems.

Chafe and Leistikow [32] developed a tool for the measurement of round trip time by
using a sequence of standard “ping” utility events to gather information about the quality of
service of a network path, such as packet loss. They discussed the need to evaluate paths,
which carry interactive media streams in collaborative environments. Furthermore, they
designed a stream-based method for the direct display of critical qualities to the ear by
continuously driving a bidirectional connection to create sound waves. They also changed
the network path to an acoustic medium, which their probe sets into vibration. Temporal
levels of musical foreground, middle ground and background could thus be heard in the
melodies generated from correspondence data.

Gilfix and Crouch [59] introduced a sonification network monitoring system called
‘Peep’, which plays different natural sounds, where each type of sound represents a specific
network event. Peep easily allows the detection of common network issues such as high
load, excessive traffic, and email spam, by comparing the sounds being played with those of
normal network behaviour.

Hildebrandt and Rinderle-Ma [74] suggested combining sonification with existing visual-
isation techniques in order to tackle the disadvantages of current monitoring and analysis
tools of security data. They mentioned the fact that the increasing amount of traffic poses a
challenge for network and server administrators. Furthermore, they concluded that sonifica-
tion is more suitable for data that changes over time because of its inherent time based nature
and its link to human auditory cognition, while visualisation is more suitable for spatial
information such as network topology maps, and data that is not time based.

Table 3.1 provides a classification of existing network sonification systems in terms
of the sonification mode and purpose; in addition to the targeted features and information
and the detection mode used. Online mode means that it is performed in real-time with
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appropriate processing delays or intervals, while offline mode indicates that traffic or datasets
are collected and saved using any available applications first, and then sonified later.

Table 3.1 Classification of Existing Network Sonification Systems in Terms of Sonification Mode,
Purpose, Target and Detection Mode.

Author Year Name Sonification
Mode

Sonification Purpose Sonification Targeted Detection
Mode

Vickers [159] 2017 SOCS Offline Network traffic
monitoring for intrusion
detection

Log returns of a specific
time dependent concerning
number of packets and
bytes sent and received

Anomaly

Worrall [167] 2015 NetSon Online Network traffic
monitoring for traffic
measurements and IP
addresses identification

Network metadata
extracted from data
volumes and source and
destination IP addresses

Anomaly

Mancuso
[108]

2015 Offline Increase operator
capabilities such as
increase performance and
decrease stress in traffic
analysis process for
intrusion detection

Source and destination IP
addresses with packet size

Signature

Wolf [165] 2013 SonNet Online Sonification of network
data to create music

Various levels from packet
level information to
network state information

Giot [60] 2012 InteNtion Offline Network traffic
monitoring for intrusion
detection

TTL, the packet size,
source and destination IP
addresses and type of
service..etc

Anomaly

Ballora [11] 2011 Online Network traffic
monitoring for intrusion
detection

Socket connections
exchange information such
as date, time, IP addresses
and ports numbers

Anomaly

Ballora [12] 2010 Online Network traffic
monitoring for intrusion
detection

IP addresses and return
codes

Signature
and
Anomaly

Garcia-Ruiz
[54]

2007 Multimodal
Technology

Offline Analysing malicious
attacks through forensic
sonification to the network
logs

Logs generated by
Network IDS

Signature

Garcia-Ruiz
[53]

2008 Multimodal
Technology

Offline Sonification to support
teaching of network
intrusion detection

Logs generated by
Network IDS

Signature

Gopinath [63] 2004 JListen Online Improving the accuracy of
intrusion detection
systems

Sonifying the events
generated by Snort IDS
through event sound
mappings

Continued on next page
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Table 3.1 – Continued from previous page

Author Year Name Sonification
Mode

Sonification Purpose Sonification Target Detection
Mode

Kimoto [91] 2002 Stetho Offline Network traffic
monitoring for intrusion
detection

Tcpdump commands used
in regular expression

Signature
and
Anomaly

Chaf [32] 2001 Online Measurement of quality of
service of a network path

”ping” utility events
correspondence data using
a stream-based method

Anomaly

Gilfix [59] 2000 Peep (The
Network
Auralizer)

Online Monitoring a specific
types of network events

Peep protocol using events
and states to order Peep
servers to play classified
natural sounds

Anomaly

3.4 Discussion

These different sonification approaches and scenarios and their different levels of data
extraction have not been tested for monitoring intrusion detection. Most of the systems are
based on reading saved information files or log files which are generated by other software
and security systems. Therefore, the operator does not participate in the development of the
primary feature-extraction process from the raw traffic and has limited traffic information to
work with.

Furthermore, these different approaches with their various data granularities, sonification
techniques and integrations with visualisation have had very limited testing with users.
Therefore, it remains unclear which approach is best suitable for which kind of scenario and
how effective the different systems are in achieving their goal to support users in their tasks.

There are many ideas that show a strong potential for using sonification for network
monitoring. However, no one system has yet been designed to deal with raw traffic packets
and act as a monitoring tool that can be compared to the benefits obtained from the existing
visualisation tools. There are no existing sonification systems using information at the
protocol level to target traffic status based on each packet’s specific function. Therefore,
it is unclear which sonification approach is best suited for real-time monitoring and how
effective sonification systems are in reaching their goal of supporting users in monitoring
and analysis tasks. Nevertheless, sonification has a strong potential for real-time monitoring
of computer networks in order to raise the overall cyber security situational awareness.
Moreover, sonification based on network traffic protocol information and mechanisms is vital
in reflecting the mapping approach based on human understanding.
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The state of research would be more advanced if users were involved in monitoring tasks
using real-time traffic. Moreover, developing a sonification system has the potential to detect
and investigate the increasing modern threats and as such, evaluation studies are necessary to
prove the potential of sonification in computer network monitoring. Therefore, the question
that this research addresses is ‘how can sonification be used in maintenance of real-time
situational awareness to provide the protocol flow granularity required to understand the
network environment behaviour?’.

3.5 Summary

This chapter has introduced sonification and explained its approaches and techniques. It has
also presented a brief discussion of interactive sonification, soundscape, and soundscape
ecology used in the development of the SoNSTAR system. Furthermore, the chapter has
also described the areas where sonification can replace or support visualisation as a tool for
monitoring. In addition, the chapter has explained in which phase sonification could support
situational awareness and presented a concept for a sonification system design for network
monitoring. Finally, a literature review has been conducted to provide a summary of existing
related work on network sonification.



Chapter 4

SoNSTAR

4.1 Introduction

The sonification of high speed computer networks demands both high throughput and
flexibility to handle and recognise new threats. Such systems should deal with raw network
traffic (packets) and try to establish a sonification model that can enable a human operator
to recognise the difference between normal traffic and anomalous activity. It is possible
that sonification is a viable solution to this problem and could allow an administrator to
listen in real-time to the state of each traffic flow. As a solution to these problems and
issues, we propose SoNSTAR — Sonification of Networks for SiTuational AwaReness —
to be used by network administrators as a monitoring tool to facilitate the acquisition and
maintenance of network situational awareness. SoNSTAR is designed to assist with the
maintenance of security, awareness of anomalous events such as attacks, maintenance of
network health through monitoring and tuning, and increasing the understanding of the cyber
environment (which is vital for network management) through the use of diagnosis to support
the recognition phase in the situational awareness process.

This chapter introduces SoNSTAR and looks at the user specifications for the monitoring
tool suite and its primary design goal of sonifying TCP traffic which is a priority as it
accounts for most network traffic (see section 4.3 below). Some of the specifications are set
due to sonification capabilities to support real-time monitoring. This chapter begins with
the requirements for SoNSTAR and then sets out its design. The chapter concludes with a
validation of SoNSTAR’s soundscape approach to sonification.
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4.2 SoNSTAR and Network Traffic Sonification

A traffic flow is defined as a series of packets belonging to a single connection between
a source host and a destination host [25]. Each TCP packet contains header information
including source IP, source port, destination IP, destination port, and protocol. Thus, a
single flow can be identified within a certain time period by its source and destination IP
addresses, its source and destination ports and its protocol layer (such as TCP, UDP and
ICMP). As part of our technical solution, we have created new flow type called IP flow
which is identified within a certain time period by its source and destination IP addresses and
protocol. SoNSTAR uses these two flow types (traffic flow and IP flow) in its sonification
approach. A host connection is the set of all traffic flows or IP flows passing through a
specific host connection which could be a single device or node or switch. Network traffic is
the set of all flows passing through the network.

SoNSTAR uses events to generate sounds. A flow event is a change in the behaviour or
operation of a flow (traffic or IP). A single event represents a combination of a flow’s features
while a set of events represents a flow’s behaviour which represents the state of the network
traffic.

In the TCP protocol, the header contains nine control flags, six of which (FIN, SYN,
RST, PSH, ACK and URG) are used by SoNSTAR. The values 1 and 0 denote whether a
flag is set or unset respectively, and the packet’s type is determined by those flags that are
set. A packet’s type determines its role and function within the network traffic. Therefore,
SoNSTAR collects counts of each packet type for both traffic- and IP-flows. A flow’s status
is determined by the respective packet type counts. SoNSTAR allows its user to listen to the
status of the flows in network traffic by playing sounds that represent the flow behaviours.

Thus, SoNSTAR makes information about traffic perceptible, in turn allowing the network
administrator to make decisions about network operation on the basis of recognising the
sounds that describe the network environment. SoNSTAR allows users to set specific sounds
for different flow status types and to tune the thresholds for triggering the sounds. What
makes SoNSTAR distinctive compared to other available tools is that it allows the user to
monitor general and specific behaviour in a human understandable form.

SoNSTAR sonifies each flow in a connection and collects information about the connec-
tion state by periodically gathering online flag information from each flow. Traffic features
are extracted from the flag information aggregations and SoNSTAR then represents these
features using pre-recorded sounds. The network administrator can then interact directly with
the network environment. The method includes application of interactive sonification to a
computer network using the concept of a soundscape. In SoNSTAR the network environment
is transformed into an acoustic environment as a soundscape and the combinations of sounds
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represent the current state of the network, just as the combinations of sounds in a landscape
provide information about what is happening in the environment.

SoNSTAR transforms the network environment to the soundscape of a forest (though it is
fully configurable and allows any other soundscape to be used as desired). Just as a person
in a forest would be able to infer information about what is happening in the forest by the
sounds they hear, sounds in the soundscape represent events, and unexpected or particularly
loud sounds can draw the listener’s attention to traffic behaviour that is out of the ordinary.

Using recorded sounds in sonification can be difficult as there are limitations on how
recordings can be used to represent traffic while still sounding realistic [98]. However, the
use of recorded sounds is better than synthesised sounds, because it enables users to link
events to familiar and understandable sounds. Sounds from a natural environment such birds
tweeting or animal sounds are easier to describe than artificially synthesized tones which
may rely on specific terminology such as frequency and timbre [166]. The sounds provide
us with immediate awareness of the types of events that are happening. Modern cognitive
science believes that to be able to study sound in this way, the listener must have some inner
understanding of how the features of physical events are reflected in the sounds they make
[97].

Therefore, a monitoring operator requires a good understanding of communication
protocols and theoretical and practical knowledge about the expected behaviour in computer
networks. SoNSTAR allows the user to make a relation between the meaning of the recorded
sound and the event mapped to within the network environment. For example, a forest on a
rainy day will produce sounds of rain, wind and thunder, perhaps with a fire on the forest.
These events can be used to describe the normal state of a computer network environment.
On the other hand, human-made sounds, the sounds of predators and changes in weather
(such as rain and thunder) can be used to represent abnormal or malicious network activity.
SoNSTAR sonification is generated using an event mapping method based on flag state
information collected from each TCP packet for each flow in the network. This specialised
abstraction of network features is extracted from the raw flow packets and transformed into
classified sound groups of natural and human-made sounds.

4.3 SoNSTAR and Network Traffic Monitoring

Commonly, administrators try to look directly at network traffic to understand it using tools
such as Wireshark [164]. Network traffic volumes can be huge and the majority of the traffic
involves normal data packets travelling between legitimate users on the network or across the
internet. TCP packets carry control flags to allow the data to be received in sequence and
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to protect it from loss. In TCP, if receipt of any packet is not confirmed by the destination
it will be sent again. In contrast, in the UDP protocol any packet sent will be considered
as received and packets will be processed in the order they arrive regardless of whether the
routing has caused them to be received out of sequence. In TCP approximately 30%-40%
of traffic concerns packets which are very important to administrators for enabling them to
understand immediately what is happening in their network environment [138]. This means
that the TCP/IP control packets SYN, SYN ACK, ACK, FIN and RST provide most of the
information about network traffic state. UDP packets have to be monitored in such a way
that allows administrators to recognise the current state. TCP/IP traffic represents more than
85% of packets entering and leaving a system or computer network [138, 142]; therefore,
TCP traffic is considered a priority for sonification purposes.

Network administrators typically identify anomalies in traffic from two sources. The
first is simple network management protocol (SNMP) data from queries to network nodes.
However, the data collected from the SNMP management information base (MIB) is wide
ranging, and contains activity statistics such as total packets transmitted at a node. This
source can only provide statistics about volumes of packets and bytes which provide use-
ful information but cannot be used to understand the behaviour in the traffic flows and
connections in the network. The second source is the monitoring of end-to-end packets,
flows or connections. This data contains protocol-level information. This second source is
typically used by intrusion detection systems. These two sources offer a practical base for
the identification and recognition of anomalies as part of situational awareness [14].

SoNSTAR uses the second source and collects data by sniffing the traffic passing through
a switch or a router from the mirroring outlet in real time or by reading stored PCAP files
captured by any other available packet sniffing programs. The sniffer act as a sensor that
collects traffic information periodically.

The TCP control packets SYN, SYN-ACK, ACK, FIN and RST provide most of the
information about network traffic state. SoNSTAR uses packet header information to generate
sounds which periodically represent the status of aggregated packet information for multiple
flows in the network. It is an anomaly-based system which generates different sounds
according to the network state. This method can be used to provide a general or specific sonic
representation of the traffic behaviour. Any changes in sound combinations then represent
a new state or behaviour. An advantage of this approach is that an administrator using
SoNSTAR can interact with the system and change and create the features to be sonified and
assign sounds to those features. SoNSTAR is an additional tool that enables administrators to
discover changes in and learn more about their environment in a way that enables the human
mind to comprehend the mechanism of these changes and their causes.
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A security system using real-time monitoring for situational awareness has to show
changes in flow and connection states as they happen and provide an indication to the
administrator about immediate events. SoNSTAR targets this type of monitoring to support
existing security tools, acting as an additional tool aimed at raising situational awareness
levels.

4.4 SoNSTAR Requirements and Design

Computer network defence needs traffic analysts to identify both known and novel malicious
activities and attacks in huge volumes of network traffic. Visualisation tools would potentially
support the detection of malicious traffic patterns of the network, but few traffic analysts
so far are leveraging sonification techniques in their current security practice. SoNSTAR is
designed to suit those traffic analysts’ needs.

In many systems, changes in performance could be used to indicate the vulnerability or
robustness of a computer network [39]. Equally, changes of sounds could be used to indicate
changes in network behaviour. The first goal of the design of the sonification system as part of
the situational awareness process is either to monitor network assets or the network gateway
and to find a way to sonify network component activity and traffic behaviour to enable the
listener to detect any misuse or anomalous behaviour. This anomaly detection approach must
first learn the normal behaviour of the target being monitored, and then use deviations from
this baseline to build experience and knowledge to detect and identify possible malicious
activities.

Monitoring tools try to present administrators with a complete representation of their
complex network. Better network monitoring tools should allow administrators to perceive
changes in their network in order to allow them to react immediately, and learn and understand
more about the cyber environment. A real-time sonification monitoring tool should be able
to do or assist with the following.

• Identify and recognise malicious traffic: Malicious traffic such as probes and denial
of service attacks should be indicated.

• Provide information about incidents or changes in behaviour: An incident or
change in traffic behaviour should be reported to allow the user to recognise which
flows are malicious.

• Represent network behaviour sonically and in a non-fatiguing and non-annoying
way: Sounds representing states have to be easily recognised and linked together by
the user to allow comprehension as part of the situational awareness process.
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• Offer practicality: Use of the system should be convenient for both incident response
and real-time monitoring.

• Indicate compromised machines: A machine compromised by a hacker or malicious
software such as worms or viruses should be indicated when ever possible.

• Offer high throughput and flexibility: The system should be able to handle large
amounts of data in a timely manner and its operation should not be CPU-intensive.

4.4.1 Monitoring requirements of the tool

Some special requirements, especially when using sounds to refer to changes in traffic
behaviour, are necessary with such monitoring tools. The output of such a system is meant
to help the user to identify changes in traffic behaviour or recognise attacks immediately as
part of the situational awareness process. This awareness is important and its lack could be
costly and decisive for an organisation. It is important that the monitoring tool assists the
user to analyse and interpret the traffic in the correct manner. Various common requirements
for forensics analysis, visualisation and sonification tools for monitoring are given in the
literature [8, 16, 28, 107, 113] and the following requirements are based on them:

• Usability: Data sonified at the lowest packet information level would result in huge
volumes of information which would be to difficult for the user to interpret. Therefore,
the representation of this information by sound has to be designed so that the user can
recognise normal and malicious activities. The information has to be represented by
distinct sounds so that it is not misinterpreted.

• Cognitive processes: The time it takes to learn how to use and understand the system
should be minimised.

• Comprehensive: The sounds generated have to represent, as far as possible, all output
data at a given level of abstraction.

• Accuracy: The tool should guarantee that the output sounds are clearly distinguishable
and that the margin of similarity should be presented to the user, for example as a log
file, so that it can be confirmed and interpreted correctly.

• Deterministic: The tool should always generate the same output sounds when pre-
sented with the same input dataset or traffic when using same sound design.

• Verifiable: To ensure the accuracy of the tool, it should be possible to verify the results.
This could be done manually or by using another tool.
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It is also important that the system can read traffic datasets in common formats.

4.4.2 Background and principle

Port scans can be a sign of many attacks. A port scan is used to collect information about
the scanned ports. For example, consider a SYN scan in which a TCP packet with SYN flag
set is sent to the destination host. If the port at the destination is open, it will respond with
either a SYN-ACK packet (if it is accepting the connection) or a RST packet (if it denies
the connection). If the port is closed, it will respond with an ICMP packet indicating the
port is unreachable. Usually, if botnet zombies are installed stealthily on a system, their
communications may generate a port scan.

TCP communication is controlled by flag state. Therefore, a sniffer module is required
to collect the network traffic. This traffic is then filtered to identify the TCP packets. The
system extracts each type of flag state for each packet and aggregates the number of each
packet type for each flow count in each time window period. Then features are extracted
for each flow from each flow state aggregate. The number of flows generated in each time
window varies, depending on the number of connections made and the duration of the time
window [48, 95, 142]..

The number of flows generated in each time period can be very large and difficult to
represent in real time using visualisation techniques. Sonification has the potential to offer
real-time traffic representation. The sounds produced are based on events derived from
the flow features and can potentially enable the operator to recognise changes in the traffic
behaviours. An initial set of flow features was chosen to create events, and these events are
represented by different sounds in a soundscape. As traffic passes through the network the
soundscape changes in response.

Ohsita et al [115] classified TCP flows into five groups as shown in Table 4.1. This
classification assists with the design of events based on traffic features. Table 4.2 shows the
result of their experiment of traffic classification where they used the traffic generated by the
internet in their campus network for five days period [115]. The experiment supports our
intention to monitor TCP/IP traffic.

Soniya and Wiscy [142] used packet counts and neural networks for detecting SYN scans.
Detection relied on the three-way handshake mechanism for establishing and termination of
the connection. The experiment was based on detecting a TCP SYN port scan on a single
machine. Information in the TCP flags was used to define the behaviour of a legitimate
connection. Any deviation from the defined normal behaviour (which was used to train to a
neural network) is used to detect the scan attack. The experiment tracked various flag counts
in both directions as follows:
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Table 4.1 TCP flows classification [115]

Group Description of flows

Group N Flows that completed the 3-way handshake and were closed normally by a FIN
or RST packet at the end of the connection.

Group Rs Flows terminated by a RST packet before a SYN/ACK packet was received
from the destination host. These flows were terminated this way because the
destination host was not available for the service specified in the SYN request.

Group Ra Flows terminated by a RST packet before an ACK packet for the SYN/ACK
packet was received. These flows were terminated this way because the
SYN/ACK packets were sent to a host that was not on the Internet.

Group Ts Flows containing only SYN packets. These flows are not terminated explicitly
(i.e., by RST/FIN packets) but by a timeout. There were three reasons that
flows could be classified into this group. One was that the destination node
did not respond with a SYN packet. A second was that the source address of
the SYN packet was spoofed and the destination sent the SYN/ACK packet
to the spoofed address. The third was that all of the SYN/ACK packets were
discarded by the network (e.g., because of network congestion).

Group Ta Flows containing only SYN and its SYN/ACK packets. Like Group Ts flows,
these flows were terminated by a timeout. In this case, however, it was because
all the ACK packets were dropped.

Table 4.2 TCP classification of flows [115]

Group Number of flows Percentage

Group N 18,147,469 85.1
Group Rs 622,976 2.9
Group Ra 75,432 0.3
Group Ts 2,435,228 11.4
Group Ta 2,009 0.0
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• C1 is the count of incoming SYN packets.

• C2 is the count of outgoing SYN-ACK packets.

• C3 is the count of outgoing RST packets.

• C4 is the count of outgoing SYN packets.

• C5 is the count of incoming SYN-ACK packets.

• C6 is the count of outgoing FIN packets.

• C7 is the count of incoming FIN packets.

SoNSTAR system has been developed to represent the behaviour of flows in network
traffic at the end of a specific time window. The system collects the packet counts for each
flag type for each flow during the time window. One of the contributions is the creation of
a new type of traffic flow, called “IP flow” to represent the network connections based on
the packet counts and the number of flows. An IP flow is identified by collecting the packet
counts based on on the flag types of all the traffic between two hosts.

4.4.3 Development process and design rationale

As the research concerns the use of sonification to support the situational awareness of
network behaviour and to support detection of malicious behaviour it was important to
choose which protocol to start the study. The TCP/IP protocol was selected because it
represents the majority of incoming and outgoing traffic on a typical network. Therefore, a
real-time traffic sniffer is needed that can filter out everything but TCP/IP packets and pass
them onto the sonification system. Since the aim was to explore the behaviour of the network
as well as to identify the events going on within it, it was necessary first to determine what
data or information to use to express the types as well as the movement and volumes of
network traffic. This was one of the biggest problems encountered in determining which
features to use. A number of options was considered but TCP control packet flags were the
primary characteristics for representing the state of a network based on the mechanisms of
the TCP/IP protocol. In particular, the status of the flags in packet headers (such as SYN,
SYN-ACK, ACK, FIN, RST and PSH) were investigated to discover how they change and
relate to the network traffic state.

The next stage involved the creation of the features extractor and also the features
combiner for creating new combinations of existing features. At this point, the challenge was
how to extract features from the TCP control packets and arrange them as traffic flows. The
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solution to this was to aggregate packet status information to organise packets into multiple
flows. In this way, it was possible to arrange each packet count type according to their flow
based on IP addresses and ports. Now that packets were organised into flows the features
of each flow could then be extracted. Events were constructed to represent the three-way
handshake mechanism. However, the number of flows was very large and it was not possible
with this approach to target vertical or horizontal behaviour, but some basic behaviours (such
as handshakes) could be seen.

This next stage involved sonification. Despite the use of recorded sounds to represent
events, the resulting sounds were many and overlapping (e.g., multiple rain sounds occurring
at the same time), and a solution to the problem of representing a large number of flows while
reducing the number of sounds yet allowing events to be easily distinguished needed to be
found. During initial development testing, SoNSTAR was used to collect the incoming and
outgoing packet counts of one device without relying on the port numbers. The result showed
a reduction in the number of normal flows in such a way that the state of the traffic could be
recognised. After several confirmation experiments, this new type of flow was adopted, and
it was named IP flow.

The larger part of the design problem now solved, the task of finding and defining
appropriate events for representing the behaviour of the flows within the network was
addressed. One of the first discoveries was that the number of normal flows and the number
of IP flows were also affected by changes in network behaviour. Difficulties were encountered
in sonifying the events in a way that allows the user to easily recognise and learn sounds.
This problem was tackled by taking all the flows with repeated occurrences of a single event
and sonifying only one of them during each time period.

From the above, the complete SoNSTAR architecture was thus designed around five
components: the sniffer, the filter, the features extractor, the features combiner and the
sonification engine. These are discussed in detail in the following sections.

4.4.4 SoNSTAR user manual

This interactive sonification system consists of two main sections. Part 1: Main program
written in Python. Part 2: Max/MSP patch, the sound control panel and the sound component
output using the program Max/MSP. The primary system default configurations are presented
in Table 4.7. In order to understand the configurations, The user should learn the features
used in SoNSTAR. The complete features are presented in Tables 4.3, 4.4, and 4.5. This brief
guide explains how to use SoNSTAR for monitoring.
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• Launching SoNSTAR: the system can executed by launching the main Python script
and by opening the Max/MSP patcher in Max/MSP.

• How SoNSTAR works: when the main program is launched, the system will request
from the user the chosen time window period. Then the system will display the Capture
Option Interface list. The user needs to select which interface the system should capture
network traffic from.

Immediately, the system will start sniffing the traffic and check traffic events and pass
event messages to the Max/MSP patch. The sound will be played according to the
traffic-to-sound mappings defined in the system configuration file.

• Changing the configurations: The user can change the conditions and the values of
the thresholds of the events in the events sonification section in the main script and
relaunch with the new changes. If the user would like to add a new event, they should
write the event conditions and assign an unused port to the event in order to connect
with the Max/MSP patch. In the Max/MSP patch, the user needs to create a new port
receiver with the same port number assigned to the new event.

• Sound control panel options: The user can change in real-time the sound volume of
each event through the control panel by adjusting a slider control. Also, the user can
change the sound of any event by uploading a new sound file to that event sound buffer
or use an existing sound name from the list of existing event sound buffers.

• The sound meaning: The meanings of the default event-sound mappings are presented
in Table 4.6. The training tables at Appendix 5 and 6 provides examples of events and
how they could be related and understood.

• Terminating the system: The system can be terminated by closing the Python script
and turning off the sound generation in Max/MSP.

The system is available in full at https://github.com/nuson/SoNSTAR.

4.4.5 Design solution

This section considers a design that fulfils the requirements of real-time monitoring for
situational awareness. The practical issues associated with the selected design are also
discussed.

The SoNSTAR architecture diagram is illustrated in Fig 4.1. The system is implemented
in Python using the pcapy and dpkt libraries and Max/MSP. The Python engine captures and

https://github.com/nuson/SoNSTAR
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processes the packet information and passes data to a Max/MSP patch which generates the
audio (see the project repository [41] for SoNSTAR source code file).

Fig. 4.1 SoNSTAR Architecture. The major components of the system.

SoNSTAR uses a time window period to arrange and control the timing of the operation
of each process within the system (see Fig 4.2). SoNSTAR reads packets and unpacks them
and filters the TCP packets and extracts counts during time window X. At the end of each
time window, features are combined to generate higher-level aggregate features. The selected
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features are then represented as recorded sounds. These sounds are played during the next
time window Y.

Fig. 4.2 Time window processes. SoNSTAR aggregates flow data across time windows. This figure
shows the process timing and sequencing across two time windows, X and Y .

The main SoNSTAR algorithm is shown in Algorithm 1. The SoNSTAR system comprises
five modules described below.

Sniffer

The main input to the system is the raw traffic packets passing (incoming and outgoing)
through the network. The Sniffer reads these packets in real time.

Filter

The Filter unpacks each ethernet frame, extracting the packet header information, and sending
only TCP packets to the Feature Extractor. A TCP/IP packet has an EtherType value of
0x0800 or 0x86DD (denotes IP protocol) and a transmission protocol number of 6.

Feature Extractor

Next, the Feature Extractor picks up each TCP packet, checks the flag values, and determines
the packet type. If this flow has not been seen before it creates a new Traffic flow and IP
flow and sets the counter for the current packet type to 1 for each flow. If the flow already
exists the feature extractor increments its packet type counts by 1 according to the packet’s
direction (incoming or outgoing). This update happens for both flow types (traffic flow and
IP flow). At the end of the time window, the set of traffic flows with their packet type counts
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Algorithm 1 SoNSTAR’s main algorithm
Set Time-window period
Sniff packet and Get start time
if Packet == arrived then

Unpack ethernet header
Extract EtherType
if EtherType == 0x0800 or 0x86DD then ▷ IP packet

Unpack IP header
Extract source and destination addresses
Extract transmission protocol

else
Get next packet from the sniffer

end if
if Protocolnumber == 6 then ▷ TCP packet

Unpack TCP header
Extract flags information according to incoming or outgoing
Count flags status according to incoming or outgoing
if Timewindowperiod == f inished then

Extract current flag’s features
Extract new features from Features Combiner
Apply thresholds to selected features
Send messages to Max/MSP for sonification

end if
Get next packet from the sniffer a new Time-window started

else
Get next packet from the sniffer

end if
else

Get next packet from the sniffer
end if
Max/MSP Patch
if messages == arrived then

Play sound of similar messages once
end if
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and the set of IP flows with their packet type counts, in addition to number of traffic flows
and number of IP flows are passed to next stage.

