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Abstract 

This project investigates the effects of varying laser trimming geometries on key 

performance parameters of bar shape thin film resistors. Previous studies related to the 

effect of the trim geometry and in-service performance are quite limited. As a result, 

industries are still relying on basic patterns and this research aims to focus on the 

development of new trim pattern models in order to study the effect of the geometries on 

the accuracy and long-term stability of the material. In addition to this, the application of the 

model to thin and thick film materials improves the performance of the resistors. Laser 

trimming is an essential process in the manufacture of precision thin film resistors due to 

the fact that it is impossible to deposit batches of the product with resistance tolerances 

better than ~10%. However, it is quite an expensive process which significantly increases 

the production costs of integrated circuits. Several popular trim patterns including the plunge 

cut, double plunge cut, L-cut and scan cut as well as novel patterns; the curved L-cut, the 

angled L-cut, semi-circle and elliptical cut were modelled and tested experimentally. The 

effect of these geometries on target resistance value, heat affected zone (HAZ) sensitivity 

and temperature coefficient of resistance (TCR) were analysed. The HAZ sensitivity is an 

important parameter that characterises the aging performance of the film caused by the 

high energy required to vaporize the material in the cut, while the TCR indicates how the 

resistors behave under cold and high operating temperatures. The modelling process of the 

different laser trim patterns included numerical simulations to predict the performance of 

laser–trimmed resistors taking into account the HAZ around the trim and computer-aided 

models. Conductive paper and thin films were used for the experiments in order to emulate 

the resistors and verify the theoretical results from the simulations. It is found that variation 

in trimming shape and length has a direct effect on the performance of resistors giving 

significant increases in the TCR of the resistor with values of 17.22 ppm/°C for the curved 

L-cut and 8.52 ppm/°C for the semi-circle. The resistance gain, the power coefficient of 

resistance (PCR) and the trimming time needed for the cuts were also investigated for 

clarification of the characteristics of each pattern and it is shown that the semi-circle pattern 

offers the larger resistance increase in relation to the other patterns. 
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1 Introduction 

 

1.1 Overview 

There is a variety of trimming methods and processes which can be used to adjust the value 

of resistive components such as anodization, heat trimming, electrical trimming, mechanical 

trimming, chemical trimming and laser trimming [1]. However, laser trimming is by far the 

most effective and popular process in the manufacture of precision thin film resistors with 

tolerances less than ± 1% being readily achieved [1, 2]. 

In general, it is thought that depositing batches of product with resistance tolerances better 

than about ± 10% is impossible [3]. However, the resistor film can be fabricated to a lower 

resistance value than required and then adjusted by removing or ‘trimming’ away sections 

of the film material to increase the resistance to its target value in order for precision of less 

than 10% to be achieved [1, 4, 5]. The effect of laser trim pattern geometry on the electrical 

properties of thin and thick film resistors is critical to the overall performance of the device. 

As a result, this research aims to focus on the trim pattern geometries and their effect on 

the accuracy and long-term stability of thin and thick film materials. 

 

1.2 Research aims and objectives 

The aims of this research are: 

1) Develop a new trim pattern model in order to study the effect of the geometries on 

the accuracy and long-term stability of the material. 

 

2) Apply the trim pattern model to thin and thick film materials to improve their 

performance and verify the results. 

 

The objectives of this work are: 

1) Conduct a comprehensive literature review in order to develop a critical 

understanding of the patterns and geometries of thin and thick film materials as well 

as understanding the appropriate analytical procedures including characteristics of 

the material and experimental design techniques. 

 

2) Optimise the potential patterns for maximum trim speed and in-service performance. 
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3) Refine the trim pattern in order to improve the overall performance of the resistors 

in relation to the laser trimming time and power. 

 

1.3  Thesis outline 

Chapter 1- Introduction 

This chapter gives an overview of the research project and the thesis outline is included. In 

addition, the aims and objectives of this research and the original contribution to knowledge 

are presented.   

Chapter 2- Literature review 

This chapter contains a comprehensive and in-depth literature review of previous research 

relevant to the trimming techniques used in thin and thick film resistors. It consists of an 

analysis on already existing trim pattern geometries. There is also a description of trimming 

techniques used on resistors focusing especially on laser trimming due to the fact that it is 

the most effective and popular method for trimming thin and thick film resistors. 

Chapter 3 - Modelling of geometry 

The focus of the work in this chapter is on the design of trim strategies and different trim 

pattern geometries that are simulated and evaluated in order to get the new model. The 

model of the geometry was created in order to offer a better design while reducing factors 

that affect the performance of the resistor, such as the heat-affected zone (HAZ), which is 

the area of the film adjacent to the kerf and can cause more changes in the resistance than 

in the areas of film that are not irradiated by the laser beam. The modelling process consists 

of simulations mainly using CAD software such as ANSYS as well as numerical simulations. 

Chapter 4 – Laser trimming process parameters 

In this chapter, the laser settings chosen for the experiments are presented. There was a 

variety of trials and tests in order to clarify the appropriate settings and parameters of the 

laser equipment so that the experiments could be conducted efficiently and accurately. The 

main settings of the laser concerned its power, frequency and speed. Several trials were 

performed so that these are adjusted properly in relation to the type of thin films used. 

Chapter 5 - Trimming of conductive paper 

Existing and new trim patterns presented in Chapter 3, are investigated using conductive 

paper in order to emulate the resistors. The resistivity of the conductive paper is 

approximately 5000 Ω/. Prior to the trimming of the resistors to the suggested patterns, 

each page of the paper is cut to the desired resistor shape (30 x 20 mm) and the trim 
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patterns are created using the laser to cut 30 mm2 sections at a time and measuring the 

resistance value each time using the four-wire measurement. 

Chapter 6- Trimming thin and thick films 

This chapter focuses on the optimisation of laser trimming of thin film materials in relation 

to the proposed geometries. At first, trials on thin films of the existing trim pattern such as 

the L-cut, take place using the CO2 laser (Epilog). A variety of trim patterns were chosen 

after the trials on the conductive paper and these were compared in relation to their 

resistance gain and trimming time. 

Chapter 7 - Verification of the model 

The purpose of this chapter is to assess the performance of the optimum laser trim pattern 

of the film concerning stability and accuracy so that the best geometry could be chosen. Dry 

heat stability testing is used in order to check the level of resistance instability.  

Chapter 8 - Conclusions and recommendations 

In this chapter, the main conclusions from this study are drawn and recommendations for 

future work in the area of laser trimming of thin film materials are made. 

 

1.4 Original contribution 

Laser trimming of film resistors is an established process which allows manufacturers to 

very accurately control resistance values and resistor ratios. However, it is an expensive 

processing step which significantly increases the production costs of integrated circuits from 

both trimming cost and area overhead view-points [1,5]. There have been previous studies 

related to the trimming process parameters as well as the basic properties of the trimmed 

devices. However, the research into the effect of varying the trim pattern geometry and or 

in-service performance is limited. As a result, component manufacturers are still relying on 

long established basic patterns which have been investigated thoroughly and new trim 

patterns can offer a beneficial change in the manufacturing process. 

The work in this research constitutes the first attempt to investigate the effect of both 

established and novel trim pattern geometries on the accuracy and long-term stability of 

thin film material. Numerical simulations were used for calculations of the resistance value 

and estimation of the HAZ area around the cut. In addition to this, simulations with computer 

aided software were also conducted in order to estimate the temperature change when 

power was applied to the resistors. The theoretical results were verified experimentally with 

indirect and direct methods. Many trim patterns were investigated, such as the elliptical and 
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curved L-cut, for maximum trim speed and in-service performance. The new trim pattern of 

the semi-circle is also introduced and its advantages are presented. 

2 Literature review 

 

2.1 Introduction 

Nowadays, there is a continuous need for smaller, better performing and less expensive 

resistive components [5-7]. Thin film technology is often used because it offers greater 

performance and reliability over that of metal composition and wire wound type resistors 

and they are used extensively in electronic circuits due to their high accuracy and excellent 

long term stability [1, 8]. When used to manufacture resistors, thin films should have a 

suitable sheet resistance and TCR and they must be sufficiently stable so that any changes 

in resistance during their operating life can be reliably expected not to exceed a pre-

specified value [1, 9-11]. It is difficult to fabricate resistors to the required resistance value, 

so they are often fabricated with a lower value and then trimmed to raise their resistance to 

the required value [1, 2, 12]. Moreover, the resistor should be manufactured to the 

specification needed at a realistic cost. For thin film resistors, it is generally impossible to 

deposit batches of material with resistance tolerances better than about  10% [3, 13] .This 

is partly due to problems in attaining uniform sheet resistance, but mainly due to 

dimensional variation of the individual resistor elements in the batch, a problem which is 

amplified as the resistor size decrease [8, 14]. 

Therefore, when a precision of <10% is required, it is normal practice to fabricate the resistor 

film to a lower resistance value than required and then adjust it by removing or trimming 

away sections of the film material to increase the resistance to its target value [4, 5, 15]. 

There are several desirable trimming characteristics for thin film resistors [4, 8, 16-18]: 

• Getting as close to the target resistance as possible (precision). 

• Minimising the risk of trimming too much (If a resistor is ‘over-trimmed’, fixing it is 

not possible, and the component or even the entire board that it is in may have to 

be scrapped).  

• Minimising the length of each trim (A longer trim takes more time to make and 

impacts the manufacturing throughput thereby costing more money). 

Integrated circuits can be classified into the major subdivisions of monolithic and hybrid 

circuits. Hybrid circuits consist of two types: thin film and thick film. In physical appearance 

they are both very similar, but they differ in their manufacturing process, which determines 

their operating characteristics [19, 20]. 
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2.2 Manufacture of thin film circuits 

The manufacture of a thin film circuit consists of five steps and these are [19, 21]: 

• Deposition of the film layer consisting of resistive or conductive material. 

• Patterning of the layer to form the required components and interconnections. 

• Adjustment of the resistor components formed in the film to give the required 

accuracy. 

• Adding on the chip components (resistors) and connecting them into the circuit. 

• Packaging the completed film circuit assembly. 

 

2.2.1 Deposition of the film 

The major techniques currently in use to deposit thin films are evaporation, sputtering and 

ion-plating [19, 21, 22]. Evaporation is the most popular method and uses equipment similar 

to that employed in evaporating metal onto monolithic circuits as shown in Figure 2.1 [22, 

23].  

 

Figure 2.1: Deposition of thin films using evaporation [23]. 

The substrate is placed around a source which is heated above its vaporisation temperature 

[19, 24]. A vacuum of between 10-5 and 10-7 Torr is maintained and under these conditions 

the free path of the evaporated molecules is much greater than that of the distance between 

the source and substrate and a thin layer is formed [14, 25]. The substrate is heated by an 

auxiliary heater so that the adhesion between it and the film is improved [19, 26, 27]. 

In sputtering, a glow discharge is formed in an atmosphere of argon at between 0.01 and 1 

Torr by a high voltage between the source, which forms the cathode, and the anode, which 

incorporates the substrate [19, 28, 29]. Argon ions are formed by this discharge and are 
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accelerated to the cathode and a release of the source molecules is caused, which acquires 

a negative charge. This causes them to be accelerated rapidly to the anode where they 

impinge onto the substrate and adhere to it, see Figure 2.2 [19, 30]. Sputtering is a cold 

process since the source does not have to be heated to anywhere near its vaporisation 

temperature and it is a slower process than evaporation. It can be used to deposit materials 

with a high vaporisation temperature such as tantalum and its alloys [19, 31-33]. 

  

Figure 2.2: Sputter deposition of thin films [23]. 

The molecules reaching the substrate have considerable energy so that the film density is 

high [19, 25]. The molecules on striking the substrate also ensure that all residual gas and 

other impurities are removed prior to and during the film formation. Since negative ions are 

attracted by a positive substrate the three dimensional coating capability is also much 

greater than for vaporisation and equal to that of ion-plating [19, 34]. In addition to this, ion-

plating can be considered as a mixture of evaporation and sputtering and it is presented in 

Figure 2.3 [25, 32]. A glow discharge is formed in a low pressure gas as in the sputtering 

method and the substrate is now the cathode [35, 36]. 

 

Figure 2.3: Thin film deposition using the ion-plating technique [37]. 
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The film molecules are introduced into the discharge by evaporating the source using 

resistance, electron beam or flash heated techniques [19]. These molecules are rapidly 

accelerated to the substrate and impact on it to form a strong bond. Since evaporation is 

used, film formation is rapid but there is the risk of impurities [19, 38]. 

2.3 Patterning of films 

There are several methods for patterning of films such as photoresist masking, metal 

masking, inverse photoresist masking and inverse metal masking. Photolithography is 

probably the most common process in which initially the substrate is completely covered 

with a film layer, as shown in Figure 2.4 [25, 39]. It is used in microfabrication to pattern 

parts of a thin film or the bulk of the substrate and it uses light to transfer a geometric pattern 

from a photomask to a light-sensitive chemical photoresist on the substrate. If positive 

photoresist is used, the exposed areas become harder and are not removed in the 

subsequent wash [19]. The surface is then etched to remove the film from the unprotected 

regions and the remaining photoresist is washed away eventually [19]. If several layers are 

to be formed then these are both first evaporated on and then followed by photoresist 

masking and etchants which attack each layer separately [40]. 

 

Figure 2.4: Photoresist masking [41]. 

In general, metal masking is a cheaper process because it does not involve the use of 

photoresists while in the case of inverse photoresist masking, the bare substrate is first 

coated with a layer of photoresist [42]. This is then masked and etched to form a pattern in 

which photoresist is left on the areas which are to have no film and it forms an inverse mask. 

The film layer is next formed over the whole substrate and it adheres to the bare substrate 

regions [19, 42]. This method is also used when the evaporated film is difficult to etch 

without attacking the substrate or the photoresist. As for inverse metal masking, it is very 
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similar to inverse photoresist masking but uses a metal mask [19]. The bare substrate is 

initially covered with a metal layer which is then etched to give the inverse metal mask. The 

required film layer is then deposited over this and finally the original metal mask is dissolved 

out with a special etchant, taking with it the unwanted film [19, 42]. 

2.4 Thin film properties 

 

2.4.1 Thin film resistor materials 

Thin film materials can be divided into the following categories [1, 14]:  

• Metal alloys 

• Single metal systems 

• Cermets 

At first, the most important properties of metals are influenced by their crystal morphology, 

particle size, surface area and porosity and it is known that due to their periodic crystal 

structure at low temperature, the electrons can flow [43]. Any change in this periodic nature 

will also change the flow of electrons and as a consequence the resistivity of the film will be 

increased. In addition to this, resistance can also be increased due to lattice distortions 

caused by vibration increases with temperature and that is the reason why TCR is generally 

positive for all metals [1]. 