Traffic Flows identified by src addr, src port, dst addr and dst port are followed
by columns with flag status counts. SoNSTAR retains the information in an array carrying
all feature information extracted from the packets in each time window for each Traffic flow
as per Table 4.3.

Table 4.3 Feature information array: Traffic flow

Element Label Description

1 Flow Counter This represents the number of flows in each time window.
2 Address 1 This is one of the IP addresses of the flow which changes

to be the source or destination according to the side send-
ing or receiving the packet.

3 Address 2 This is one of the IP addresses of the flow which changes
to be the source or destination according to the side send-
ing or receiving the packet.

4 Port 1 This is one of the ports of the flow which changes to be
the source or destination according to the side sending or
receiving the packet.

5 Port 2 This is one of the ports of the flow which changes to be
the source or destination according to the side sending or
receiving the packet.

6 FIN Out Counts of outgoing FINs packets, which represent the
total counts of outgoing packets which hold FIN status
set to 1 and the status of other flags is set to 0.

7 FIN In Counts of incoming FINs packets., which represent the
total counts of incoming packets which hold FIN status
set to 1 and the status of other flags is set to 0.

8 SYN Out Counts of outgoing SYN packets, which represent the
total counts of outgoing packets which hold SYN status
set to 1 and the status of other flags is set to 0.

9 SYN In Counts of incoming SYN packets, which represent the
total counts of incoming packets which hold SYN status
set to 1 and the status of other flags is set to 0.

Continued on next page



68 SoNSTAR

Table 4.3 – Continued from previous page

Element Label Description

10 SYN ACK Out Counts of outgoing SYN-ACKs packets, which represent
the total counts of outgoing packets which hold SYN and
ACK status set to 1 and the status of other flags is set to
0.

11 SYN ACK In Counts of incoming SYN-ACKs packets, which represent
the total counts of incoming packets which hold SYN and
ACK status set to 1 and the status of other flags is set to
0.

12 RST Out Counts of outgoing RSTs packets, which represent the
total counts of outgoing packets which hold RST status
set to 1 and the status of other flags is set to 0.

13 RST In Counts of incoming RSTs packets, which represent the
total counts of incoming packets which hold RST status
set to 1 and the status of other flags is set to 0.

14 ACK Out Counts of outgoing ACKs packets, which represent the
total counts of outgoing packets which hold ACK status
set to 1 and the status of other flags is set to 0.

15 ACK In Counts of incoming ACKs packets, which represent the
total counts of incoming packets which hold ACK status
set to 1 and the status of other flags is set to 0.

16 PSH Out Counts of outgoing PSH packets, which represent the
total counts of outgoing packets which hold PSH status
set to 1 and the status of other flags is set to 0.

17 PSH In Counts of incoming PSH packets, which represent the
total counts of incoming packets which hold PSH status
set to 1 and the status of other flags is set to 0.

18 PSH ACK Out Counts of outgoing PSH-ACK packets, which represent
the total counts of outgoing packets which hold PSH
status set to 1 and ACK status set to 1 and the status of
other flags is set to 0.

Continued on next page
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Table 4.3 – Continued from previous page

Element Label Description

19 PSH ACK In Counts of incoming PSH-ACK packets, which represent
the total counts of incoming packets which hold PSH
status set to 1 and ACK status set to 1 and the status of
other flags is set to 0.

20 URG Out Counts of outgoing URG packets, which represent the
total counts of outgoing packets which hold URG status
set to 1 and the status of other flags is set to 0.

21 URG In Counts of incoming URG packets, which represent the
total counts of incoming packets which hold URG status
set to 1 and the status of other flags is set to 0.

IP flows are identified by src addr and dst addr and are followed by columns of flag
status counts. SoNSTAR retains the information in an array carrying all feature information
extracted from the packets in each time window for each IP flow as per Table 4.4.

Table 4.4 Feature information array: IP-flow

Element Label Description

1 IP Flow Counter This represents the number of IP flows in each time win-
dow.

2 Address 1 This is one of the IP addresses of the flow which changes
to be the source or destination according to the side send-
ing or receiving the packet.

3 Address 2 This is one of the IP addresses of the flow which changes
to be the source or destination according to the side send-
ing or receiving the packet.

4 FIN Out IPs Counts of outgoing FINs packets between two IP ad-
dresses for whole ports, which represent the total counts
of outgoing packets which hold FIN status set to 1 and
the status of other flags is set to 0.

Continued on next page
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Table 4.4 – Continued from previous page

Element Label Description

5 FIN In IPs Counts of incoming FINs packets between two IP ad-
dresses for whole ports, which represent the total counts
of incoming packets holds FIN status set to 1 and the
status of other flags is set to 0.

6 SYN Out IPs Counts of outgoing SYN packets between two IP ad-
dresses for whole ports, which represent the total counts
of outgoing packets which hold SYN status set to 1 and
the status of other flags is set to 0.

7 SYN In IPs Counts of incoming SYN packets between two IP ad-
dresses for whole ports, which represent the total counts
of incoming packets which hold SYN status set to 1 and
the status of other flags is set to 0.

8 SYN ACK Out
IPs

Counts of outgoing SYN-ACKs packets between two
IP addresses for whole ports, which represent the total
counts of outgoing packets which hold SYN and ACK
status set to 1 and the status of other flags is set to 0.

9 SYN ACK In IPs Counts of incoming SYN-ACKs packets between two
IP addresses for whole ports, which represent the total
counts of incoming packets which hold SYN and ACK
status set to 1 and the status of other flags is set to 0.

10 RST Out IPs Counts of outgoing RSTs packets between two IP ad-
dresses for whole ports, which represent the total counts
of outgoing packets which hold RST status set to 1 and
the status of other flags is set to 0.

11 RST In IPs Counts of incoming RSTs packets between two IP ad-
dresses for whole ports, which represent the total counts
of incoming packets which hold RST status set to 1 and
the status of other flags is set to 0.

12 ACK Out IPs Counts of outgoing ACKs packets between two IP ad-
dresses for whole ports, which represent the total counts
of outgoing packets which hold ACK status set to 1 and
the status of other flags is set to 0.

Continued on next page
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Table 4.4 – Continued from previous page

Element Label Description

13 ACK In IPs Counts of incoming ACKs packets between two IP ad-
dresses for whole ports, which represent the total counts
of incoming packets which hold ACK status set to 1 and
the status of other flags is set to 0.

14 PSH Out IPs Counts of outgoing PSH packets between two IP ad-
dresses for whole ports, which represent the total counts
of outgoing packets which hold PSH status set to 1 and
the status of other flags is set to 0.

15 PSH In IPs Counts of incoming PSH packets between two IP ad-
dresses for whole ports, which represent the total counts
of incoming packets which hold PSH status set to 1 and
the status of other flags is set to 0.

16 PSH ACK Out
IPs

Counts of outgoing PSH-ACK packets between two IP
addresses for whole ports, which represent the total counts
of outgoing packets which hold PSH status set to 1 and
ACK status set to 1 and the status of other flags is set to
0.

17 PSH ACK In IPs Counts of incoming PSH-ACK packets between two IP
addresses for whole ports, which represent the total counts
of incoming packets which hold PSH status set to 1 and
ACK status set to 1 and the status of other flags is set to
0.

18 URG Out IPs Counts of outgoing URG packets between two IP ad-
dresses for whole ports, which represent the total counts
of outgoing packets which hold URG status set to 1 and
the status of other flags is set to 0.

19 URG In IPs Counts of incoming URG packets between two IP ad-
dresses for whole ports, which represent the total counts
of incoming packets which hold URG status set to 1 and
the status of other flags is set to 0.

Continued on next page
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Table 4.4 – Continued from previous page

Element Label Description

20 URG PSH FIN
Out IPs

Counts of outgoing URG-PSH-FIN packets between two
IP addresses for all ports, which represent the total counts
of outgoing packets which hold URG and PSH and FIN
status set to 1 and the status of other flags is set to 0.

21 URG PSH FIN
In IPs

Counts of incoming URG-PSH-FIN packets between two
IP addresses for wholeall ports, which represent the total
counts of incoming packets which hold URG and PSH
and FIN status set to 1 and the status of other flags is set
to 0.

22 NULL Out IPs Counts of outgoing NULL packets between two IP ad-
dresses for all ports, which represent the total counts of
outgoing packets which hold all flags with status set to 0.

23 NULL In IPs Counts of incoming NULL packets between two IP ad-
dresses for all ports, which represent the total counts of
incoming packets which hold all flags with status set to 0.

24 LAND Out IPs Counts of outgoing LAND packets between two IP ad-
dresses for all ports, which represent the total counts of
outgoing packets which have the same source and desti-
nation IP addresses.

25 LAND In IPs Counts of incoming LAND packets between two IP ad-
dresses for all ports, which represent the total counts of
incoming packets which have the same source and desti-
nation IP addresses.

At the end of each time window SoNSTAR creates two log files consisting of the all the
traffic- and IP-flows with their packet type counts respectively for any post-hoc inspection
and review that may be required.

Feature Combiner

The Feature Combiner enables the user to create new features by adding or subtracting
particular flags (see Table 4.5 for some examples). This enables the user to target specific flow
events. Some of these combinations could be set according to user needs and understanding
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of the TCP protocol behaviours and rules. Some could be built over time while listening to
and learning about the network environment’s behaviours and sounds.

For example, TCP requires the use of specific mechanisms to establish connections be-
tween source and destination hosts. An established process is called the three-way handshake.
The first step in the process is that the source (S) sends to the destination (D) a TCP packet
with the SYN flag set. Next, D replies to S with a packet with the SYN and ACK flags set
to acknowledge and accept the connection. Finally, S sends a packet to D with the ACK
flag set indicating acknowledgment of the agreement. In this way the handshake process is
successfully completed and the connection is established. After the exchange of data and at
the end of the connection, either side will terminate the connection by sending a TCP packet
with the FIN flag set [136]. Therefore, each flag’s status gives us information about the flow
and changes in flag status represent what is happening in the network.

At this stage of SoNSTAR design we have created some new features from previous IP
flow features (see Table 4.4) provided by the Feature Extractor (see Table 4.5). All of these
features are now available for sonification. An example showing how a feature is created is
given below in Section 4.4.8.

Table 4.5 Feature Combinations.

Feature
Combination

Definition Normal
range

FC 1 SYN-out-IP − SYN-ACK-in-IP ⩽ 4
FC 2 SYN-in-IP − SYN-ACK-out-IP ⩽ 4
FC 3 FIN-out-IP − FIN-in-IP ⩽ 9
FC 4 FIN-in-IP − FIN-out-IP ⩽ 9
FC 5 SYN-in-IP + SYN-out-IP − FIN-out-IP ⩾ RST-out-IP
FC 6 SYN-in-IP + SYN-out-IP − FIN-in-IP ⩾ RST-in-IP
FC 7 FIN-in-IP − FIN-out-IP − RST-out-IP ⩽ 9
FC 8 FIN-out-IP − FIN-in-IP − RST-in-IP ⩽ 9

Illustration of the way packet counts (by flag type) are combined to denote specific feature
combinations.

Sonification

The final block in the system is Sonification. To make sense of the sonification we have
to assign sounds according to event conditions and thresholds and according to the under-
standing of flag status mechanisms for both flow types. Knowledge of these events could
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be learned over time while listening to the network environment, tuning the thresholds and
experimenting with conditions to target particular behaviours and exploring log files.

Fig. 4.3 illustrates the SoNSTAR Max/MSP Patch design, showing how sound messages
are received to play various recorded sounds while the user can interact and control the
sounds in real-time. Fig. 4.4 illustrates part of the SoNSTAR Max/MSP Patch in larger size.
Samples of audio files and SoNSTAR Max/MSP Patch can be found online at the he project
repository [41].

Fig. 4.3 SoNSTAR Max/MSP Patch design

Through development of this design recorded natural sounds have been assigned to
various features to create a network soundscape environment. By operating SoNSTAR and
listening to sounds and manipulating event conditions and tuning thresholds, new events
and feature combinations can be defined (such as those new features listed in Table 4.5).
Threshold values could vary according to the characteristics of the network being monitored.

Of the many features that could be monitored for intrusion detection purposes, some are
truly useful and some are less significant, and may indeed be useless. A standalone IDS
might generate many false positives or could ignore an anomaly (false negative) depending
on its settings. There is no clear analytical model that provides the basis for a mathematical
formula to precisely describe the input-output relationship [112]. Therefore, using SoNSTAR
could provide that missing understanding of the decisions made by an IDS and allow its user
to gain knowledge through monitoring the real behaviour and events of the flows within the
traffic.
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Fig. 4.4 Part of SoNSTAR Max/MSP Patch

Every network is a unique environment. Relationships between features are important
when applying sounds to the events chosen. This is what gives SoNSTAR a real advantage in
exploring a network environment because the understanding of the traffic environment can be
improved by taking into account feature relations. The idea behind using different recorded
sounds from nature and human-made sounds to represent the network environment is to
transform the experience into an interactive soundscape environment. The sounds generated
express the behaviour of flows and their deviations from the normal state in order to increase
situational awareness.

The analogy where changes in flow event, connection mechanisms and traffic behaviours
would sound a similar to changes in sounds of weather or nature of animals would help
administrators to recognise and comprehend behaviours easily over time.

4.4.6 SoNSTAR representational techniques

Sonic representation is a challenge because of the huge volumes of traffic passing through
each connection in the network. Each connection has a high potential number of flows
depending on the nature of that connection and its purpose. SoNSTAR reduces the complexity
of representing huge volumes of traffic by two methods. The first considers IP flows rather
than traffic flows. A number of traffic flows could exist between any two hosts as each traffic
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flow is specific to a single port number. IP flows are not concerned with port numbers so the
number of flows between any two hosts is reduced to one for sonification purposes (see Fig.
4.5). In the second method SoNSTAR maintains counts of the packet types for each traffic
flow to update the soundscape at a user-specified interval. Since network traffic consists of a
number of flows which can be similar in their condition, so similar flows can be expressed
once so that there is no repetition of the same sound. By doing this we have reduced the
number of flow events that need to be sonified.

Recorded sounds (such as birds or rain) represent discrete events by playing a single
natural sound every time the event occurs. The sounds chosen are diverse in nature and easily
distinguishable by the listener.

Fig. 4.5 Conflation of multiple traffic flows to one IP flow. Seven traffic flows between different
ports on the same sending and receiving hosts are reduced to a single IP flow.

4.4.7 Tuning the system

One begins to tune SoNSTAR for a particular network by starting with the three-way
handshake mechanism and assigning it to a chosen sound. Then, each flow event of interest
is mapped to a sound and then its frequency of occurrence is listened to over time in order
to get a sense of its impact on network behaviour. The event’s feature threshold value
can then be adjusted to suit. It was noted during development that certain events tend to
occur normally in every network or dataset. Network mechanisms and activities which are
confirmed as normal events were mapped to sounds from a forest birds collection. Forest
birds were used because they represent the normal state of a forest. Sounds that do not
belong to the normal state of a forest were then used to represent rarer, unusual, or anomalous
events. Fig. 4.6 shows an example sonification of IP flows to represent network traffic state.



4.4 SoNSTAR Requirements and Design 77

(Listen to the file DefaultSonification.mp3 of normal traffic sonification in the folder
‘examples\design’ in the SoNSTAR respository [41]).

Fig. 4.6 IP flow representation. Illustration of multiple IP flows containing a range of different
events and even combinations are mapped to different sounds resulting in a sonic representation of
the overall traffic state.

Events which are outside the normal range are represented according to the main flag
type that caused that event. Sound representation is divided into five categories. The first
category of network states represents ongoing events related to SYN or SYN-ACK packets
(or combinations thereof) and is represented by weather-related sounds of rain or water. For
example, the soundscape changes from rain to heavy rain to rain and thunder according to
the number of packets that caused the event.

The second category represents ongoing FIN, ACK, URG, PSH or NULL packets (or
combinations thereof) and is represented by animals or unusual birds. The third category
represents ongoing RST events and is mapped to wind sounds. For example, when any host
sends a high number of RST packets the sonification reflects the change in network state
by playing a wind on grass sound; if the RST packet changes usual behaviour in relation
to SYN and FIN packets, a heavy wind sound is played. The fourth category represents
ongoing events related to traffic- or IP-flow counters and is represented by sounds of fire in
the woods. The fifth category represents ongoing events confirmed as normal conditions and
is represented by usual forest birds forming ongoing background sounds. Fig 4.7 shows an
example of event representation in SoNSTAR.
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Fig. 4.7 Event representation. Illustration of different events (identified the main flag type) being
mapped to discrete sounds in the SoNSTAR soundscape.
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For a better representation, incoming and outgoing events of the same type are represented
such that incoming events are given more worrying and louder sounds (more dangerous or
urgent versions of the sounds) than outgoing events which are quieter which are mapped to
non-alarming animal sounds. Furthermore, it was observed that several events tend to occur
together or in specific sequences for particular types of attack. Therefore, their sequenced
sounds were examples of behaviours that were learned as SoNSTAR was used to begin
exploring network traffic. It is posited that the information about network traffic provided by
SoNSTAR can assist with the recognition of anomalies, both of known and unknown (not
previously encountered) types.

Sound design and representation depend very much on personal taste and targeted
behaviour. SoNSTAR provides the user with a choice of sound sets (e.g., forest, weather,
and animals sounds, or even human-made ones) and assigns sounds according to the event
features the user wishes to monitor.

One might ask why forest sounds were chosen when most people live in towns. The
forest sounds were chosen because they represent a diverse environment that provides many
sounds that can be used to represent network behaviour. In addition, forest sounds can be
easily distinguished and linked to their natural environment behaviour, unlike sounds in
a city environment in which visual context may be needed to link a sound to a particular
behaviour. For example, a person shouting in a city might be an aggressive act, or someone
calling to a friend, or some other activity. The use of forest sounds also creates a separate
soundscape from the one in which the user lives, thereby making it easier to distinguish
SoNSTAR sounds from other sounds in the user’s immediate environment. The sound of the
forest used might also serve as a relaxing background that can be listened to for periods of
time with less annoyance than other possible environment sounds.

Furthermore, as far as possible, sounds were chosen such that unfolding events in the
traffic are understood via real world events. For example, the sound of a storm developing
may start with light rainfall and then progress through heavy rain all the way to thunder and
this progression is mapped to a port scan. Thus, a light scan is mapped to light rain, and the
more the scan becomes a flood, so the rain sound gets heavier. This results in the creation of
a special sound language between the user and the network and the events that enable them
to distinguish events occurring in the network based on the feature conditions that they set to
trigger the occurrence of sounds.

The user is expected to have knowledge of the forest sounds used, as well as good
knowledge and understanding of the network events that the sounds represent. Table 4.6
shows the association between meanings and sounds. These sounds are understood depending
on the sequence of their occurrence and one type of attack can be composed of several sounds
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from other sounds in the user’s immediate environment. SoNSTAR provides the operator with
a way to research, develop, create and characterise new features and events. The discovered
features and events may contribute to the development of IDSs and a better understanding of
the behaviour of the networks.

Table 4.6 Mapping sound to meaning

No Sound Meaning

1 Forest birds Each normal bird sound represents the normal condition of a
normal network event which is usually heard in a forest when
conditions are normal. For example, when a TCP handshake
mechanism successfully completes a bird sound is played.

2 Rain A local host is sending a number (⩾ 30) of SYN packets yet none
or very few of them have completed the handshake
mechanism.The behaviour is like a rain of packets being sent out
to the victim host.

3 Rain on roof A local host is receiving a number (⩾ 10) of SYN packets, in
which none or very few of them have completed the handshake
mechanism.The behaviour is like a rain of packets being received
by the local host. Rain on a roof is used here to allow the user to
distinguish between incoming and outgoing behaviours.

4 Heavy rain It indicates the number of successful incoming handshake
mechanisms is low compared to the received requests (uses SYN
packets).

5 Fountain It indicates the number of successful outgoing handshake
mechanisms is low compared to the sent requests (uses SYN
packets).

6 Thunder A local host is receiving a large number (⩾ 300) of SYN packets,
where none or very few of them have completed the handshake
mechanism.

7 Creek A local host is receiving a very large number (⩾ 1000) of SYN
packets where none or very few of them have completed the
handshake mechanism.

8 Seagulls A local host is receiving a number of ACK packets but has not
received any other type of packet during this time window.

Continued on next page
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Table 4.6 – Continued from previous page

No Sound Meaning

9 Loon A local host is sending a number of ACK packets, while not
having sent any other type of packet during this time window.

10 Cricket A local host is receiving a number of FIN packets that are not part
of a previous packet sequence.

11 Sheep A localhost is sending a number of FIN packets that are not part of
a previous packet sequence.

12 Owl The number of incoming FIN packets received by a local host is
out of proportion to the number of outgoing FIN and RST packets.

13 Horse snort The number of outgoing FIN packets sent by a local host is out of
proportion to the number of incoming FIN and RST packets.

14 Frog A local host is sending or receiving a number of Null packets.
15 Wolf A local host is sending or receiving a number of URG-PSH-FIN

packets.
16 Beach A local host is sending or receiving a number of packets in which

the source and destination IP addresses are the same.
17 Wind on grass A local host is sending or receiving a number of RST packets,

where insufficient data has been exchanged to warrant this
number.

18 Wind A local host is sending or receiving an abnormal number of RST.
19 Snow storm A local host is sending an abnormal number of SYN-ACK

packets.
20 Walk in snow A localhost is receiving an abnormal number of SYN-ACK

packets.
21 Fire The number of Traffic flows or IP flows is higher than the normal

threshold.

4.4.8 SoNSTAR feature-to-sound mappings

The features used for sonification are aggregation counts of the flag status of each flow type
in the traffic. For each feature thresholds are set such that sounds are generated only when
the counts exceed the threshold. Users can select the thresholds appropriate to their network
environment. A set of default mappings was created based on an understanding of TCP
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protocol theory and running SoNSTAR several times whilst carrying out simulated attacks in
order to learn about traffic features. The thresholds used do not represent a priori fixed rules.
However, experimenting with these thresholds requires an understanding of the flag relations
in the TCP protocol. Network traffic is not static and what can be normal traffic behaviour
in one context could be malicious elsewhere, and thus the expected numbers of flows could
vary depending on the purpose of the network. The default event-to-sound mappings are
listed in Table 4.7.

Feature construction: Example

Event 4 in Table 4.7 has the following event condition based on the three way handshake
mechanism, and the function of the SYN and SYN-ACK packets in the TCP protocol: ‘SYN
in IPs >300 and SYN-ACK out IPs < 50 and and SYN in IPs < 1000’

This means that if a host received 300–1000 SYN packets requesting a connection while
only less than 50 SYN-ACK packets were sent as a response, then the sound of thunder should
be played. This sound will tell the operator that a network host is receiving a high number
of requests for connection at multiple ports, but fewer than 50 open ports are responding.
Sending a high number of connection requests is certainly malicious as it has to be part
of heavy port scan or other malicious activities. Since less than 50 SYN-ACK packets
were sent as a response, it means that some of the SYN requests are going to closed ports.
Also, the RST response can be added to this event to confirm the correct response of closed
ports, however, the number of SYN-ACK packets in this situation is enough to confirm the
malicious behaviour.

Table 4.7 Feature-to-sound mappings.

No Feature Conditions Sound

1 SYN-in-IP <30 and SYN-ACK-out-IP >0 and ACK-in-IP >0 and
RST-out-IP <10

Forest bird

2 SYN-in-IP >10 and SYN-in-IP <30 and PSH-ACK-out-IP <6 Rain on roof
3 SYN-in-IP >20 and SYN-ACK-out-IP <10 Rain on roof
4 SYN-in-IP >300 and SYN-ACK-out-IP <50 and SYN-in-IP

<1000
Thunder

5 SYN-in-IP >1000 Creek
6 SYN-out-IP >10 and SYN-ACK-in-IP <2 and ACK-out-IP <3 Rain
7 SYN-out-IP <30 and SYN-ACK-in-IP >0 and ACK-out-IP >0 and

RST-in-IP <10
Forest bird

Continued on next page



4.4 SoNSTAR Requirements and Design 83

Table 4.7 – Continued from previous page

No Feature Conditions Sound

8 ACK-in-IP >1 and the rest of IP flow feature equal 0 Seagulls
9 ACK-out-IP >1 and the rest of IP flow feature equal 0 Loon

10 FIN-in-IP >9 and FIN-in-IP >SYN-out-IP and FIN-in-IP
>SYN-in-IP and FC-4 >10

Cricket

11 FIN-in-IP <50 and (FIN-in-IP <= SYN-out-IP or FIN-in-IP <=
SYN-in-IP )

Forest bird

12 FIN-out-IP >9 and FIN-out-IP >SYN-out-IP and FIN-out-IP
>SYN-in-IP and FC-3 >10

Sheep

13 FC-7 >9 Owl
14 FC-7 <10 Forest bird
15 FC-8 >9 Horse snort
16 FC-8 <10 Forest bird
17 NULL-in-IP >0 Frog
18 NULL-out-IP >0 Frog
19 URG-PSH-FIN-in-IP >0 Wolf
20 URG-PSH-FIN-out-IP >0 Wolf
21 LAND-in-IP >0 Beach
22 LAND-out-IP >0 Beach
23 RST-in-IP >25 and ACK-in-IP <250 Wind on grass
24 RST-out-IP >25 and ACK-out-IP <250 Wind on grass
25 FC-1 >4 Fountain
26 FC-1 <5 Forest bird
27 FC-2 >4 Heavy rain
28 FC-2 <5 Forest bird
29 RST-out-IP >5 and FC-5 <RST-out-IP and ACK-out-IP <7 Wind
30 RST-in-IP >5 and FC-6 <RST-in-IP and ACK-in-IP <7 Wind
31 SYN-ACK-out >20 Snow storm
32 SYN-ACK-in >20 Walk in snow
33 (Traffic Flow Counter) >1000 Fire
34 (IP Flow Counter) >600 Fire
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4.4.9 SoNSTAR interactive sonification

SoNSTAR is an interactive sonification system. Users may change the time window period,
manipulate features and thresholds and re-assign sounds, and then restart with the new
settings online. The level of each event sound can be adjusted independently with a slider
control and can even be muted if desired. Any sound can be assigned to any chosen flow
event in real time enabling the user to re-design the sound environment completely. Fig. 4.8
shows the SoNSTAR interactive sonification model.

Fig. 4.8 Interactive sonification model showing the interactive nature of SoNSTAR.

Users interact with SoNSTAR according to their understanding of the sound generated
by the network traffic environment so as to increase their situational awareness. SoNSTAR
enables the user to interact immediately with the system and its traffic to identify anomalous
behaviours. Hunt and Hermann advise that sonification designers should respect of linking
between physical actions and acoustic reactions produced that we have been familiar with
since birth[76]. In a network environment this could mean that we would expect the sounds
to change when the system is under attack and we expect networks to behave differently
when they are under more stress. SoNSTAR uses multiple natural and man-made sounds to
create the soundscape environment. When choosing the sounds, the natural reactions of users
to the sounds is taken into consideration in order to allow users to sense and feel the network
environment in relation to their own experience in the real world. SoNSTAR allows users
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to change sounds and create their own preferred acoustic environment in order to enable
them to choose the most suitable sounds which convey to them the state of the network in
a maximally meaningful way. SoNSTAR transforms all of the network traffic into a rich
auditory field that envelops the listener in a goal-driven exploratory methodology where the
network traffic is first filtered and the user is left only with the specific features that they
chose.

4.5 Experiment for Packet Count Concept

An experiment was conducted to explore the potential of using flag states to represent the
behaviour of the cyber environment. Initially, we operated the system and visually watched
the packet counts and number of flows. We noticed packet counts within the flow provided
information about direction, status, and behaviour of the flows. However, the number of
flows was high, making it very difficult to monitor and follow these packet counts visually (a
large number of total connection flows).

We ran the system on a macOS workstation and set the time window to 5 seconds. We
visited a number of websites and made the system collect all the incoming and outgoing
traffic. Also, we launched some port scan attacks from a MacBook Pro system. Then we
noticed the flows counts changed according to the behaviour of the traffic.

4.5.1 Results

Table 4.8 represents a sample of IP flow packet counts which are presented on the screen
and saved into a log file. Packet counts presented in Table 4.8 are sorted in the following
sequence: The flow number, FIN out, FIN in, SYN out, SYN in, SYN ACK out, SYN ACK
in, RST out, RST in, ACK out, ACK in, PSH ACK out, PSH ACK in, URG PSH FIN in,
Null in.

Table 4.9 shows a comparison between the numbers of IP flows and traffic flows within
the first five time windows.

4.5.2 Discussion

Table 4.8 shows 18 IP flows. As explained previously, IP flows consist of packet counts
sorted according to their flag type regardless of port numbers. These counts represent the
total packet counts for each type within the IP flow. The first row in the table represents IP
flow number 1. It shows the computer requested to start the connection by sending out a
SYN packet to a website host and received back a SYN-ACK packet from the website, then
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Table 4.8 The results of workstation traffic packet counts for the total connection sample

No. Fo Fi So Si SAo SAi Ro Ri Ao Ai PAi PAo UPFi Nulli

1 4 4 14 0 0 14 0 0 1006 990 110 275 0 0
2 0 0 2 0 0 3 0 0 31 21 18 27 0 0
3 3 5 7 0 0 7 0 0 193 149 47 94 0 0
4 0 0 1 0 0 2 0 0 199 190 26 77 0 0
5 0 0 3 0 0 3 0 0 77 57 26 51 0 0
6 0 0 2 0 0 2 0 0 12 6 9 12 0 0
7 1 0 1 0 0 1 0 1 444 926 4 22 0 0
8 0 0 1 0 0 2 0 0 20 8 12 18 0 0
9 0 1 3 0 0 3 0 0 208 164 53 120 0 0
10 2 2 4 0 0 4 0 4 2086 5825 22 33 0 0
11 0 0 1 0 0 2 0 0 20 8 12 18 0 0
12 1 1 0 0 0 0 0 2 1219 5944 8 12 0 0
13 0 0 0 0 0 0 0 0 3 3 4 2 0 0
14 1 1 0 0 0 0 0 0 2 2 3 1 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0 0 0 640 0 1 0 0 0 1203 0
17 0 18 0 0 0 0 18 0 0 0 0 0 0 0
18 0 0 1 204 5 0 185 5 0 0 0 0 0 0

Table 4.9 IP flow and traffic flow counts

Time Window: IP Flow Count Traffic Flow Count

1 9 21
2 35 63
3 33 39
4 18 26
5 6 12
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sent out an ACK packet to confirm this connection. Also, IP flow 1 in the table shows that
14 traffic flows were established within the IP flow during this time window. Inspection of
the packet counts for each type revealed that four traffic flows were terminated within this
IP flow by exchanging FIN packets in both directions. Both hosts exchanged ACK packets
to confirm each flow terminated. 10 traffic flows are still active. It is clear both hosts have
exchanged information as they exchanged a good number of PSH-ACK and ACK packets.
Therefore, this this IP flow appears to be normal.

The second IP flow established connections using the three-way handshake mechanism
twice and both are still active. Theoretically this means it is connected through two different
ports (two traffic flows).

IP flow 10 shows four traffic flows established successfully. Two of them were terminated
by receiving four RST packets from the website. IP flows 1 to 14 show normal flow behaviour.

IP flow 15 shows one incoming packet with Null (Zero flag). This type of packet indicates
malicious activity. Usually, if only a few packets are sent they might indicate a Null port
scan;if many packets are seen, it might be considered a DoS attack.

IP flow 16 shows 1203 incoming URG PSH FIN packets, and 640 outgoing RST packets;
it is clear a heavy port scan is occurring and the workstation sent RST packets for each closed
scanned port.

Flows 17 shows18 incoming FIN packet, and 18 outgoing RST packets in response; it is
clear a port scan is going on and all the ports scanned are closed once. Theoretically, the FIN
out and FIN in normal conditions should be equal, or the difference would be very small if
found.

Flow 18 shows 204 incoming SYN packets, and responded by 185 outgoing RST packets;
it is clear a heavy port scan is going on and the workstation sent outgoing RST packets for
each closed scanned port.

Table 4.9 shows the number of IP flows was approximatley half that of the traffic flows
in all the five-second time windows. The longer the time window, the lower the proportion
of IP flows will be compared to traffic flows. A longer communication between any two
hosts will create more and more traffic flows because of the mechanism of changing port
numbers, while the number of IP flows will be always one as it depends on host IP addresses
only. It can be noticed the number of flows increased and then decreased. This is because
when we started connecting to a new website, a number of new flows were initiated and
when the connections were broken, the number of flows dropped. Only websites with active
connections will keep their flows open.

Extracting the features of these flags and representing them with sound according to the
theoretical and experimental knowledge about traffic behaviour provides more understanding
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to the events of the network environment. The advantage of being an interactive system
is that it provides the possibility for the operator to change the conditions of events and
threshold values to explore flows behaviour in the network environment. The administrator
could add more features and create events according to the targeted behaviour.

4.6 Experiment for Sound Recognition and Design

Evaluating the initial design of the system sounds is important for evaluating the usability of
recorded sounds to identify network events. This step is important for approving the use of
recorded sounds in this monitoring system. The success of this step is important to support
the use of sonification in security settings and practices to improve monitoring capabilities
for situational awareness. Moreover, this evaluation can confirm that SoNSTAR is correctly
generating different sounds events according to the type of attacks and traffic behaviour
received. The main purpose of the experiment is to confirm that a human operator is able
to recognise traffic events based on listening to recorded sounds. In addition, feedback was
obtained from participants about the event-to-sound mappings design and their experience of
using SoNSTAR.

4.6.1 Network Design

A macOS 10.10.5 workstation with a 3.7 GHz quad-core processor, 16 GB 1866 MHz DDR3
ECC RAM and 27-inch (2560 x 1440) display, was used as a server. SoNSTAR was used on
this server to monitor its incoming and outgoing traffic.

A virtual network was created using Virtualbox and was installed on an Apple MacBook
Pro running macOS 10.10.5. The computer has a 2.5 GHz intel core i7 processor, 16 GB
1600MHz DDR3 RAM and Retina,15.4-inch (2880 x 1800) display. In addition to the host
machine, the Virtualbox network comprised three virtual hosts: two running Kali Linux
Debian 64-bit and one running Fedora 24 64-bit in addition to the host machine.

The server and the virtual network were connected through a router. This router also
provides an internet connection to both of them. Fig 4.9 shows the evaluation environment
used in this experiment.

4.6.2 Participants

A call for participants was been sent through the university email system to all MSc and
PhD computer science and engineering students. 19 participants (14 male, 5 female) were
able to devote the time needed to participate in the study which took place in April 2016.
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Fig. 4.9 The evaluation network setup

All 19 participants completed the study. All of the participants were aged from 25 to 45
years. The participants were PhD and MSc students at the university. 18 participants were
from the Department of Computer and Information Sciences, one was from the Department
of Mechanical Engineering, and the participants had good knowledge of computers and
information technology and basic knowledge of computer network security.

4.6.3 Experiment design

Each participant performed a task condition which involved seven anomalous behaviours
generated by penetration tests and network attacks. SoNSTAR was used to monitor the
activity with the aim of detecting changes in the sounds caused by the malicious activity. The
participants kept records of each sound they heard using a questionnaire table designed for
this purpose (see Appendix C).

At the end of the task performance was calculated based on the number of true positive
(TP), true negatives (TN), false positives (FP)and false negatives (FN), where:

• TP: represents the number of events which are correctly identified. Case was positive
and detected by the user as positive.

• FP: indicates the number of events which are incorrectly identified. Case was negative
but detected by the user as positive.

• TN: indicates the number of events which are correctly rejected. Case was negative
and detected by the user as negative.
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• FN: represents the number of events which are incorrectly rejected. Case was positive
but detected by the user as negative.

The SoNSTAR assessment used various metrics to evaluate the results of the experiment,
namely TPR, or true positive rate (also commonly known as recall) true negative rate (TNR),
false positive rate (FPR), false negative rate (FNR), accuracy, precision (p) and F-measure
[105, 116, 124].

The TPR metric indicates the proportion of positives which are correctly detected by
participants and is given by:

TPR/recall =
TP

TP+FN
The precision is the number of true positives amongst all the reported positives:

precision =
TP

TP+FP

The F-measure is a weighted harmonic mean of the precision and recall [105, p.1147]:

F = 2 · precision · recall
precision+ recall

The accuracy metric indicates the proportion of correct identifications of all instances:

accuracy =
TP+TN

TP+TN+FP+FN
The true negative rate (TNR) indicates the proportion of negatives that are correctly identified,
such as the percentage of network events which are correctly identified as not occurred.

TNR =
TN

TN+FP
The false positive rate (FPR) indicates the proportion of positives that are incorrectly identi-
fied, such as the percentage of network events which are incorrectly identified as occurred.

FPR =
FP

FP+TN
The false negative rate (FNR) indicates the proportion of negatives that are incorrectly
identified.

FNR =
FN

FN+TP
Four categories of behaviour were used in this experiment as follows:
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• Traffic: using the internet, such as playing a YouTube video.

• Ping: using one of any packet types for pinging.

• Port scan: including the four types, SYN, Null, Xmas and FIN.

• DoS, DDoS including first, SYN flood as type; and second, DDoS using spoofed IP
addresses performed from the three machines in the virtual network.

The attacks used in this experiment in sequence from 1 to 7 are listed in Table 4.10. These
attacks create different traffic behaviours which represent the seven traffic states monitored
in this experiment. These attacks were performed using the Nmap scanner and Hping3
commands.

Table 4.10 Type and Sequence of Attacks Used in the Experiment

No Attack Command Attack Name

St.1 hping3 -F -P -U 192.168.1.23 -c 10 Xmas ping scan
St.2 nmap -sS 192.168.1.23 or nmap -sT 192.168.1.23 Nmap Scan using TCP

SYN scan or TCP con-
nect

St.3 hping3 -c 10000 -d 128 -w 64 -p 8000 –flood –rand-
source 192.168.1.23

DDoS using Spoofed
IP’s

St.4 hping3 -c 21 -V -p 80 -s 5050 -F 192.168.1.23 or
hping3 -c 3 -F 192.168.1.23

FIN scan

St.5 hping3 192.168.1.23 or hping3 -c 15 -V -p 80 -s 5040
192.168.1.23

Null scan

St.6 nmap -sX 192.168.1.23 Nmap Xmas scan
St.7 hping3 -V -S -c 1000000 -d -w - - flood 192.168.1.23 SYN DoS Flood

For example, the attack St.1 in Table 4.10 uses Hping3 to conduct an Xmas Scan. This
scans type sets the sequence number to zero and sets the FIN, PSH and URG flags in the
packet. The ‘-c’ parameter sets the number of packets to be sent; in this case 10 packets are
sent to host 192.168.1.23. If the target device’s TCP port is closed, the target device sends
a TCP RST packet in reply. If the target device’s TCP port is open, the target discards the
TCP Xmas scan, sending no reply. The first option of attack St.2 uses Nmap’s ‘-sS’ option
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to conduct a TCP SYN scan. This scan sets the SYN flags in the packet. It is performed
by quickly scanning thousands of ports per second on the host 192.168.1.23 as it never
completes the TCP connections.

4.6.4 Materials

Before beginning the experiment, each participant was given an informed consent declaration
to sign (see Appendix A). Following the giving of consent each participant completed the
three tasks using a macOS 10.10.5 workstation equipped with a 27-inch monitor and Sony
MDR-7506 Professional headphones.

The training and guidelines sheet (Appendix E) included a table describing the meaning
of each sound might be heard in the experiment in order to provide understanding of the
expected events for the participants.

A questionnaire was given to each participant (see Appendix C). The first section elicited
general participant information such as gender, level of education, speciality, department
and year of study. The second section contained a list of expected sounds and check boxes
in seven columns for the seven expected traffic behaviours to enable participants to tick as
many sounds as they hear for each behaviour.

The third section included evaluation of monitoring workload; upon completion of each
experimental task, participants completed the NASA-Task Load Index (TLX) assessment [67]
to measure their performance workload. This includes mental demand, temporal demand,
physical demand, performance, effort and frustration rates. Also there were extra ratings for
detection confidence, ease of use, visual fatigue and sound fatigue included in the evaluation
of both tools. For each of these rates, the participant had to provide an assessment on a scale
of 0 to 10.

The participants were then asked to evaluate the sonification in two areas Aesthetics and
Annoyance from horrible to fantastic on a scale of 0 to 10. Participants could provide any
extra feedback about this experiment in the final section.

4.6.5 Procedure

Participants were informed that they would take the role of a network administrator to protect
against malicious activities. The explanation of the experiment included the SoNSTAR task
condition and where should they fill in the appropriate section. The participants’ virtual
network computers were switched on and some music and YouTube videos were started to
generate normal traffic across the network.
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The training and guidelines sheet was provided to each participant. Before starting
the experimental task, participants were trained for about seven minutes in the basics of
SoNSTAR and how to recognise the expected sounds. Each sound was played and named
for the participant. Participants were briefed on the meaning of each sound in terms of the
network event it represented. It was also explained how recognising the order in which
sounds occurred was important to comprehending the traffic behaviour. Training involved
demonstrating in real time one of the seven attacks used in the experiment followed by
playing each sound named in the questionnaire list separately.

Each participant was provided with the questionnaire to fill in the outcomes for the task.
Participants were then exposed to the SoNSTAR output for seven minutes. The participants
were informed to expect one attack or penetration test each minute. At some point during each
minute, the participant’s workstation received one real-time attack or pen-testing activity.
Participants were informed to check the boxes provided for each sound heard for each
malicious activity received.

Directly after completing the task, participants were asked to answer the rest of the
questions regarding the Monitoring Evaluation Task. Then they were requested to evaluate
the sonification in terms of aesthetics and annoyance and to provide feedback with regards to
their opinions about this experiment.

4.6.6 Results

The results obtained from the experiment were as follows.
The SoNSTAR TP, TN, FP and FN results shown in Table 4.11 are extracted from

the questionnaire data. The results were calculated for the seven states to assess sound
recognition as part of the situational awareness process. Based on these results, various
metrics were calculated to evaluate the SoNSTAR sound design and the usability of the
system. These are shown in Table 4.12.

Table 4.11 The Participants Detection Results

States St.1 St.2 St.3 St.4 St.5 St.6 St.7

TP 57 88 69 74 63 86 127
TN 263 206 244 241 246 223 183
FP 3 22 3 6 1 5 7
FN 0 7 7 2 13 9 6
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Table 4.12 Evaluation Metrics Results

States St.1 St.2 St.3 St.4 St.5 St.6 St.7 Average

TPR/recall 100 92.63 90.79 97.37 82.89 90.53 95.49 92.81
TNR 98.87 90.35 98.79 97.57 99.60 97.81 96.32 97.04
FPR 1.13 9.65 1.21 2.43 0.40 2.19 3.68 2.96
FNR 0 7.37 9.21 2.63 17.11 9.47 4.51 7.19
Accuracy 99.07 91.02 96.90 97.52 95.67 95.67 95.98 95.98
Precision 95.00 80.00 95.83 92.50 98.44 94.51 94.78 93.01
F-measure 97.44 85.85 93.24 94.87 90.00 92.47 95.13 92.72

True positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false
negative rate (FNR) were calculated for the seven states used in the experiment, in addition
to the average rate for all states and are presented in Table 4.12. The TPR, TNR , FPR and
FNR results are illustrated in Fig. 4.10.

Fig. 4.10 The Detection Rates Results
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Accuracy

Accuracy was calculated for the seven states used in the experiment, in addition to the average
for all states and the results are presented in Table 4.12 and illustrated graphically in Figure
4.11.

Fig. 4.11 Accuracy Results

Precision (p)

Precision was calculated for the seven states used in the experiment, in addition to the average
for all of the states and the results are presented in Table 4.12 and illustrated graphically in
Fig. 4.12.

Fig. 4.12 Precision Results
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TPR/Recall

The recall was calculated for the seven states, in addition to the average rate for all of the
states and the results are presented in Table 4.12 and illustrated graphically in Figure 4.13.

Fig. 4.13 TPR/recall Results

F-measure

The F-measure was calculated for the seven states, in addition to the average for all of the
states and is presented in Table 4.12.

NASA-Task Load Index

The NASA-Task Load Index results are shown in Table 4.13.

Table 4.13 NASA-Task Load Index Results

No Task Load Index Rate

1 Mental Demand Rate 28.95%
2 Temporal Demand Rate 36.32%
3 Physical Demand Rate 11.58%
4 Performance Rate 85.79%
5 Effort Rate 16.32%
6 Frustration Rate 19.47%
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Additional evaluation

Additional SoNSTAR evaluation results are shown in Table 4.14.

Table 4.14 Additional SoNSTAR evaluation results

No Index Mean Rate

1 Detection Confidence Rate 88.42%
2 Ease of Use Rate 94.21%
3 Sound Fatigue Rate 14.20%
4 Aesthetics 96.79%
5 Annoyance 13.37%

4.7 Discussion

Several attacks are used in this experiment. Each type causes different traffic behaviour.
These types of attacks vary in terms of their intensity and purpose. The behaviour of each
type is represented by sequential sounds in a way that shows the events of the attack. The
method helps to express traffic behaviour in a sonic way rather than having to monitor the
screen all the time. The purpose of this experiment was to determine first, whether the
sounds used to represent the behaviour of the network could be distinguished and second,
whether the sequences of sounds could be distinguished. Since situational awareness requires
intelligence to be provided in real-time, it is important that the sonic representation leads to a
real-time understanding of the traffic behaviour.

Table 4.12 shows that the TPR was highest for the first and fourth state behaviours where
sound recognition by all participants reached 100% and 97.37% respectively. TNR was high
for most state behaviours with an average of 97.04%. The FPR was acceptable although it
reached 9.65% for the second state behaviour. The FNR reached a high percentage of 17.11%
for the fifth state behaviour with an average of 7.19%.

Accuracy was highest in the first state where it reached 99.07% with an average of 95.98%
across the seven states. Fig. 4.11 clearly shows that accuracy dropped for the second state.
However, it rose again and stayed steady for the rest of the states. Precision was 95% for the
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first state behaviour but reduced in the second state to 80%. Average precision was 93.01%.
The F-measure was 97.44% for the first state and dropped to 85.85% for the second state
behaviour. Its overall average was 92.72%. Recall started at 100% for state 1, and maintained
an average of 93.81%. It was reduced in the fifth state to 82.89%.

The results show the high potential of using recorded sounds rather than MIDI tones for
recognition purposes. Some systems, such as Stetho [91], faced problems due to MIDI failing
to represent rich environments such as network traffic adequately. The InteNtion project [60]
used MIDI messages but faced insurmountable problems in defining usable traffic-to-MIDI
mappings. The use of SoNSTAR by participants inexperienced in network monitoring has
shown high TPR/recall, accuracy, precision, and F-measure rates. The FPR was acceptable
although it reached 9.65% for the second state behaviour mainly because the participants
were mixing up the rain and rain on the roof sounds. The participants were able to recognise
the sounds which they are used to such as rain, thunder, wind and fire.

The TLX scores in Table 4.13 tell us that using sound in network monitoring has demon-
strated high-performance rate (85.79%) with acceptable mental, temporal, and physical
demand rates. The system did not require high effort and frustration was rated low by the
participants. These results support the potential of using recorded sounds in continuous
monitoring tasks.

A major challenge for sonification designers continues to be that their work is often
perceived as annoying, fatiguing, or both. We learn from the results presented in Table 4.14
that participants were highly confident about recognising sounds (88.42%) and considered
SoNSTAR to be a user friendly system where the ease of use rate reached 94.21%. The
majority of the participants were happy with the sound aesthetics (96.79%) and and very few
experienced annoyance (13.37%). The sound fatigue rate was only 14.20%.These results
are encouraging for the continued development of SoNSTAR for real-time monitoring of
network traffic for situational awareness.

It is hard to recognise or predict normal and anomalous behaviour in computer networks.
Representations of raw packet information using sound can bring administrators closer to
their network behaviour and reduce the perceptual gap generated by normal IDS and other
classification applications. SoNSTAR generates sounds online from real-time traffic. These
sounds change according to the types of packets and their behaviour in the network.

An experiment was conducted to assess the human capability to recognise sounds gen-
erated by SoNSTAR and to evaluate SoNSTAR against the requirements of a real-time
monitoring tool. The results clearly showed that the second state (a SYN scan) has the lowest
TNR, accuracy, precision and F-measure which clearly indicates a drop in sound recognition
although SoNSTAR has played the correct sounds for that event. The questionnaire data
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show that participants varied between identifying the sounds of normal rain, rain on a roof
and heavy rain, where the majority chose the normal rain sound which is considered in this
experiment to represent a false positive (FP), and this increased the FPR. In addition, some
participants varied between identifying the sounds of wind and wind on grass, where some
participants chose both or wind sound instead of wind on grass, which generated more FPs
or FNs. Most FP and FN decisions in this experiment were caused by errors in perception of
the rain and wind sounds.

TPR/recall was lowest for state 5. This is because the number of false negatives (FN)
increased due to some participants experiencing misperception of the wind and wind on grass
sounds, where some participants chose wind or wind on grass sound instead of both. The
same confusion was seen again in state 7. In addition, two participants failed to identify the
fire sound as well. One of the participants was confused about the sound of crickets, which
he identified in five states despite it being present in only one state.

Generally, TPR/recall and all of the other metrics show that good results were obtained
from this experiment. Training took only seven minutes and many participants had heard
each sound only once in the training. In addition, because ability varies between individuals
some participants made only one FP mistake related to the rain sound and they were correct
on all other sounds. Changing the design could be one option. However, it was considered
that longer training might eliminate such confusion in future.

The sounds were generated by changes in flow behaviour on based on packet flag states
and counts. Therefore, these sounds should be interpreted by the listener on the basis of their
knowledge and experience of communications protocols, in addition to knowing what each
SoNSTAR sound represents.

For example, when traffic with any type of packet exhibits typical traffic behaviour a
type of ordinary jungle bird sound is played. Therefore, this sound will be always in the
background when normal traffic is moving through the network. So, if there are bird sounds
this means that there is traffic in the network. The first attack state led to the sound of wolves
followed by a strong wind sound being generated. In order to translate this behaviour, we
should know that the sound of wolves means many incoming URG, PSH and FIN packets
while the following wind sound means that many outgoing RST packets are being sent out of
normal order. It is clear URG, PSH and FIN packets are used to ping or scan closed ports
which generate back as many RST packets as there are closed ports. If the URG, PSH and
FIN packets were very high in number, the sounds of wind on grass would be also generated,
as happened in state 6. If the number of any type of packets was large and thus generating
large numbers of traffic flows or IP flows, a fire sound would be played; fire is a sign of a
high-volume scan or DoS/DDoS attack.
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SoNSTAR periodically gathers online flag information according to the time window
set by the operator. To determine the optimal time window for traffic aggregation to allow
SoNSTAR to detect malicious traffic, an initial experiment was run repeatedly with the time
window being increased by a five-second increment each time. SoNSTAR was set to its
default configuration and in every time window labelled each detected traffic flow as normal
or malicious, storing the results in its log file. For this exercise the CAIDA DDoS Attack-
2007 dataset [26] was chosen. The CAIDA dataset contains 3.5 GiB of traffic including a
number of DDoS attacks. Because the only traffic recorded for the servers targeted by the
DDoS attacks is the DDoS traffic, the dataset is self-labelling as any traffic relating to other
hosts is known to be normal. It was found that the rates of DDoS detection were high for all
time windows (see Table 4.15). The results show that a 35 s time window provided the best
accuracy and precision. However, both the 15 s and 20 s time windows showed an accuracy
of 99.8% and precision of 99.96%, which make them suitable to be used as well.

Table 4.15 SoNSTAR Evaluation Metrics for CAIDA DDoS Dataset

Time
window

FPR Recall ACC Precision

5 s 0.03% 97.8% 97.8% 97.92%
10 s 0.02% 98.4% 98.4% 98.92%
15 s 0.01% 99.6% 99.6% 99.94%
20 s 0.10% 99.8% 99.8% 99.96%
25 s 0.01% 99.7% 99.8% 99.96%
30 s 0.01% 99.4% 99.4% 99.9%
35 s 0% 100% 100% 100%

In Chapter 5 an experiment is presented that compares SoNSTAR sonification to an IDS
system (Snort) to test human ability to comprehend sounds and how practical SoNSTAR is
in raising or maintaining situational awareness levels. SoNSTAR’s current design is able
to extract TCP, UDP and ICMP protocol packet information. Since the ICMP ping packets
usually have a relation to TCP protocol events, extra development was conducted to the
system to include ICMP ping events. ICMP packet header information was extracted with
ICMP packet data being used to detect ping activities. The sound of a woodpecker sound
was assigned to ICMP ping events.
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4.8 Summary

A novel interactive sonification system for network monitoring (SoNSTAR) based on traffic
flow and IP flow features has been developed to support real-time monitoring to increase net-
work administrators’ situational awareness. This chapter describes the design of SoNSTAR
and the features list used to trigger the sounds generated. The sound mapping mechanisms
combined with the introduction of the concept of IP flow allowed the huge volumes of
network traffic to be reduced to manageable sizes for sonification.

Two initial evaluations (Sections 4.5 and 4.6) are described and they are used to support
the primary design of SoNSTAR. The evaluations show that the packet feature counts change
according to the traffic behaviour and the sounds generated are easy to learn and recognise
and SoNSTAR succeeded in transforming the network environment into a soundscape
environment.





Chapter 5

Sonification of Network Flow Events for
Monitoring and Situational Awareness

5.1 Experimental Work and Results

A user study was conducted to investigate the monitoring of network behaviour by participants
using SoNSTAR and, in particular, to evaluate SoNSTAR as a complement to existing system
security tools. Three experimental conditions were investigated: 1) audio feedback only
(using SoNSTAR), 2) visual feedback only (using the Snort intrusion detection software),
and 3) audio and visual feedback together (SoNSTAR and Snort). Snort was chosen to be
used in this experiment because, it is a de facto standard (being used inside many current
popular network security tools) which makes the evaluation more general [78, 141].

5.1.1 Network design

The experiment was conducted using two virtual networks running on the Virtualbox software.
The first network was installed on a macOS 10.10.5 workstation with a 3.7 GHz quad-core
processor, 16 GB 1866 MHz DDR3 ECC RAM and a 27-inch (2560 x 1440) display. The
virtual network comprised four machines (Ubuntu 64-bit, Windows Server 64-bit, Kali Linux
Debian 64-bit and macOS 10.11) in addition to the host machine.

The second virtual network was installed on an Apple MacBook Pro running macOS
10.10.5 with a 2.5 GHz Intel core i7 processor, 16 GB 1600MHz DDR3 RAM and a 15.4-
inch (2880 x 1800) Retina display. This network contained three machines (two Kali Linux
Debian 64-bit installations and a Fedora 24 64-bit machine) in addition to the host machine
(see Figure 5.1).
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Fig. 5.1 Illustration of the Virtual Network Environment.

These two virtual networks were connected through a router provided by Northumbria
University. SoNSTAR and the Snort IDS were installed on both networks allowing each
network to attack the other, and each machine to attack the other machines within its own
local virtual network.

5.1.2 Participants

A call for participants was been sent through the university email system to all MSc and
PhD computer science and engineering students. 16 students responded to the email and 10
participants (7 male, 3 female) were able to devote the time needed to participate in the study
which took place in September 2016. All 10 participants completed the study. All of the
participants were aged from 25 to 45 years and were PhD and MSc students at the university
(8 from the Department of Computer and Information Sciences). All participants had good
knowledge of the use of computers and information technology and general knowledge about
computer network security.
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5.1.3 Experimental design

Each participant performed a network monitoring task under each of the three experimental
conditions (audio only, visual only, audio-visual). Each task required participants to detect
either three or four attacks out of seven overall.

The participants were assigned to use either Snort or SoNSTAR first (five participants
use each system first) and then to use them together. At the end of each task performance
was calculated based on the number of true positive (TP), true negatives (TN), false positives
(FP)and false negatives (FN). Other metrics were then calculated using the same method as
described in Chapter 4.

Snort’s detection rules were set to the defaults provided by the snort.conf file [150].
The Snort default ruleset provides a basic set of network intrusion detection rules developed
by the Snort community which allow the detection of typical probes and attacks such as
stealth port scans, DoS/DDoS attacks, CGI attacks and buffer overflows.

SoNSTAR was set to the sound mapping presented in Table 4.7. Four categories of
behaviour were used in this experiment as follows:

• Traffic: using the internet, such as playing a YouTube video.

• Ping: using an ICMP ping.

• Port scan: four types — SYN, Null, Xmas and FIN port scans.

• DoS, DDoS including first, SYN flood as type; and second, DDoS using spoofed IP
addresses performed from the three machines in the virtual network.

These behaviours were performed using a normal terminal, the Nmap scanner and Hping3
commands. The folder ‘examples’ in the project repository [41] contains examples audio
files of SoNSTAR sonifications of the activities used in this experiment as follows:

1. S1 Audio. Normal traffic behaviour. SoNSTAR normal events sounds audio file.

2. S2 Audio. FIN behaviour. SoNSTAR FIN scan audio file. The scan performed using
hping3.

3. S3 Audio. Xmas behaviour. SoNSTAR heavy Xmas scan audio file. The scan
performed using Nmap.

4. S4 Audio. NULL behaviour. SoNSTAR low NULL scan audio file. The scan
performed using hping3.
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5. S5 Audio. NULL behaviour. SoNSTAR heavy NULL scan audio file. The scan
performed using hping3.

6. S6 Audio. SYN behaviour. SoNSTAR heavy full connection SYN scan audio file.
The scan performed using Nmap.

7. S7 Audio. Ping behaviour. SoNSTAR SYN-Flood-DOS audio file. sounds of SYN
flood attack behaviour for denial of service purpose; performed using hping3.

5.1.4 Materials

Before beginning the experiment, each participant was given an informed consent declaration
to sign (see Appendix B). Following the giving of consent each participant completed the
three tasks using a Mac OS 10.10.5 workstation equipped with a 27-inch monitor and Sony
MDR-7506 Professional headphones.

The training and guidelines sheet (see Appendix F) included a table containing the seven
chosen attack types for the experiment as well as the detection of text in snort and detection
sounds in SoNSTAR written in front of each attack. The first column contained the attack
category, the second column the attack type name, the third column text expected by Snort
and the fourth column a description of the sound events for each attack, explaining the extra
understanding those sounds provide.