The most widely used metal alloy system in the manufacture of bulk material resistors is 

Nickel Chromium [44-46]. During the years, nickel chromium was broadly used for the 

development of thin film resistors due to its high resistivity, low TCR and widespread 

commercial availability [47]. However, there have been numerous studies focusing on the 

properties of Ni-chrome thin film resistors and the effects of varying substrate materials and 

process parameters on their electrical performance and structural properties [48-52]. The 

most common materials used for thin film resistors on silicon are Silicon-Chromium (SiCr), 

Nickel-Chromium (NiCr) and Tantalum Nitride (TaN) [8, 53-58]. Thin film resistors generally 

have more involved manufacturing processes than monolithic resistors but present greater 

advantages [8, 19]. For instance, the frequency response of a thin film resistor is several 

times better than that of a monolithic device [8]. This is partly due to the lower parasitic 

capacitances associated with the resistors and partly due to their higher available sheet 

resistivity, which reduces the overall size. Thin film resistors can also be made to much 

tighter tolerances than monolithics since they may be adjusted to the required value after 

fabrication [19]. The most popular thin film resistor material is an alloy of about 80% nickel 

and 20% chromium, popularly known as Ni-chrome [19, 59]. It has good adhesion properties 

and a low temperature coefficient, which is determined by several processing factors such 
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as the rate of film deposition and the substrate composition. Typical resistor sizes are in the 

range 20 Ω to 50 kΩ [1]. Nickel is unsuitable on its own for use as a film circuit material 

since it does not adhere adequately to the substrate [19, 44, 60]. Chromium is sometimes 

used for resistors. Its principal disadvantage is the tendency to form surface oxides which 

make it difficult to etch. When high resistance values are required, cermets, which are 

compounds of a dielectric and a metal are often used. Since cermets are usually available 

in powder form they are ideally suited to vacuum deposition using flash techniques. It is 

generally difficult to control the thickness of a cermet film during deposition but it can be 

subsequently trimmed to give resistor values up to about 1 ΜΩ with a tolerance better than 

± 1% [19]. Tantalum resistors are characterised by excellent stability, a high value of 

dielectric field strength and high annealing temperature [61, 62]. Tantalum is capable of 

producing uniform and reproducible film layers which can also be oxidised to form a thin 

passivating layer. The material has a high melting point and must therefore be deposited 

by sputtering. Thus, tantalum resistors can be produced with tolerances in the range ± 0.1% 

with stability in this range over 25 years [1, 19, 63, 64]. 

The substrate is the starting material for any thin film circuit on which it is formed. This can 

be made from a variety of materials such as glass or pure glazed alumina. Thin films can 

also be formed on silicon dioxide which is very useful as it gives a method of combining 

monolithic and film circuits on a single chip [19, 65]. Since thin films have relatively tight 

tolerances they place many demands on the requirements of the substrate, which should 

be clean and free from cracks and scratches [19]. The surface of the substrate should be 

smooth and there should be no dimensional changes with time which may cause 

registration of masks and bad line definition and the substrate should be a good electrical 

insulator. For power handling, it is also important that the substrate is a good thermal 

conductor and in these applications it is sometimes mounted on a heatsink [19, 66, 67]. 

 

2.4.2 Thick film materials 

Thick film technology is used to produce electronic devices such as surface mount 

components, hybrid integrated circuits and sensors [17, 18]. Thick film circuits are widely 

used in the automotive industry due to their high reliability and their extended temperature 

range along with massive thermo-cycling of circuits without failure [65, 68]. The use of thick 

film technology permits the design of resistors with a wide range of Ohmic values [69, 70]. 

Practical limits are imposed for the minimum area which can be allotted to a specific resistor. 

In addition, extremely low value resistors, typically 1 to 10 Ω, can be sensitive to screen-

printed conductor tracks, where they provide an interconnection pattern to the resistor. The 

manufacturing of such devices is an additive process involving deposition of several 
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successive layers of resistors onto an electrically insulating substrate using a screen-

printing process [65, 70]. The typical process of the fabrication of thick films consists of the 

laser scribing of the substrates, ink preparation, screen printing, drying/curing, firing, laser 

trimming of resistors, mounting of capacitors semiconductors, separation of elements and 

integration of devices [65]. 

The most frequently used substrates are made of 96% Alumina (Al2O3). Alumina is very 

hard and not very machinable, therefore lasering of the material is the most efficient way to 

cut it to the desired shape [71]. With the lasering it is possible to scribe, profile and drill 

holes. Scribing is a lasering process where a line of laser pulses are fired into the material 

and 30-50% of the material thickness is removed, this weakens the substrate and after all 

other process are done to build the thick film circuit, the substrates can easily be divided 

into single units. The adjustment of thick-film resistor values was first performed by 

mechanical means such as mechanical abrasion or sand blasting [65]. However, these 

methods are very slow and not clean enough. The use of laser processing in 

microelectronics proved to be faster, cleaner, non-contacting and more accurate than 

previous techniques [72]. Laser trimming can easily be used instead of computer control 

and automation and it appears to be the preferable method for high-volume manufacturing 

of thick-film hybrid microcircuits and the YAG laser has become the most important 

production tool for this operation [13, 73, 74]. The thick-film resistors that may require 

trimming can either be printed onto a large substrate or can be in the form of trimmable 

surface-mount technology (SMT) chips mounted onto the substrate [75]. During the 

manufacturing of film resistors, parameters such as the sheet resistance, temperature 

coefficient of resistance and resistance stability need to be considered and these are 

presented in the next sections. 

 

2.4.3 Sheet resistance, Rs 

The resistance of a thin film resistor is given by [1, 5]: 

𝑅 =
𝑝𝑙

𝑑𝑤
                                                               Equation 2-1 

Where p is the resistivity, l is the length of the resistor, d is the thickness and w is the width 

of the resistor. 

However, the ratio (l/w) equals to the number of squares in the film pattern (). 

So, the sheet resistance of the film, Rs, is usually used to describe thin film resistors and it 

is defined as p/d and it is given by the following equation [1, 8, 70, 76-78]: 

𝑅𝑠 =
𝛺

𝑅
=

𝑝

𝑑
                                                       Equation 2-2 
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And is expressed in Ω/. 

2.4.4 Temperature co-efficient of resistance, TCR 

Temperature co-efficient of resistance (TCR) of the film is a parameter which describes the 

change in resistance of the film with change in its temperature dR(T)/dT which is a nearly 

constant value for most metal films and it is commonly used as an average parameter [1, 

16, 76]  

𝑇𝐶𝑅𝑎𝑣 =
1

𝑅𝑖

𝑅𝑒−𝑅𝑖

𝑇𝑒−𝑇𝑖
× 106       𝑝𝑝𝑚 °𝐶⁄                               Equation 2-3 

where, Ri is the initial resistance at temperature Ti and Re is the end resistance at 

temperature Te. Typical values of Ti and Te are 20 oC and 70 oC respectively. However, 

using the above approach and assuming the resistance changes linearly as a function of 

temperature is not strictly valid for thin film resistors. Errors can arise from the composite 

TCR effect of conductor materials which are measured in series with the resistor element 

[1, 8]. For this reason, a more accurate method of defining the TCR of the resistor is to 

measure its change in resistance over the extremes of its operating range, typically -55 to 

+125 ppm/°C for surface mount devices and -55 to +155 ppm/°C for axial leaded 

components. This parameter is generally referred to as extended TCR and denoted as 

TCRex [1, 16, 76]. 

 

2.4.5 Resistance stability, ΔΩ/Ω 

Resistance stability or reliability is basically a measure of the change in resistance of the 

film against a certain specification over a period of time. There are a number of conditions 

under which the reliability of the component can be tested such as DC load, dry heat or 

humidity [1, 8, 79]. 

The severity of the effects of a test condition on the resistor depends greatly upon film 

thickness. For thicker films, the resistance value is lower and the load voltage that can be 

applied is lower, as well. Moreover, humidity is also likely to have less effect on a more 

robust thicker film [1, 8, 80, 81]. 

The most convenient and universal test condition is that of dry heat (temperature) as the 

test can be performed by simply storing the film in an oven [1, 8, 70]. Dry heat stability tests 

generally entail measuring the change in the resistance value of the film ΔΩ, following 

storage at the upper category temperature, usually 155 °C for axial resistors and 125 °C for 

surface mount resistors for a period of 1000 hours [1] 

𝛥𝛺 𝛺⁄ =
𝑅𝑒−𝑅𝑖

𝑅𝑖
× 100%                          Equation 2-4 
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where Ri is the initial resistance and Re is the end resistance following storage [1]. 

2.5 Resistor trimming methods 

There are a number of different trimming methods which can be used to adjust the value of 

the resistor, including anodisation, heat trimming, electrical trimming, mechanical trimming, 

chemical trimming and laser trimming [1]. However, of these techniques laser trimming is 

by far the most effective and popular method and is still a subject of continuing theoretical 

and experimental analysis and optimisation [1, 4, 5, 15, 16]. 

2.5.1  Anodisation 

Anodisation is an electrolytic passivation process used to increase the thickness of the 

natural oxide layer on the surface of metal parts [82]. The process is called anodising 

because the part to be treated forms the anode electrode of an electrical circuit [83]. 

Anodising increases resistance to corrosion and wear, and provides better adhesion for 

paint primers and glues than does bare metal. Anodic films can also be used for a number 

of cosmetic effects, either with thick porous coatings that can absorb dyes or with thin 

transparent coatings that add interference effects to reflected light [83]. 

Metal film resistors can be formed by depositing upon dielectric substrates thin layers of 

film-forming metal and electrolytically anodising the same to form oxide layers which, by 

reducing the resistor film thickness, produces the desired resistance value. Such techniques 

have involved simultaneously anodising the resistor and measuring its value, until the 

desired value is successfully attained and anodising is terminated after this point [84]. Thus, 

anodising and measuring should be carried out simultaneously but this might cause 

inaccurate measurements. It has thus been proposed alternately to connect the resistor to 

an anodising current source and then to a bridge measuring circuit for measuring the 

resistance value. This process is continued until the resistor reaches the expected value. 

However, there are a few basic problems with such operations such as the fact that 

significant time is needed in order to determine the resistance value accurately in view of 

the speed limitations of automatic bridges. Furthermore, adjusting a resistor accurately 

requires that the adjustment between measurement cycles should be small, meaning that 

many measurements are required to be made. In addition to this, high speed switching of 

the resistor from the anodising current source to the bridge measuring circuit can cause 

problems of thermal generation, contact resistance and reliability [84]. Moreover,  the large 

capacitance formed by the electrolyte gel on the resistor separated by, for example, the 

Ta2O5 dielectric layer in the case of tantalum resistors, requires a long discharge time, 

around 40 minutes,  after each anodising cycle before accurate measurements can be 

made [56, 57, 85]. 

https://en.wikipedia.org/wiki/Electrolyte
https://en.wikipedia.org/wiki/Passivation_(chemistry)
https://en.wikipedia.org/wiki/Oxide
https://en.wikipedia.org/wiki/Anode
https://en.wikipedia.org/wiki/Electrical_circuit
https://en.wikipedia.org/wiki/Corrosion
https://en.wikipedia.org/wiki/Interference_(wave_propagation)
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In Figure 2.5, a method of trim anodising a thin film resistor to a predetermined value is 

presented. It can be alternately achieved by applying anodising current to the resistor and 

measuring whether the value of the resistor is greater or less than the predetermined value 

in a relatively rapid trimming cyclical manner [86]. In each cycle, which is principally 

anodising and to a minor extent settling and measuring, the resistor value is approaching 

the predetermined value. Modifying such a cycle can provide a relatively slow trim with the 

cycle being principally settling and measuring and to a minor extent anodising and it can 

help to avoid overshooting the resistance value [87]. 

 

Figure 2.5: Anodisation process [88]. 

A method for controlling the trimming of metal resistors is by anodisation and it is practically 

applicable for adjusting the value of thin film resistors during manufacture. Thin film resistors 

may be produced by selective etching of a thin layer of metallic material which has been 

deposited upon an insulated substrate [88]. As a practical matter, the accuracy of such a 

process yields resistors with a tolerance of approximately 10%. To improve upon this, and 

provide resistors having a tolerance of better than 1%, the metal film resistors have been 

subjected to an anodisation process [89].This involves initially constructing the resistor to 

have a value lower than the desired value. The resistor is then anodized in an electrolytic 

cell thus forming an insulating oxide on the surface thereof. This process can be thought 

complicated because the flow of current from the anodisation should be taken into 

consideration when determining the actual resistance value to avoid inaccurate values [89]. 

 

2.5.2 Heat and electrical trimming 

Heat or electrical trimming are often used in preparing thin film resistors, both for stabilising 

the resistivity and for tailoring to required values. Localized high temperatures are achieved 

by direct resistance heating, thus providing a means for the individual tailoring of selected 

resistors in a thin film network [90]. Each resistor is probed at its terminations and direct 
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current is applied to initiate heating. Surface oxidation essentially decreases the thickness 

of the conducting film, thus increasing resistance. The other reaction or reactions occurring 

are not as readily apparent but usually have the overall effect of decreasing film resistivity. 

The nature of this change is metallurgical and includes such things as stress relief, vacancy 

condensation and other structural realignment processes [90]. The rate at which the 

resistance change occurs is dependent upon many variables, especially deposition 

parameters which affect the initial film structure. The difficulty in correlating rate of change 

with a particular film thickness, substrate material etc., necessitates a direct monitoring 

method for obtaining precision values. This may be achieved by accurate measurement of 

the voltage-current values during trimming with appropriate temperature coefficient 

compensation [91]. 

Electrical trimming of resistors is accomplished by forcing large current-density pulses 

through the resistor body, generating sufficient Joule heating to cause a decrease in the 

resistor value [92]. Resistance reductions of over 50% of the as-processed value can be 

easily achieved with remarkable accuracy. Once trimmed, a portion of the resistance can 

be “recovered” by applying current pulses above the trim threshold current [93-98]. Pulse 

current trimming is an efficient method of accurately trimming individual resistors after 

packaging. Trimming resistors after the element is packaged, as opposed to wafer-level 

trimming, compensates for any resistance changes introduced during the packaging 

process, and thus results in the most accurate final resistor values. Insufficient pulse width 

will result in an incomplete trim at a fixed pulse amplitude [99-102]. The resistor’s initial 

value is measured and compared with the desired target. If trimming is required, a trim 

current pulse of sufficient amplitude is applied. The resistance is measured during and after 

each applied trim current pulse. Joule heating causes the resistor’s value to rapidly increase 

to an “instantaneous” resistance value, during which time the resistor element is self-

annealed. Upon removal of the trim current pulse, the resistor quickly cools to its “ambient” 

resistance which is the value measured after the film has returned to room temperature (25 

°C) [48, 63, 98, 99, 103-105]. After removal of the first trim current pulse, the resistance is 

less than the initial resistor value. This represents the amount of resistance trimmed during 

the pulse and is proportional to the trim current pulse amplitude [103-105]. Larger 

increments in trim current result in greater steps in resistance reduction. The trim current 

pulse amplitude is incremented until the target resistance is obtained [48, 68]. 