A questionnaire was given to each participant (Appendix D). The first section elicited
general participant information such as sex, level of education, speciality, department and
year of study. The second section was a table for reporting detected malicious activities for
the monitoring detection tasks for the three task conditions. The questionnaire provided two
tick boxes in front of each type of attack for the three task conditions.

The third section included evaluation of monitoring workload; upon completion of each
experimental task participants completed the NASA-Task Load Index (TLX) assessment [67]
to measure their performance workload. This includes mental demand, temporal demand,
physical demand, performance, effort and frustration rates. Also there were extra ratings for
detection confidence, ease of use, visual fatigue and sound fatigue included in the evaluation
of both tools. For each of these rates, the participant had to provide an assessment rating on a
scale of 0 to 10.

The participants were then asked to choose their preferred condition (SoNSTAR, Snort, or
both together). They were also requested to provide their evaluations of Snort and SoNSTAR
on a scale of 0 to 5 where 5 denotes the most positive assessment. Participants could also
provide feedback about this experiment in the final section.
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5.1.5 Procedure

Participants were informed that they would take the role of a network administrator to protect
against malicious activities. The explanation of the experiment included three sections (one
for each task condition) and where should they fill in the appropriate section for each task
condition. The participants’ virtual network computers were switched on and some music
and YouTube videos were started to generate normal traffic across the network.

Participants were trained for about five minutes in the basics of the Snort IDS and another
five minutes on SoNSTAR before starting each task condition. The rules for administration
to protect their network and servers against attacks and malicious activities were explained
including the seven specific attacks used in experiment. It was also explained how each task
condition involves concentration and high attention for long periods to detect attacks in their
early stages.

Training involved only the seven attack types used in this experiment. Participants were
provided with a training and guidelines sheet and then trained on how Snort would show
the detected attacks, and how Snort provides text warnings for each type. The seven attacks
were demonstrated in real time. SoNSTAR training involved the same attacks but this time
participants were provided with headphones and using the training and guidelines sheet
they were asked to listen to the attacks one by one in real time. Any questions raised by
participants were answered. They were not informed that SoNSTAR was a project under
development so as to eliminate the effect of such knowledge on the results.

Each participant was provided with the questionnaire to fill in the outcomes for the three
tasks. Five participants were assigned to the SoNSTAR condition for seven minutes first and
then to the Snort condition for another seven minutes. They were then assigned to use both
SoNSTAR and Snort for another seven minutes.

The other five participants were assigned to the Snort condition for seven minutes and
then the SoNSTAR condition for another seven minutes. Then they were assigned to use
both SoNSTAR and Snort for another seven minutes. This was done to eliminate the effect
of using any one condition first.

During each period, the participants’ networks received three or four real-time attacks.
However, they were not informed about the number of malicious activities that could be
expected. During each task, each participant was asked to continue speaking and were
asked for more information about their understanding of security in order to affect their
concentration to some extent.

Directly after completing each task, participants had to answer the rest of the questions
regarding the Monitoring Evaluation Tasks for each tool. At the end of the experiment, the
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participants were asked to tick which was considered the best for them to use, Snort or SoN-
STAR or both together. Then they were requested to complete the rest of the questionnaire.

5.1.6 Results

Several results are extracted from the questionnaire data as follows.
The results for the three conditions are shown in Table 5.1 as extracted from the ques-

tionnaire data. The results were calculated for the three conditions to assess SoNSTAR’s
capabilities as part of the situational awareness process. Based on these results, various
metrics are calculated to evaluate the SoNSTAR sound design and the usability of the system.

Table 5.1 The Detection Results

Metrics Snort SoNSTAR Snort &
SoNSTAR

TP 31 33 30
TN 31 33 38
FP 7 4 2
FN 0 0 0

The metrics calculated from the base variables are shown in Table 5.2.

Table 5.2 Evaluation Metrics Results

Metrics Snort SoNSTAR Snort &
SoNSTAR

TPR/Recall 100% 100% 100%
Precision 81.58% 89.19% 93.75%
F-measure 89.86% 94.29% 96.77%
Accuracy 89.86% 94.29% 97.14%
TNR 81.58% 89.19% 95%
FPR 18.42% 10.81% 5%
FNR 0% 0% 0%
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TPR/Recall was calculated for the three conditions used in the experiment and the results
are presented in Table ch5:table2 and illustrated graphically in Fig. ch5:fig2.

Fig. 5.2 The Detection Rates Results. State conditions were Snort, SoNSTAR, Snort + SoNSTAR
respectively.

Accuracy was calculated for the three state conditions used in the experiment and the
results are presented in Table ch5:table2 and illustrated graphically in Fig. ch5:fig3.

Fig. 5.3 Illustration of Accuracy Results
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Precision was calculated for the three state conditions used in the experiment and the
results are presented in Table ch5:table2 and illustrated graphically in Fig. ch5:fig4.

Fig. 5.4 Illustration of Precision (p) Results

F-measure was calculated for the three state conditions used in the experiment and the
results are presented in Table ch5:table2 and illustrated graphically in Fig. ch5:fig5.

Fig. 5.5 Illustration of F-measure Results
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NASA-Task Load Index results

The mean NASA TLX results for the ten participants are shown in Table 5.3.

Table 5.3 NASA-Task Load Index results

No Task Load Index Snort SoNSTAR

1 Mental Demand Rate 58% 45%
2 Temporal Demand Rate 65% 31%
3 Physical Demand Rate 28% 24%
4 Performance Rate 82% 92%
5 Effort Rate 41% 19%
6 Frustration Rate 71% 36%

Additional evaluation results

Additional SoNSTAR evaluation results are shown in Table 5.4.

Table 5.4 Additional SoNSTAR evaluation (index results)

No Task Load Index Snort SoNSTAR

1 Detection Confidence Rate 88% 90%
2 Ease of Use Rate 86% 96%
3 Visual or Sound Fatigue

Rate
59% 40%

Table 5.5 shows participants’ opinions about whether using Snort and SoNSTAR alone
or together would be best for monitoring.

Table 5.5 Additional SoNSTAR evaluation (preference results)

Index Snort SoNSTAR SoNSTAR &
Snort together

Best to use 10% 30% 60%
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Table 5.6 shows participants’ opinions about Snort and SoNSTAR from horrible (H) to
fantastic (F).

Table 5.6 Horrible to Fantastic Evaluation

Tool H
(100%)

H
(50%)

Average F
(50%)

F
(100%)

Snort 0 0 40% 10% 50%
SoNSTAR 0 10% 30% 0% 60%

5.2 Discussion

One of the purposes of this experiment is to compare the use of a sonification monitoring
system with a visualisation monitoring system to determine what value for the operator can
be added. A second purpose was to find out whether using visualisation and sonification
systems together increases the efficiency of the monitoring process. One of the questions
asked is whether the use of sound will facilitate the monitoring process or not.

Table 5.2 shows a maximum recall of 100% for the three state conditions (Snort, SoN-
STAR, Snort + SoNSTAR respectively). Meanwhile, the TNR was higher when using
SoNSTAR (89.19%) compared to Snort (81.58%). However, when participants used both
together this rose to 95%. The FPR was higher when using Snort (18.42%) than SoNSTAR
(10.81%). However, when participants used both together this decreased to 5%.

Accuracy was calculated for the three state conditions used in the experiment. Accuracy of
recognition was highest when using both Snort and SoNSTAR together at 97.14%. SoNSTAR
alone maintained higher accuracy than Snort alone, at 94.29% and 89.86% respectively.
Figure 5.3 clearly shows that accuracy improved when using sonification.

Precision of recognition was highest when using both Snort and SoNSTAR together at
93.75%. SoNSTAR maintained higher precision again compared to Snort at 89.19% and
81.58% respectively. Figure 5.4 clearly shows that precision also improved when using
sonification.

The F-measure was highest when using both Snort and SoNSTAR together at 96.77%.
SoNSTAR achieved a higher F-measure than Snort at 94.29% and 89.86% respectively.
Figure 5.5 shows that the F-measure rate improved as well when using sonification.

The results show that using sonification (SoNSTAR) and visualisation (Snort) together
achieved better results than using each one alone. This indicates that integrating sonification
and visualisation techniques increases the monitoring efficiency. In general, SoNSTAR has
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achieved better results than Snort as the changes in sound notified the participants of the
change in behaviour. This means sonification has improved monitoring capabilities and
shows evidence of the potential of sonification in improving network security monitoring
capabilities.

These experimental results clearly show improvements in monitoring when using sonifi-
cation compared to the visual method only. Although the TPR/recall was 100% for the three
state conditions, we can still see improvements in the accuracy, precision and F-measure
scores for the sonification condition. Although the training of participants was very brief and
the computer security background of most of the participants was basic, they were able to
use both systems in a very good way in a short time.

Comparing The TLX scores in Table 5.3 shows the advantage of using sonification in
monitoring. Mental demand rate shows the mental and perceptual workloads required when
using sonification were less than when using Snort which relied on monitoring messages
and alerts that appeared on the screen (45% vs. 58%). The temporal demand rate indicates
the pressure participants felt due to the pace of the monitoring task. The scores reported
by participants using Snort were approximately double those when using SoNSTAR (31%
vs. 65%). This means that the participants were more comfortable when using sonification
for monitoring. Both systems required low physical activity. Performance rate indicates
how successful the participants thought they were in detecting the traffic behaviours. The
participants were more satisfied with their results in the sonification condition (92% vs. 82%).
Effort rate indicates how hard participants had to work to complete the monitoring task.
The effort rate for Snort was approximately double that of SoNSTAR (19% vs. 41%). This
indicates using sonification can ease the monitoring process. Frustration rate indicates how
stressed, irritated, or annoyed participants felt as opposed to feeling content and relaxed.
SoNSTAR elicited a lower frustration rate than Snort as it does not require concentrating
and waiting while staring at a screen (36% vs. 71%). Having to watch a screen can lead to
feelings of stress at the prospect of missing any reported changes in behaviour. The sound
has the advantage of notifying the participants of changes in behaviour as soon as they
happen. This advantage of using sonification can be better addressed when monitoring for
long periods of time. We believe that the frustration rate will be more pronounced if the
two systems are used for a long period of time at least an hour. In that case, the advantages
provided by the sound will become more user-friendly as the user does not need to look at
the screen all the time.

Table 5.4 illustrates that both systems showed high confidence of the participants in
detecting traffic activities as well as being easy to use. However, the visual fatigue rate was
higher than the sound fatigue rate which also indicates more advantage can be obtained
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when using sonification in monitoring. Table 5.5 results tell us that targeting sonification
and visualisation techniques in monitoring would produce better monitoring systems for the
users. According to Table 5.6, most of the participants consider Snort and SoNSTAR are
good systems to use.

The most remarkable feedback was that a participant asked whether it was possible to add
a visual panel showing the name, colour and image of what is generating the sound as this
would help to distinguish the recorded sound in order to facilitate learning and confirmation.
For example, some initially had trouble distinguishing between the sound of rain and the
sound of rain on a roof, and a visual key might have helped to learn the sounds quicker.

SoNSTAR is designed to be used by professional network users who have good knowledge
about protocols, packets, and traffic flows behaviour. Otherwise, users have to be trained
for a longer time to understand the value of each sound for comprehension because each
behaviour could be based on multiple sounds. For example, a single ICMP ping packet
would produce a woodpecker sound. This sound would tell the user that an ICMP ping has
happened. If repeated, this might be considered a further scan.

Some other behaviours will create multiple sounds. For example, when performing a
SYN scan, the attacker will send a number of packets with the SYN flag set to 1 to a number
of targeted ports. If the port is open the receiver would send back a packet with the SYN flag
set to 1 and the ACK flag set to 1 as a reply to accept the connection. The attacker either
sends back a packet with the FIN flag set to 1 to cut the connection (the TCP half-open scan
type) or sends two packets, the first with the ACK flag set to 1 to confirm the connection and
then the second packet with the FIN flag set to 1 to cut the connection (the TCP connect scan
type). If the port is closed the receiver would send back a packet with the RST flag set to 1,
and if there is no response it means that the port is filtered.

As we set SoNSTAR to default settings, as soon as it receives many SYN packets in an
IP flow, SoNSTAR will play the rain-on-a-roof sound and this would tell the user that an
unusual number of SYN packets is arriving. If the TCP handshake was not correct, that event
would generate a heavy rain sound which would tell the user that there is a problem with
connecting to a specific IP address. If the number of SYN packets was high, SoNSTAR will
play a thunder sound and this will tell the user that someone is scanning a large number of
the system ports of a specific IP address. If the number was huge it would be considered a
DoS attack and the sound of fire would be played. If the scanned system started to send out
RST packets, SoNSTAR would play the sound of wind, confirming that it is a scan attack.
This is a complex process, but SoNSTAR would deal with any changes in behaviour and
play sets of sounds according to what events are happening in the network. The user could
identify any new behaviour according to the set of sounds played.
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Using such a tool to explore and tune a network is important due to the different nature
of networks and the different expected behaviours with different thresholds. For example,
this tool could be used to tune IDS settings to look for new features and events which could
be used to identify threats on a particular network.

Another feature that SoNSTAR possesses is that it generates log files which could help
any user to learn and confirm the reasons for each sound and to evaluate any theoretical event
and ideas of a new feature. This could help users and network students to explore network
protocols and to learn more about network traffic. The use of SoNSTAR would enable them
to think directly about the logic of any behaviour in network traffic and would give them the
opportunity to express their own ideas and to test and learn from them. Using SoNSTAR
reduced mental demand, temporal demand, effort and frustration rates significantly compared
to using Snort, a visual tool and this would be more obvious if the monitoring was for long
hours.

5.3 Summary

The current design purpose is monitoring total network traffic. As a further step to evaluate
SoNSTAR against IDS systems and investigating the advantages that could sonification bring
to raise security situational awareness level, this experiment was performed.

This study indicated that using sonification improved the monitoring process, even for
people who have only basic knowledge about network monitoring. Using sound reduced the
overall mental workload. Participants were able to recognise and comprehend behaviours and
decide which attack was performed which proved the human mind could learn quickly about
the network environment in a way that would result in increasing the security situational
awareness. Although the system could be evaluated manually by comparing against the log
files, this experiment evaluated the practicality of using sonification in live monitoring tasks.
The results suggest that using SoNSTAR to explore new event and features would bring
benefits to IDS systems and network monitoring in general and for situational awareness.

A contribution of this chapter was to reduce the complexity of huge volumes of traffic
in order to be comprehensively sonified by using IP flow in detecting network behaviour,
especially vertical flow behaviours. Also the sound mapping of the network events based on
packet type counts has not been seen before. The next chapter shows how SoNSTAR was
applied to the discovery of horizontal flow behaviours. Vertical flow behaviour occurs when
a single host receives many flows across range of ports from a single source host. Horizontal
flow behaviour occurs when a defined range of ports receives flows across a defined range of
destination hosts.





Chapter 6

Sonification Approach to Support IDSs
to Detect and Learn about Botnet
Behaviour

With the increase of computer network attacks through botnets, the majority of networks of
all sizes are at risk [31]. Security leaders are looking for new ways to improve their current
security monitoring tools for efficient botnet traffic detection. Signature and anomaly-based
IDS technologies use advanced techniques (such as neural networks) to detect and block
attacks effectively. However these IDS and visualisation systems do not include the protocol
flow granularity required to understand network events inside an environment; they just
report what happened but not why.

Raising the security situational awareness of the user is high demand in order to quickly
react to situations which require real-time solutions, intelligence, and human intuition to deal
with botnets and other malicious activities. These technologies with their different levels of
data granularity, sonification techniques and integrations with visualisation have not been
subjected to much study with users.

This chapter explores how SoNSTAR may be used alongside traffic log files to enable the
user to target and detect botnet behaviour and reveal important aspects of botnet behaviour.

6.1 Introduction: Botnets

Network administrators commonly use a combination of intrusion detection system (IDS)
software and sensors that inspect traffic on the network, and wait for anomalous events
to occur. Intrusions are defined as ‘attempts to compromise confidentiality, integrity, or
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availability of data, or to bypass the security mechanisms of an IT system’ [2, p.147]. Network
security monitoring has become a crucial task in protecting organisational infrastructure from
today’s threats which have seen intrusions and attack patterns becoming hidden and more
complex [31].

In 2015, IBM analysts reported a number of types of attempt to break into networks and
organisational infrastructures, such as exploiting ‘a vulnerability to inject command code
into software, exploiting a backdoor, or bombarding a system with random passwords in
hopes that one will work’ [21, p.3]. Their report declared that the majority of networks of
all sizes are at risk and that ‘CISOs and security leaders are now looking for fundamental
ways to influence and improve both their own programs and [previously] established best
practices’ [21, p.14].

This chapter looks at the problem of detecting botnet traffic which rely on vertical
and horizontal traffic behaviours. A botnet is a network of remotely controlled devices,
or ‘bots’, such as personal computers and smartphones whose security has been breached
and control access given to a third party. The botnet controller directs the activities of the
bots through messages sent via standard network protocols. Botnets are used for various
malicious purposes such as conducting distributed denial of service (DDoS) attacks, spreading
spam, spying, and stealing personal information [172]. They propagate over legitimate
communication connections and, because an individual bot may only send a few packets to
the host under attack, the volume of traffic looks normal.

Behind every attack is an underlying motive, and knowing what it is might allow admin-
istrators to anticipate attacks that might be deployed against their networks [148]. Axelsson
and Sands suggested that in ‘dealing with the more imaginative threats, a human operator
needs to be in the loop and in order to be effective there should be tool support that enables
her to quickly gain an understanding of the situation’ [5, p.26].

6.1.1 Related Work

Existing IDS technologies rely on a variety of techniques to detect botnets, including identi-
fying repetitions of requests, statistical methods [146, 171] and entropy detection [86], and
all such techniques tend to ‘collect flow information from bots to depict their behaviour’ [87,
p. 976].

Data mining for botnet detection aims to identify useful patterns to discover regularities
and irregularities in massive data sets. Since individual flows in a botnet attack are not
malicious by themselves unless they are found to be part of a series of synchronised flow
connections, a wide range of data mining techniques including classification, correlation,
clustering, aggregation, and statistical analysis is used for knowledge discovery about network
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flows [139]. Machine learning has been widely used in the detection of botnet methods.
Machine learning is a category of artificial intelligence that aims to advance systems with the
intelligence to learn from past experience [110]. For example, Ranjan et al. [127] introduced
a machine learning method to detect botnets using connectivity graph-based traffic features
derived from historical network data.

Machine learning techniques come in three different kinds: First, supervised learning
which works with labelled data; second, unsupervised learning used unlabelled data; third,
reinforcement learning systems use both supervised and unsupervised techniques to take
control of their own learning. Reinforcement learning (RL) is inspired by behavioural
psychology with regard to how software agents need to take action in an environment in
order to increase rewards [106, 110]. Dejmal et al. [43] used RL for proactive assessment in
peer-to-peer networks to assess the vulnerability to unknown future network attacks. The
technique has significant impact potential.

A challenge that faces all detection techniques is validating them on real networks which
vary from the test environments in which they were developed [87].

To-date, using visualisation techniques to support botnet detection has received only
modest attention. Seo et al. [137] proposed a security visualisation tool called CCSvis to
target botnet behaviour based on Domain Name System (DNS) traffic. The system presents
visualisations of traffic using cylindrical coordinates to enable a human operator to identify
botnet behaviours and patterns. Thus, detection is a cooperative activity involving both
human and machine.

Kim et al. [90] also visualised DNS traffic with the aim of detecting botnets before they
start carrying out their attacks. They defined four patterns of graphs as botnet signatures which
can be identified by the human operator. Experimental results suggested that visualisation
could be used to detect both known and unknown botnet types.

Visual Threat Monitor [139] is a flow-based system which combines data mining and
visualisation to enhance botnet traffic detection. Its visualisation method uses processed and
selected data rather than raw data and the outputs consist of correlations, statistical analysis,
clustering, aggregation, and visualisation.

While some network sonification work has been reported [10, 53, 59, 91, 159, 165, 167]
the technique has not yet been applied specifically to botnet detection. Below we show how
the SoNSTAR system may be used to complement an existing IDS by sonifying network
traffic in such a way as to enable botnet behaviour to be detected and identified by a human
operator without the use of any botnet detection algorithms.
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6.2 Botnet Sonification Using TCP

Sonification has the potential to assist in the discovery of patterns of botnet network activity
and relationships between seemingly disparate security events, though little has been done to
leverage sonification technologies in current practice. SoNSTAR was designed to fit the work
practices and operational environments of network security monitoring analysts in order to
raise their situational awareness through reflecting human understanding in the monitoring
process. The solution starts by extending SoNSTAR to enable the operator to explore a
network’s botnet traffic patterns. Publicly-available labelled botnet datasets were used to
demonstrate the technique.

6.2.1 Characteristics of a Botnet

TCP botnet traffic has certain characteristics that can be distinguished amongst legitimate
traffic as follows [15, 46]:

1. Botnet lifecycles go through the same five stages. The first stage is infection and
propagation where the botmaster infects new targets such as computers or servers to
became bots. Propagation mechanisms refer to the method used to expand and search
for new machines. They consist of horizontal scans, vertical scans, coordinated scans
and other sophisticated propagation methods. A vertical scan is described as scanning
a single host across a defined range of ports. Horizontal scans are where a single port
is scanned across a defined range of hosts.

The second is rallying, where a bot connects to the C&C server or the bot receives
updates such as a list of C&C IP servers. The third is command and report, where the
bot connects to the C&C server to receive commands and to send its activity reports.
The fourth is ‘abandon’ where a bot becomes unusable. The fifth is securing, where
the botmaster tries to conceal its bots from security detection systems.

2. The command and control (C&C) mechanism has three architectures. The first is
centralised, where the botmaster communicates with bots through a central C&C
server. The second form is decentralised, where bots also act as C&C servers based on
a peer-to-peer (P2P) network model. The third type is hybrid, where the botmaster can
use any applicable protocols and architectures to implement its model.

3. Botnets perform several malicious activities depending on their size (large- or small-
scale) such as DDoS and spamming.
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However, botnets are a rapidly evolving phenomenon that is still not well understood.
Moreover, bots mostly connect with C&C servers or other infected nodes which act as
C&C servers using normal traffic communication patterns which are repeated again and
again. Bots are relatively consistent in the repetitive communication mechanisms employed
between them when they are using a P2P network model. Bots may scan the network to
collect information that may help the botmaster to prepare for future attacks such as infecting
other devices. Also, bots might be part of a botnet network launching an attack such as a
DDoS where they continuously communicate with an external host using similarly repetitive
communication traffic patterns. Accordingly, SoNSTAR was extended to extract features and
to enable users to create events and mappings to explore and identify bot behaviours.

6.2.2 Exploring Traffic for Botnet Detection

Exploring traffic aims to recognise useful events so as to recognise botnet behaviour. Since
botnet traffic does not have a specific behaviour, we aimed to create more features that allow
the discovery of events which might be part of a botnet behaviour. This method allows the
user to assign sounds to different events based on his/her knowledge and experience and the
literature on botnets.

Botnets exhibit stealthy behaviour by several methods including distributed behaviour,
parallel behaviour, repetitive behaviour and stealth scanning. Stealth scanning is described as
using vertical or horizontal scans with low frequency to avoid detection [169]. Parallel flow
behaviour occurs when a single host establishes flow connections with several network hosts
on several ports. Distributed flow behaviour is where a local host receives several flows from
different external hosts on several ports. Repetitive flow behaviour is where repetitive flow
patterns are observed and which are caused by bots repetitively carrying out the same task
(performed automatically or on a schedule) over the internet [57]. Although the previous
SoNSTAR design is capable of addressing various traffic behaviours, horizontal, distributed,
parallel and repetitive stealth behaviours were not addressed.

Since, on the face of it, botnet flows resemble normal traffic, additional features need to
be considered to support the recognition of botnet activity. The method consists of using
sonification to monitor events which are suspected as evidence of botnet activity. The operator
then reviews the log files corresponding to these suspicious events and creates a pattern based
on IP flow features to match the selected events. This pattern can then be associated with
a specific sound in SoNSTAR allowing any occurrences to be monitored. For example, in
normal traffic behaviour, it is virtually impossible to find identical IP flow patterns repeated
within a single time window.
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Botnet activity could consist of several different combinations of traffic events. It is left
to the human operator to explore and decide which events might be part of botnet behaviour.
The correlation of events is useful for monitoring botnets by looking botnet characteristics.
This approach is very effective when performing real-time monitoring. The human mind
correlates events to understand situations based on event sounds, sequence, occurrence, and
other factors such as the nature of the network and the motivation of expected attacks. There
is no specific rule to be used to recognise botnets but a human can look for various events and
behaviours and tune thresholds according to his accumulated knowledge and understanding
of botnet activity such as stealth and repetitive behaviours, which indicate botnet activity.

6.2.3 Extended SoNSTAR design

To address the problem of botnet detection SoNSTAR’s design was extended as follows.

Feature Extractor — Selected TCP Parameters

SoNSTAR works by selecting combinations of IP traffic features and mapping these feature
combinations to discrete sounds in its soundscape. Table 6.1 shows 29 of these mappings (see
the project repository [41] for further details). Four new arrays were implemented to collect
more features that facilitate the targeting of repetitive parallel, horizontal and distributed flow
behaviour.

Table 6.1 Feature-to-Sound Mappings

No Feature Conditions Sound

1 SYN in IPs <30 and SYN ACK out IPs >0 and ACK in
IPs >0 and RST out IPs <10

Forest bird

2 SYN in IPs >10 and SYN in IPs <30 and PSH ACK out
IPs == 0 and RST out IPs >0

Rain on roof

3 SYN in IPs >8 and SYN ACK out IPs <4 and PSH ACK
out IPs <50

Rain on roof

4 SYN in IPs >300 and SYN ACK out IPs <20 and PSH
ACK out IPs <300

Thunder

5 SYN out IPs >10 and SYN ACK in IPs <3 and PSH
ACK out IPs == 0 and RST in IPs >0

Rain

6 SYN out IPs <30 and SYN ACK in IPs >0 and PSH
ACK out IPs >0

Forest bird

Continued on next page
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Table 6.1 – Continued from previous page

No Feature Conditions Sound

7 ACK in IPs >1 and RST out IPs >0 and the rest of IP
flow feature == 0

Seagulls

8 ACK out IPs >1 and RST in IPs >0 and the rest of IP
flow feature == 0

Loon

9 FIN in IPs >9 and FIN in IPs >SYN out IPs and FIN in
IPs >SYN in IPs and F 4 >10 and PSH ACK out IPs <2
and PSH ACK in IPs <2

Cricket

10 FIN in IPs <50 and ( FIN in IPs <= SYN out IPs or FIN
in <= SYN in IPs)

Forest bird

11 FIN out IPs >9 and FIN out IPs >SYN out IPs and FIN
out IPs >SYN in IPs and FC 3 >10 and PSH ACK out
IPs <2 and PSH ACK in IPs <2

Sheep

12 FC 7 >9 and PSH ACK out IPs <5 and PSH ACK in IPs
<5

Owl

13 NULL in IPs or NULL out IPs >0 Frog
14 URG PSH FIN in IPs or URG PSH FIN out IPs >0 Wolf
15 LAND in IPs or LAND out IPs >0 Beach
16 RST in IPs >30 and ACK in IPs <100 and PSH ACK out

IPs or PSH ACK in IPs <2
Wind on grass

17 RST out IPs >30 and ACK out IPs <100 and PSH ACK
out IPs or PSH ACK in IPs <2

Wind on grass

18 FC 1 >4 and PSH ACK out IPs or PSH ACK in IPs == 0 Fountain
19 FC 2 >4 and PSH ACK out IPs or PSH ACK in IPs == 0 Heavy rain
20 RST out IPs >30 and FC 5 <FC 14 and ACK out IPs <5

and PSH ACK out IPs <2
Wind

21 RST in IPs >5 and FC 6 <FC 15 and ACK in IPs <5 and
PSH ACK in IPs <2

Wind

22 Flow Counter >1000 Fire
23 IPs Flow Counter >600 Fire
24 Src addr1 A count >200 Mosquito
25 Src addr1 A count >50 and Identical packet counts1 >250 Mouse squeaking
26 Dst addr2 A count >200 Bee Colony

Continued on next page
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Table 6.1 – Continued from previous page

No Feature Conditions Sound

27 Dst addr2 A count >50 and Identical packet counts2
>250

Rats (multiple) squeak

28 Src addr count3 >85 and Dst port count3 >95 Spring Peeper
29 Dst addr count4 >85 and Dst port count4 >95 Grass hopper

The first array collects features which are used to identify any local hosts that attempt to
perform parallel repetitive flows within the local network during a time window. Fig. 6.1
illustrates the features collected to target local source IP addresses which perform internal
network parallel repetitive behaviours. The first column in the array contains a local source
host, the next column contains a destination port number, and the next column contains
the number of packets sent from the local source host to the destination port number. The
features collected by the feature extractor into array 1 are listed in Table 6.2.

Local destinationLocal source

192.168.0.10

192.168.0.11

192.168.0.42

192.168.0.31

1023

80

1024

1025

22

n
…

4

4

4

456

175

Port Packets received

Fig. 6.1 Features for targeting the behaviour of local parallel repetitive flows. Local host 192.168.0.10
is repeatedly sending the same four packets to certain ports on multiple destination hosts on the
network.The features collected are: list of local source hosts, destination port numbers, count of
packets sent to each port.