 

2.5.3 Mechanical trimming 

Mechanical trimming concerns grinding away part of the film layer. The resistance 

adjustment is done by removing a part of the resistor material by a narrow jet of abrasive 
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particles (air abrasive trimming) using the scribe method, which can theoretically give similar 

results to the ones from laser trimming. For instance, in a top hat shape resistor, a sharp 

line cut into the resistive element increases the effective length of the resistor and it leads 

to the increase of the resistance. However, this sharp line can also cause instabilities on 

the resistor due to local damage on the film and the underlying substrate [106, 107]. 

Manufacturing tolerances of ±1% can actually be achieved by the air abrasive trimming. For 

the case of the fluid abrasive method, distilled water is sucked into an air brush where it 

mixes with streaming nitrogen, dispersing into fine droplets and emerging from a nozzle as 

a high velocity jet. It is worth adding that the fluid abrasive method is not expensive to 

implement and can provide very high trim values and trimmed resistors stable enough to 

handle high power densities. Mechanical abrasion is believed to be the predominant 

trimming mechanism, the micrometer-sized water droplets providing the necessary energy 

[108]. 

Thus, abrasive trimming can increase the resistor value in one of two ways [108]: 

• Removing material to form a kerf, as with laser trimming. This increases the number 

of resistor squares, thus increasing the value. 

• Reducing the thickness of the resistor film area. In that way, the sheet resistivity is 

increased and as a consequence the resistance value also increases.  

 

2.5.4  Chemical trimming 

Chemical trimming or industrial etching is the subtractive manufacturing process of using 

baths of temperature-regulated etching chemicals to remove material to create an object 

with the desired shape. It is mostly used on metals, though its use with other materials is 

becoming increasingly important [3, 14, 84, 109]. It was developed from armor-decorating 

and printing etching processes developed during the renaissance as alternatives to 

engraving on metal. The process essentially involves bathing the cutting areas in a 

corrosive chemical known as an etchant, which reacts with the material in the area to be 

cut and causes the solid material to be dissolved; inert substances known as maskants are 

used to protect specific areas of the material as resists [109]. 

In general, etching has applications in the printed circuit board and semiconductor 

fabrication industries since it can offer resistor tolerance at the value of ±2% [84]. It is also 

used in the aerospace industry to remove shallow layers of material from large aircraft 

components, missile skin panels and extruded parts for airframes. Etching is used widely 

to manufacture integrated circuits and micro-electrochemical systems. In addition to the 

standard, liquid-based techniques, the semiconductor industry commonly uses plasma 
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etching which involves a high-speed stream of glow discharge (plasma) of an appropriate 

gas mixture given in pulses at a sample [109]. 

 

2.5.5 Laser trimming process 

As previously mentioned, laser trimming is by far the most popular method for trimming of 

thin and thick film resistors due to the fact that it allows manufacturers to control resistance 

values and resistor ratios with accuracy of  ±0.2 mm [1, 2, 7, 11, 12, 110]. Laser trimming 

requirements have not changed that much in the past few years. However, the applications 

such as circuit feature geometry and device complexity have changed dramatically. Even 

though older systems might be able to be effective, the constant development of laser 

control and beam positioning and the availability of new technologies like diode-pumped 

lasers, machine vision, automated parts handling and dual high-speed processors make 

the new systems much better production tools for the modern factory and the trim speed 

range is from 1 mm/s to 300 mm/s [15, 16, 111]. The trimming operation can be 

characterised as passive or active [112]. Passive trimming refers to the trimming of the 

resistors to a specific predetermined value. The resistance is monitored during the trimming, 

and when the desired resistance is reached, the laser pulsing stops. In functional trimming, 

the circuit is operating as in reality while it is being trimmed. The performance of the circuit 

is measured during trimming and the trimming is terminated when the circuit is operating 

properly and within specification. Functional trimming improves the performance of the 

device and increases yield. It often requires fully automatic, complicated test algorithms 

[112]. 

In laser trimming, the laser uses a light beam of a few micro-meter in diameter to remove 

the resistive film from the ceramic substrate in a very short time period of less than 1 ms, 

see Figure 2.6 [1]. On impacting the resistor film, the high intensity coherent light pulse is 

absorbed by the material causing it to heat and vaporise. The process is dependent on 

several variables such as the intensity of the laser pulse, or the power level, the focus of 

the pulse and also the properties of the material being ablated [112]. 
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Figure 2.6: Laser trimming process [113]. 

The laser beam is scanned across the resistor to produce a continuous kerf, changing the 

resistance value of the film as it progresses. In addition to the properties of the beam itself, 

the accuracy to which the resistance value can be adjusted depends on both the shape of 

the cut and also the speed at which the measurement system can switch the laser beam off 

between pulses once the target resistance value is reached [1, 7, 114-117]. 

There are two main types of laser commonly used for the adjustment of resistive films, the 

CO2 and the Nd:YAG [7, 99, 118]. The pulsed carbon dioxide (CO2) laser has a long pulse 

width with high energy per pulse, which causes vaporisation of the film. Even though the 

long pulse width can cause damage to the substrate and the resistive material at the edge 

of the kerf, known as the heat affected zone (HAZ), the CO2 laser can be effectively used 

for laser trimming of thin films [118]. 

It is worth mentioning that Nd:YAG lasers pumped by arc lamps and operating at a 

wavelength of 1064 nm were used in the early years. In the recent years, diode-pumped 

Nd:YLF lasers operating at a wavelength of 1047 nm have been used successfully for the 

same purpose. However, functional trimming of thin films on silicon has been difficult 

because the wavelengths of 1064 and 1047 nm are both absorbed by the silicon and 

produce free electrons and holes in the silicon. This generates a photoelectric response, 

causing error signals in the output of the circuit. The photoelectric response should dissipate 

before a good measurement can be made since time is needed for the device to recover 

after each laser pulse [7]. In general, the use of a Nd:YAG or Nd:YLF lasers operating at 

1319 nm can eliminate this problem. This wavelength is long enough that the corresponding 

photon energy is smaller than the energy band gap of silicon, so the laser light will not 

generate free carriers in the silicon. These types of lasers are commercially available and 

may be incorporated in trimming systems intended for use with silicon devices. The 

neodymium: yttrium-aluminium-garnet (Nd:YAG) laser uses an acousto-optic Q-switch to 

give a two-way optical switching of the laser beam. This type of system can produce short 
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pulses of high peak power at a wavelength of 1064 nm, so the film is quickly vaporised and 

the heat flow is minimised. However, parts of the material surrounding the kerf can be 

damaged significantly [2, 110, 116]. In addition to the use of shorter pulses, it is worth 

mentioning that lasers operating in the green region of the visible spectrum can provide 

additional reductions in the HAZ due to the decrease in laser spot size resulting from the 

shorter wavelength of 532 nm which influences the absorption process [119]. 

 

2.6 The heat-affected-zone (HAZ) 

Laser heating is a thermal-chemical process, combining heating, melting, material removal 

and sharp solidification or quenching. During this process, when the temperature of the 

work piece reaches the melting point, a molten layer is created and material removal takes 

place [2, 12, 120]. After heating, when the laser moves further, the process of solidification 

initiates grain refinement near the kerf area [16, 116]. The Heat-Affected Zone (HAZ) is the 

zone of the base material which has not melted but whose microstructure and mechanical 

properties were affected by the heat generated during laser cutting [7, 121, 122]. The heat 

generated by the laser cutting process and after cooling causes this change in the region 

near the cut surface. The HAZ may lead to undesirable effects such as fatigue resistance, 

surface cracking and distortion. So, it is interesting to select the appropriate laser cutting 

parameters in order to minimize the HAZ. It is an area of a base metal which, while not 

melted, still has had its chemical properties altered by high temperature exposure [76]. 

Changes that can occur at the HAZ tend to cause stresses that reduce the strength of the 

material. The HAZ can also suffer from a decreased resistance to corrosion or cracking and 

these changes can also lead to the formation of nitrides at the HAZ, which can affect the 

performance of the device. In addition, the microstructure at the HAZ can be altered in a 

way that increases its hardness compared to the surrounding material. Hardness, 

sensitization, and high local stresses in or near the HAZ may be mitigated by practices such 

as controlled heat treatment and solution annealing [63, 123-125]. 

The size of changes in physical properties that can affect the HAZ of the material is 

dependent on a number of factors, including the base material and the amount and 

concentration of heat input during the trimming process [13, 101, 126, 127]. 

On the other hand, the size and effect of the HAZ is determined by other factors. The less 

time the material is exposed to heat, the less time the heat has to act on it. Thus, during 

trimming, faster cut speeds tend to lead to a smaller HAZ. Finally, the type and thickness of 

the material being cut also plays a huge part in the size of an HAZ since different metals 

react to heat differently [124, 125]. The changes to the material’s microstructure can be 

https://inspectioneering.com/tag/corrosion+and+materials
https://inspectioneering.com/tag/welding
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reduced by using heat treatment and adjusting the laser parameters such as the type of the 

laser, laser beam diameter and mode as well as laser power accordingly. Power is the 

measured power of the laser beam used to trim the resistor material and Q-rate is the 

frequency at which the Q-switch interrupts the laser beam and hence its peak power and 

pulse duration. As for the bite size, it is the distance the laser beam is moved across the 

resistor surface between pulses and hence the amount each pulse overlaps [2]. As a result, 

smaller HAZ can be achieved so that less material is wasted. 

A major cause of post-trim drift in laser trimmed resistors is due to the HAZ bordering the 

kerf. It would therefore seem beneficial to consider this area in more detail. A Q-switched 

YAG laser is typically adjusted to operate in single traverse electromagnetic (TEM00) mode, 

with the energy profile of the beam having a Gaussian distribution [2, 9, 12]. This profile is 

then translated into a Gaussian temperature profile in the thin film as shown in Figure 2.7 

[9, 12]. 

 

Figure 2.7: The fundamental mode laser beam profile as a Gaussian distribution [2, 12, 16]. 

Only the central part of the profile is of sufficient intensity to cause vaporisation of the thin 

film. For the areas of film adjacent to the kerf, the energy absorbed from the laser beam is 

less than the threshold required for vaporisation. Thus this region of the film becomes a 

heat affected zone and is known to exhibit considerably more change in resistance with 

time than areas of film not irradiated by the laser beam (see Figure 2.8)  [12]. This aging 

effect is partly due to the fact that the film which was stabilised and or passivated prior to 

the adjustment process has now been re-exposed along the edges of the laser kerf [12]. 

The remainder of the resistance changes are related to changes in the structural properties 

of the film material because of the rapid heating and cooling during the trimming process 

such as the sheet resistance and TCR [122, 128]. 
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Figure 2.8: The HAZ in laser trimming and is subject to long-term annealing effects [122]. 

In addition to the length of the kerf and hence the amount of HAZ, the extent to which the 

HAZ protrudes into the current carrying path of the trimmed resistor is an important 

parameter in determining the overall stability of the resistor [15, 16, 76]. These parameters 

can usually be suitably optimised through variation in the shape of the continuous trim and 

also the properties of the laser beam itself. It is a usual approach to simulate the HAZ by 

finite element analysis and it is important for the virtual process chain of laser based 

manufacturing and necessary for the prediction and optimization of the trimming quality [16, 

119, 122]. 

 

2.7 Spectrophotometry 

In general, the basic function of a spectrometer is to take in light, break it into its spectral 

components, digitize the signal as a function of wavelength, and read it out and display it 

through a computer [129]. This process is described in this section because of its relation 

with the wavelength and the reflectance of the material. The first step is to direct light 

through a fiber-optic cable into the spectrophotometer through a narrow aperture known as 

an entrance slit. The slit vignettes the light as it enters the spectrometer. In most 

spectrophotometers, the divergent light is usually collimated by a con-cave mirror and then 

it is directed onto a grating. The grating then disperses the spectral components of the light 

at slightly varying angles, which is then focused by a second mirror and imaged onto the 

detector [129]. Alternatively, a con-cave holographic grating can be used to perform all three 

of these functions simultaneously and it has various advantages and disadvantages [130]. 

Once the light is imaged onto the detector the photons are then converted into electrons 

which are digitized and read out to a computer. The software then interpolates the signal 

based on the number of pixels in the detector and the linear dispersion of the diffraction 

grating to create a calibration that enables the data to be plotted as a function of wavelength 

over the given spectral range. Thus, a spectrometer is an imaging system, which maps a 

plurality of monochromatic images of the entrance slit onto the detector plane. This slit is 

critical to the spectrophotometer’s performance and determines the amount of light (photon 
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flux) that enters the optical bench and is a driving force when determining the spectral 

resolution. Other factors are grating, groove frequency and detector pixel size. The optical 

resolution and throughput of a spectrometer will ultimately be determined by the installed 

slit. Light is entering the optical bench of a spectrometer via a fiber or lens and it is focused 

onto the pre-mounted and aligned slit which controls the angle of the light which enters the 

optical bench [129]. For solid samples, the intensity of the measurement light beam, Io, is 

measured without the sample set. Then, the sample is set in the path of the measurement 

light beam, and the intensity of the light beam after it passes through the sample, It, is 

measured. 

T=It/Io                                                        Equation 2-5 

As shown in Figure 2.9, the spectrophotometer consists of a light source, a 

spectrophotometer, a sample compartment, and a detector. Although it was already 

mentioned in the previous section that the sample is exposed to monochromatic light, there 

are instruments in which white light is passed through the sample before being passed into 

the spectrophotometer. This method is usually employed in high-speed photometry 

instruments that use array detectors [129].  

 

Figure 2.9: Schematic of a spectrophotometer [129]. 

 

2.8 Resistor Trimming 

 

2.8.1 Conventional Trimming Geometries 

The performance of laser-trimmed resistors depends on both trim path and geometry [4, 5]. 

There is a variety of trim patterns that can be used for the adjustment of surface-mounted 

bar-shaped thin film resistors such as the plunge cut, L-cut, shadow cut, double plunge cut, 

scan cut and serpentine cut [4, 5, 7]. The geometry of the resistor and the resistivity of the 

film determine the resistance value of the resistor. Thus, identical geometries will achieve 

the same value if the film resistivity is consistent. Then, the appropriate trim depends on a 

combination of resistor geometry and the desired precision and speed. Many variables can 

determine the best cut and its characteristics: resistor-aspect ratio, amount of resistance 

change required, resistor material, final tolerance, stability and trim throughput rate [1, 2, 
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12]. Generally, methods to improve the cut selection and its characteristics require further 

tests and analysis [131]. 

The plunge cut, as shown in Figure 2.10, is the simplest, fastest and most economical type 

of cut. It consists of a single kerf orthogonal to the current flow through the resistive material. 

It generally gives less precision than multiple trims, but a shorter period of time is needed 

to perform this cut [1, 2, 12]. 

 

Figure 2.10: Plunge cut. 

However, its tolerance accuracy is quite limited at around 10% and it cannot be used for 

trimming high-accuracy resistors because of the fast change in the value of resistance as 

the cut approaches the opposite side of the resistor. If the initial value of the resistor is close 

to final value, the cut will stop before the point of significant resistance increase and after 

this point, control and accuracy are difficult to achieve [1, 4]. 

The L-cut, see Figure 2.11, is the most frequently used of trim pattern due to its precision, 

stability and tolerance accuracy. The L-cut can overcome the problem of rapid value change 

inherent in the plunge cut. The resistance increases quickly, in relation to the trim speed, 

as the laser cuts the kerf perpendicular to the current flow (y-direction) and is called 

transverse cutting [7, 12, 123, 132]. 

 

Figure 2.11: L-cut. 

Then, after it turns through 90 °C, it increases slowly until the target value is reached in an 

area of equal current density and this is called longitudinal cutting (x-direction). In Figure 

2.12, a typical plot of the resistance value vs. the trim length is presented. The point which 

is annotated as “corner” is the point of the cut in which the kerf is changing direction to cut 

the x-leg [1].  
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Figure 2.12: Typical plot of the resistance increase for the L-cut [1]. 

An additional benefit of the L-cut is that it allows a wider adjustment range than the plunge 

cut for resistors. In Figure 2.13, the resistance increase for the case of the L-cut is depicted. 

The stability of the resistor can be maximised by varying the ratio of the x and y legs. It is 

worth noting that the optimum performance is usually achieved when the y leg is as short 

as possible. However, the drawback of the L-cut is the additional trimming time needed in 

order to perform this cut and that fact makes it slightly more expensive than other methods. 

 

 

 

 

 

 

 

 

 

 

A shadow cut, as shown in Figure 2.14, is thought to be an expensive type of cut. It consists 

of an L-cut or plunge cut and an additional plunge to its side. The trim usually starts at 

approximately 15 to 20% of the total resistor length away from the conductor-resistor 

junction to avoid junction effects and provide maximum room for the second cut [133]. The 

shadow trim usually falls close but outside of the L-cut or plunge shadow to provide a slow 

rate of resistor value change. The shadow trim can fine tune the resistor to the last 1% of 

the nominal value desired and it does not exceed the main cut length (L-cut or plunge) [7]. 
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Figure 2.13: Typical plots of resistance increase with kerf length and corresponding model of 
current density for the L-cut and shadow cut [1]. 
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Figure 2.14: Shadow cut. 

The cut that consists of two plunge cuts is called double plunge, see Figure 2.15. In this cut, 

the trim is kept within the centre third of the resistor body to maximise value change for a 

given depth of cut and to allow for shifts in resistance. The first cut of the double plunge 

brings the resistor to a value that permits the second cut to work in a lower rate-of-change 

area. The second cut is an additional cut which works in the shadow of the first cut. Current 

flows down the length of the resistor and since the second cut is made in a location, where 

little current flow occurs, it has less effect on changing the resistor value [1]. For this reason, 

the second cut should be shorter than the first cut. The trim speed can be greater than for 

a plunge cut since precision derives from the second cut, which occurs in a less sensitive 

trim area than the first. The second trim should always be shorter than the first. It is usually 

kept within 50 to 75% of the first trim length for better results [1, 2, 12]. At equal trim lengths, 

the rate of change increases rapidly and may cause overshoot and out-of-tolerance values. 

By performing this cut, tighter resistance tolerances can be achieved. However, this type of 

cut is more expensive due to the additional trimming time needed [4, 5]. 

 

Figure 2.15: Double plunge cut. 

A scan cut, as shown in Figure 2.16, is used to sense the edge of the resistor and to trim 

resistors to the nominal value desired when the resistance correction is small and precision 

is needed. The scan cut starts before the resistor edge and a proper kerf width is chosen 

so that all of the resistor material is removed between scan lines [1, 12]. It is most commonly 

used when the device is required for high frequency applications to minimise creation of 

capacitive reactance components of an RC circuit [7]. It can also be used in high voltage 

situations due to the reduced likelihood of voltage breakdown across the trim kerf. 

Unfortunately, this type of cut can be three times more consuming to perform and 

consequently it is not cost-effective for general use [7]. 

 

Figure 2.16: Scan cut. 
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A serpentine cut (see Figure 2.17) can offer improved tolerance accuracy due to the large 

resistance gain and it can be used when the pre-value resistance is much lower than the 

target value. Multiple cuts are made in areas of high current density which effectively 

increase the geometric length of the resistor and consequently its resistance value [7]. 

 

Figure 2.17: Serpentine cut. 

 

This cut uses multiple plunge cuts to trim resistors of larger areas to a nominal resistor value 

that is many times that of the initial value. However, the disadvantage of the long trim length 

is the increased amount of heat-affected-zone surrounding it, which can lead to stability 

issues [1, 7]. In some cases, where the resistance gain is very large, increases in the 

temperature coefficient of resistance can also occur due to the amount of material which 

has been raised to temperatures in excess of the zero TCR heat treatment temperature 

without being vaporised. 

Previous studies which tried to overcome this problem clarified that it is common practice 

to employ a two stage serpentine trim when precision thin film resistors are needed [1]. The 

vast majority of the trimming is performed in the first trim stage and the resistor is adjusted 

to around -1% from its target value. The device is then stabilised, typically overnight at 

around 200 ºC to relieve stresses built up in the HAZ. As it is not possible to accurately 

predict the resistance change that occurs during this stabilisation operation, the second 

stage of the adjustment process, the fine trim, is required to accurately adjust the resistor 

to target value and usually consists of one or two plunges in the shadow of the first 

serpentine, see Figure 2.18 [1, 2, 12]. 

 

 

Figure 2.18: Two stage serpentine trim pattern and corresponding variation in resistance stability 

with increasing trim gain for CuAlMo TFR's trimmed with both first and fine trims [1]. 
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This type of cut can be very time consuming and expensive, although the increasing 

availability of auto substrate handling equipment can help to reduce the majority of the 

labour cost involved. 

In addition to these common trim patterns, there are others such as the curved L, curved J, 

curved U and curved U with isolation cuts and their schematic approach is shown in Figure 

2.19 [7]. With the curved L and the curved J, their speed, accuracy and stability are 

adequate and it seems that the hot spots, which are regions with higher intensity caused by 

the laser beam, in turn can be reduced [7]. 

 

Figure 2.19: Schematic approach of curved U, curved U with isolation cuts and curved J trim 
patterns. 

They can also achieve tolerances less than 1%. As for the curved U with or without isolation 

cuts, it appears to have stability and tolerance at around 1% but the trim speed is really 

slow [7]. 

 

2.8.2 Alternative trimming geometries and methods 

A more direct solution to overcome the issues associated with the HAZ is to trim by link 

cutting, see Figure 2.20. This process involves sequentially opening up shorting bars in loop 

and ladder type patterns to increase the resistance in discrete steps. Once the trimming 

bars are opened, the current is redirected around the new longer path thus eliminating any 

current crowding in the trimmed area or HAZ. Although this method can improve aging 

effects, larger chip area is required compared to the conventional bar design, which can 

lead to less products. Moreover, as the resistance is adjusted in discrete steps a very large 

number of links may be required to give resolution comparable with the continuous trim 

approach [122]. 
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Figure 2.20: Demonstration of link cutting [122]. 

There have however been methods reported to make the benefits of the link cutting 

approach applicable to bar resistors. Perhaps the most notable of these involves cutting a 

Swiss cheese pattern in the resistor, as shown in Figure 2.21, which forces current crowding 

only in non-heat affected areas [16, 76]. This pattern differs from the typical trim structure 

since it consists of additional trim targets that are void of material (holes) [16]. To adjust the 

resistance to the desired target, successive trims to a combination of targets along the trim 

paths indicated are made [16]. Swiss cheese technique is thought to be simple and 

repairable. It can be used in a range of substrates and last-minute design changes are 

easily implemented. Devices are designed for low-thermal resistance and arranged so that 

all devices have the same distance from cold-plate-type heat sinks [16].  

 

 

Figure 2.21: Swiss cheese pattern design [16]. 

 

Another study proposed a type of laser trimming performing an L-cut in a ‘top hat’ shape 

thin film resistor, avoiding excessive crowding of the current lines after trimming [123]. The 

resistor has a rectangular shape but in order to avoid excessive crowding of the current 

lines after trimming, an extra rectangular part is added on the side opposed to that which 

will be cut. The laser cut is L-shaped for a precise ending of the trimming process when the 
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resistance reaches the desired value. So, the laser starts the trimming process vertically 

and the resistor value rises rapidly. When the desired value is close, the laser beam starts 

to move horizontally, slowing down the speed of raising the resistor value and a more 

precise stop moment is possible.  

The top-hat structure, shown in Figure 2.22 (a), has as a base a rectangle with 20 x 10 

arbitrary units. It has on the upper side an extra space of 10 x 5 units, allowed for 

displacement of current lines during trimming. It is considered that the laser beam cuts a 

trimming path of 0.1 units wide. 

  

Figure 2.22: (a) Top-hat resistor with L-cut, (b) Rise of the value of the top-hat resistor [123]. 

In Figure 2.22 (b), the actual value R/Rs (where Rs is the specific resistance of the film) of 

the top hat resistor is presented as function of the vertical cut dv (from 0 to 5 units) and 

further as function of the horizontal cut dh in order to determine its corresponding length for 

R= 2.5 Rs [123]. 

Trim pattern design has an effect on the resistance distribution and long-term resistance 

drift performance of thin films such as CuAlMo. The L-cut pattern and the serpentine cut 

were applied on films with sheet resistance of around 0.75 Ω and the investigation took into 

account three laser trim parameters during this experiment: power, Q-rate and bite size [2, 

12]. The best results of post-trim resistance drift of around 0.12% are achieved with 

minimum power and maximum bite size. The power of the laser beam needs to be controlled 

in order to ensure the removal of all the resistive material, otherwise, shallow trimming and 

dirty kerfs will cause instability. As for the trimmed tolerances, these were less than ± 0.5% 

[2, 12]. In Figure 2.23, the standard deviation of the resistance with increasing trim gain for 

L-cut and serpentine cut is shown in order to achieve the target tolerance. 



 

42 
 

 

Figure 2.23: Standard deviation of resistance with increasing trim gain for L-cut and serpentine cut 

[1]. 

The plunge cut and the L-cut have been shown to be effective when trimming other 

materials such as Ta2N material using a YAG laser operating in TEM00 mode. On the L-cut, 

the geometrical position of the turning point results in minimum aging and depends on the 

initial resistor dimensions and the final value to which it is to be laser trimmed. Moreover, 

oxidation of the Ta2N after trimming can reduce conductivity along the kerf leading to a 

subsequent increase in the final resistor value and depends on both the material and trim 

configuration [120]. As for the case of the laser adjustment of Ta42Si13N45 thin films, precise 

trimming can be achieved using femtosecond irradiation. Part of the film was removed and 

the removal rate of the material was down to 20 nm per pulse with the prospect to be further 

decreased. According to this study, it was proven that infrared laser irradiation by 

microsecond and nanosecond pulses permits a complete layer removal [63]. 

An innovative laser trimming method for designing resistors with a resistance value lower 

than that needed by the application is random trimming. This method is accomplished by 

cutting holes into conductive paper in order to increase its resistance value. It is performed 

by cutting a hole in a random point (see Figure 2.24 (a)). Random trimming is a quite long 

process and that is the reason why it was combined with a plunge cut (see Figure 2.24 (b)). 

A single-dive offers rough adjustment and wide trim range fast and then the random trim 

and voids helped to get closer to the target resistance. Thus, the heat-affected zone is 

decreased and the sensitivity of the trim is minimized [5]. 
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Figure 2.24: (a) Pure random trimming, (b) Single dive first and then random trim to target [5]. 

Another recent method focuses on the effect of replacing the two contact bar resistor with 

a three contact distributed structure, trimmed by narrow cuts around the additional contact 

of various shapes, see Figure 2.25 [5]. With this method, some encouraging results were 

concluded due to the fact that the design is simplified and the fabrication process can be 

faster and cheaper [11, 133]. However, the additional trimming time and materials required 

did not appear to justify the improvements in resistor performance reported. 

 

Figure 2.25: Illustration of laser cut length used in three-contact resistors with rectangular and semi-

circular additional contact [5]. 

 

2.9 Summary 

A thorough review research has been conducted on previous studies and projects 

concerning thin and thick film resistor trimming. A brief description of the film deposition 

process was presented since it is one of the first steps in the manufacturing of thin film 

circuits before the trimming process takes place. Various trimming methods were also 

discussed, highlighting the fact that laser trimming is by far the most appropriate and 

efficient method for trimming of thin and thick film resistors. The advantages and 

disadvantages of basic trimming patterns which are widely used in the industry were also 

introduced and it was shown that the geometry of the patterns can significantly affect the 

overall performance of the resistors especially in relation to the heat affected zone. It is 

shown that more recent studies have focused on alternative trimming geometries that would 

lead to further optimisation of the laser trimming process and would improve the 

performance of the resistors and this is also the main focus of this research. 
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3 Modelling of trim geometry 

 

3.1 Introduction  

In this research, modelling was conducted using both numerical simulations and computer-

aided software in order to investigate the effect of the geometry of trimming patterns. The 

numerical simulations were mainly focused on calculating the resistance value and TCR for 

different trim lengths. Also, modelling using computer aided software concerned the 

temperature change of the resistors while applying power and the current density was also 

investigated. In general, ANSYS is a software that gives the ability to produce virtual 

prototypes and it is widely used for simulating the behavior of complete products. Thus, 

ANSYS workbench 15.0 platform, which is a finite element analysis tool, was used for the 

simulations of this study. The thermal electric analysis was followed for the thermal 

distribution and current density for both types of resistors examined, either conductive paper 

or thin films.  

Existing trimming patterns of thin film resistors were modelled as well as more specialized 

cuts such as the curved L-cut, angled L-cut and semi-circle. Thus, easy comparisons can 

be made for the different patterns and the stability and tolerance accuracy of the resistor 

can later be determined. MATLAB R2015 was the version used in this study and it was 

proven very useful for further calculations related to TCR and HAZ to get an estimated value 

for these parameters which would be useful for further comparisons between the different 

pattern geometries. 