The second array collects features that help to identify any local hosts that experience
distributed repetitive flow behaviour from external hosts during a time window. Fig. 6.2 illus-
trates the features collected to target local IP addresses which have experienced distributed
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Table 6.2 The features collected in array 1

Element Label Description

1 Src addr1 A Local host A (Source IP) has sent packets to another
local host B during current time window period.

2 Dst port1 B The destination port number on local host B has
received one or more packets local host A identified in
element 1.

3 Packet count1 The number of packets sent from local host A to the
local host B through the destination the port number
identified in element 2.

repetitive flow behaviour. The first column in the array contains a local destination host, the
next column contains a destination port number, and the next column contains the number
of packets received from the external source host by the local destination hosts through the
destination port number. The features collected by the feature extractor into array 2 are listed
in Table 6.3.

Local destinationExternal source

216.27.178.155

200.154.35.159

205.188.59.193

67.212.184.66

200.242.143.06

64.28.47.131

Port Packets Host
80 245 192.168.0.20
1025 3
1026 3

192.168.0.191027 3
1028 3
1029 3

2111 455 192.168.0.40
…

Fig. 6.2 SoNSTAR Features for targeting the behaviour of incoming distributed repetitive flows.
Multiple external hosts are targeting ports on local hosts with the same three packets. The features
collected are: list of local destination addresses, destination port numbers, count of packets sent to
each port.

The third array collects features that help to identify any local hosts receiving distributed
flows (such as a hidden scan behaviour and malicious distributed flows as legitimate queries)
from external hosts during a time window. Fig. 6.3 illustrates the features collected to
identify local hosts receiving flows from external hosts such as stealth distributed scans
or other repetitive distributed horizontal activities. The features are collected for all local
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Table 6.3 The features collected in array 2

Element Label Description

1 Dst addr2 B Local host B has received one or more packets or from
external hosts during the current time window period.

2 Dst port2 B The destination port number on local host B identified
in element 1 which has received one or more packets
from an external host.

3 Packet count2 The count of packets received through the destination
port identified in element 2.

destination host in every time window. The features collected by the feature extractor into
array 3 are listed in Table 6.4.

Local destinationExternal source

64.28.47.131

200.154.35.159

216.27.178.155

202.188.10.141

205.188.59.193

Port Host
1
2

192.168.0.31

3
4
5

n…

6
7
…

Fig. 6.3 Features for targeting incoming horizontal flow scan. Multiple external hosts are targeting
ports on a single local host. The features collected are: list and count of local ports, list and count of
source addresses.

The fourth array collects features that help to identify any local hosts attempting to
perform local horizontal and parallel activity within the local network during a time window
period. Fig. 6.4 illustrates the features collected to target internal network horizontal scans,
and the features are listed in the Table 6.5.

Features combiner

At the end of each time window, the new features extracted using algorithms 1 to 4, together
with the IP flow features and traffic flow features are passed to SoNSTAR’s feature combiner.
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Table 6.4 The features collected in array 3

Element Label Description

1 Dst addr3 Local host B has received one or more packets from a
local and external hosts.

2 Src addr3 list List of source addresses that have sent packets to local
host B (element 1).

3 Src addr count3 The count of source addresses in the list from element
2.

4 Dst port list3 The list of destination ports on local host B which
received one or more packets from sources in the hosts
list.

5 Dst port count3 The count of destination ports in the list identified in
element 4.

Local destinationInternal source

192.168.0.31

Port Host
1
2

192.168.0.18

3

4
5

n
…

192.168.0.19
192.168.0.20

192.168.0.21
192.168.0.22

192.168.0.n

Fig. 6.4 Features for targeting local horizontal scan and parallel flow activities. The features collected
are: list and count of destination hosts, list and count of destination ports.

The feature combiner uses the IP flow and traffic flow features to obtain newly discovered
combinations to be used to create new events.

Since the existing SoNSTAR design already has eight combinations, the design has been
extended by adding seven new features as shown in Table 6.6. These feature combinations
are created as a short hand to make it easier for the user. For example, SYN out IPs and FIN
in IPs are related to each other in the TCP protocol as SYN out starts the connection and FIN
in ends the connection. During use and experimentation with SoNSTAR, many times it was
necessary to add these feature counts to each other to create new events. So a separate feature
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Table 6.5 The features collected in array 4

Element Label Description

1 Src addr4 Local source host A has sent one or more packets to a
local destination host.

2 Dst addr list4 The list of local destination hosts that have received
one or more packets from local host A.

3 Dst addr count4 Count of destination hosts in the list from element 2.
4 Dst port list4 The list of destination ports of the local hosts from

element 2 which received one or more packets from
local host A.

5 Dst port count4 Count of destination ports in the list from element 4.

(FC9, Table 6.6) was constructed which can be used directly without the need to explicitly
combine both features every time.

Table 6.6 Feature Combinations

Feature
Combination

Description of Feature

FC 9 Result of (SYN out IPs) + (FIN in IPs)
FC 10 Result of (ACK in IPs) − (ACK out IPs)
FC 11 Result of (FIN in IPs) + (FIN out IPs)
FC 12 Result of (PSH ACK in IPs) − 1
FC 13 Result of (ACK in IPs) + (FC 9)
FC 14 Result of (RST out IPs) − 1
FC 15 Result of (RST in IPs) − 1

Sonification

In this stage, SoNSTAR assigns events using the extracted features and then assigns recorded
sounds to them. Here, event conditions can be modified, new events can be created, and
threshold values can be changed. Most of the interaction of the operator with SoNSTAR to
explore and construct new events and to explore malicious behaviours and botnet patterns
occurs at this stage.

SoNSTAR allows human interaction where the listener can interact with SoNSTAR in
real time, and can choose to listen to part of the event sounds or to specifically targeted
events representing certain behaviours and to ignore others or to change event conditions and
assigned sounds.
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Sound mapping and design

Sounds are mapped by assigning recorded sounds to events. Most of the events in the
previous design have been mapped to the same original sounds with some modifications. A
few events were dropped from the original design. In addition, new events are assigned to
new recorded sounds. These recorded sounds are set to allow the user to recognise botnet
events. SoNSTAR events are mapped to represent the occurrence of events derived from the
SoNSTAR features. Table 6.1 illustrates the new feature-to-sound mappings.

At the end of a time window, algorithm A1 checks whether any local source IP (Table 6.2,
row 1) has created 200 or more flows, and this feature is called “Src addr1 A count”. It also
checks whether any packet count (Table 6.2, row 3) is less than 15 packets and is repeated
250 times during the just completed time window. It counts the number of identical packet
counts which have less than 15 packets passed through the destination ports. This feature is
called “Identical packet counts1”. Algorithm A1 is shown in Algorithm 2

At the end of the time window, algorithm A2 checks whether any local destination IP
(Table 6.3, row 1) has created 200 or more flows, and the generated feature called “Src addr1
A count”. It also checks whether any packet count (Table 6.3, row 3) is less than 15 packets
and repeated 250 times during the just completed time window. It counts the number of
identical packet counts which have less than 15 packets passed through the destinations ports.
This feature is called “Identical packet counts2”. Algorithm A2 is shown in Algorithm 3

At the end of the time window, algorithm A3 check each local destination host (Table 6.4,
row 1) in array 3, for when the count of source hosts (Table 6.4, row 3) is greater than 84 and
the count of destination ports (Table 6.4, row 5) is greater than 95 during the just completed
time window. Algorithm A3 is shown in Algorithm 4

At the end of the time window, algorithm A4 checks each local source host (Table 6.5,
row 1) in array 4, for when the count of destination hosts (Table 6.5, row 3) is greater than 84
and the count of destination ports (Table 6.5, row 5) is greater than 95 during the just ended
time window. Algorithm A4 is shown in Algorithm 5

The thresholds for the above features were determined heuristically according to the
nature, purpose, and expected traffic volumes for the specific network in question. Obviously,
these would need to be adjusted for each separate network environment, though the above
would serve as useful defaults for a network with modest numbers of visitors.

SoNSTARMain algorithm

The extended SoNSTAR system algorithm is shown in Algorithm 6.
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Algorithm 2 Algorithm A1: Process the features of Array 1
Time-window period ended
Call Function with Array1 and index1
Open logs text file1 to write
for pointer1 <= array index do ▷ Get all rows information in the list

Get local source address (Source IP) Column1 of Array1
Get Sent packet count (Packet count) Column3 of Array1
Rest (Src Addr1 Count1) = 0 and (Identical Packets Count1) = 0
State1= False
for pointer2 <= array index do ▷ Compare with all sources list

Get next source IP in the array (Src ip)
Get next packet count in the array (P count)
if SourceIP == source ip then

increase (Src Addr1 Count1) by 1
if SrcAddr1Count1 >= 50 then

State1= True
end if
if SrcAddr1Count1 >= 200 then

Write to logs file1, Anomaly
Send message of Event 24 to Max/MSP Patch

end if
end if
if Packet count == Pcount, And Packet count =< 15 then

increase (Identical Packets Count1) by 1
if State1 == True, And Identical PacketsCount1 >= 250 then

Write to logs file1, Anomaly
Send message of Event 25 to Max/MSP Patch

end if
end if

end for
end for
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Algorithm 3 Algorithm A2: Process the features of Array 2
Time-window period ended
Call Function with Array2 and index 2
Open logs text file2 to write
for pointer1 <= array index do ▷ Get all rows information in the list

Get destination address ( Dest IP) Column1 of Array2
Get total received packet count (Packet Count) Column3 of Array2
Rest (Dst addr2 count2) =0 and (Identical Packets Count2) =0
for pointer2 <= array index do ▷ compare with all dest IP’s

Get next destination IP in the array (dest ip)
Get next packet count received in the array (p count)
if Dest IP == dest ip then

increase (Dst addr2 count2) by 1
if Dst addr2count2 >= 50 then

State1= True
end if
if Dst addr2count2 >= 200 then

Write to logs file2, Anomaly
Send message of Event 26 to Max/MSP Patch

end if
end if
if Packet Count == pcount, And packet count < 15 then

increase (Identical Packets count2) by 1
if State1 == True, And Identical PacketsCount2 >= 250 then

Write to logs file2, Anomaly
Send message of Event 27 to Max/MSP Patch

end if
end if

end for
end for

Algorithm 4 Algorithm A3: Process the features of Array 3
Time-window period ended
Call Function with Array3 and index 3
Open logs text file3 to write
Rest array C to collect malicious IP address list
for pointer <= array index do ▷ Get all rows information in the list

Get destination address (dest IP)
Get sources list and their count
Get destination ports and their count
if Srcaddr count3 >= 85, and Dst port count3 >= 95 then

Write to logs file3
Write to logs file3, Anomaly
Send message of Event 28 to Max/MSP Patch

end if
end for
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Algorithm 5 Algorithm A4: Process the features of Array 4
Time-window period ended
Call Function with Array4 and index 4
Open logs text file4 to write
Rest array D to collect malicious IP address list
for pointer <= array index do ▷ Get all rows information in the list

Get sources address
Get destination list and their count
Get destination ports and their count
if Dst addr count4 >= 85, and Dst port count4 >= 95 then

Write to logs file4, array extracted information
Write to logs file4, Anomaly
Send message of Event 29 to Max/MSP Patch

end if
end for

6.3 Experimental work

6.3.1 Dataset

A number of traffic datasets are available to researchers. The 1999 DARPA Intrusion
Detection Evaluation dataset contains three weeks-worth of traffic data.1 The first and third
weeks are attack-free, with the second week containing a variety of labelled attack traffic.
However, it is not labelled with sufficient detail to support tool evaluation and does not
indicate which are the malicious packets [24]. Furthermore, because some traffic has been
inserted post hoc into the original data the dataset does not maintain trace consistency. The
KD-99 dataset is based on the DARPA set and inherits its limitations. The CAIDA [26],
PREDICT [129], and DEFCON [149] datasets all contain anomalous traffic but are not
labelled. The University of New Brunswick provides several datasets of network traffic
[154]. Their ISCX 2014 dataset is comprehensively labelled. However, the ISOT dataset
from the University of Victoria [155] is labelled packet-by-packet and distinguishes normal
from malicious traffic and so is well suited to the purposes of this study.

Evaluation dataset

The ISOT evaluation dataset [131] was used for the experiment. The dataset is an 11.39
GiB PCAP-format file and contains traffic conforming to the TCP, UDP, DNS and ICMP
protocols. The ISOT dataset contains Strom, Waledac, and Zeus botnet command and control
traffic. The dataset is labelled and contains a number of malicious and non-malicious flows

1https://ll.mit.edu/ideval/data/1999data.html.

https://ll.mit.edu/ideval/data/1999data.html
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Algorithm 6 SoNSTAR’s main algorithm
Set Time-window period
Sniff packet and Get start time
if Packet == arrived then

Unpack ethernet header
Extract protocol
if protocol == 8 then ▷ IP packet

Unpack IP header
Extract source and destination addresses
Extract transmission protocol

else
Get next packet from the sniffer

end if
if protocol == 6 then ▷ TCP packet

Unpack TCP header
Collect and Extract (array Traffic flow, array IP flow) features
Collect and Extract (array1, array2, array3 and array4) features
Count IP flows and Traffic flows
if Time−windowperiod == f inished then

Extract new features from Features Combiner
Process Events of (array1, array2, array3 and array4) features
Process Events of (array Traffic flow, array IP flow) features
Write logs files while processing event conditions
Send Event messages of to Max/MSP for sonification

end if
Get next packet from the sniffer a new Time-window started

else
Get next packet from the sniffer

end if
else

Get next packet from the sniffer
end if
Max/MSP Patch
if messages == arrived then

Play sound of similar messages once
end if
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as shown in Table 6.7. The dataset was created from malicious traffic gathered by the French
chapter of the Honeynet Project.

Table 6.7 Breakdown of ISOT malicious and non-malicious flows

State No of flows

Malicious 55,904 (3.33%)
Non-malicious 1,619,520 (96.66%)
Total 1,675,424 (100%)

6.3.2 Experiment 1: Exploring traffic for botnet activity

Botnets mostly use distributed normal behaviour and stealth horizontal and vertical activity
to prevent detection, but repetitive traffic patterns are still performed as bots are programmed
to repeat scheduled tasks. For example, the botmaster sends an order through the C&C
server to make its army of bots perform attacks against a specific web server. Since bots are
usually high in number and use identical software, parts of their communication patterns
will be identical or quite similar. Therefore, the victim web server is going to receive similar
communication patterns from different bots, which is extremely unlikely in normal traffic.

In this work, no machine learning process is used but rather human-set events allow the
operator to target different network behaviours. A single botnet attack will typically comprise
several specific events. The operator recognises several event sounds in a different sequence.
The sound type and sequence allow the operator to understand what is going on in their
network. For example, in performing a SYN scan an adversary sends SYN packets to several
ports on the target machine. SoNSTAR will play the sound of rain telling the operator that
there are many SYN packets incoming to a specific host. Every open port then replies with a
SYN-ACK packet, but closed ports reply with RST packets. Therefore, the target machine
will send an RST packet against each closed port causing SoNSTAR to play a wind sound.
So, when SoNSTAR generates rain followed by wind sounds, the operator would know that a
SYN packet scan is happening. To use SoNSTAR to explore this traffic, the operator carries
out the following steps.

1. Set appropriate time window period.

2. Run SoNSTAR to read from the ISOT dataset.

3. Listen to the sounds generated by SoNSTAR looking for any sounds indicating mali-
cious behaviour or suspicious activity.
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4. When a candidate sound is heard, open the log file corresponding to the event which
triggered the sound.

5. Search the log file for a message indicating the local IP address and the time window
number which caused the sound in order to confirm recognised behaviour.

6. Open the IP flow log file and look for the same time window number and then locate
the local IP address obtained in the previous step.

7. Assign a recorded sound to the identified suspicious botnet pattern and set an event
condition if the pattern is repeated twice in a time window period in order to confirm it
is a botnet performing repetitive specific activities using identically programmed bots.

An initial time window was set at 35 seconds and then SoNSTAR was run on the dataset
and its soundscape listened to. The repeated sequence of a bee colony sound (Table 6.1, row
26) followed by multiple rat squeak sounds (row 27) were observed during a single time
window. The bee colony sound indicates that a local host has received connections from more
than 200 different external hosts during this time window. This indicates a high possibility
of distributed flow behaviour. The multiple rat squeak sound indicates that a local host has
received the same number of packets from 250 different external hosts. This indicates very
high possibility of repetitive flow behaviour. Since this behaviour is suspicious and also
strange to be occurring in a single time window, it is suspected that this behaviour belongs to
a botnet. Therefore, the log files are inspected to confirm how it has happened. Table. 6.8
shows part of the log file at time window 4 which contains these events.

It is observed that the local host 172.16.0.12 has received the same number of packets
(13) from different external hosts into different ports. The log file also shows these port
numbers are sequential. Also, the local host has connections with 497 different external
hosts in this time window. All of this information leads us to suspect that this is botnet
behaviour. Furthermore, the spring peeper sound (Table 6.1, row 28) indicates that a local
host has received connections from more than 85 different external hosts through more than
95 different ports. This is suspected to be a horizontal scan but this depends on the purpose
of the local host and its expected traffic. Also, it indicates that the local host might be part of
a botnet communication network. Therefore, we looked into the log file. For example, at
time window 8, the local destination host 172.16.0.11 has received connections from 461
different external hosts through 615 different ports, as shown in Fig. 6.5. Fig. 6.5 also shows
part of the external host list. Fig. 6.6 shows part of the local port list at the local destination
host. The complete log files can be found in the ‘examples/logs’ folder on the SoNSTAR
repository [41].
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Table 6.8 Sample of vertical activity to local destination IP log file

Time window Flow i.d. Local Dest. Local port No. packets

4 483 172.16.0.11 2490 13
4 484 172.16.0.11 2491 13
4 485 172.16.0.11 2492 13
4 486 172.16.0.11 2507 13
4 487 172.16.0.11 2508 13
4 488 172.16.0.11 2509 13
4 489 172.16.0.11 2512 13
4 490 172.16.0.11 2513 13
4 491 172.16.0.11 2520 13
4 492 172.16.0.11 2521 13
4 493 172.16.0.11 2526 13
4 494 172.16.0.11 2527 13
4 495 172.16.0.11 2529 13
4 496 172.16.0.11 2531 13
4 497 172.16.0.11 2532 13

8 Dest IP: 172.16.0.11 Sources count: 461 Ports count: 615
8 Sources list: ['74.205.83.92' '208.56.131.207' '128.227.74.56' '203.84.221.51'
'66.221.154.185' '70.84.121.39' '68.249.145.10' '209.191.88.239'
'66.218.67.35' '67.63.20.218' '207.213.175.225' '72.249.26.99'
'170.94.248.237' '216.84.45.242' '165.190.1.131' '128.115.249.90'
'67.69.240.22' '12.3.33.11' '207.115.20.21' '216.39.53.1' '83.175.213.162'
'213.81.152.19' '65.109.124.21' '66.218.66.70' '72.14.215.27'
'64.79.170.114' '65.54.244.40' '70.158.51.118' '209.86.93.229'
'65.119.39.207' '24.75.46.254' '207.28.212.5' '195.50.106.7' '65.54.245.8'

Fig. 6.5 Sample of external horizontal scan log file, part 1

'66.170.2.43' '213.199.154.22' '212.115.192.194'] ports list: ['10004'
'10005' '10006' '10007' '10012' '10018' '10019' '10020' '10021'
'10029' '10030' '10031' '10034' '10039' '10044' '10048' '10049' '10050'
'10052' '10053' '10060' '10066' '10067' '10070' '10073' '10077' '10080'
'10083' '10084' '10085' '10091' '10095' '10096' '10101' '10102' '10105'
'10110' '10112' '10113' '10120' '10123' '10126' '10127' '10129' '10131'
'10133' '10136' '10138' '10142' '10147' '10150' '10153' '10156' '10159'
'10161' '10162' '10165' '10171' '10178' '10181' '10182' '10183' '10184'

Fig. 6.6 Sample of external horizontal scan log file, part 2
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Result and botnet patterns

We identified two local IP addresses 172.16.0.11 and 172.16.0.12 which exhibit suspect
behaviour over several time widows. Based on our knowledge of botnet characteristics, this
confirms that botnet behaviour is detected.

One of the purposes of the experiment was to determine whether or not SoNSTAR
features can create events capable of targeting specific behaviour. Clearly, SoNSTAR features
and events can be used to draw a normal traffic base line for traffic behaviour.

One of the purposes of SoNSTAR is to support existing IDSs and to contribute to their
development by helping human operators to discover features, events, and patterns that can
be used by IDSs to detect malicious behaviour. Therefore, to use SoNSTAR to detect and
confirm botnet patterns, the operator carries out the following steps.

1. Open the IP flow log file and look for the same time window number and then locate
the local IP address obtained in the previous steps.

2. Assign a new recorded sound to the suspected botnet pattern and set an event condition
to play that sound when the pattern occurs twice in a time window. The repetition of
this event indicates that bots are performing repetitive specific flow patterns.

We opened the IP flow log file and obtained IP flow patterns associated with the suspicious
traffic. Feature conditions to match the traffic were constructed and mapped to sounds as
shown in Table 6.7. Then, when SoNSTAR was run, the sounds of a squirrel running quickly
and a rat moving in dry leaves were heard which confirmed the presence of botnet behaviour.
Therefore, IP flow features demonstrated very advanced capabilities to construct patterns
which can be used to detect botnet traffic. SoNSTAR could help the user to discover botnet
behaviour by only mapping for repetitive normal patterns within the TCP traffic without the
need to consider these attacks are happening at the application layer. The IP flow log files
can be found in the ‘examples/logs’ folder on the SoNSTAR repository [41].

Fig. 6.8 shows part of the IP flow log file indicating how some botnet patterns use normal
behaviours that are repeated several times within a single time window. This represents part
of time window number 14 from the IP flow numbers 19 to 30. The IP flow log file can be
found in the repository.

Feature construction: Example 1

Event 2 in Table 6.1 has the following event condition based on the three way handshake
mechanism, and the function of the RST packet in the TCP protocol: ‘SYN in IPs >10 and
SYN in IPs <30 and PSH ACK out IPs == 0 and RST out IPs > 0’
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14&19&172.16.0.11&194.176.201.22&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&20&172.16.0.11&64.250.228.130&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&21&172.16.0.11&222.255.37.15&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&22&172.16.0.11&216.200.145.235&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&23&172.16.0.11&64.233.183.27&3&3&3&0&0&3&0&0&6&12&21&21&0&0&0\\
Anomaly. rebot activity A 111
14&24&172.16.0.11&207.115.21.22&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&25&172.16.0.11&217.72.192.149&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&26&172.16.0.11&13.8.138.217&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&27&172.16.0.11&60.229.18.61&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&28&172.16.0.11&12.168.122.203&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&29&172.16.0.11&64.5.42.8&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111
14&30&172.16.0.11&144.140.80.13&1&1&1&0&0&1&0&0&2&4&7&7&0&0&0\\
Anomaly. rebot activity A 111

Fig. 6.7 Part of the IP Flow log file (‘rebot’ = repeated botnet).

This means that if a host received 10–30 SYN packets requesting a connection but
returned no data (zero PSH-ACK packets and one or more RST packets) then the rain-on-roof
sound should be played. This sound will tell the operator that the network is receiving
requests for connection on multiple ports but no data was returned. This is analogous to
customers repeatedly coming into a shop, asking the price of an item, and then leaving
without making a purchase. As any closed port will sent an RST packet on receipt of any
incoming packet type, this behaviour is indicative of a port scan.

Feature construction: Example 2

We will use same example of time window 8 where we recognised the IP address 172.16.0.11.
So, we open the IP flow log file and search for time window 8 and the IP address 172.16.0.11.
An extract of this time window log is shown in Table 6.9.

Using this information we can build a pattern. The first IP flow we see is flow 412
between hosts 172.16.0.11 and 195.188.53.99. We can see the number of FIN out and FIN
in, SYN out, and SYN-ACK in packets are greater than 0 and are all equal. Therefore, the
first part of the pattern is the condition: ‘FIN out IPs == FIN in IPs == SYN out IPs == SYN
ACK in IPs > 0’.

We know from the TCP protocol that following a FIN in and SYN out pair, an ACK out
packet is a confirmation of the communication. We see that in IP flow 412, ACK out = FIN
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Table 6.9 Sample of vertical activity to local destination IP log file

Time
window Flow Host A Host B

Packet counts

FIN SYN SYN-ACK RST ACK PSH-ACK URG-
PSH-FIN NULL LAND

Out In Out In Out In Out In Out In Out In

8 412 172.16.0.11 195.188.53.99 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 413 172.16.0.11 82.185.226.116 2 2 2 0 0 2 0 0 4 8 14 14 0 0 0
8 414 172.16.0.11 66.193.69.2 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 415 172.16.0.11 63.166.215.100 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 416 172.16.0.11 217.116.0.152 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 417 172.16.0.11 80.240.225.37 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 418 172.16.0.11 195.242.120.10 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 419 172.16.0.11 209.59.136.109 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 420 172.16.0.11 80.12.242.15 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 421 172.16.0.11 66.218.66.215 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 422 172.16.0.11 205.152.58.32 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 423 172.16.0.11 143.100.37.72 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 424 172.16.0.11 213.161.248.130 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 425 172.16.0.11 212.88.148.234 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 426 172.16.0.11 64.251.84.10 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 427 172.16.0.11 80.207.150.20 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0
8 428 172.16.0.11 66.216.121.101 1 1 1 0 0 1 0 0 2 4 7 7 0 0 0

in + SYN out, so we add another condition to the pattern: ‘ACK out IPs == FC9 where FC9
= FIN in IPs + SYN out IPs’ (see Table 6.6).

We also see that the number of ACK-in packets is greater than ACK-out by 2, so the
pattern is extended by the condition ‘FC10 >= 2 where FC10 = ACK in IPs - ACK out IPs’.

Next we observe that PSH-ACK-out and PSH-ACK-in packet counts are equal (7), so the
condition ‘PSH ACK out IPs == PSH ACk in IPs >= 1’ is added.

The condition ‘ACK in IPs < PSH ACk in IPs’ is added to reflect the relationship between
the number of ACK-in and PSH-ACK packets.

Therefore the complete pattern is ‘FINoutIPs == FINinIPs == SYNoutIPs == SYNACK-
inIPs >0 and ACKoutIPs == FC9 and FC10 >1 and PSH ACK out IPs == PSH ACK in IPs >
0 and ACKinIPs < PSH ACK in IPs’, which is event condition 30 in Table 6.10. If this pattern
is repeated twice in a time window then this is indicative of botnet activity. Because normal
traffic takes the form of a random pattern it cannot be repeated as quickly as it happens in the
case of botnet networks especially if it repeats in a single time period several times.
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Table 6.10 Feature-to-Sound Mappings of Botnet Patterns. The squirrel sound is used when multiple
sources repeatedly target a single host. The rat sound denotes a single host receiving the same number
of packets across multiple ports.

No Feature Conditions Sound

30 FIN out IPs == FIN in IPs == SYN out IPs == SYN
ACK in IPs >0 and ACK out IPs == FC 9 and FC 10 >1
and PSH ACK out IPs == PSH ACK in IPs >0 and ACK
in IPs <PSH ACK in IPs (if repeated twice in the same
time window (if R2T))

Squirrel running quickly

31 FIN out IPs == 0 and FIN in IPs == SYN out IPs ==
SYN ACK in IPs >0 and ((ACK out IPs == FC 9 and
RST out IPs ==0 )or (ACK out IPs == FC 9 +1 and RST
out IPs == 0 )or (ACK out IPs == FC 13 and RST out IPs
==1)) and ACK in IPs <ACK out IPs and PSH ACK out
IPs >PSH ACk in IPs >0 and RST in IPs == 0 (if R2T)

Rat moving in dried leaves

32 FIN out IPs == FIN in IPs == SYN out IPs == SYN
ACK in IPs == ACK in IPs >0 and RST in IPs == FC 9
and ACK out IPs == PSH ACk out IPs == PSH ACk in
IPs >0 and ACK in IPs <ACK out IPs and SYN in IPs ==
SYN ACK out IPs == RST out IPs == 0 (if R2T)

Squirrel running quickly

33 FIN out IPs == FIN in IPs >0 and SYN out IPs == SYN
ACK in IPs == ACK in IPs >0 and RST in IPs == FC 11
and ((ACK out IPs == PSH ACk in IPs >0 and (PSH
ACk out IPs == FC 12 or PSH ACk out IPs == PSH ACk
in IPs ) ) or (PSH ACk in IPs == PSH ACk out IPs >0
and ACK out IPs == FC 12 or ACK out IPs == PSH ACk
in IPs)) and ACK in IPs <ACK out IPs and SYN in IPs
== SYN ACK out IPs == RST out IPs == 0 (if R2T)

Squirrel running quickly

34 FIN out IPs == 0 and FIN in IPs == 0 and SYN out IPs
== 1 and SYN in IPs == 0 and SYN ACK out IPs == 0
and SYN ACK in IPs == 1 and RST in IPs == RST out
IPs == 0 and ACK out IPs == 1 and ACK in IPs == 0 and
PSH ACk out IPs == 0 and PSH ACK in IPs == 0 (if
R2T)

Rat moving in dried leaves

Continued on next page
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Table 6.10 – Continued from previous page

No Feature Conditions Sound

35 FIN out IPs == FIN in IPs >0 and SYN out IPs == SYN
in IPs == SYN ACK out IPs == SYN ACK in IPs ==
RST out IPs == 0 and RST in IPs == FC 11 and ACK out
IPs == PSH ACK out IPs == PSH ACk in IPs >FC 11
and ACK in IPs <ACK out IPs (if R2T)

Squirrel running quickly

6.3.3 Experiment 2: Using SoNSTAR as an IDS to validate discovered
patterns

Acting as network operators, we used SoNSTAR to identify the behaviour of botnets inside
the ISOT dataset traffic. As a result, through sound and log files, we were able to discover
six IP flow patterns which indicate bot behaviour. We consider using SoNSTAR as a passive
IDS based on the patterns discovered. Therefore, we added a detection algorithm to detect
botnets in the dataset based on the IP flow patterns shown in Table 6.10.