 

3.2 Modelling of the resistors 

 

3.2.1 Numerical simulations 

Simplified numerical models can be developed easily that can actually match the 

experimental trimming results [4, 5]. Thus, numerical simulations of the resistors that allow 

variations in trimming patterns were used in order to model the resistor. In Figure 3.1, the 

model of the plunge cut is shown for reference of the dimensions of the resistor and other 

variables that were used for the calculations with MATLAB, based on equations from 

previous studies [4, 5]. 
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Figure 3.1: Model of plunge cut. 

One important factor for this study is the calculation of the resistance value R which is given 

by: 

𝑅 =
𝜌𝐿
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=
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=
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(

𝐿

𝑊
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𝐿

𝑊
)                                      Equation 3-1 

where ρ is the bulk resistivity, A is the cross-sectional area of the resistor, R is the sheet 

resistance, and L, W and T are the length, width and thickness of the resistor, respectively. 

The length, the width and the thickness were constant for all the calculations since they 

referred to the same sample. For the case of the conductive paper, the length L was 30 

mm, the width W was 20 mm and the thickness T was 0.1 mm. As for the thin film resistor, 

the dimensions of the substrate were 6 x 25 mm and the thickness was 1 mm. 

In addition to this, the modelling methodology used contains models based on summing 

resistors in series to enable the plunge cut to be formed, as shown in Figure 3.1 and it was 

modelled using the following equations [4, 5]: 

 

𝑅 = 𝑅1 + 𝑅2 + 𝑅3                                          Equation 3-2 
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𝑊
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)                             Equation 3-3 
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𝑖=1 ]              Equation 3-4 

 

Where n and m are the number of rectangles on either side of the trim and R is the specified 

value which depends on the normalised resistance value, L and W.  
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A similar approach to the one above was used for the double plunge cut and serpentine cut. 

However, for the L-cut and curved L-cut, the total resistance was calculated as the parallel 

combination of R1 and R2, as per equation:  

𝑅 =  
𝑅1× 𝑅2

𝑅1+𝑅2
+  𝑅3                                                  Equation 3-5 

The area that is the combination of R1 and R2 refers to the one which is not affected by the 

laser trimming, as shown in Figure 3.2. 

 

Figure 3.2: Model of L-cut. 

 

3.2.2 HAZ Sensitivity 

As previously mentioned, the HAZ is one factor that affects the performance of the resistor 

since it is the area surrounding the cut affected by the laser. The material around the pattern 

is affected and the larger the size of this area, the more unstable it can become. The 

sensitivity of the HAZ is related to the maximum power density, Pmax, based on previous 

research [16, 76]. It is defined as the fraction of the total power that is dissipated in the HAZ 

and it is expressed as  

   𝑆𝐻𝐴𝑍 =  
𝑃𝐻𝐴𝑍

𝑃𝑠
                                                 Equation 3-6 

where Ps is the power dissipation of the resistor and PHAZ is the total power dissipated in the 

HAZ. Based on this equation, the sensitivity was calculated for the plunge cut, the double 

plunge, the L-cut and the serpentine cut and the results are shown in the Table 3.1 below. 

Table 3.1: Average of HAZ sensitivity for different trim patterns. 

Type of cut SHAZ Pmax (%) 

Plunge cut 0.11 1.29 

Double plunge 0.12 2.17 

Serpentine cut 0.13 2.25 

L-cut 0.10 0.82 

It was found that the sensitivity of the HAZ in serpentine cut has the greatest change in the 

resistance value at an average of 13% due to the fact that the value of Pmax is also increased. 

The sensitivity for the plunge and double plunge cut is 11 and 12%, respectively. As for the 

L-cut it is shown that it has the lower sensitivity to the HAZ at the value of 10%. The 
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calculation of the sensitivity to the HAZ can offer an estimation of the area of the HAZ and 

its size surrounding the cut. 

 

3.3 Modelling using conductive paper 

Conductive (carbon-based) paper was the material set used for the modelling and it was 

later verified experimentally. This type of paper was an affordable option and it could offer 

results in a short period of time and it was used in this research. Thus, the modelling was 

based on this material so that proper comparisons to be made. In this case, the outline 

dimensions that were chosen for the model were based on previous studies on trim pattern 

geometries on conductive paper and the dimensions of the resistor for the experiments 

used were 280 x 100 mm [4, 5]. Also, in this study, silver contacts were added to the two 

ends of the resistor using silver paint. Then, it was decided to use alternative dimensions 

for the resistor of 140 x 100 mm.  

However, even though these previously mentioned dimensions were also simulated, the 

final dimensions chosen were 30 x 20 mm after many trials in order to achieve a proper 

comparison between the results from simulations and experiments, see Figure 3.3. Silver 

contacts were simulated for the resistor shape but the final decision was the use of carbon 

ink (Bare Conductive) in order to have the ability to compare the simulations with 

experiments once again. The shape of the resistor was first modelled without any type of 

pattern applied to it and represented the theoretical behaviour of the untrimmed resistor.  

 

Figure 3.3: Dimensions of the resistor using conductive paper. 

 

    As previously mentioned, the simulations were conducted using ANSYS Workbench and 

the thermal electric approach. The material was determined for the simulations using values 

from the experimental analysis of the conductive paper and theoretical values obtained from 

CES Edupack from Granta Design.  
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The modelling referred to the case of applying a voltage of 15 V which equates to around 

0.012 W at the side of the resistor so that an estimate of the temperature distribution for the 

conductive paper could be expressed. The outputs of the simulation contained the 

temperature change as well as the current density. In Figure 3.4, the meshing and the 

temperature change for the conductive paper without carbon ink contacts are shown while 

power was applied to it. The maximum temperature is shown as 28 °C while the initial 

temperature was set at 22 °C. 

In addition, the temperature change and the current density for the resistor dimensions of 

30 x 20 mm with carbon ink contacts is presented in Figure 3.5. After the application of 

carbon ink the temperature reaches up to 32 °C. The current density is mainly depicted in 

the area of the carbon ink and it is the area with the higher value of temperature.   

 

 

Figure 3.4: Meshing and thermal-electric simulation using ANSYS for conductive paper without 
carbon ink contacts. 

 

Figure 3.5: Thermal-electric simulation using ANSYS for conductive paper with carbon ink contacts. 
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It is shown that the temperature is normally distributed throughout the resistor in both the 

cases either with or without carbon ink contacts. As for the current density, it is worth 

commenting that once again it is normally distributed but there is a significant variation in 

the parts of the sides of the resistor that contain the carbon ink contacts. This is mostly due 

to the fact that the contacts are the ones in which the power was applied to and this was 

causing the temperature rise and then it was distributed to the rest of the area. 

 

3.3.1 Plunge cut 

The plunge cut, as previously mentioned, is a type of cut which gives a large resistance 

increase. Multiple simulations were conducted for both conductive paper and thin films for 

the calculation of the resistance value in relation to the trim length. The results for the case 

of the conductive paper are presented in Figure 3.6. The range of the trim length varies 

from 0 to 14 mm for the plunge cut. Based on the parameters shown in Figure 3.1, the 

position of the cut was placed for X1 = X3 = 12.5 mm and for X2 = 5 mm. The resistance 

value, as expected, is increased in relation to the trim length. Hence, the longer the trim 

length the larger the resistance increase. For instance, it is shown that for the trim length of 

14 mm the resistance value reached up to 18.5 kΩ from 6.5 kΩ. 

 

Figure 3.6: Simulation results for the resistance value vs. trim length for the plunge cut using 
conductive paper. 

The temperature in relation to the voltage applied to the sample was also simulated so that 

a comparison could be made with the experimental results. As shown in Figure 3.7, the 

temperature vs voltage plot is presented for the plunge cut with trim length of 5 mm, 10 mm 
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and 15 mm. The plunge cut with trim length of 5 mm appears to have a constant increase 

in temperature as more power is gradually applied to the sample. The trend is similar with 

the other two lengths of 10 and 15 mm, respectively. However, for the first case, the 

temperature rises up to the value of 32 °C, while the other cases, the value increased to 

33.9 and 34.2 °C. The temperature value does not seem to follow a constant trend but the 

temperature of the resistor depends on the voltage and thus power applied to it. 

 

Figure 3.7: Simulation results of temperature vs power for different lengths of the plunge cut. 

It is clearly shown that the higher the value of the voltage applied to the resistor, the higher 

the increase in temperature will be. It can also be thought that the trim length might also 

have an effect in the temperature change since it affects the resistance value hence the 

power applied to the resistor. Once the resistor is trimmed and its resistance value is 

increased, the voltage needed to test the resistor will be higher and that will lead to its 

temperature to be increased subsequently. 

 

3.3.2 Double plunge   

As previously explained in detail in Chapter 2, the double plunge cut consists of a main 

plunge cut and a shadow plunge next to it. This type of cut obviously offers a large 

resistance gain. In Figure 3.8, the resistance value vs. trim length is presented for the double 

plunge cut consisting of two plunge cuts with dimensions 5 mm and 10 mm, respectively. 

The initial resistance value was 6.5 kΩ and the change in the direction is showing the point 

in which the shadow cut is starting. The final resistance value when the cut was completed 

was 17.6 kΩ. Thus, this pattern can offer a resistance gain of 11.1 kΩ for a trim length of 14 

mm. 



 

51 
 

 

Figure 3.8: Resistance value vs trim length for the double plunge, consisting of 5 and 10 mm. 

 

In Figure 3.9, the results from simulations using ANSYS are shown for the temperature 

change when voltage was applied to the resistor. Three double plunge cuts with different 

dimensions are presented, the first cut consists of two plunges of 5 mm and 10 mm, while 

the others refer to set of trim lengths of 5 and 15 mm and 10 and 15 mm, respectively. As 

shown, the temperature increases in relation to the voltage for all three different cut 

dimensions. The initial temperature is set at 23 °C for all three patterns so that there is a 

common reference point. When voltage of 15 V is applied to the samples, the temperature 

reaches up to 25.25 °C for the total trim length of 15 mm for the first simulation. After that, 

for total trim length of 20 mm for the two plunges, the temperature value is 26.25 °C. As for 

the total trim length of 25 mm, the temperature reaches up to 27 °C. Thus, it is clear that the 

temperature is higher when higher voltage is applied to the resistor. There might not be a 

direct correlation with the trim length and the temperature increase but it is shown that for 

the case of the double plunge cut the temperature rise is higher for the longer trim length. 

The cause of this might be due to the fact that higher power is needed since the resistance 

value will be higher. 
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Figure 3.9: Simulation results of temperature vs voltage for the double plunge cut with different 
lengths. 

 

3.3.3 L-cut  

The L-cut, is thought as the most popular and effective trim pattern. In Figure 3.10, two 

types of L-cut with different dimensions are shown. The increase in their resistance value 

in relation to the trim length is presented. The starting point is common for both cases and 

set at 5 kΩ. For the case of the L-cut with dimensions of x = 5 mm and y = 15 mm, the 

resistance shows a quick increase until the point in which the plunge cut is completed at 5 

mm and then the increase continues until the total trim length of 20 mm is achieved. The 

trend is similar in the case of the L-cut with dimensions of x = 10 mm and y = 10 mm but 

the difference is that the resistance value is quickly increased until the trim length of 10 mm 

since the plunge cut is longer for this case. Also, the increased in the resistance in the 

second case is higher since it reaches up to the value of 12.5 kΩ as opposed to 7.8 kΩ in 

the first case. 
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Figure 3.10: Resistance value vs. trim length for the L-cut with different dimensions based on 
results from simulations. 

In Figure 3.11, the graph for the simulation results of temperature in relation to voltage is 

shown for different trim lengths of the L-cut. The y-leg was set at 5 mm for three model 

samples and the x-leg with values of 5 mm, 10 mm and 15 mm respectively. The fourth 

sample displayed had a value of x and y-leg at 10 mm. The initial temperature was set at 

23 °C. The temperature is increasing in all the samples but the highest increase is shown 

with the higher power applied to them. The temperature of the pattern with total trim length 

of 15 mm reached up to 28 °C while the one with trim length of 20 mm reached up to 27.5 

°C. As for the L-cut with length of both legs of 5 mm, the highest value of temperature 

reached up to 23.5 °C. The temperature for the L-cut with values for both x and y-leg of 10 

mm it is shown that it reached 25 °C. Thus, it is shown that the higher temperature value is 

noted for all the samples for the higher voltage applied to the resistor. 
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Figure 3.11: Simulation results for temperature vs. voltage for the L-cut with various dimensions. 

3.3.4  Angled L-cut 

The angled L-cut is not one of the basic trim patterns that is greatly used in manufacturing 

but previous studies [7] related to this cut were limited and hence it has been chosen for 

further investigation. The resistance value was calculated for this type of cut in relation to 

the trim length. The results of the simulation are shown in Figure 3.12 for the angled L-cut 

with values of a = 5 and 10 mm and x = 10 and 5 mm, respectively. The resistance value 

was set at 6 kΩ and the total trim length for both samples was 15 mm. The resistance of 

the angled L-cut with value a of 5 mm was increased up to the value of 10.2 kΩ while for a 

= 10 mm has reached up to 11.7 kΩ. 
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Figure 3.12: Resistance value vs. trim length for the angled L-cut with different dimensions based 
on simulation results. 

The angled L-cut was also modelled so that the increase in temperature to be calculated 

using ANSYS when voltage was applied to it. The voltage range was once again from 0 to 

15 V since this is the allowed range for the conductive paper. Three variations of length for 

the angled L-cut were modelled in relation to their temperature change with values of a for 

5 mm and 10 mm and with values for x = 5 mm, 10 mm and 15 mm, as shown in Figure 

3.13. The trend between the three model samples is the same and the final temperature 

varies slightly from 28.5 to 28.8 °C for a voltage of 15 V. The angled L-cut does not appear 

to have the trend of the L-cut but it seems that it has a constant increase in temperature as 

the cut progresses. 
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Figure 3.13: Simulations results for temperature vs voltage for different lengths of the angled L-cut. 

 

3.3.5 Curved L-cut 

The curved L-cut is once again one of the newer trim patterns [7] since it is thought to be 

an optimized version of the L-cut, since the corner of the x and y-leg is replaced with a 

smooth connection using the curve. There has been a variety of trim dimensions modelled 

for this type of cut and one of them was with dimensions of x = 3 mm and y = 10 mm as 

shown in Figure 3.14. There is an increasing trend for the resistance value as the cut 

progresses until the total trim length of 13 mm. The final resistance value reached up to 

11.7 kΩ when the cut was completed. In this case, there is no corner shown similar to the 

L-cut when the cut changes direction. A slight change is noted at the point of the trim length 

of 3 mm, in which the plunge has been completed and the curve is starting, however this is 

much less prominent than in the case of the L-cut where it transitions from y to x leg. 
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Figure 3.14: Simulation results for resistance value vs trim length for curved L-cut with x = 3 mm 
and y = 10 mm. 

Different values of x and y for the curved L-cut were also investigated in relation to the 

temperature change of the resistor when voltage was applied to it. In Figure 3.15, the initial 

temperature set of the resistor was 23 °C. The trend in the increase of the temperature is 

similar between the samples and the highest value for all three is within the range of 27.5 

to 28 °C when a voltage of 15 V was applied. It is clear that the temperature is increased 

gradually the higher the value of voltage applied to the samples. 

 

Figure 3.15: Simulation results for temperature vs. voltage for the case of the curved L-cut. 
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3.3.6 Scan cut 

Another common trim pattern, which was modelled using ANSYS, was the scan cut. The 

dimensions which were investigated were 5 x 10 mm, 5 x 15 mm and 10 x 15 mm, as shown 

in Figure 3.16. Once again, the increase in temperature has a similar trend for this type of 

cut with slight variations between the samples with different dimensions. The sample with 

dimensions 10 x 15 mm had the highest temperature increase with a value of 29.5 °C and 

at the value of 28.9 °C with dimensions of 5 x 10 mm for the value of 0.012 W.  

 

Figure 3.16: Simulation results of temperature vs. voltage for the case of the scan cut. 
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3.3.7 Semi-circle cut 

A novel trim pattern geometry was analysed for its possible use for the production of 

resistors. The semi-circle cut was not presented in any previous study and it was 

investigated thoroughly in this research. Its design has supposedly a smaller area affected 

by the laser kerf since it is a constant cut and it does not contain any corners which would 

potentially cause damages in the film.  

The change in the resistance value for the semi-circle cut with total trim length of 30 mm. 

The trim length in this case is larger due to the fact that it refers to the circumference of the 

actual cut. As seen in Figure 3.17, the initial resistance value was 6.5 kΩ and it is gradually 

increased up to 15 kΩ. Thus, it gives a total resistance gain of 8.5 kΩ, which is a significant 

gain for a resistor.  

 

Figure 3.17: Simulation results of resistance value vs. trim length for the case of the semi-circle cut. 

Various dimensions were once again modelled for the case of the temperature change of 

the semi-circle, as shown in Figure 3.18. The dimensions of the semi-circle pattern were 

for values of r set at 5 mm, 8 mm and 10 mm. As expected, the higher the value of r, the 

higher the trim length hence the resistance gain. 
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Figure 3.18: Simulation results of temperature vs. voltage for the case of the semi-circle. 

 

3.3.8 Elliptical cut 

The elliptical cut was also modelled so that values for resistance and temperature could be 

obtained. There are two variables that determine the dimensions of this cut and these are 

the distances a and b. In Table 3.2, the initial and final resistance values of this pattern with 

a variety of values of a and b are presented. The initial resistance value was set at 5.3 kΩ. 

Table 3.2: Simulation results for the elliptical cut with dimensions a and b. 

b (mm) a (mm) Rinitial (kΩ) Rfinal (kΩ) Gain (kΩ) 

2.5 5 5.3 7.3 2 

2.5 7.5 5.3 9.8 4.5 

5 7.5 5.3 11.45 6.15 

5 8 5.3 15.3 10 

 

It is shown that the resistance gain can reach up to 10 kΩ for the values of 5 mm and 8 mm 

of b and a respectively. This type of cut can offer a large resistance gain which is related to 

its dimensions.  

In Figure 3.19, the graph of the temperature change in relation to the power for three model 

samples with different values of a and b are presented. The initial temperature was set at 

25 °C. Three different sets of a and b were modelled as shown in Figure 3.18 with b taking 

the values of 2.5 and 5 mm while the value of a was 5 and 7.5 mm.   

The highest value of temperature is noted at V = 15 V of the graph at 29.5 °C. The 

temperature increase trend is similar between the different models. The temperature for the 
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elliptical cut with b = 2.5 mm and a = 7.5 mm reached up to 29.25 °C while for b = 2.5 mm 

and a = 5 mm the temperature was 29 °C. 

 

Figure 3.19: Simulation results for temperature vs. voltage for different dimensions of the elliptical 
cut. 

 

3.4 Modelling of the thin film resistor 

A similar approach with the conductive paper was followed for the case of the thin film 

resistor but with different dimensions of the resistor and width of the cut. The dimensions 

for the thin film resistor were 21 x 6 mm, so that it matches the dimensions of the thin films 

used for the experiments. However, for the case of the thin film only the following patterns 

were modelled for further investigation since the majority of common and novel patterns 

were already modelled for the case of the conductive paper. 

The simulation results for the case of the plunge cut of 5 mm are shown in Figure 3.20. 

There is a clear increase as the cut progresses and it jumps from the initial value of 55.2 Ω 

to 82.5 Ω. Thus, the resistance gain was 27.3 Ω which was expected in a way since the 

plunge cut, based on previous studies and the results of this section, can offer a high 

resistance gain rate. 
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Figure 3.20: Simulation results for resistance value vs. trim length for the case of the plunge cut of 
5 mm using thin film. 

In Figure 3.20, the graph of temperature change vs. power applied to the thin film resistors 

is presented. The cuts that were investigated further after the analysis using the conductive 

paper, were modelled using the thermal electric approach in ANSYS. The cuts presented 

in the plot are the plunge, the L-cut, the angled-L, the curved-L, the semi-circle and the 

elliptical cut. All of these samples were trimmed until they reached the target of 70 Ω so that 

a comparison could be made.  

The initial temperature was set at the value of 25 °C. As expected, the temperature 

increases, as the value of the power increases. For the elliptical cut it is shown that the 

temperature increases faster when 0.3 W are applied to it in relation to the other types of 

cuts. However, for all the samples, higher values of temperature are noted at the value of 

power of 5 W.  The highest temperature value for the maximum power is shown in the case 

of the angled L-cut at 92 °C.  The plunge cut and semi-circle cut seems to have a large 

increase in temperature up to around the value of 82 °C. The curved L-cut appears to have 

the lowest increase in temperature at 71 °C at the power of 5 W. As for the elliptical cut, the 

temperature reaches the value of 79 °C for the highest power value.  
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Figure 3.21: Temperature vs. power for different patterns trimmed up to the value of 70 Ω. 

In the plot, the values of temperature refer to the points with the higher temperature 

distribution according to the simulations even though the temperature distribution seemed 

uniform with exception of the area above the cut in which the current flow is higher. 

 

3.5 Summary 

In this chapter, the modelling of the trim patterns was presented using MATLAB and 

ANSYS. The resistance value and the HAZ sensitivity were calculated using MATLAB while 

the simulations concerning the temperature distribution were conducted in ANSYS using 

the thermal electric approach. The modelling referred to the two materials used in this 

research which were the conductive paper and thin film resistors. The plunge, double 

plunge, L-cut, angled L-cut, curved L-cut, scan cut, semi-circle and elliptical cut were 

modelled for the case of the conductive paper with larger dimensions of the resistor. After 

that point, the trim patterns chosen for modelling with the thin film resistor settings were the 

L-cut, angled L-cut, curved L-cut, semi-circle and elliptical cut. Many results were presented 

with various dimensions so that certain factors could be determined first theoretically and 

then verified experimentally in the following chapters. The simulations provided the 

theoretical trend of the resistance increase and temperature change so that comparisons 

to be made. 
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4 Laser processing parameters  

 

4.1 Introduction 

The main properties of laser sources, that are relevant for the applications in material 

processing, are the wavelength, the intensity distribution in the beam and the total beam 

power. In general, the wavelength determines the magnitude of absorption by a certain 

material [134]. As for the intensity distribution, it refers to the ability of the beam to focus 

and adjust the width of the processed track, which in the case of cutting is the kerf width. In 

addition to this, the total beam power determines the work piece volume heated, molten or 

evaporated per unit time and its influence on the processing speed is quite significant [135]. 

In relation to the laser power, it is worth mentioning the temporal distribution of the beam is 

important for material processing and there are two options: the continuous wave operation 

and the pulsed mode. The continuous wave operation is mostly used for processing tasks 

with high speed while the pulsed mode can be beneficial for processes with reduced speed 

such as along contours with sharp bends or for considerably enhanced temperature, that 

allow the material to melt. For cutting certain materials, ‘super-pulses’ are used which have 

a very high peak power, but with a reduced length, leaving the average power unchanged 

as it is fixed by the energy balance. The beam parameter product depends on the 

wavelength and on the mode order. If the beam parameter product is small, a beam of high 

quality is obtained. The beam can then be focused to a very small spot size (10 microns) 

and it can also show a small divergence, that means it can widen only in a low rate with 

increasing distance from the source. It can also be used to process work pieces that are far 

away from the laser source without a loss of beam energy. It is therefore essential that the 

beam mode order is as low as possible which means that the intensity distribution of the 

beam is close to the Gaussian shape and that the wavelength is quite small.  

Thus, it is worthwhile thinking that a wavelength in the mid infrared, as 10 μm is an optimum 

choice, since it allows the laser treatment of nearly all materials in terms of an acceptable 

absorption [135]. In any case, a large beam power is helpful in material processing and it 

can compensate even low absorption or poor ability to focus the beam. So, a mode as close 

as possible to the Gaussian shape and a beam power as high as possible is a good 

compromise for general material processing such as laser trimming. 

Carbon dioxide lasers have been proven to be effective for general material processing in 

manufacturing engineering and they are the most commonly used lasers for industrial 

applications. This type of laser was invented in 1964 and it uses a mixture of carbon dioxide 

(CO2), nitrogen (N2) and helium (He) gases for the conversion of electric energy, that is 
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usually supplied by DC (direct current) or RF (radio-frequency) currents, to infrared radiation 

with a wavelength of 10.6 μm [134]. These lasers combine excellent beam mode with nearly 

unlimited beam power and lasers with a continuous wave power of 45 kW are very common 

on the market. The reason for this high-power capability of the CO2 laser is due to the 

relatively large efficiency of theoretically more than 30% for the conversion of electric energy 

to radiation power. Furthermore, it offers the possibility of a very efficient cooling by moving 

the hot CO2 gas mixture away from the electrode system, where it is heated, cooling it by 

heat exchangers and recirculating it to the electrode system where it cares for the 

conversion of electric energy to radiation [135]. CO2 lasers can be operated in the 

fundamental mode or in a ‘doughnut mode’ that can be useful for material processing. 

The radiation power output per unit volume of the laser plasma depends on the density of 

the CO2 molecules. So, the more CO2 that is available, the higher is the laser power per 

unit volume. In addition to this, He and N2 should be as high as possible and therefore an 

experimental optimum has been found with around 70 to 80% He and the remainder covers 

the N2 and CO2 content. Energy supply to the CO2 plasma is, with some minor exceptions 

usually carried out by electric power, where either DC currents, low frequency currents with 

50 Hz or some 1000 Hz or RF currents up to a frequency of about 100 MHz. DC currents 

are widely used in CO2 lasers, since they are simple to operate and correspondingly rather 

cheap [135].  

 

4.2 Theory of the Gaussian beams for CO2 lasers 

The quantities which are required to characterise Gaussian beams are described in this 

section. The propagation of a Gaussian beam can be fully determined when the position of 

the beam waist and the beam radius at that position are known. In Figure 4.1, a schematic 

approach of the profile of the Gaussian beam is presented.  

 

Figure 4.1: Schematic of a Gaussian beam [118]. 
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The beam characterization is usually based upon the transversal intensity distribution I(x,y), 

as shown in Figure 4.2. Since the intensity distribution I(x,y) of a real laser beam is usually 

measured as a function of the coordinates perpendicular to the direction of propagation and 

cannot be given as an analytical function, numerical calculations are needed in order to get 

numbers for beam characterization [135]. As a first step, the direction of propagation of the 

beam must be found, which is defined as the straight line containing the centres of the 

intensity distributions at different distances, z, from the source of the beam.  

 

Figure 4.2: Characterisation of the laser beam [118]. 

This centre of the beam can also be understood as the position of the beam. Afterwards the 

beam diameters, dx and dy, can be derived. In general, real laser beams do not show exact 

symmetry in the transverse directions and therefore the beam diameters in x-direction, dx, 

and in y-direction, dy, are different. When the beam diameters are known at different 

distances from the beam source, the divergence angles, Θx and Θy, can be evaluated, which 

are also different from each other in the case of missing symmetry properties of the beam 

under consideration [135]. 

 

4.3  Position of the beam 

The position of a laser beam can be determined once the centre of the transversal intensity 

distribution I(x,y) is found. The coordinates x0, y0 of this point are obtained by calculating 

the centre of gravity or the first moments of the intensity distribution function: 

                                             𝑥0 =
∬ 𝑥𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦𝐴

∬ 𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦𝐴

                                               Equation 4-1 

 

                                               𝑦0 =
∬ 𝑦𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦𝐴

∬ 𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦𝐴

                                               Equation 4-2 
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The integration area, A, must include all regions where a beam intensity greater than zero 

can be observed. This definition is of course trivial for symmetric distributions, where the 

centre of gravity and the position of the maximum intensity are identical. For real laser 

beams, however, it is possible that the beam position deviates from the point of maximum 

intensity. In this situation, it is important to use the above definition in order to get reliable 

results for the beam diameter and the beam divergence [118]. 

 

4.4 Beam diameter 

The beam radius of a Gaussian beam has been introduced as the scaling factor which is 

responsible for the width of a Gaussian function. Comparing this definition of the beam 

radius to results from statistics where Gaussian functions are also used, the beam radius 

can be related to the standard deviation [135]. By generalizing this result to real laser 

beams, where the intensity distribution is obtained from measurements, the beam radius 

can be defined on the basis of the standard deviation or the second moment of the intensity 

distribution, respectively [135]. For arbitrary beams, where no symmetry properties can be 

found, again two different beam diameters for the x and y direction must be calculated. 

 

                         𝑑𝑥
2 = 16

∬ (𝑥−𝑥0)2𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦𝐴

∬ 𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦𝐴

                                    Equation 4-3 

 

𝑑𝑦
2 = 16

∬ (𝑦−𝑦0)2𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦𝐴

∬ 𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦𝐴

                                            Equation 4-4 

 

4.5 Fine structure of the CO2 laser spectrum due to molecular rotation 

The CO2 laser molecule shows three axes of symmetry, one that connects the centres of 

the three atoms and two other ones perpendicular to this axis, as shown in Figure 4.3. 

Therefore, the CO2 molecule can carry out rotations around these axes.  