The results need to be evaluated based on a labelled dataset and compared against other
methods using the same dataset. Therefore, we had to configure the detection algorithm for
every time window to classify and label each detected flow as normal or malicious before
storing the results in a log file. Table 6.11 shows how the resulting log file is structured.

The log file columns are, from left to right, the time window, the flow number in the time
window, the flow number in the dataset, host A, host B, SoNSTAR classification result, and
the label derived from the labelled dataset.

Evaluation metrics

To evaluate SoNSTAR’s anomaly detection classifier based on IP flow patterns, performance
was assessed based on the following metrics:

1. The number of true positives (TP) where SoNSTAR correctly classifies a malicious
flow.

2. The number of true negatives (TN) where SoNSTAR correctly classifies a normal
(non-malicious) flow.
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Table 6.11 SoNSTAR classification log file excerpt. The SoNSTAR classifications can be compared
against the labels in the ISOT dataset.

Time window Time window flow id Dataset flow i.d. Host A Host B
Classification

SoNSTAR ISOT

75 42 11174 172.16.0.12 65.54.244.40 Malicious Malicious
75 43 11175 172.16.0.12 65.55.88.22 Malicious Malicious
75 44 11176 172.16.0.12 216.39.53.3 Malicious Malicious
75 45 11177 172.16.0.12 128.192.1.108 Malicious Malicious
75 46 11178 172.16.0.12 65.54.245.72 Malicious Malicious
75 47 11179 172.16.0.12 65.54.245.8 Malicious Malicious
75 48 11180 172.16.2.13 203.69.42.35 Normal Normal
75 49 11181 172.16.2.2 69.147.121.161 Normal Normal
75 50 11182 172.16.2.12 203.84.202.164 Normal Normal
75 51 11183 172.16.2.13 87.248.113.14 Normal Normal
75 52 11184 172.16.2.2 209.85.135.103 Normal Normal
75 53 11185 172.16.2.2 209.85.135.147 Normal Normal

3. The number of false positives (FP) where SoNSTAR mistakenly classifies a normal
flow as malicious (botnet) activity.

4. The number of false negatives (FN) where SoNSTAR mistakenly classifies a malicious
flow as a normal flow.

Results

The SoNSTAR detection algorithm was run three times to read the whole ISOT dataset with
three different time windows (20, 30, and 60 s) to evaluate the reliability of the discovered
IP flow patterns. Table 6.12 shows the SoNSTAR as an IDS detection results for the three
different time windows. Table 6.13 show precision, recall, F-measure, accuracy and the false
positive rate (FPR) results achieved for the three time windows..

Table 6.12 SoNSTAR as an IDS detection results.

Time window Results
FP FN TP TN

20 s 152 144 12,543 510,720
40 s 136 75 11,105 463,000
60 s 312 49 10,632 443,819

Fig. 6.8 shows how the TPR/recall increases with time window size.
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Table 6.13 Comparison measures with time window of 20 s, 40 s and 60 s.

Time window Results
Precision TPR/recall F-measure Accuracy FPR

20 s 98.8 98.86 98.83 99.94 0.0297
40 s 98.7 99.32 99.05 99.95 0.0293
60 s 97.14 99.54 98.33 99.92 0.07

Fig. 6.8 TPR/recall

Comparison

The SoNSTAR experiment used the same ISOT evaluation dataset and metrics as Kirubavathi
and Anitha [92]. They evaluated three different classifier techniques; namely, the Boosted de-
cision tree ensemble classifier (AdaBoostM1+J48), Naive Bayesian (NB) statistical classifier
and the Support Vector Machine (SVM) discriminative classifier. Kirubavathi and Anitha
used the whole ISOT data set for testing, having used other data for training. Their results
are based on three time windows of 60 s, 120 s, and 180 s. SoNSTAR was not studied at
120 s and 180 s because it is designed to represent network traffic as close as possible to
real-time. Such long time windows would mean the user having to wait for two or three
minutes before any change in state can be heard. Table 6.14 compares the SoNSTAR results
achieved above with the three systems measured by Kirubavathi and Anitha with a 60 s
time window. The comparison result shows that the six patterns discovered by the operator
through sonification achieves a better detection accuracy and precision and very low false
positive rate. We conclude that involving human understanding in the detection of botnets
increases the chances of detecting them, especially when detecting new botnets.
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Table 6.14 Comparison with existing method at time window of 60 s.

Classifier Results
Precision TPR/recall F-measure Accuracy FPR

AdaBoostM1+J4 [92] 0.958 0.933 0.954 94.13 0.12
NB [92] 0.979 0.976 0.968 95.86 0.04

SVM [92] 0.936 0.943 0.939 91.37 0.14
SoNSTAR 0.971 0.995 0.983 99.92 0.0007

6.4 Discussion

Botnets are increasingly becoming a major threat to organisations, communication infras-
tructures and economies. Botnet activity is usually stealthy and hard to detect automatically
which means that the human operator plays a vital role in identifying its presence. SoNSTAR
enables its user to monitor and discover behaviours which may be part of a botnet attack. The
results achieved in this chapter show a high potential for removing barriers to administrators’
understanding of their networks’ activity.

Table 6.8 shows how a local destination host (172.16.0.11) has received the same
number of packets (13) on different flows from several hosts. This indicates pre-programmed
behaviour implementing the same action over sequenced port numbers. Fig. 6.5 and Fig.
6.6 show a sample of the log file which the operator can use to gain more understanding
of the situation after hearing sounds that indicate potential botnet behaviour. The sudden
increase in the number of the external hosts (461) connecting to the same local-host and the
number and range of port numbers provide deeper explanation and understanding of the state
of the traffic. This example supports the integration between sonification and visualisation
approaches.

Fig. 6.7 shows how the local host receives the same communication procedures from
several external hosts. Although each individual flow considered as normal behaviour, the
correlation between these flows shows repetition of procedures which indicate the presence
of a pre-programmed Botnet generating this traffic.

Table 6.12 shows the TPR was highest in the 60 s time window (99.54%). Fig. 6.8 shows
that the accuracy increases with increasing time window duration. This indicates that the
longer the time window the more likely an operator is to notice botnet flows. Table 6.12
illustrates SoNSTAR achieved excellent precision, recall, F-measure, accuracy, FPR results
during all time periods. In particular, the FPR is low, which confirms that the involvement of
human understanding in the selection of events practically affects the reduction of the FPR.
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These results confirm that sonification could have a significant impact on the development of
features and events required for the development of protection systems.

The repetition of IP flows patterns of the Botnet traffic confirms that even IP flows patterns
of normal behaviour traffic when repeated in the same time window would be considered
suspicious. The use of IP flow patterns open high potential to learn more about network
traffic and malicious behaviours.

The use of sonification and log files to monitor network traffic allows the user to ex-
plore, learn and transfer their understanding directly to event creation. This allows them
to experiment with many event possibilities which can be included to detect the targeted
behaviour.

SoNSTAR enables the user to explore distributed, parallel and horizontal behaviours that
are similar to normal behaviours but which can be linked to DDoS or botnet characteristics.
Although every single flow may appear normal in and of itself, the overall behaviour is
suspicious. Moreover, the user recognises identical IP flow patterns repeated several times
within the same time window and probably also within several subsequent time windows. It
is not expected to see such behaviour within normal traffic. It is as if a number of website
visitors increased suddenly and performed a similar action. From a machine this may look
like normal behaviour, but for the human mind it is suspicious and does not look right.
Therefore, normal behaviour from several different external hosts cannot use a specific
communication mechanism unless it was programmed to perform such action.

Acting in the role of network operator, we have discovered some repeated identical
behaviours within traffic flows. In our study of these flow patterns, we found that it would
be impossible for this normal behaviour to be repeated several times in a single time period,
which indicates that it is botnet behaviour. To facilitate the detection of the discovered
patterns in the future, we have mapped them into recorded sounds.

The advantage of using sonification is that the user is informed immediately about any
traffic activity and the sounds are easier to follow and comprehend. Visualisation is capable
of representing traffic behaviour, but it is difficult for the user to follow and recognise the
frequency and sequence of occurrence of events in the way that sonification can provide, not
least because it would require constant attention to the visual display. Therefore, sonification
and visualisation have to be integrated to raise security situational awareness.

Any features, events or patterns discovered to be symptoms of malicious behaviour could
then be passed to any IDS and tested and used in a machine learning process afterwards.
SoNSTAR improves situational awareness levels and allows users to learn more about their
own network environment rather than studying network behaviour in general. As soon as the
SoNSTAR user starts monitoring the network, they will recognise various thresholds and



146 Sonification Approach to Support IDSs to Detect and Learn about Botnet Behaviour

normal behaviours that pertain to their network environment and after some time will be
easily able to distinguish different normal behaviours. Any unusual ‘normal’ behaviour will
become a suspicious behaviour which will improve the user’s awareness level.

The operator can use SoNSTAR to study the vulnerability of a network. For example,
the operator could perform a penetration test against the network while monitoring it with
SoNSTAR. The user can perform expected attacks based on the network’s purpose and any
adversary’s motivations. SoNSTAR will be able to help the user to create events which reveal
those attacks even if they take the form of normal behaviour. It is provide

This work deals with the extension of SoNSTAR by mapping TCP traffic flow features
to sound such that it enables the human operator to recognise botnet activity and patterns
without the need to manually inspect the traffic’s content. The first contribution is the new
features extracted that target parallel, horizontal, distributed and repetitive flow behaviours
plus four new algorithms to process event feature conditions.

The second contribution is the discovery and definition of six patterns of botnet behaviour
based on IP flow. The significance of this discovery is that botnets exhibit unique repetitive
IP flow patterns which can be used to detect them at the network layer instead of the
growing demand to detect botnets at the application layer. The third contribution consists
of using IP flow patterns for classification instead of using packet patterns, which opens up
a new path of research to find better ways to develop IDSs in the future based on IP flows.
Finally, as a fourth contribution, the proposed sonification tool (SoNSTAR) is an interactive,
flexible, and scalable approach for botnet traffic detection that can be adjusted according to
the understanding of the human operator and future security demands, and this is the first
sonification solution to target botnet detection.

Further development can be conducted to represent log file information in a visual man-
ner, which would enable more real-time integration between sonification and visualisation.
Furthermore, four new algorithms were added to the proof-of-concept SoNSTAR system
and no detrimental impact on the system performance was observed. However, it would
be instructive to run performance tests to determine the scaleability of adding successive
algorithms for dealing with new traffic features. SoNSTAR can be installed on a network
gateway or, if the network is very large with lots of traffic, then multiple instances could be
installed on subnet gateways. Further work is needed to determine the thresholds for making
such decisions.
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6.5 Summary

IDS technologies do not include the protocol flow granularity required to understand network
events inside an environment. Our proposed solution is to use SoNSTAR to learn about
those environments and then IDS technology could be developed specifically for specific
environments and can be deployed with confidence in detecting malicious activity. This
chapter describes the evaluation of the events features of SoNSTAR that address the specific
environment, including its coordinated sonification and report building capabilities. Also, it
illustrates how it can be used to discover the unexpected behaviours in network flow data in
labelled datasets with different attacks and normal and malicious behaviours.

This chapter described a novel and innovative method to tackle botnet issues. This
represents the first mechanism for sonifying botnet behaviour. Its objective is to target
botnet events in order to enable the operator to recognise them. To successfully achieve this
target, we have introduced new extracted features that create events which can target botnet
behaviour. SoNSTAR does not use any botnet detection algorithm, but enables a human
operator to recognise botnets by linking sounds of events to the structure of botnet behaviour
and then to extract botnet IP flow patterns, and then to confirm the presence of botnet activity
by finding those patterns repeated within a time window.

We defined six patterns of botnet behaviour representing normal flow patterns used by
botnets. We found evidence of botnets having a unique repetitive IP flow patterns from the
ISOT dataset. This shows that our sonification approach and IP flow structures can be used
to detect known botnets as well as novel ones. And we have demonstrated in experiments
that our sonification mechanism is effective in revealing important aspects of botnet patterns.
The pattern validation experiment shows how patterns discovered by SoNSTAR can be used
by IDSs to prevent a zero-day attack.

Based on this an experiment was performed to target and detect botnet behaviours in
computer network. This chapter describes the traffic dataset used in the experiment. In
addition, it describes the experimental design, procedure, and results.

Further research and development can be conducted to represent log file information in
a visual manner, which would enable more real-time integration between sonification and
visualisation.





Chapter 7

Conclusions and Future Work

This chapter presents the conclusions of this thesis along with a brief description of its
contributions and some directions for future work. The main conclusions of the research are
presented in Section 7.1 and a summary of contributions is given in Section 7.2. Section 7.3
outlines the challenges faced and the solutions offered, whereas Section 7.4 highlights the
limitations of the proposed approach. The directions for future research are then discussed in
Section 7.5.

7.1 Thesis summary

This research addresses the question of “how can sonification be used in maintenance of real-
time situational awareness to provide the protocol flow granularity required to understand the
network environment behaviour?” This thesis has presented research on real-time sonification
of computer network traffic to support cyber security situational awareness as part of measures
that could be implemented to enhance the existing security tools portfolio. Chapter 2
presented a literature review on computer networks security and situational awareness
and provided the relevant background of the existing security tools, traffic protocols and
malicious behaviours. Chapter 3 presented a literature review on sonification in general and
on existing sonification systems for computer network monitoring. In addition, Chapter 4
introduced and described our (SoNSTAR) system and explained the SoNSTAR design and
the feature extraction and sound mapping techniques used. It also described the two primary
experiments conducted, the first of which aimed to test the packet count concept, while the
second targeted the evaluation of sonic detection. Chapter 5 proceeded by providing the
details of an experiment conducted to evaluate the efficiency and effectiveness of SoNSTAR
against the Snort IDS and has discussed the contributions of SoNSTAR towards raising the
cyber security situational awareness levels. In addition, the experimental procedures, results
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and evaluation, and further discussions were all detailed in the chapter. Chapter 6 presented
new techniques to extract and map additional traffic features as part of a further development
of SoNSTAR to target botnet behaviours, and described an experiment conducted to use
of SoNSTAR as a passive IDS based on the discovered botnet patterns through utilising
sonification. The results of the evaluation have demonstrated the efficacy of using this
approach to deal with botnet traffic compared with other research based on the same datasets.

7.2 Contributions of this Thesis

This thesis makes three main contributions to the field. The first is the SoNSTAR system
itself and the supporting evaluations. The second is the introduction of the concept of IP flow
which, together with feature construction methods and techniques for representing multiple
identical events with a single sound, reduces the complexity of network traffic such that it
becomes possible to monitor all the traffic passing through the network. The third concerns
the use of sonification in the discovery of malicious network behaviours, demonstrated in
Chapter 6 with a specific case study dealing with botnet activity. These will now be expanded
upon in turn.

7.2.1 SoNSTAR

SoNSTAR provides a real-time soundscape sonification monitoring system that does not
require the user to be dedicated to watching a visual display screen. SoNSTAR uses a method
that collects selective status information, from which it periodically extracts features to free
memory storage and save processing power. Unlike previously reported network sonification
systems, SoNSTAR presents the state of raw network traffic in real time in such a way
that the resultant soundscape can be used for real monitoring. Other sonification systems
(e.g., Peep [59] and NetSon [167]) did communicate aspects of traffic (such as information
about IP addresses, traffic volumes and port numbers) but SoNSTAR is the first system to
use detailed information from individual packets to allow knowledge about actual traffic
behaviour to be constructed. The focus on flows rather than source and destination addresses
allows malicious network activity to be detected and recognised by human operators.

In addition, this research is the first to evaluate network sonification with human partic-
ipants and the studies described in Chapters 4 and 5 demonstrate that SoNSTAR’s output
is comprehended. The study in Chapter 5 revealed that using SoNSTAR for monitoring a
computer network was shown to be more useful in supporting a human operator to identify
suspicious network activity than a current leading intrusion detection system (Snort) and that
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the use of sound reduced the overall mental workload. This is the first study of this kind to
demonstrate the usefulness of network sonification for this type of monitoring activity.

Moreover, the study in Chapter 4 showed that the soundscape representation of traffic
is better than MIDI messages due to the variety of natural and man-made sounds available
and the advantages of sound comprehension. This study has indicated that using sonification
improved the monitoring process, even for people who only have basic knowledge of network
monitoring. The experiment in 4.6 has also demonstrated humans’ impressive capability to
recognise recorded sounds.

7.2.2 IP flow and feature construction

The complexity and volumes of modern network traffic militate against real-time sonification
and visualisation of the entire traffic. It has not been possible to identify events as they are
happening without significant delay or with explanations as to what exactly happened. IDSs
and anomaly detection systems are good at blocking certain activity, but the explanation of
the traffic activity requires the extensive post-incident review of log files.

IDSs use the concept of traffic flows to identify connections between two hosts. However,
a great many traffic flows can exist between a single source and destination host due to the
large number of IP ports that can be addressed, with each port connection constituting a
single traffic flow. Therefore, since network traffic volumes can be huge, the second main
contribution of this thesis is the introduction of the concept of the “IP flow” which aggregates
all traffic flowing between two hosts, thereby allowing the traffic to be represented as a single
IP flow, thus resulting in a considerable reduction of the amount of information required to
be represented. The volumes of data are further reduced by inspecting the status flags of each
packet within an IP flow and maintaining counts of each packet type. This major contribution
results in reducing the complexity of huge volumes of traffic so that they can be sonified in a
comprensible manner by using the IP flow to detect network behaviours, especially vertical
behaviours.

Using IP flows (and the packet count aggregations within), further benefits are obtained.
First, analysis of the counts of the various packet types allows distinctive features (and
combinations of features) to be collected which identify different types of traffic behaviour.
These features can then be joined using relational operators to define events which signal
specific types of activity, enabling the recognition of normal, anomalous and malicious traffic.

To prevent overloading of processor resources, the SoNSTAR approach collects traffic
features over a series of time windows, and at the end of each time window sending the
event information for sonification and subsequently freeing memory storage. According to
the author’s knowledge, this contribution has not been achieved before in any other existing
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sonification system. The technique has succeeded in reducing the number of sounds in each
time window by representing similar flow events only once.

7.2.3 Sonification for discovery of malicious activity

SoNSTAR has been designed to provide a flexible sonification framework. The third contri-
bution of this research is the implementation of a technique that allows the development of
new features and events to target and detect repetitive, parallel, distributed and horizontal
behaviours and to sonify those events in a human-comprehensible form. As operators learn
more about their own network, they can extend the feature set to account for their own
individual circumstances. This offers a flexibility that is not present in current network
monitoring or intrusion detection systems. The very act of listening to the traffic generates a
fast discovery process leading to new knowledge of malicious behaviours that is not possible
with current algorithmic approaches. SoNSTAR’s interactivity lets an operator explore their
network in new ways and discover gaps in the network security. This knowledge can then be
included in the IDS.

The case study in Chapter 6 showed how SoNSTAR can be used by an operator to con-
struct new feature combinations and events to target the particular type of activity associated
with botnets. This significant benefit supports intrusion detection systems and enhances
their ability to detect zero-day attacks. The results of the case study have shown that our
botnet patterns set discovered using SoNSTAR achieved better accuracy and recall rates in
detecting botnet activity than other studies that used the same dataset. Moreover, this case
study has demonstrated that using SoNSTAR based on discovered events and features of
function-specific network traffic enables the discovery of network vulnerabilities based on
the user’s understanding of the motivation behind the cyber-attacks expected and studying
the unique traffic behaviour of their network. Furthermore, this system shows that botnet
attacks launched at the application layer to evade detection can be detected at the network
layer when a human operator is in the loop, and this enables the operator to quickly gain an
understanding of the situation.

7.2.4 Summary

The development of SoNSTAR changes the philosophy of relying solely on machines using
specific algorithms and rules to detect malicious behaviour. This system opens the door to
dynamic interaction with network traffic bringing the human into the loop by leveraging our
intuition, reasoning, and pattern recognition abilities in the process of detecting malicious
activity. This has not been demonstrated in any previous sonification monitoring systems.
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SoNSTAR includes the protocol flow granularity required to understand network events
inside a network environment, which is not provided by current IDS technologies and other
monitoring tools. SoNSTAR users are capable of recognising novel behaviour changes in
a very short time window. SoNSTAR allows its users to tune their network according to
their own specific network environment in order to extract a unique normal baseline of their
network behaviour. SoNSTAR’s algorithms represent a model for innovators to develop and
enhance sonification tools. Finally, SoNSTAR could be used in educational settings to enable
students to learn about network environments and structures.

The sonification of network traffic based on flag state counts and network flow techniques
in addition to soundscape mapping has enabled our solution to provide a valuable contribution
to the fields of sonification, computer network security, and situational awareness. The exper-
iment in 5.1 has clearly demonstrated improvements in monitoring when using sonification
compared to the visual method only. Although the participants were not computer security
professionals, they were able to use SoNSTAR after a very short training period. The results
have also shown that monitoring based on sonification reduced the workload of users in
comparison to the visualisation approach. Temporal demand, effort and frustration rates have
all been shown to improve under sonification use.

Two main lessons were learned from the experiments. First, sounds and noises with
similar characteristics should be avoided because participants them hard to differentiate.
Second, to obtain more accurate results in terms of the workload of users, it would be
necessary to increase the duration of the monitoring period so that the waiting period is
sufficient to show the difference between the use of sonification and visualisation techniques
in real monitoring conditions.
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7.3 Challenges and solutions

Despite concerted efforts to reduce the impact of increased traffic in computer networks on
using sonification to represent the state of traffic in real-time, current sonification techniques
for security monitoring are inadequate. Intrusion attacks are becoming more stealthy and
complex. Moreover, existing monitoring tools do not provide the protocol flow granularity
and flow status representation techniques required to understand the computer network
environment. Since the behaviour of attack traffic has become much like normal traffic
behaviour, monitoring tools that depend on traffic volume behaviour changes are becoming
increasingly unable to detect attacks. The involvement of the human mind in the process of
detection has become increasingly important due to the presence of other factors that the
detection process depends on, such as the nature of the network and its purpose and the
motivation behind the expected attacks.

In addition to the technical difficulties faced during development of SoNSTAR, there
were three main challenges involved. The first challenge involved the presence of a huge
amount of traffic that needed to be represented using sonification in a way that allowed
human understanding of the complete traffic status. To tackle this, we have introduced the IP
flow which has resulted in reducing the number of flows required to be sonified to represent
the entire traffic. The IP flow features have demonstrated extensive capabilities in creating
flow events that enable the SoNSTAR user to target any traffic behaviour.

The second challenge was ensuring that the sonification approach is interactive and allows
the user to recognise and comprehend sounds of events immediately. Since monitoring is a
continuous process, the sounds have to be recognisable with the least sound fatigue. As a
solution, we have used event-to-sound mappings to transform the network environment into a
soundscape environment. Furthermore, we have used recorded sounds of nature and animals
which humans already know, and used this prior knowledge of these sounds to facilitate the
comprehension of the network behaviour. For example, the sound of fire in the woods would
allow the user to understand the nature of the malicious behaviour. For interaction, we have
enabled the user to create and map events to the sounds as they like. They can experiment
with events thresholds and change each event sound’s volume.

The third and final challenge involved collecting features to target repetitive, parallel,
distributed, vertical, and horizontal behaviours, which are used by some attacks as evasion
methods to avoid detection. As a solution, we have introduced four algorithms to address
this challenge, and the features collected have subsequently enabled the detection of botnet
behaviour.
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7.4 Limitations

One of the advantages of sonification over visualisation techniques is that the latter require
the operator to be attached to a monitoring screen for long hours, while in former, the user
can perform other essential tasks while listening to the network. Since monitoring is a
continuous process, the evaluation of sonification systems requires participants to perform
the monitoring task for hours to measure the participants’ performance and workload in real
life monitoring conditions.

Since the behaviour of each network is different, we could not obtain different real
network environments in which to use SoNSTAR. Therefore, we intended to evaluate the
potential of drawing a baseline of normal traffic behaviour of different networks and to study
their behaviour during a penetration test while monitoring the traffic using SoNSTAR. We
consider this helps to raise cyber security situational awareness and to establish a baseline of
normal traffic within the specified network.

7.5 Future research directions

This research and its outcomes have highlighted further work that could be done to extend
SoNSTAR. Our real-time sonification system, with its important features and sound mapping
design and implementation, helps to address the cyber security situational awareness objective.
However, because the focus of this thesis was on the TCP protocol, further research needs
to be conducted to investigate how sonification can be applied to the other network traffic
protocols. Furthermore, integration with visualisation techniques could be applied to support
the sonification solution.

There are various possible areas for future work that can be carried out to validate and
further develop SoNSTAR, as a continuation to the research work presented in this thesis.
These areas include the following:

1. Building on the developed SoNSTAR feature extractor and combiner. We succeeded
in creating many features that can be submitted to publicly open databases for other
researchers to use in developing their own detection systems. Future work could
involve developing a language for describing these discovered features and events
based on network traffic.

2. Developing methods to create features for other network protocols such as UDP, ICMP,
DNS, IRC and represent them by SoNSTAR. This ensures that a larger amount of
representative traffic is covered for the development and testing of network traffic
behaviour. The development could also include ICMP and TCP event interaction.
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3. Exploiting the very high potential that SoNSTAR has to represent SCADA systems
because of their unique nature. If their normal behaviour patterns are tested, zero-day
vulnerability mitigation can be increased.

4. Further studies could be performed to evaluate what SoNSTAR could provide to the
educational process to enable students to observe traffic in a simple and meaningful
way as well as how it could make a contribution towards providing real-time interaction
with protocol mechanisms.

5. Examining the use of sonification on router logs and hard disk storage logs for security
purposes. Since logs have existed for a long time, it would seem logical to develop
sonification tools to help analysts in post-mortem and real-time analysis.

6. Further research is required on botnets and on SoNSTAR integration with IDSs through
developing new features to be used in IDSs. A botnet adopts various behaviours and
could be recognised as malicious behaviours rather than classified as a botnet.

7. Studying botnet characteristic in the DNS protocol using SoNSTAR.

8. Further research is required into the real-time visualisation of the IP flow reduction
technique. Since previous work did not have access to the IP flow concept used in
SoNSTAR when for carrying out visualisations so it will be of benefit to consider. Since
the main aim of this research was to use sonification to allow real-time monitoring, the
visualisation of aggregated traffic flows was not investigated.



References

[1] Adams, M., Cox, T., Moore, G., Croxford, B., Refaee, M., and Sharples, S. ‘Sustain-
able Soundscapes: Noise Policy and the Urban Experience’. Urban Studies, 43(13):pp.
2385–2398, 2006.

[2] Aggarwal, C. C. Data Classification: Algorithms and Applications. Chapman &
Hall/CRC, 1st edition, 2014. ISBN 1466586745, 9781466586741.

[3] Alshammari, R. and Zincir-Heywood, A. N. ‘Can Encrypted Traffic Be Identified
Without Port Numbers, IP Addresses and Payload Inspection?’ Computer Networks,
55(6):pp. 1326–1350, 2011.

[4] Angerman, W. S. Coming Full Circle with Boyd’s OODA Loop Ideas: An Analysis of
Innovation Diffusion and Evolution. Master’s thesis, Airforce Institute of Technology,
Wright-Patterson AFB, Ohio, USA, March 2004.

[5] Axelsson, S. and Sands, D. Understanding Intrusion Detection Through Visualization.
Springer Science & Business Media, 2006.

[6] Aycock, J. Computer Viruses and Malware. Springer Science & Business Media,
2006.

[7] Backhaus, S., Bent, R., Bono, J., Lee, R., Tracey, B., Wolpert, D., Xie, D., and Yildiz,
Y. ‘Cyber-physical security: A game theory model of humans interacting over control
systems’. IEEE Transactions on Smart Grid, 4(4):pp. 2320–2327, 2013.

[8] Baier, G., Hermann, T., Sahle, S., and Stephani, U. ‘Sonified Epilectic Rhythms’.
In T. Stockman, L. V. Nickerson, C. Frauenberger, A. D. N. Edwards, and D. Brock
(Eds.), ICAD 2006 - the 12th Meeting of the International Conference on Auditory
Display, pp. 148–151. London, UK, 20–23 June 2006.



158 References

[9] Bakker, S., Van Den Hoven, E., and Eggen, B. ‘Exploring interactive systems using
peripheral sounds’. In International Workshop on Haptic and Audio Interaction
Design, pp. 55–64. Springer, 2010.

[10] Ballora, M., Cole, R. J., Kruesi, H., Greene, H., Monahan, G., and Hall, D. L. ‘Use
of Sonification in the Detection of Anomalous Events’. In Multisensor, Multisource
Information Fusion: Architectures, Algorithms, and Applications 2012, volume 8407,
p. 84070S. International Society for Optics and Photonics, 2012.