These three kinds of rotations around the three axes of symmetry are also associated with 

a certain kinetic energy, whereas the two rotations around the axes perpendicular to the 

one that connects the centres of the atoms are degenerated, meaning they have the same 

energy levels. The typical difference of the energy levels is 0.01 Ev and is thus ten times 

smaller than the energy of the vibrations. So, the combined vibrational-rotational states of 

the molecule show energy levels roughly given by the vibrations, but having a fine structure 

due to the rotational levels, that lead to a certain spreading of the main energy levels, thus 
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yielding laser wavelengths between roughly 9 and 11 μm, that can be utilized by choosing 

a certain vibrational-rotational state. It should be mentioned that due to the influence of a 

rising pressure on the line width of the energy levels, a high gas pressure leads to an 

overlapping of the various vibrational-rotational energy levels, therefore forming a 

continuous energy band, that extends from 9 to 11 μm and allows a continuous tuning of 

the laser frequency. 

 

Figure 4.3: Vibrational-rotational states of the CO2 molecule [113]. 

 

4.6 Epilog mini CO2 laser  

The Epilog mini laser cutter (see Figure 4.4) consists of a laser control panel which displays 

speed, power, frequency and runtime. The operating modes for this equipment are: the 

raster the vector and the combined mode. The vector mode which refers to cutting was 

used for the experiments of this study. The laser source consists of digitally controlled air-

cooled CO2 laser tubes which are fully modular and permanently aligned.  
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Figure 4.4: Schematic of laser cutter [113]. 

The CO2 laser beam itself is invisible and operates at a wavelength of 10.6 μm. The beam 

is about 1.2 mm and the focus lens gives the beam an hourglass shape. The energy density 

is concentrated at the centre point, allowing a precise and clean material removal and the 

centre of the hourglass is the focal point. It is worth noting that the laser beam path is 

completely enclosed within the cabinet. For cutting, the laser is driven along a path and the 

laser remains switched on for the duration of the cut. Under this mode, the laser cuts entirely 

through the material, separating the part from the background. 

This laser also has many standard features for engraving and cutting applications. Auto-

focus with 2-inch focus lens is one of these features and it works on any solid surface 

including transparent materials, while focus is determined at the first point of cutting to 

ensure precise focus even on uneven surfaces. The laser uses a plunger that is attached 

to the carriage to determine correct focus position. When auto-focus is activated, the 

engraving table moves up until the work-piece pushes the plunger up. The table then moves 

down until the work-piece is in precise focal position. When a job starts, the carriage will 

move to the first point of cutting and the table will then move up towards the focus lens until 

the plunger is activated. The table will then move down until it is the correct distance from 

the focus lens. Another feature of the equipment is the air assist which keeps combustible 

gases away from the cutting surface. It directs a constant stream of compressed air across 

the material surface at the point of burn. Directing the compressed air both down and back 

towards the exhaust vent, the air assist removes the heat and combustible gases from the 

work surface. 

 

4.6.1  Pre-cleaning of the laser cutter  

Before using the equipment for the set of the experiments, the optics such as the mirrors 

and lenses of the laser were cleaned. The two optical components which required most 
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cleaning were the focus lens and the mirror directly above it. The lens and mirror are a 

single assembly and they were removed from the machine for cleaning. 

 

Figure 4.5: Representation of cleaning the optics. 

A swab made of tissue for lens cleaning, moistened with optics cleaner, was used to clean 

the optics. Also, rubbing alcohol was used in the case of removing fingerprints. After wetting 

the swab thoroughly with the solvent and then blotting it against a piece of cotton so that it 

was no longer soaking wet, the optic was daubed gently, rotating the swab after each daub 

to expose clean areas to the surface, until the optic was free of visible contamination. At 

that point, a fresh swab was prepared and the surface was cleaned with a zig-zag motion 

across it. It was crucial to allow enough time for the optics to dry before operating the laser. 

In addition to the focus lens and the mirror directly above it, there is also a mirror located 

on the left side of the head and is mounted to the X beam. This mirror is very well protected 

and there was no need for regular cleaning. However, from time to time it was accessed 

with a swab in order to be cleaned, as well. 

Another part of the laser that needed proper care was the optical strip and encoder. These 

are located under the protective cover of the X-beam assembly. The optical encoder helps 

the precise positioning for the x-axis carriage. If the encoder or encoder strip gets dirty, the 

X-axis can lose its position. Under normal circumstances, there is not a serious issue, but 

since precise cuts were needed for this study, it was regularly checked if there was any dust 

built up on the encoder strip which would prevent the optical encoder from working properly. 

In the case that the x-axis carriage was losing its position throughout the duration of the 

experiments, the X-beam protective cover was removed and the optical strip was wiped off 

using a soft cotton cloth. Furthermore, the bearing system in the laser was cleaned once a 

week using a soft cloth or cotton swab with some alcohol to clean each of the bearing tracks 

which the mirror and lens run along. Also, the exhaust blower needed periodically cleaning 

in order to remove built-up debris. 

4.6.2  Laser cutting speed 

Speed settings determine the travel speed of the carriage as the laser cuts. Speed is 

adjustable in the print driver in 1% increments from 1 to 100%. In general, according to the 
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manufacturer, the slower the speed, the deeper the cut and speed settings are heavily 

dependent on the hardness and the thickness of the materials being cut. Since the actual 

values of the speed were not available in order to make proper calculations and estimations, 

several experiments took place in order to determine these values. Several cuts with 

different lengths were performed in order to measure the time needed for them to be 

processed. The laser system consists of a timer that gives the time taken for the cut to be 

completed and an additional timer was also used to confirm this value. Some of the results 

of these tests to determine the speed are shown in Figure 4.6 as well as a representation 

of the different percentages given from the equipment with their actual values. It is worth 

mentioning that the laser speed was calculated for 10 mm/s for the speed percentage of 

15%. In Figure 4.7, the values of the laser speed are presented in relation to the time 

needed for the cut to be performed. Moreover, the values on percentages were measured 

in order to clarify their actual value and the results are shown in Table 4.1. 

 

Figure 4.6: Laser speed measured based on trim length (cm) and time (s) and correlation with 
percentages shown on the control panel display. 
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Figure 4.7: Laser speed on the measurements of trim time needed in seconds for cuts with length 
in cm to be performed. 

 

Table 4.1: Laser speed expressed in mm/s. 

Laser speed in % Laser speed in mm/s 

15 1 

25 1.66 

50 3.34 

75 5.01 

100 6.67 

 

 

4.6.3 Laser power 

In general, power is a simple way to gain an understanding of the laser and it can give a 

complete idea of the laser’s capabilities. This is the amount of laser power that is applied to 

the material surface and in this case concerns a 45 W laser. At a given speed, higher power 

will produce deeper cutting. Adjustable in 1% increments, the power can be controlled from 

the display control panel. Power can also equate speed in this laser system, according to 

the manufacturer. Thus, tests were performed using a laser power meter from Laser 

Instrumentation-Model 5104, which uses a thermal sensor (thermopile based) and it can 

measure up to 300 W. These measurements were performed in order to determine the 

actual values of the power that concerned this percentage shown on the display control 
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panel, see Figure 4.8. The maximum power which is represented in the 100% on the display 

control panel corresponds to measured power of 45 W. 

 

Figure 4.8: Actual values of the laser power in relation to the power percentages of the control 
panel display of the laser cutter using laser power meter. 

 

4.6.4 Frequency 

Frequency is the number of laser pulses that the laser fires per second as shown in Figure 

4.9 for a fixed scan speed. A lower frequency number will have the effect of less heat applied 

to the material being cut. Higher frequencies are useful in this case, since a large amount 

of heat is desirable to melt and they can offer cuts with higher depth. The laser beam 

diameter and the dot size are related and the value is 1.2 mm. 

 

Figure 4.9: Low and high frequency pulsing. 

The frequency range is 1 to 5000 Hz and it is worth noting that setting the frequency at a 

low value (50 to 100 Hz) will produce a perforation. Midrange values are used to reduce 

over burn when cutting, and high values are often used when more heat is desired to melt 
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the sides when cutting. In this laser cutter, resolution which is related to frequency, is 

expressed in dots per inch (DPI) and is determined by the number of dots that are engraved 

for every inch of movement. The higher the resolution setting, the finer the detail that can 

be achieved. The following Figure 4.10 shows the concept of lines and dots-per-inch. The 

arrows show the change in direction of the carriage between the line and the difference in 

dot density between 300 DPI and 600 DPI. 

 

 

Figure 4.10: Examples of resolution in DPI. 

There is a range of resolution settings starting from 75 DPI and reaching until 1200 DPI. It 

is worth commenting that all these different settings were tested in order to make the choice 

for this research. Some of these tests are presented in Figure 4.11, measuring the effect of 

the different resolution settings on the power measurements and as can be seen the DPI 

does not seem to have an effect on the laser power. 

 

Figure 4.11: Measurements of power with resolution range settings of 200 and 400 DPI in order to 
check their effect on the laser power. 

In Figure 4.12, the depth of the cut in relation to different values of frequency is shown in 

order to have a clearer image and representation of the frequency so that it can be clarified 

which value would be used for the experiments in this study. The measurements were 

obtained using Alicona. The power applied was 16 W and the speed was set at 1 mm/s, 

since these were the values chosen for most of the tests in order to co-relate. As shown the 



 

75 
 

higher frequency which is 5 kHz gives the deepest cut while the depth of the cut is 

significantly less for the lower values of frequency. Thus, the higher value of frequency 

offers cleaner cuts due to the higher frequency pulsing and better edge definition.  

 

Figure 4.12: Depth of the laser cut in relation to the frequency for laser power set at 16 W and 15% 
speed based on Alicona measurements. 

 

4.7 Laser settings for trimming of thin films 

After all the previously mentioned tests were performed and the equipment was calibrated 

and adjusted to the needs of this research, constant settings were established and used for 

all the experiments as shown in Table 4.2. 

Table 4.2: Laser processing parameters used for experiments. 

Laser settings 

Power (W) 16 

Speed (mm/s) 1 

Frequency (kHz) 5 

 

The frequency was set at 5 kHz for all the experiments and the speed value of 1 mm/s was 

proven to be the optimum option for the trimming. The higher value of power for this laser 

cutter is 45 W which makes it quite high for the materials under study and the power range 

used was between 16 and 20 W. A detailed representation of the power set points in relation 

to the power output measured is shown in Figure 4.13 for reference. 



 

76 
 

 

Figure 4.13: Laser power measurements in Watts in correlation with the laser power percentage 
from the control cabinet of the laser cutter for frequency of 5 kHz and speed of 1 mm/s. 

Due to the fact that this research needs really fine detail on the dimensions and geometry 

of the patterns, the resolution set for all the experiments and tests was 600 DPI. The choices 

were also based on the visual quality and the depth of the cut. Samples of thin films were 

trimmed with all these different settings and then using a 3D micro coordinate machine, 

Alicona Infinite Focus, the depth was measured by the relevant software of the microscope. 

An example of the depth profile is shown in Figure 4.14. The depth profile provided by the 

measurement software gives a value of the depth cut and it was proven beneficial in order 

to clarify the settings of the laser used for this research.  

 

Figure 4.14: Depth profile given by the Alicona Infinite Focus software referring to the measurement 
of cut depth with aspect ratio 1:7.3. 
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Also, it was possible to decide how clear the cut was and the differences with various 

settings from the images obtained by the microscope for cuts under different speed settings 

(see Figure 4.15). The cut which was performed with a laser speed of 1 mm/s is the cleanest 

and the film was cut through and it is shown that the higher the speed the worst the cutting 

result such as in case of 6.67 mm/s. 

 

Figure 4.15: Image obtained using Alicona for cuts with speeds 15%, 25%, 50%,75%,100%. 

In Figure 4.16, an SEM image is shown with a higher resolution for the cut with speed 15%. 

The working distance as shown on the image was set at 20 mm and the magnification was 

225x. The laser spots from the laser pulse are clearly shown in this image so that the pattern 

can be created. 

 

Figure 4.16: SEM image of the cut trimmed with laser speed of 1 mm/s. 

 

4.8 Summary 

In this chapter, the theory behind the laser beam and the beam diameter were presented. 

In addition to this, this research contains experiments using the Epilog CO2 laser cutter and 

all the steps of the cleaning process in order to secure reliable cuts were mentioned. Several 
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tests and measurements took place and settings such as the laser power, speed and 

frequency took place and the settings for trimming thin films were determined. The laser 

power was set at 16 W, the laser speed was 1 mm/s and the frequency used was 5 kHz. 
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5 Trimming of conductive paper 

 

5.1 Introduction 

In this chapter, existing trim patterns that were presented in Chapter 2 and novel geometries 

are verified experimentally using conductive paper. The novel geometries were the curved 

L-cut, angled L-cut, semi-circle and elliptical cut.  

In general, paper, cardboard and other wood-based products are used in communication, 

packaging and numerous other aspects of modern life and conductive paper is of particular 

interest owing to its efficiency in electromagnetic interference shielding, potential use in 

electronic circuits, active matrix displays and static electrical dissipation [4, 5]. 

Conductive papers are usually prepared by filtration of conductive particles and cellulose 

fibrous aqueous slurries in a Buchner funnel fitted with a nylon cloth with a filtering threshold 

of 8-12 μm and 33 μm. Cloths with different filtering thresholds are used in order to optimise 

the process, reducing the filtering time and to obtain homogenous samples. After the 

filtration step, wet samples are sandwiched between absorbing paper and pressed and then 

dried under vacuum [4]. 

In this project, conductive paper was chosen for the experiments because it was easy to 

handle, especially for the early stages, in order to examine different geometries. It also 

offers wide flexibility with an extremely good conductivity; not to mention the fact that its 

cost is low [4]. In addition to this, it can be easily used for disposable and recyclable device 

production. 

 

5.2 Characterization of the conductive paper 

Conductive paper (Model: PK-9025) from Pasco is designed for plotting equipotential and 

electric fields and has a resistivity of approximately 5 kΩ/ (see Figure 5.1). Electrical 

contacts to the paper are usually made either with clean, smooth metallic probes, or with 

the use of a soft graphite pencil. This paper was previously used for experiments with 

contacts made from a conductive ink pen (silver ink) but it was replaced by the use of 

conductive carbon ink due to its better stability and ease of application. 
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Figure 5.1: Sample of the conductive paper used for the experiments at its original dimensions (A4 
paper). 

The thickness of the paper was measured using a mechanical gauge and its value is 1.4 x 

10-5mm. The surface morphology and topography was imaged using a SEM (Scanning 

Electron Microscope- Model: Tescan Mira 3) and the chemical composition was analysed 

using EDS (Energy Dispersive Spectroscopy- Model: Aztec Oxford Instruments). 

 

5.2.1 SEM-EDS Analysis 

A sample of the conductive paper used for the experiments described in this section was 

scanned using the SEM and the image is shown in Figure 5.2. The outcome of the SEM 

analysis was further analysed using EDS so that the chemical composition could be 

identified. For the EDS analysis, the magnification used was 450x, the voltage 20 kV and 

the working distance 15 mm.  