[11] Ballora, M., Giacobe, N. A., and Hall, D. L. ‘Songs of Cyberspace: An Update on
Sonifications of Network Traffic to Support Situational Awareness’. In Multisensor,
Multisource Information Fusion: Architectures, Algorithms, and Applications 2011,
volume 8064, p. 80640P. International Society for Optics and Photonics, 2011.

[12] Ballora, M. and Hall, D. L. ‘Do You See What I Hear: Experiments in Multi-
Channel Sound and 3D Visualization for Network Monitoring’. In Cyber Security,
Situation Management, and Impact Assessment II; and Visual Analytics for Homeland
Defense and Security II, volume 7709, p. 77090J. International Society for Optics and
Photonics, 2010.

[13] Barber, J. R., Crooks, K. R., and Fristrup, K. M. ‘The Costs of Chronic Noise Exposure
for Terrestrial Organisms’. Trends in Ecology & Evolution, 25(3):pp. 180–189, 2010.

[14] Barford, P., Kline, J., Plonka, D., and Ron, A. ‘A Signal Analysis of Network Traffic
Anomalies’. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
Measurment, pp. 71–82. ACM, 2002.

[15] Barford, P. and Yegneswaran, V. ‘An Inside Look at Botnets’. In M. Christodorescu,
S. Jha, D. Maughan, D. Song, and C. Wang (Eds.), Malware Detection, pp. 171–191.
Boston, MA: Springer US, 2007.

[16] Bass, T. ‘Intrusion Detection Systems and Multisensor Data Fusion’. Communications
of the ACM, 43(4):pp. 99–105, 2000.

[17] Becher, M. Web Application Firewalls. VDM Verlag, 2007.

[18] Bernaille, L. and Teixeira, R. ‘Early Recognition of Encrypted Applications’. In
S. Uhlig, K. Papagiannaki, and O. Bonaventure (Eds.), Passive and Active Network
Measurement, pp. 165–175. Berlin, Heidelberg: Springer, 2007.



References 159

[19] Bly, S. ‘Sound and computer information presentation’. Technical report, Lawrence
Livermore National Lab., CA (USA); California Univ., Davis (USA), 1982.

[20] Bowman, W. B. ‘System and Method for Detecting Fraudulent Network Usage Patterns
Using Real-Time Network Monitoring’. US Patent 5,627,886/ Google Patents., May 6
1997.

[21] Bradley, N., Alvarez, M., McMillen, D., and Craig, S. ‘Reviewing a Year of Serious
Data Breaches, Major Attacks and New Vulnerabilities’. Cyber Security Intelligence
Index, IBM X-Force Research, 2016.

[22] Brehmer, B. ‘The Dynamic OODA Loop: Amalgamating Boyd’s OODA Loop and
the Cybernetic Approach to Command and Control’. In Proceedings of the 10th
International Command and Control Research Technology Symposium. 2005.

[23] Brewster, S. A., Wright, P. C., and Edwards, A. D. N. ‘A Detailed Investigation
into the Effectiveness of Earcons’. In G. Kramer (Ed.), Auditory Display, Santa
FE Institute Studies in the Sciences of Complexity-Proceedings, volume XVIII, pp.
471–498. Reading, MA: Addison-Wesley, 1994.

[24] Brown, C., Cowperthwaite, A., Hijazi, A., and Somayaji, A. ‘Analysis of the 1999
DARPA/Lincoln Laboratory IDS Evaluation Data with NetADHICT’. In Computa-
tional Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE
Symposium On, pp. 1–7. IEEE, 2009.

[25] Brownlee, N., Mills, C., and Ruth, G. ‘Traffic Flow Measurement: Architecture’.
https://tools.ietf.org/html/rfc2722, 1999.

[26] CAIDA Center for Applied Internet Data Analysis. ‘The CAIDA DDoS Attack
Dataset’. http://www.caida.org/data/overview/, 2007.

[27] Calyam, P., Krymskiy, D., Sridharan, M., and Schopis, P. ‘Active and Passive Mea-
surements on Campus, Regional and National Network Backbone Paths’. In Computer
Communications and Networks, 2005. ICCCN 2005. Proceedings. 14th International
Conference On, pp. 537–542. IEEE, 2005.

[28] Carrier, B. ‘Defining Digital Forensic Examination and Analysis Tools Using Abstrac-
tion Layers’. International Journal of Digital Evidence, 1(4):pp. 1–12, 2003.

[29] Caruso, R. D. ‘Personal Computer Security: Part 1. Firewalls, Antivirus Software,
and Internet Security Suites 1’. RadioGraphics, 23(5):pp. 1329–1337, 2003.

http://www.caida.org/data/overview/


160 References

[30] Casey, E. Digital Evidence and Computer Crime: Forensic Science, Computers, and
the Internet. Academic press, 2011.

[31] Cavelty, M. D. and Mauer, V. Power and Security in the Information Age: Investigating
the Role of the State in Cyberspace. Routledge, 2016.

[32] Chafe, C. and Leistikow, R. ‘Levels of Temporal Resolution in Sonification of Network
Performance’. In J. Hiipakka, N. Zacharov, and T. Takala (Eds.), ICAD 2001 7th
International Conference on Auditory Display, pp. 50–55. Espoo, Finland: ICAD,
29 July–1 August 2001.

[33] Chambers, J., Mathews, M., and Moore, F. ‘Auditory data inspection’. Report TM, pp.
74–122, 1974.

[34] Cisco. ‘IOS Netflow Technology Data Sheet’. http://www.cisco.com/warp/public/cc/
pd/iosw/prodlit/iosnf_ds.htm/, 2016.

[35] Clarke-Salt, J. SQL Injection Attacks and Defense. Elsevier, 2009.

[36] Cooke, E., Jahanian, F., and McPherson, D. ‘The Zombie Roundup: Understanding,
Detecting, and Disrupting Botnets.’ SRUTI, 5:pp. 6–6, 2005.

[37] Corero Network Security. ‘A Network’s New First Line of Defense’. http://www.
corero.com/resources/files/whitepapers/cns_whitepaper_firstlineofdefense.pdf/, 2013.

[38] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and Cheshire, S. ‘Internet Assigned
Numbers Authority (IANA) Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry’. https://tools.ietf.org/html/rfc6335, 2011.

[39] Criado, R., Flores, J., Hernández-Bermejo, B., Pello, J., and Romance, M. ‘Effective
Measurement of Network Vulnerability Under Random and Intentional Attacks’.
Journal of Mathematical Modelling and Algorithms, 4(3):pp. 307–316, 2005.

[40] d’Albe, E. F. ‘On a type-reading optophone’. Proc. R. Soc. Lond. A, 90(619):pp.
373–375, 1914.

[41] Debashi, M. and Vickers, P. ‘Nuson-SoNSTAR: Sonification of Networks for
SiTuational AwaReness’. https://github.com/nuson/SoNSTAR. DOI: 10.5281/zen-
odo.1072535, 2017.

[42] Degara, N., Hunt, A., and Hermann, T. ‘Interactive Sonification [Guest editors’
introduction]’. IEEE MultiMedia, 22(1):pp. 20–23, Jan.-Mar. 2015. ISSN 1070-986X.

http://www.cisco.com/warp/ public/cc/pd/iosw/prodlit/iosnf_ds.htm/
http://www.cisco.com/warp/ public/cc/pd/iosw/prodlit/iosnf_ds.htm/
http://www.corero.com/resources/files/whitepapers/cns_whitepaper_firstlineofdefense.pdf/
http://www.corero.com/resources/files/whitepapers/cns_whitepaper_firstlineofdefense.pdf/
https://github.com/nuson/SoNSTAR


References 161

[43] Dejmal, S., Fern, A., and Nguyen, T. P. ‘Reinforcement Learning for Vulnerability
Assessment in Peer-to-Peer Networks.’ In AAAI, pp. 1655–1662. 2008.

[44] Di Pietro, R. and Mancini, L. V. Intrusion Detection Systems. Springer, 2008.

[45] Endsley, M. R. ‘Toward a Theory of Situation Awareness in Dynamic Systems’.
Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(1):pp.
32–64, 1995.

[46] Eslahi, M., Salleh, R., and Anuar, N. B. ‘Bots and Botnets: An Overview of Charac-
teristics, Detection and Challenges’. In Control System, Computing and Engineering
(ICCSCE), 2012 IEEE International Conference On, pp. 349–354. IEEE, 2012.

[47] Fairfax, T., Laing, C., and Vickers, P. ‘Network Situational Awareness: Sonification
& Visualization in the Cyber Battlespace’. In Handbook of Research on Digital
Crime, Cyberspace Security, and Information Assurance, Advances in Digital Crime,
Forensics, and Cyber Terrorism (ADCFCT), pp. 334–349. IGI Global, July 2014.

[48] Fall, K. R. and Stevens, W. R. TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley, 2011.

[49] Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R., Seely,
T., and Diot, S. ‘Packet-Level Traffic Measurements from the Sprint IP Backbone’.
IEEE Network, 17(6):pp. 6–16, 2003.

[50] Frysinger, S. P. ‘A brief history of auditory data representation to the 1980s’. Georgia
Institute of Technology, 2005.

[51] Fung, C. ‘Collaborative Intrusion Detection Networks and Insider Attacks’. Journal
of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications,
2(1):pp. 63–74, 2011.

[52] Gadge, J. and Patil, A. A. ‘Port Scan Detection’. In Networks, 2008. ICON 2008. 16th
IEEE International Conference On, pp. 1–6. IEEE, 2008.

[53] Garcia-Ruiz, M. A., Block, A. E., Martin, M. V., and ElSeoud, S. ‘Auditory Display
As a Tool for Teaching Network Intrusion Detection.’ iJET, 3(2):pp. 59–62, 2008.

[54] García-Ruiz, M. Á., Kapralos, B., and Vargas Martin, M. ‘Towards Multimodal
Interfaces for Intrusion Detection’. In Audio Engineering Society Convention 122.
Audio Engineering Society, 2007.



162 References

[55] Gaver, W. W. ‘Auditory Icons: Using Sound in Computer Interfaces’. Human-
Computer Interaction, 2(2):pp. 167–177, 1986.

[56] Gaver, W. W., Smith, R. B., and O’Shea, T. ‘Effective sounds in complex systems: The
ARKola simulation’. In Proceedings of the SIGCHI Conference on Human factors in
Computing Systems, pp. 85–90. ACM, 1991.

[57] Geerthidevi, K. G., Prakash, T. S., and Tharani, S. ‘Social Network Based Security
Schema for Botnet Detection and Prevention’. International Journal Of Engineering
And Computer Science, 4(6), 2015.

[58] Ghorbani, A. A., Lu, W., and Tavallaee, M. ‘Network Attacks’. In Network Intrusion
Detection and Prevention, pp. 1–25. Springer, 2010.

[59] Gilfix, M. and Couch, A. L. ‘Peep (the Network Auralizer): Monitoring Your Network
with Sound.’ In 14th System Administration Conference (LISA 2000), pp. 109–117.
New Orleans, Louisiana, USA: The USENIX Association, 3–8 December 2000.

[60] Giot, R. and Courbe, Y. ‘InteNtion–Interactive Network Sonification’. In M. A. Nees,
B. N. Walker, and J. Freeman (Eds.), Proceedings of the 18th International Conference
on Auditory Display (ICAD 2012), pp. 235–236. Georgia Institute of Technology,
2012.

[61] Goldman, J. and Maret, S. Intelligence and Information Policy for National Security:
Key Terms and Concepts. Rowman & Littlefield, 2016.

[62] Goodall, J. R. ‘Introduction to Visualization for Computer Security’. In J. R. Goodall,
G. Conti, and K.-L. Ma (Eds.), VizSEC 2007: Proceedings of the Workshop on
Visualization for Computer Security, pp. 1–17. Springer, 2008.

[63] Gopinath, M. C. Auralization of Intrusion Detection System Using JListen. Master’s
thesis, Birla Institute of Technology and Science, Pilani (Rajasthan), India, May 2004.

[64] Grond, F. and Hermann, T. ‘Interactive Sonification for Data Exploration: How
Listening Modes and Display Purposes Define Design Guidelines’. Organised Sound,
19(1):pp. 41–51, 2014.

[65] Gupta, B. B., Arachchilage, N. A. G., and Psannis, K. E. ‘Defending Against Phishing
Attacks: Taxonomy of Methods, Current Issues and Future Directions’. Telecommuni-
cation Systems, 67(2):pp. 247–267, February 2018.



References 163

[66] Gupta, B. B., Tewari, A., Jain, A. K., and Agrawal, D. P. ‘Fighting Against Phishing
Attacks: State of the Art and Future Challenges’. Neural Computing and Applications,
28(12):pp. 3629–3654, December 2017.

[67] Hart, S. G. and Staveland, L. E. ‘Development of NASA-TLX (Task Load Index):
Results of empirical and theoretical research’. Advances in psychology, 52:pp. 139–
183, 1988.

[68] Hermann, T., Drees, J. M., and Ritter, H. ‘Broadcasting auditory weather reports-a
pilot project’. Georgia Institute of Technology, 2003.

[69] Hermann, T. and Hunt, A. ‘Guest Editors’ Introduction: An Introduction to Interactive
Sonification’. IEEE Multimedia, 12(2):pp. 20–24, 2005.

[70] Hermann, T., Hunt, A., and Neuhoff, J. G. The Sonification Handbook. Logos Verlag
Berlin, 2011.

[71] Hermann, T. and Ritter, H. ‘Listen to Your Data: Model-Based Sonification for Data
Analysis’. In G. E. Lasker (Ed.), Advances in Intelligent Computing and Multimedia
Systems, pp. 189–194. Baden-Baden, Germany: Int. Inst. for Advanced Studies in
System research and cybernetics, August 1999.

[72] Hildebrandt, T. ‘Towards Enhancing Business Process Monitoring with Sonification’.
In Business Process Management Workshops, pp. 529–536. Springer, 2014.

[73] Hildebrandt, T. and Rinderle-Ma, S. ‘Toward a sonification concept for business
process monitoring’. 2013.

[74] Hildebrandt, T. and Rinderle-Ma, S. ‘Server Sounds and Network Noises’. In Cognitive
Infocommunications (CogInfoCom), 2015 6th IEEE International Conference On, pp.
45–50. IEEE, 2015.

[75] Hunt, A. and Hermann, T. ‘Guest Editors’ Introduction: An Introduction to Interactive
Sonification’. IEEE MultiMedia, 12:pp. 20–24, 04 2005. ISSN 1070-986X.

[76] Hunt, A. and Hermann, T. ‘Interactive Sonification’. In T. Hermann, A. D. Hunt, and
J. Neuhoff (Eds.), The Sonification Handbook, pp. 273–298. Berlin: Logos Verlag,
2011. ISBN 978-3-8325-2819-5.

[77] Hussain, A., Heidemann, J., and Papadopoulos, C. ‘A Framework for Classifying
Denial of Service Attacks’. In Proceedings of the 2003 Conference on Applications,



164 References

Technologies, Architectures, and Protocols for Computer Communications, pp. 99–110.
ACM, 2003.

[78] Hussein, S. M., Ali, F. H. M., and Kasiran, Z. ‘Evaluation effectiveness of hybrid
IDs using snort with naive Bayes to detect attacks’. In Digital Information and Com-
munication Technology and it’s Applications (DICTAP), 2012 Second International
Conference on, pp. 256–260. IEEE, 2012.

[79] Hutchins, E. M., Cloppert, M. J., and Amin, R. M. ‘Intelligence-Driven Computer
Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill
Chains’. In Proceedings of the 6th International Conference on Information Warfare
and Security, pp. 113–125. George Washington University, Washington DC, USA,
17–18 March 2011.

[80] InMon Corporation. ‘SFlow Tool’. http://www.sflow.org/, 2017.

[81] Jain, M. and Dovrolis, C. ‘Pathload: A Measurement Tool for End-To-End Available
Bandwidth’. In Proceedings of Passive and Active Measurements (PAM) Workshop,
pp. 14–25. 2002.

[82] Jajodia, S., Liu, P., Swarup, V., and Wang, C. (Eds.). Cyber Situational Awareness.
Springer, 2010.

[83] Jung, J. Real-Time Detection of Malicious Network Activity Using Stochastic Models.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, June 2006.

[84] Jung, J., Krishnamurthy, B., and Rabinovich, M. ‘Flash Crowds and Denial of Service
Attacks: Characterization and Implications for CDNs and Web Sites’. In Proceedings
of the 11th International Conference on World Wide Web, pp. 293–304. ACM, 2002.

[85] Jurdak, R., Ruzzelli, A. G., Barbirato, A., and Boivineau, S. ‘Octopus: Monitoring,
Visualization, and Control of Sensor Networks’. Wireless Communications and Mobile
computing, 11(8):pp. 1073–1091, 2011.

[86] Kang, J. and Zhang, J.-Y. ‘Application Entropy Theory to Detect New Peer-To-Peer
Botnet with Multi-Chart CUSUM’. In Electronic Commerce and Security, 2009.
ISECS’09. Second International Symposium On, volume 1, pp. 470–474. IEEE, 2009.

[87] Karim, A., Salleh, R. B., Shiraz, M., Shah, S. A. A., Awan, I., and Anuar, N. B.
‘Botnet Detection Techniques: Review, Future Trends, and Issues’. Journal of Zhejiang
University SCIENCE C, 15(11):pp. 943–983, 2014.

http://www.sflow.org/


References 165

[88] Karlaftis, M. G. and Vlahogianni, E. I. ‘Statistical methods versus neural networks in
transportation research: Differences, similarities and some insights’. Transportation
Research Part C: Emerging Technologies, 19(3):pp. 387–399, 2011.

[89] Katz, B. F. G. and Marentakis, G. ‘Advances in auditory display research’. Journal on
Multimodal User Interfaces, 10(3):pp. 191–193, Sep 2016. ISSN 1783-8738.

[90] Kim, I., Choi, H., and Lee, H. ‘Botnet Visualization Using DNS Traffic’. In Proc. of
WISA. 2008.

[91] Kimoto, M. and Ohno, H. ‘Design and Implementation of Stetho Network Sonification
System’. In Proceedings of the 2002 International Computer Music Conference, pp.
273–279. 2002.

[92] Kirubavathi, G. and Anitha, R. ‘Botnet Detection Via Mining of Traffic Flow Charac-
teristics’. Computers & Electrical Engineering, 50:pp. 91–101, 2016.

[93] Komlodi, A., Goodall, J. R., and Lutters, W. G. ‘An Information Visualization
Framework for Intrusion Detection’. In CHI’04 Extended Abstracts on Human Factors
in Computing Systems, p. 1743. ACM, 2004.

[94] Kopetz, H. Real-Time Systems: Design Principles for Distributed Embedded Applica-
tions. Springer Science & Business Media, 2011.

[95] Kozierok, C. M. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols
Reference. No Starch Press, 2005.

[96] Kramer, G. (Ed.). Auditory Display: Sonification, Audification, and Auditory Inter-
faces, Santa Fe Institute, Studies in the Sciences of Complexity Proceedings, volume
XVIII. Reading, MA: Addison-Wesley, 1994.

[97] Kramer, G. ‘Preface’. In G. Kramer (Ed.), Auditory Display, Santa Fe Institute,
Studies in the Sciences of Complexity Proceedings, volume XVIII, pp. xxiii–xxxviii.
Reading, MA: Addison-Wesley, 1994.

[98] Kramer, G. ‘Some Organizing Principles for Representing Data with Sound’. In
G. Kramer (Ed.), Auditory Display, Santa Fe Institute, Studies in the Sciences of
Complexity Proceedings, volume XVIII, pp. 185–222. Reading, MA: Addison-Wesley,
1994.



166 References

[99] Kramer, G., Walker, B., Bonebright, T., Cook, P., Flowers, J. H., Miner, N., and
Neuhoff, J. ‘Sonification Report: Status of the Field and Research Agenda’. Faculty
Publications, Department of Psychology. 444, 2010.

[100] Kramer, G. and Walker, B. N. ‘Sound Science: Marking Ten International Conferences
on Auditory Display’. ACM Trans. Appl. Percept., 2(4):pp. 383–388, October 2005.
ISSN 1544-3558.

[101] Laing, C. and Vickers, P. ‘Context Informed Intelligent Information Infrastructures
for Better Situational Awareness’. In Cyber Situational Awareness, Data Analytics
and Assessment (CyberSA), 2015 International Conference, pp. 1–7. IEEE, 2015.

[102] Lakkaraju, K., Yurcik, W., and Lee, A. J. ‘NVisionIP: Netflow Visualizations of
System State for Security Situational Awareness’. In Proceedings of the 2004 ACM
Workshop on Visualization and Data Mining for Computer Security, pp. 65–72. ACM,
2004.

[103] Lee, W., Stolfo, S. J., and Mok, K. W. ‘A Data Mining Framework for Building
Intrusion Detection Models’. In Security and Privacy, 1999. Proceedings of the 1999
IEEE Symposium On, pp. 120–132. IEEE, 1999.

[104] Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., and Das, K. ‘The 1999 DARPA
Off-Line Intrusion Detection Evaluation’. Computer networks, 34(4):pp. 579–595,
2000.

[105] Liu, L. and Özsu, M. T. (Eds.). Encyclopedia of Database Systems. Springer Berlin,
Heidelberg, Germany, 2009.

[106] Mahajan, S. ‘Reinforcement Learning: A Review from a Machine Learning Perspec-
tive’. International Journal, 4(8), 2014.

[107] Malandrino, D., Mea, D., Negro, A., Palmieri, G., and Scarano, V. ‘NeMoS: Network
Monitoring with Sound’. In E. Brazil and B. Shinn-Cunningham (Eds.), Proceedings
of the 2003 International Conference on Auditory Display, Boston, MA, USA, pp.
251–254. Georgia Institute of Technology, Boston, MA: ICAD, 2003.

[108] Mancuso, V. F., Greenlee, E. T., Funke, G., Dukes, A., Menke, L., Brown, R., and
Miller, B. ‘Augmenting Cyber Defender Performance and Workload Through Sonified
Displays’. Procedia Manufacturing, 3:pp. 5214–5221, 2015.



References 167

[109] Markou, M. and Singh, S. ‘Novelty detection: a review?part 1: statistical approaches’.
Signal processing, 83(12):pp. 2481–2497, 2003.

[110] Miller, S. and Busby-Earle, C. ‘The role of machine learning in botnet detection’.
In Internet Technology and Secured Transactions (ICITST), 2016 11th International
Conference for, pp. 359–364. IEEE, 2016.

[111] Morgan, C. ‘SharpPcap: Fully Managed, Cross Platform (Windows, Mac, Linux)
.NET Library for Capturing Packets’. https://github.com/chmorgan/sharppcap, 2017.

[112] Mukkamala, S., Sung, A., and Abraham, A. ‘Cyber Security Challenges: Designing
Efficient Intrusion Detection Systems and Antivirus Tools’. Vemuri, V. Rao, Enhancing
Computer Security with Smart Technology.(Auerbach, 2006), pp. 125–163, 2005.

[113] Neuhoff, J. G., Wayand, J., and Kramer, G. ‘Pitch and Loudness Interact in Auditory
Displays: Can the Data Get Lost in the Map?’ Journal of Experimental Psychology:
Applied, 8(1):p. 17, 2002.

[114] Northcutt, S., Novak, J., and McLachlan, D. Network Intrusion Detection: An
Analyst’s Handbook. New Riders Publishing, 2nd edition, 2000.

[115] Ohsita, Y., Shingo, A., and Murata, M. ‘Detecting Distributed Denial-Of-Service
Attacks by Analyzing TCP SYN Packets Statistically’. IEICE Transactions on Com-
munications, 89(10):pp. 2868–2877, 2006.

[116] Olson, D. L. and Delen, D. Advanced Data Mining Techniques. Springer Science &
Business Media, 2008.

[117] Onwubiko, C. ‘Functional Requirements of Situational Awareness in Computer
Network Security’. In Intelligence and Security Informatics, 2009. ISI’09. IEEE
International Conference On, pp. 209–213. IEEE, 2009.

[118] Onwubiko, C. and Owens, T. (Eds.). Situational Awareness in Computer Network
Defense: Principles, Methods and Applications. IGI Global, 2012.

[119] Panchen, S., Phaal, P., and McKee, N. ‘InMon Corporation’s SFlow:
A Method for Monitoring Traffic in Switched and Routed Networks’.
https://tools.ietf.org/html/rfc3176, 2001.

[120] Pauletto, S. and Hunt, A. ‘Interactive Sonification of Complex Data’. International
Journal of Human-Computer Studies, 67(11):pp. 923–933, 2009.

https://github.com/chmorgan/sharppcap


168 References

[121] Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L.,
Napoletano, B. M., Gage, S. H., and Pieretti, N. ‘Soundscape Ecology: The Science
of Sound in the Landscape’. BioScience, 61(3):pp. 203–216, 2011.

[122] Polikar, R., Upda, L., Upda, S. S., and Honavar, V. ‘Learn++: An incremental learning
algorithm for supervised neural networks’. IEEE transactions on systems, man, and
cybernetics, part C (applications and reviews), 31(4):pp. 497–508, 2001.

[123] Pollack, I. and Ficks, L. ‘Information of elementary multidimensional auditory
displays’. The Journal of the Acoustical Society of America, 26(2):pp. 155–158, 1954.

[124] Powers, D. M. W. ‘Evaluation: From Precision, Recall and F-Measure to ROC, In-
formedness, Markedness and Correlation’. Journal of Machine Learning Technologies,
2(1):pp. 37–63, 2011.

[125] Proctor, P. E. Practical Intrusion Detection Handbook. Prentice Hall PTR, 2000.

[126] Ramzan, Z. ‘Phishing Attacks and Countermeasures’. Handbook of Information and
Communication Security, pp. 433–448, 2010.

[127] Ranjan, S., Robinson, J., and Chen, F. ‘Machine learning based botnet detection using
real-time connectivity graph based traffic features’, 2014.

[128] Rauterberg, M. and Styger, E. ‘Positive effects of sound feedback during the operation
of a plant simulator’. In International Conference on Human-Computer Interaction,
pp. 35–44. Springer, 1994.

[129] RTI International. ‘PREDICT: Protected Repository for the Defense of Infrastructure
Against Cyber Threats’. http://www.predict.org, 2011.

[130] Rutz, H. H., Vogt, K., and Höldrich, R. ‘The SysSon Platform: A Computer Music
Perspective of Sonification’. In K. Vogt, A. Andreopoulou, and V. Goudarzi (Eds.),
ICAD 15: Proceedings of the 21st International Conference on Auditory Display, pp.
188–196. Graz, Austria: Institute of Electronic Music and Acoustics (IEM), University
of Music and Performing Arts Graz (KUG), 2015.

[131] Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., Felix, J., and Hakimian,
P. ‘Detecting P2P Botnets Through Network Behavior Analysis and Machine Learn-
ing’. In Privacy, Security and Trust (PST), 2011 Ninth Annual International Confer-
ence On, pp. 174–180. IEEE, 2011.

http://www.predict.org


References 169

[132] Sagiroglu, S. and Canbek, G. ‘Keyloggers’. IEEE Technology and Society Magazine,
28(3), 2009.

[133] Schafer, R. M. The Tuning of the World. Random House, 1977.

[134] Schedel, M. and Worrall, D. R. ‘Editorial’. Organised Sound, 19(1):pp. 1–3, 2014.

[135] Schmandt, C. and Vallejo, G. “‘Listenin”to domestic enviroments from remote
locations’. Georgia Institute of Technology, 2003.

[136] Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H., Sundaram, A., and Zamboni,
D. ‘Analysis of a Denial of Service Attack on TCP’. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pp. 208–223. IEEE, 1997.

[137] Seo, I., Lee, H., and Han, S. C. ‘Cylindrical Coordinates Security Visualization for
Multiple Domain Command and Control Botnet Detection’. Computers & Security,
46:pp. 141–153, 2014.

[138] Shah, K., Bohacek, S., and Broido, A. ‘Feasibility of Detecting TCP-SYN Scanning
at a Backbone Router’. In American Control Conference, 2004. Proceedings of the
2004, volume 2, pp. 988–995. IEEE, 2004.

[139] Shahrestani, A., Feily, M., Ahmad, R., and Ramadass, S. ‘Architecture for Applying
Data Mining and Visualization on Network Flow for Botnet Traffic Detection’. In
Computer Technology and Development, 2009. ICCTD’09. International Conference
On, volume 1, pp. 33–37. IEEE, 2009.

[140] Sikorski, M. and Honig, A. Practical Malware Analysis: The Hands-on Guide to
Dissecting Malicious Software. No Starch Press, 2012.

[141] Sommer, R. and Paxson, V. ‘Enhancing byte-level network intrusion detection signa-
tures with context’. In Proceedings of the 10th ACM conference on Computer and
communications security, pp. 262–271. ACM, 2003.

[142] Soniya, B. and Wiscy, M. ‘Detection of TCP SYN Scanning Using Packet Counts
and Neural Network’. In Signal Image Technology and Internet Based Systems, 2008.
SITIS’08. IEEE International Conference On, pp. 646–649. IEEE, 2008.

[143] Speeth, S. D. ‘Seismometer sounds’. The Journal of the Acoustical Society of America,
33(7):pp. 909–916, 1961.



170 References

[144] Srinivasan, T., Vijaykumar, V., and Chandrasekar, R. ‘A Self-Organized Agent-Based
Architecture for Power-Aware Intrusion Detection in Wireless Ad-Hoc Networks’. In
Computing & Informatics, 2006. ICOCI’06. International Conference On, pp. 1–6.
IEEE, 2006.

[145] Stallings, W. and Brown, L. Computer Security: Principles and Practice. Pearson
Education Limited, 2nd edition, 2008.

[146] Stalmans, E. and Irwin, B. ‘A Framework for DNS Based Detection and Mitigation of
Malware Infections on a Network’. In Information Security South Africa (ISSA), 2011,
pp. 1–8. IEEE, 2011.

[147] Subramanyam, K., Frank, C. E., and Galli, D. H. ‘Keyloggers: The Overlooked Threat
to Computer Security’. In 1st Midstates Conference for Undergraduate Research in
Computer Science and Mathematics. 2003.

[148] Sutherland, L. ‘Know Your Enemy: Understanding the Motivation Behind Cyberat-
tacks’, Security Intelligence. IBM. https://securityintelligence.com, March 2016.

[149] The Shmoo Group. ‘DEFCON Dataset’. http://cctf.shmoo.com, 2011.

[150] The Snort Community. ‘Snort community rules’. https://snort.org/, 2016.

[151] Thomas, T. M. and Stoddard, D. Network Security First-Step. Cisco Press, 2nd edition,
2011.

[152] Tran, Q. T. and Mynatt, E. D. ‘Music monitor: Ambient musical data for the home’.
Extended Proceedings of the HOIT, pp. 85–92, 2000.

[153] Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. ‘Intrusion detection by machine
learning: A review’. Expert Systems with Applications, 36(10):pp. 11994–12000,
2009.

[154] University of New Brunswick. ‘ISCX Datasets - the Canadian Institute for Cybersecu-
rity’. http://www.unb.ca/cic/research/datasets/, 2012.

[155] University of Victoria. ‘ISOT Botnet Dataset’. http://www.uvic.ca/engineering/ece/
isot/datasets/, 2010.

[156] Vickers, P. ‘Sonification for Process Monitoring’. In T. Hermann, A. D. Hunt, and
J. Neuhoff (Eds.), The Sonification Handbook, pp. 455–492. Berlin: Logos Verlag,
2011. ISBN 978-3-8325-2819-5.

https://securityintelligence.com
http://cctf.shmoo.com
https://snort.org/
http://www.unb.ca/cic/research/datasets/
http://www.uvic.ca/engineering/ece/isot/datasets/
http://www.uvic.ca/engineering/ece/isot/datasets/


References 171

[157] Vickers, P. and Alty, J. L. ‘CAITLIN: a musical problem auralisation tool to assist
novice programmers with debugging’. Georgia Institute of Technology, 1996.

[158] Vickers, P., Laing, C., Debashi, M., and Fairfax, T. ‘Sonification Aesthetics and Listen-
ing for Network Situational Awareness’. In SoniHED — Conference on Sonification
of Health and Environmental Data. University of York, 12 September 2014.

[159] Vickers, P., Laing, C., and Fairfax, T. ‘Sonification of a Network’s Self-Organized
Criticality for Real-Time Situational Awareness’. Displays, 47:pp. 12–24, April 2017.

[160] Vickers, P., Worrall, D., and So, R. ‘Preface to the Special Issue on Sonification’.
Displays, 47:p. 1, April 2017.

[161] Walker, B. N. and Kramer, G. ‘Ecological Psychoacoustics and Auditory Displays:
Hearing, Grouping, and Meaning Making’. In J. G. Neuhoff (Ed.), Ecological Psy-
choacoustics, pp. 150–175. Elsevier Academic Press, 2004.

[162] Warkentin, M. and Willison, R. ‘Behavioral and policy issues in information systems
security: the insider threat’. European Journal of Information Systems, 18(2):pp.
101–105, 2009.

[163] Williamson, C. ‘Internet Traffic Measurement’. IEEE Internet Computing, 5(6):pp.
70–74, 2001.

[164] Wireshark Foundation. ‘Wireshark Tool’. https://www.wireshark.org/, 2017.

[165] Wolf, K. E. and Fiebrink, R. ‘SonNet: A Code Interface for Sonifying Computer
Network Data’. In NIME, 13 — 13th International Conference on New Interfaces for
Musical Expression, pp. 503–506. 2013.

[166] Wolf, K. E., Gliner, G., and Fiebrink, R. ‘A Model for Data-Driven Sonification Using
Soundscapes’. In Proceedings of the 20th International Conference on Intelligent
User Interfaces Companion, IUI Companion ’15, pp. 97–100. Atlanta, GA: ACM,
2015.

[167] Worrall, D. ‘Realtime Sonification and Visualisation of Network Metadata’. In K. Vogt,
A. Andreopoulou, and V. Goudarzi (Eds.), Proceedings of the 21st International
Conference on Auditory Display (ICAD 2015), pp. 337–339. Graz, Austria: Institute
of Electronic Music and Acoustics (IEM), University of Music and Performing Arts
Graz (KUG), 2015.

https://www.wireshark.org/


172 References

[168] Yang, J. and Hunt, A. ‘Real-Time Sonification of Biceps Curl Exercise Using Muscular
Activity and Kinematics’. In K. Vogt, A. Andreopoulou, and V. Goudarzi (Eds.),
Proceedings of the 21st International Conference on Auditory Display (ICAD 2015),
pp. 289–293. Graz, Austria: Institute of Electronic Music and Acoustics (IEM),
University of Music and Performing Arts Graz (KUG), 2015.

[169] Yegneswaran, V., Barford, P., and Ullrich, J. ‘Internet Intrusions: Global Characteris-
tics and Prevalence’. ACM SIGMETRICS Performance Evaluation Review, 31(1):pp.
138–147, 2003.

[170] Yin, X., Yurcik, W., Treaster, M., Li, Y., and Lakkaraju, K. ‘VisFlowConnect:
Netflow Visualizations of Link Relationships for Security Situational Awareness’.
In Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for
Computer Security, pp. 26–34. ACM, 2004.

[171] Zhang, J., Perdisci, R., Lee, W., Sarfraz, U., and Luo, X. ‘Detecting Stealthy P2P
Botnets Using Statistical Traffic Fingerprints’. In Dependable Systems & Networks
(DSN), 2011 IEEE/IFIP 41st International Conference On, pp. 121–132. IEEE, 2011.

[172] Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., and Garant, D. ‘Botnet
Detection Based on Traffic Behavior Analysis and Flow Intervals’. Computers &
Security, 39:pp. 2–16, 2013.



Appendix A

Consent form 1

The participant consent form for the study described in Chapter 4 is reproduced overleaf.



	
Faculty	of	Engineering	and	Environment		

	
RESEARCH	PARTICIPANT	CONSENT	FORM	

	
Name	of	participant		 	

Researcher’s	name	 	

Programme	of	study	 	

Supervisor’s	name	 	
	

Brief description of nature of research and involvement of participant: The research is 
about increasing the situational awareness of real time network monitoring tools and 
because situational awareness of network activity needs to be maintained to ensure an 
appropriate response to attacks and the efficient management of network resources.  We 
researchers want to learn from your experience of using sonification (SoNSTAR) tools for 
network monitoring purpose to support situational awareness. AS participant, you will be 
asked to perform one tasks of network monitoring using both tools and will be asked to fill 
out questionnaire designed to collect specific information for each task condition.   

								**Statement	of	participant	consent	(please	tick	as	appropriate)	
I	confirm	that:	
I	have	been	briefed	about	this	research	project	and	its	purpose	and	agree	to	participate												o 
 
I	have	been	given	the	opportunity	to	ask	questions	about	the	project	and	my	participation.							o	
	
I	voluntarily	agree	to	participate	in	the	project.																																																																																						o 
	
I	understand	I	can	withdraw	at	any	time	without	giving	reasons	and	that	I	will	not	be	penalised	for	
withdrawing	nor	will	I	be	questioned	on	why	I	have	withdrawn																																																									o 
	
I	have	discussed	any	requirement	for	anonymity	or	confidentiality	with	the	researcher															o 
 
I agree to being audio recorded/filmed/photographed                                                      o 
	

	
**Specific	requirements	for	anonymity,	confidentiality,	data	storage,	retention	and	destruction	

	
	
	

Participant:			
Signed:		……………………………………………………									Date:					…………………………………	
	
Researcher:	
Signed:		……………………………………………………									Date:					…………………………………..	
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Appendix B

Consent form 2

The participant consent form for the experiment discussed in Chapter 5 is reproduced overleaf.



	
Faculty	of	Engineering	and	Environment		

	
RESEARCH	PARTICIPANT	CONSENT	FORM	

	
Name	of	participant		 	

Researcher’s	name	 	

Programme	of	study	 	

Supervisor’s	name	 	
	

Brief description of nature of research and involvement of participant: The research is 
about increasing the situational awareness of real time network monitoring tools and 
because situational awareness of network activity needs to be maintained to ensure an 
appropriate response to attacks and the efficient management of network resources.  We 
researchers want to learn from your experience of using visualisation only (Snort) and 
sonification (SoNSTAR) tools for network monitoring purpose to support situational 
awareness. AS participant, you will be asked to perform three tasks of network monitoring 
using both tools and will be asked to fill out questionnaire designed to collect specific 
information for each task condition.   

								**Statement	of	participant	consent	(please	tick	as	appropriate)	
I	confirm	that:	
I	have	been	briefed	about	this	research	project	and	its	purpose	and	agree	to	participate												o 
 
I	have	been	given	the	opportunity	to	ask	questions	about	the	project	and	my	participation.							o	
	
I	voluntarily	agree	to	participate	in	the	project.																																																																																						o 
	
I	understand	I	can	withdraw	at	any	time	without	giving	reasons	and	that	I	will	not	be	penalised	for	
withdrawing	nor	will	I	be	questioned	on	why	I	have	withdrawn																																																									o 
	
I	have	discussed	any	requirement	for	anonymity	or	confidentiality	with	the	researcher															o 
 
I agree to being audio recorded/filmed/photographed                                                      o 
	

	
**Specific	requirements	for	anonymity,	confidentiality,	data	storage,	retention	and	destruction	

	
	
	

Participant:			
Signed:		……………………………………………………									Date:					…………………………………	
	
Researcher:	
Signed:		……………………………………………………									Date:					…………………………………..	
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Appendix C

SoNSTAR questionnaire

The participant questionnaire for the study described in Chapter 4 is reproduced on the
following two pages.



Evaluation Questionnaire 1

Training and Guidelines Sheet (SoNSTAR)

This training and guideline sheet helps to learn how the system (SoNSTAR) works . It facilitates the learning
of the sounds used in this system and to facilitate the distinction between them.
Please note that the experiment contain one task condition and you should fill the Monitoring and Detection
section while performing the task.

About you

1. Your Gender: # Male # Female

2. What is your level of education? # BSc # MSc # PhD # Others

3. What is your specialty? # Computer Science # IT # Others

4. What is your studying department? # Computer Science and Digital Technologies # Others

5. What is your year of study? # first # second # third # forth

Monitoring and Detection Task:

6. You will be expecting sounds behaviour changes every one minutes through the next 7
minutes. Please check boxes according sounds heard form State1 to State 7.

No. Sound State 1 State 2 State 3 State 4 State 5 State 6 State 7

1 Birds 2 2 2 2 2 2 2
2 Rain 2 2 2 2 2 2 2
3 Rain on Roof 2 2 2 2 2 2 2
4 Heavy Rain 2 2 2 2 2 2 2
5 Rain and Thunder 2 2 2 2 2 2 2
6 Fountain 2 2 2 2 2 2 2
7 Beach 2 2 2 2 2 2 2
8 Creek 2 2 2 2 2 2 2
9 Grass Hopper 2 2 2 2 2 2 2
10 Spring Peeper 2 2 2 2 2 2 2
11 Crickets 2 2 2 2 2 2 2
12 Owls 2 2 2 2 2 2 2
13 Sheep 2 2 2 2 2 2 2
14 Frogs 2 2 2 2 2 2 2
15 Horse Snort 2 2 2 2 2 2 2
16 Wolves 2 2 2 2 2 2 2
17 Wind on Grass 2 2 2 2 2 2 2
18 Wind 2 2 2 2 2 2 2
19 Snow Storm 2 2 2 2 2 2 2
20 Walk in Snow 2 2 2 2 2 2 2
21 Fire 2 2 2 2 2 2 2
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Evaluation Questionnaire 2

Monitoring Evaluation Task:

Please evaluate SoNSTAR (Sonifiction)

7a. Mental Demand Rate 1 #—#—#—#—#—#—#—#—#—# 10

7b. Temporal Demand Rate 1 #—#—#—#—#—#—#—#—#—# 10

7c. Physical Demand Rate 1 #—#—#—#—#—#—#—#—#—# 10

7d. Performance Rate 1 #—#—#—#—#—#—#—#—#—# 10

7e. Effort Rate 1 #—#—#—#—#—#—#—#—#—# 10

7f. Frustration Rate 1 #—#—#—#—#—#—#—#—#—# 10

7g. Detection Confidence Rate 1 #—#—#—#—#—#—#—#—#—# 10

7h. Ease of Use Rate 1 #—#—#—#—#—#—#—#—#—# 10

7i. Sound Fatigue Rate 1 #—#—#—#—#—#—#—#—#—# 10

Please evaluate the sonification

7b. Aesthetics horrible #—#—#—#—#—#—#—#—#—# fantastic

7b. Annoyance horrible #—#—#—#—#—#—#—#—#—# fantastic

About this Experiment

8a. Please describe your first impression.

8b. In case you would like some more lines to write, here they are:

Thank you for your feedback and participation
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Appendix D

SoNSTAR vs Snort questionnaire

The participant questionnaire for the SoNSTAR vs Snort study described in Chapter 5 is
reproduced on the following two pages.



Evaluation Questionnaire 1

Sonification vs. Visualisation Questionnaire

Welcome to this very important survey with which we researchers want to learn from your experience of using
visualisation only (Snort) and sonification (SoNSTAR) tools for network monitoring purpose to support situa-
tional awareness. Thank you for filling it all out.
Please note that the experiment contain three sections one for each task condition and you should fill the right
section for each task.

About you

1. Your name:

2. Your Gender: # Male # Female

3. How old are you? I am years old.

4. What is your level of education? I am student.

5. What is your specialty? I am

6. What is your studying department? I am in the .

7. What is your year of study? # first # second # third # forth

8. Are you in a good mood right now to take this experiment? # absolutely # not really

Monitoring and Detection Tasks:

9. Please for each task condition check the boxes of Connection testing and attacks.

Sl. Task Condition A- Snort B- SoNSTAR C- Snort and SoN-
STAR

1.1 ICMP ping Yes No 2 2 Yes No 2 2 Yes No 2 2
1.2 SYN Related port scan Yes No 2 2 Yes No 2 2 Yes No 2 2
1.3 FIN port scan Yes No 2 2 Yes No 2 2 Yes No 2 2
1.4 XMAS port scan Yes No 2 2 Yes No 2 2 Yes No 2 2
1.5 NULL port scan Yes No 2 2 Yes No 2 2 Yes No 2 2
1.6 SYN flood Yes No 2 2 Yes No 2 2 Yes No 2 2
1.7 DDoS or DoS spoofed IPs Yes No 2 2 Yes No 2 2 Yes No 2 2
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Evaluation Questionnaire 2

Monitoring Evaluation Tasks:

Please evaluate Snort (Visual Only)

1a. Mental Demand Rate 1 2—2—2—2—2—2—2—2—2—2 10

1b. Temporal Demand Rate 1 2—2—2—2—2—2—2—2—2—2 10

1c. Physical Demand Rate 1 2—2—2—2—2—2—2—2—2—2 10

1d. Performance Rate 1 2—2—2—2—2—2—2—2—2—2 10

1e. E↵ort Rate 1 2—2—2—2—2—2—2—2—2—2 10

1f. Frustration Rate 1 2—2—2—2—2—2—2—2—2—2 10

1g. Detection Confidence Rate 1 2—2—2—2—2—2—2—2—2—2 10

1h. Ease of Use Rate 1 2—2—2—2—2—2—2—2—2—2 10

1i. Visual Fatigue Rate 1 2—2—2—2—2—2—2—2—2—2 10

Please evaluate SoNSTAR (Sonifiction)

2a. Mental Demand Rate 1 2—2—2—2—2—2—2—2—2—2 10

2b. Temporal Demand Rate 1 2—2—2—2—2—2—2—2—2—2 10

2c. Physical Demand Rate 1 2—2—2—2—2—2—2—2—2—2 10

2d. Performance Rate 1 2—2—2—2—2—2—2—2—2—2 10

2e. E↵ort Rate 1 2—2—2—2—2—2—2—2—2—2 10

2f. Frustration Rate 1 2—2—2—2—2—2—2—2—2—2 10

2g. Detection Confidence Rate 1 2—2—2—2—2—2—2—2—2—2 10

2h. Ease of Use Rate 1 2—2—2—2—2—2—2—2—2—2 10

2i. Sound Fatigue Rate 1 2—2—2—2—2—2—2—2—2—2 10

Please evaluate best task condition

3. What is best for you to use for detection? 2 Snort 2 SoNSTAR 2 Both Together

Please evaluate the following tools

4a. Snort horrible 2—2—2—2—2 fantastic

4b. SoNSTAR horrible 2—2—2—2—2 fantastic

About this Experiment

5. Do you like this experiment? 2 Yes 2 No

6. Is it really worth your future participation? 2 Guess so. 2 Probably not. 2 Don’t know.

7a. Please describe your first impression.

7b. In case you would like some more lines to write, here they are:

Thank you for your feedback and participation
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Appendix E

Training and guidance (sonification)

The training and guidance document for the study described in Chapter 4 are reproduced on
the following two pages.



Training and Guidelines Sheet 1

Training and Guidelines Sheet (SoNSTAR)

This training and guideline sheet helps to learn how the system (SoNSTAR) works . It facilitates the learning
of the sounds used in this system and to facilitate the distinction between them.
Please note that the experiment has one monitoring task.

Monitoring Training Task:

1. Table 1 contains the sounds that are expected to be heard during the task. In this training,
we will play sounds one by one. If you need us to repeat the sound, please ask. If you are
satisfied with the audio learning please check the box in front of the sound in the Training
1 column.

2. We will demonstrate in real time one of the seven attacks used in the experiment, Please
check the boxes provided for each sound heard in the Training 2 column.

Table 1: List of expected sounds

No. Sound Training 1 Training 2

1 Birds 2 2
2 Rain 2 2
3 Rain on Roof 2 2
4 Heavy Rain 2 2
5 Rain and Thunder 2 2
6 Creek 2 2
7 Crickets 2 2
8 Owls 2 2
9 Frogs 2 2
10 Wolves 2 2
11 Wind on Grass 2 2
12 Wind 2 2
13 Fire 2 2

Overview about the sounds meanings:

3. The sound of forest birds means the state of the traffic is normal behaviour.

4. Table 2 contains the expected seven malicious behaviours and their sounds.
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Training and Guidelines Sheet 2

Table 2: The meaning of the sounds of the expected malicious behaviour

No Activity na-
me

The sounds will be played

1 FIN scan The sound of “Cricket” will be heard tell us that we are receiving a high
number of FIN packets then “Owl” sound will be heard telling us the number
of incoming FIN packets are not because terminating normal flow connections
showing that the number of incoming FIN packet is far higher than the number
of the outgoing FIN packets plus the outgoing RST packets. This means our
machine is receiving malicious FIN packet. Then the sound of “Wind” will be
heard telling us that our machine is sending out RST packets which means that
scanned closed ports are replying with RST packets

2 SYN scan The sound of “Rain on Roof” will be heard tell us that we are receiving a high
number of SYN packets then “Heavy Rain” sound will be heard telling us the
number of incoming SYN packets is considered a bit higher than the outgoing
SYN-ACK packets for accepting the connection handshake mechanism. Then
the sound of “Wind” will be heard telling us that our machine is sending out
RST packets which means that scanned closed ports are replying with RST
packets. Because the number of SYN packets in this attack is high the sound
of “Thunder” will he heard telling us that. The sound of “Wind on Grass” will
be heard telling us the number of outgoing RST packets is high, telling us a
high number of ports is being scanned.

3 NULL scan The sound of “Frogs” will be heard tell us that we are receiving a high number
of Null packets. Then the sound of “Wind” will be heard telling us that our
machine is sending out RST packets which means that scanned closed ports
are replying with RST packets. The sound of “Wind on Grass” will be heard
telling us the number of outgoing RST packets is high, telling as a high number
of ports is being scanned.

4 Xmas ping
scan

The sound of “Wolves” will be heard tell us that we are receiving a high number
of URG-PSH-FIN packets. Then the sound of “Wind” will be heard telling us
that our machine is sending out RST packets which means that scanned closed
ports are replying with RST packets.

5 XMAS scan The sound of “Wolves” will be heard tell us that we are receiving a high number
of URG-PSH-FIN packets. Then the sound of “Wind” will be heard telling us
that our machine is sending out RST packets which means that scanned closed
ports are replying with RST packets. The sound of “Wind on Grass” will be
heard telling us the number of outgoing RST packets is high, telling us a high
number of ports is being scanned.

6 SYN DoS
Flood

The sound of “Rain on Roof” will be heard tell us that we are receiving a high
number of SYN packets then “Heavy Rain” sound will be heard telling us the
number of incoming SYN packets is considered a bit higher than the outgoing
SYN-ACK packets for accepting the connection handshake mechanism. Then
the sound of “Wind” will be heard telling us that our machine is sending out
RST packets which means that scanned closed ports are replying with RST
packets. Because the number of SYN packets in this attack is high the sound
of “Thunder” will he heard telling us that. The sound of “Creek” will be heard
telling us the number of outgoing SYN packets is very high, telling us this
attack is DoS attack and not a scan. Also, the sound of “Fire” will be heard
telling us that our machine is receiving a very high number of IP flow or Traffic
flow in an unexpected way.

7 DDoS using
Spoofed IP’s

The sound of “Frogs” will be heard tell us that we are receiving a high number
of Null packets. Then the sound of “Wind” will be heard telling us that our
machine is sending out RST packets which means that scanned closed ports
are replying with RST packets. Then the sound of “Fire” will be heard telling
us that our machine is receiving a very high number of IP flow or Traffic flow
in an unexpected way. This means we are receiving DDoS attack using null
packets.
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Appendix F

Training and guidance (sonification vs
visualisation)

The training and guidance document for the study described in Chapter 5 is reproduced on
the following pages.



Training and Guidelines Sheet 1

Training and Guidelines Sheet (Snort) and
(SoNSTAR)

This training and guideline sheet helps to learn how (Snort) and (SoNSTAR) works. It facilitates the learning
of the sounds used in this system and to facilitate the distinction between them in order to confirm the activity
received.
Please note that the experiment has three monitoring task. Snort then SoNSTAR then Snort and SoNSTAR
together.

Monitoring Training Tasks 1 (Snort):

1. Snort mostly relies on a “known bad” or “suspected bad” approach, observing traffic for
patterns that correspond to malicious or suspicious activity. Snort is configured as when
Snort detects one of the expected malicious activity, Snort will present the name of the
malicious activity immediately on the screen for the period of the time window. We con-
figured Snort to present the name of the attacks as used in this experiment and shown in
Table 1.

2. We will perform one of the attacks and please If you see the activity name appeared on
the screen, check the left Box for Yes in Table 1. If you changed your mind and would like
to change your decision please check the right box for No and check the Yes box for the
identified the activity name.

Table 1: List of the expected malicious activities

Sl. Activity name Snort

1 ICMP ping Yes No 2 2
2 SYN Related port scan Yes No 2 2
3 FIN port scan Yes No 2 2
4 XMAS port scan Yes No 2 2
5 NULL port scan Yes No 2 2
6 SYN flood Yes No 2 2
7 DDoS or DoS spoofed IPs Yes No 2 2
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Training and Guidelines Sheet 2

Monitoring Training Tasks 2 (SoNSTAR):

3. Table 2 shows the sounds which will be heard for each attack. Please keep this table with
you when performing the monitoring task. Table 2 is will let you identify the activity name
caused the set of heard sounds. Further understanding of the sounds is presented in Table
4.

4. Table 3 contains the sounds that are expected to be heard during the task. In this training,
we will play sounds one by one. If you need us to repeat the sound, please ask. If you are
satisfied with the audio learning please check the box in front of the sound in the Training
1 column.

5. We will demonstrate in real time one of the seven attacks used in the experiment, Please
check the boxes provided for each sound heard in the Training 2 column. Then use these
sounds to identify the activity name from the Table 2. During the task, you will be asked
to identify the activity name based on the sounds heard in the same way used previously
with Snort.

Table 2: List of expected sounds

No Activity name The sounds will be played
1 ICMP ping “Woodpecker”
2 SYN Related port

scan
“Rain on Roof” and “Heavy Rain” and
“Wind” and “Thunder” and “Wind on
Grass”

3 FIN port scan “Cricket” and “Owl” and “Wind”
4 XMAS port scan “Wolves” and “Wind” and “Wind on

Grass”
5 NULL port scan “Frogs” and “Wind” and “Wind on

Grass”
6 SYN Flood ‘Rain on Roof” and “Heavy Rain” and

“Wind” and “Thunder” and “Creek”
“Fire” .

7 DDoS using Spoofed
IP’s

“Frogs” and “Wind” and“Fire”

Table 3: List of expected sounds

No. Sound Training 1 Training 2

8 Birds 2 2
9 Woodpecker 2 2
10 Rain 2 2
11 Rain on Roof 2 2
12 Heavy Rain 2 2
13 Rain and Thunder 2 2
14 Creek 2 2
15 Crickets 2 2
16 Owls 2 2
17 Frogs 2 2
18 Wolves 2 2
19 Wind on Grass 2 2
20 Wind 2 2
21 Fire 2 2
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Training and Guidelines Sheet 3

Overview about the sounds meanings for comprehension:

6. The sound of forest birds means the behaviour of the traffic is normal.

7. Table 4 on the next page contains the expected seven malicious behaviours and their sounds.

Table 4: The meaning of the sounds of the expected malicious behaviour

No Activity
name

The sounds will be played

1 ICMP ping The sound of “Woodpecker” indicate receiving ICMP packets
2 SYN Re-

lated port
scan

The sound of “Rain on Roof” will be heard tell us that we are receiving a high number
of SYN packets then “Heavy Rain” sound will be heard telling us the number of
incoming SYN packets is considered a bit higher than the outgoing SYN-ACK packets
for accepting the connection handshake mechanism. Then the sound of “Wind” will
be heard telling us that our machine is sending out RST packets which means that
scanned closed ports are replying with RST packets. Because the number of SYN
packets in this attack is high the sound of “Thunder” will he heard telling us that.
The sound of “Wind on Grass” will be heard telling us the number of outgoing RST
packets is high, telling us a high number of ports is being scanned.

3 FIN port
scan

The sound of “Cricket” will be heard tell us that we are receiving a high number
of FIN packets then “Owl” sound will be heard telling us the number of incoming
FIN packets are not because terminating normal flow connections showing that the
number of incoming FIN packet is far higher than the number of the outgoing FIN
packets plus the outgoing RST packets. This means our machine is receiving malicious
FIN packet. Then the sound of “Wind” will be heard telling us that our machine is
sending out RST packets which means that scanned closed ports are replying with
RST packets

4 XMAS
port scan

The sound of “Wolves” will be heard tell us that we are receiving a high number
of URG-PSH-FIN packets. Then the sound of “Wind” will be heard telling us that
our machine is sending out RST packets which means that scanned closed ports are
replying with RST packets. The sound of “Wind on Grass” will be heard telling us
the number of outgoing RST packets is high, telling us a high number of ports is
being scanned.

5 NULL port
scan

The sound of “Frogs” will be heard tell us that we are receiving a high number of
Null packets. Then the sound of “Wind” will be heard telling us that our machine is
sending out RST packets which means that scanned closed ports are replying with
RST packets. The sound of “Wind on Grass” will be heard telling us the number of
outgoing RST packets is high, telling as a high number of ports is being scanned.

6 SYN Flood The sound of “Rain on Roof” will be heard tell us that we are receiving a high number
of SYN packets then “Heavy Rain” sound will be heard telling us the number of
incoming SYN packets is considered a bit higher than the outgoing SYN-ACK packets
for accepting the connection handshake mechanism. Then the sound of “Wind” will
be heard telling us that our machine is sending out RST packets which means that
scanned closed ports are replying with RST packets. Because the number of SYN
packets in this attack is high the sound of “Thunder” will he heard telling us that.
The sound of “Creek” will be heard telling us the number of outgoing SYN packets
is very high, telling us this attack is DoS attack and not a scan. Also, the sound of
“Fire” will be heard telling us that our machine is receiving a very high number of
IP flow or Traffic flow in an unexpected way.

7 DDoS
using
Spoofed
IP’s

The sound of “Frogs” will be heard tell us that we are receiving a high number of
Null packets. Then the sound of “Wind” will be heard telling us that our machine is
sending out RST packets which means that scanned closed ports are replying with
RST packets. Then the sound of “Fire” will be heard telling us that our machine is
receiving a very high number of IP flow or Traffic flow in an unexpected way. This
means we are receiving DDoS attack using null packets.
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