 

Figure 5.2: SEM image of conductive paper (PASCO). 

After that, the EDS software, Aztec Energy from Oxford Instruments, was used to identify 

the elements of the conductive paper so that this information can be used for the numerical 

simulations. 
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The spectrum of the elements detected using the software is presented in Figure 5.3. The 

peaks in the spectrum are labelled during acquisition of the analysis and the elements that 

were detected are represented. Carbon was the highest peak which proves that it is the 

main material of the layer of the conductive paper. 

 

Figure 5.3: Spectrum of the materials detected in the tested sample of conductive paper (Graph 
counts per second per electron-volt (cps/eV) vs KeV. 

In Table 5.1, the measured intensities of the conductive sample analysed are presented. It 

is shown that the surface of the conductive paper is covered in carbon, as it was expected 

from the information provided from the manufacturer. However, other elements were also 

identified from the EDS analysis in smaller percentages such as Sulphur, Calcium, Indium 

and Silicon. It is reasonable to suppose that this is due to potential impurities of the 

production of the material.  

Table 5.1: Measured intensities of the specimen. 

Element Weight (%) 

C 98.84 

S 0.42 

Ca 0.42 

In 0.22 

Si 0.10 

Total 100 

 

5.3 Experimental procedure 

The Epilog laser cutter (Model 8000) will be used for the trials and further details about the 

equipment are presented in Chapter 4. Existing trim patterns such as the plunge cut, the L-
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cut, the double plunge cut and the scan cut were investigated. To emulate the resistors, the 

previously described conductive paper was trimmed to the required geometry using the 

laser. The power used for the trimming was 12 W, with a speed of 1 mm/s and frequency 

of 5 kHz. For a constant sheet resistance (Ohms per square), the resistance of a planar 

resistor does not change with size like length or width as long as the ratio of length to width 

(aspect ratio) is constant.  

 

5.3.1  Experimental setup 

Prior to the trimming of the resistors to the above mentioned patterns, each page of the 

paper was cut to the resistor desired shape. At first, the chosen dimensions were 100 x 140 

mm as shown in Figure 5.4. After the shape of the resistor is set, electrical contact to the 

paper is made with the use of strips of electric paint (Bare conductive) placed on the ends 

of the paper (approximately 10 mm wide).  

 

 

Figure 5.4: Dimensions of the resistor made from conductive paper. 

The trim patterns were created using the laser to cut 100 mm2 at a time and measuring the 

resistance value each time using the four-wire measurement. However, it was noticed that 

the resistance of the conductive paper is not uniform and it varies from page to page due to 

variations in thickness in the resistive material that is used to coat the sheets. Thus, a 

normalization factor needs to be established in order to achieve the uniformity in the results 

from the measurements. The normalization process scaled all measurements from each 

sheet to the average value. To normalize the various sheets based on the average, 10 and 

15 initial measurements from each sheet were made prior to trimming, the measurements 

were averaged, so that a scaling factor could be estimated. Every measurement taken from 
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the specific sheet thereafter (during trimming) was multiplied by this scaling factor before 

comparison with data from other sheets. The normalization process was performed for 

every resistor used in this experimental study. This normalization procedure accounts for 

variations in the sheet resistance from sheet-to sheet only (variations in series resistance 

in the measurement path are not taken into consideration, for instance clamp pressure). 

Thus, the sheet resistance is set as constant. Series resistance variations are reflected in 

the standard deviation in the measured resistance after normalization. 

In addition to this, because of these variations in the resistance value of the conductive 

paper, it was necessary to take the measurements before applying the carbon ink contacts 

and apply the normalization factor. After that, another set of measurements were taken 

which included the resistance value when the carbon ink contacts were added.  

Both carbon ink and silver ink were tested as contacts for two different samples presented 

as sample 1 and 2 and their comparison is shown in Figure 5.5. The deviation of resistance 

for the different types of ink was calculated by the measurements on the day that the 

contacts were applied and then the measurements were repeated after 24 hours. 

 

Figure 5.5: Difference in the resistance change and comparison between carbon and silver ink 
contacts. 

This procedure helped to clarify which type of ink will be used due to its stability after 24 

hours of the application on the conductive sheet of paper. Once again, ten measurements 

were taken in total and the first five measurements concerned the initial change in the 

resistance value (on the day of the application of the ink) and the following five represent 

the change after 24 hours. Both inks had similar behaviour at the initial stage and after 24 
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hours. However, it is shown that there are less fluctuations in the deviation of the resistance 

after 24 hours and they can even be less than 0.001% for the carbon ink and around 0.002% 

for the silver ink. This change after 24 hours is probably due to the fact that the ink is dry 

and absorbed properly. Thus, the use of the carbon ink was chosen for the contacts 

because even though the differences in resistance change are insignificant between these 

two types of ink, the application of the carbon ink is easier and less time is needed compared 

to the silver ink. 

 

5.4 Results and Discussion 

The change in the resistance value for the trim length with range of 0-14 mm from 

simulations in comparison with the experiments for different patterns such as the plunge, 

double plunge, L-cut, scan cut, curved L-cut as well as the semi-circle is presented in this 

section.  

In Figure 5.6, the simulation and experimental results for the case of the plunge cut is 

presented. The change in the resistance value is faster in the case of the plunge cut and as 

a consequence less trimming time is needed to perform this cut in comparison with other 

more complicated ones. The normalised resistance value before trimming is 5.5 kΩ and the 

highest value for the resistance is 15.2 kΩ and 15.5 kΩ for simulations and experiments 

accordingly for a trim length of 14 mm.  

 

Figure 5.6: Simulation and experimental results for the change in the resistance value for the 
plunge cut. 
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Up to the trim length of 5 mm, the results from both simulations and experiments seem to 

be close to identical but after that point, at the range of 5-14 mm, small fluctuations are 

depicted. It is worth commenting that the simulation results concern ideal conditions and 

due to the fact that the difference with the experiments is so small, there is confidence that 

the results are verified correctly. 

In Figure 5.7, the results for the case of the double plunge cut are presented for both 

simulations and experiments. For this type of cut, it is shown that the resistance value 

increases fast for the first plunge and it reaches 12 kΩ and then for the second cut (shadow) 

the increase is slower when it reaches the point of 15.2 kΩ for the trim length of 14 mm. 

This cut seems to be a good option as for the stable change in the resistance value that can 

offer but additional trimming time is needed for the shadow cut. Thus, it is worthwhile 

thinking that the increase in trimming time also increases the production costs. 

 

Figure 5.7: Simulation and experimental results for the change in the resistance value for the 
double plunge cut.  

As for the L-cut, shown in Figure 5.8, the resistors were trimmed so that the trim changed 

direction after 4 mm. The normalised untrimmed value is 6 kΩ and the highest trimmed 

value for this pattern was 11.5 kΩ for a trim length of 14 mm. It is worth noting that once 

again the resistance value increases fast until the point in which the cut changes direction 

after 4 mm. Thus, it is depicted that the simulation and experimental results are close to 

identical up to the point where the kerf changes direction from y to x. However, a slight 

fluctuation can be seen after the trim length of 4 mm between the simulation and 
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experimental results. The resistance value is increased faster in the case of the simulation 

in relation to the experimental value, even though the final resistance value is close in both 

cases. 

 

Figure 5.8: Simulation and experimental results for the change in the resistance value for the L-cut. 

In Figure 5.9, the curved L-cut is introduced and it can be thought of as an optimised pattern 

due to the fact that the record from previous research was limited. The resistors were 

trimmed so that the trim changed direction after 10 mm. In the plot, the change of direction 

of the cut is shown when the slope of the line changes. As for the highest trimmed value for 

this pattern was 12.2 kΩ for trim length of 14 mm. It is worth noting that the resistance value 

increases fast until the point in which the cut changes direction after 10 mm. As a result, 

this type of cut can be considered to be the most accurate pattern in comparison with the 

other ones because it combines the reliable and stable characteristics of the L-cut which is 

the most popular laser trim pattern for thin film resistors but with smoother edges to reduce 

current crowding. 
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Figure 5.9: Simulation and experimental results for the change in the resistance value for the 
curved L-cut. 

As for the scan cut, shown in Figure 5.10, the resistors were trimmed so that the trim 

changed direction after 4 mm. The normalised untrimmed value is 6.5 kΩ and the highest 

trimmed value for this pattern was 8.5 kΩ for trim length of 14 mm. Once again, the 

resistance value increases fast until the point in which the cut changes direction after 4 mm. 

However, overall, the rate of change looks fairly linear.  
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Figure 5.10: Simulation and experimental results for the change in the resistance value for the scan 
cut. 

For the case of the scan cut, fluctuations are shown in the line that represents the 

experimental results, especially for the trim length range of 5 until 8 mm and the increase 

in the resistance value is clearly depicted as the trim length increases. However, this 

increase is relatively low in comparison with the other patterns and that makes the scan cut 

less effective.  

In Figure 5.11, a novel pattern is presented with the shape of semi-circle and the change of 

the resistance value is shown. The trim length concerns the diameter (d) of the semi-circle 

for different samples. The normalised resistance value is 6.5 kΩ and the highest value is for 

the diameter of 32 mm at 15.2 kΩ. Once again, the difference in the resistance value 

between the experimental and simulation results are around 0.52 kΩ. It is worth commenting 

that the semi-circle seems to be a pattern that needs further investigation and trials on thin 

films will follow so that this pattern can be evaluated thoroughly. 
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Figure 5.11: Simulation and experimental results for the change in the resistance value for the 
semi-circle cut. 

In addition to this, the samples with different types of cut were tested using a thermal camera 

so that the change in temperature when voltage was applied could be measured. In Figure 

5.12, the measurement using thermal camera (Model: FLIR B620) for the resistor with the 

plunge cut is presented and the maximum temperature is shown to reach the value of 32.4 

°C while the minimum is measured at 23.8 °C. As expected from the theory, the highest 

temperature is distributed in the centre of the resistor and the minimum on the outer parts 

of the resistor. In addition to this, the cross in the image of the plunge cut is placed right at 

the top of the cut so that we are able to have a value for the temperature at the point in 

which the current is expected to flow when a load is applied to the resistor. As for the case 

of the plunge cut, the highest temperature is 30.4 °C and it appears at the upper part of the 

plunge. 
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In Table 5.2 below, the experimental results for the change in temperature, the calculation 

of TCR and the trimming time  are presented. The TCR can be used to specify the stability 

of the resistor and it can depict the resistive element’s sensitivity to temperature change 

due to the temperature variations. The TCR was calculated using the measurements of the 

resistance value for the different values of temperature. Once again, the same cuts were 

tested with various trim lengths. For the case of the plunge cut, it is shown that the increase 

in the resistance is higher for the trim length of 15 mm with the significant gain of 10.11 kΩ.  

Table 5.2: Experimental results for temperature change and TCR for the plunge and double plunge. 

Type 

of cut 

Trim 

length 

(mm) 

Temperature 

(Initial) 

Temperature 

(Final) 

Ri 

(kΩ) 

 

Rf 

(kΩ) 

Resistance 

gain (kΩ) 

 

TCR 

(ppm/°C) 

Trim 

time 

(s) 

 

Plunge 

 

5 25 30.4 5.25 5.96 0.71 0.68 6 

10 25 33.8 5.25 12.16 6.91 11.58 11 

15 25 34.5 5.25 15.36 10.11 18.29 17 

 

Double 

plunge 

 

5 10 25 25.3 5.25 8.76 3.51 -0.47 27 

5 15 25 26.3 5.25 15.83 10.58 2.62 22 

10 15 25 27 5.25 16.32 11.07 4.23 25 

 

Furthermore, as expected the increase in the resistance value and TCR is even higher for 

the case of the double plunge cut in relation to the single plunge. However, additional 

trimming time is required in order to perform this cut. It is also worth mentioning that the 

temperature rise also causes an increase in the TCR values, as well.  

In addition to this, the L-cut, curved L-cut and scan cut shapes for various trim lengths were 

also tested experimentally and the temperature change and TCR are shown in Table 5.3. 

Figure 5.12: Thermal distribution for the untrimmed sample of conductive paper (a) and for 
the plunge cut of 5 mm (b). 



 

91 
 

For the case of the L-cut, the two values of the trim length refers to the y and x leg. As 

previously mentioned in the literature, the length of the y leg is usually less than the x leg in 

order to achieve better stability. Thus, in this case, the lengths chosen were either the same 

for both legs or varying the x leg. The initial temperature is different from the other two cuts 

due to the fact that the experiments for the L-cut took place on a different date. The TCR 

for this cut appears to have fluctuations between the different values of the y leg. 

As for the curved L-cut it is supposed to be a better version of the L-cut, so the 

characteristics are expected to be similar. However, the TCR seems to be really low but the 

main reason for that might be the behaviour of the conductive paper which was used for the 

experiments. For the scan cut, the TCR values are also low in comparison with the other 

cuts (plunge, double plunge and L-cut). Thus, it is worthwhile thinking that the scan cut even 

though it can offer good characteristics, cannot be considered as a pattern that needs 

further investigation due to the fact that the volume of the material removed is quite 

significant. The angled L-cut was also investigated and as also shown in Table 5.3, the 

initial resistance value was higher than the other ones. It can offer a resistance gain up to 

1.89%. As for the TCR, it varies from 0.37 to 2.43 ppm/°C and it appears to be closer to the 

curved L-cut and that is why it was one of the chosen patterns to be investigated further. 

Table 5.3: Experimental results for temperature change and TCR for the L-cut, curved L-cut and 
scan cut. 

Type of 

cut 

Trim length 

(mm) 

Temperature 

(Initial in °C) 

Temperature 

(New in °C) 

Ri (kΩ) Rf  

(kΩ) 

Resistance 

gain (kΩ) 

TCR 

(ppm/°C) 

Trim 

Time  

(s) 

 

L-cut 

 

5 5 18 23.3 6.87 8.75 1.88 11.47 12 

5 10 18 28.1 6.77 8.97 2.20 11.86 16 

5 15 18 27.7 5.23 7.81 2.58 8.96 21 

10 10 18 25.2 5.23 12.51 7.28 14.15 21 

Curved 

L-cut 

 

3 3 25 27.9 5.25 8.36 3.11 1.72 7 

3 5 25 27.8 5.25 8.48       3.23 1.72 8 

3 10 25 28 5.25 11.62 6.37 3.64 13 

 

Scan 

cut 

 

5 10 25 28 5.25 7.19 1.94 1.11 16 

5 15 25 28.2 5.25 7.81 2.56 1.56 21 

10 15 25 28.06 5.25 8.32 3.07 1.79 26 

 

Angled 

L-cut 

5 5 23 28.6 6.04 9.29 3.25 0.37 12 

5 10 23 28.85 6.12 10.33 4.21 2.43 17 

10 5 23 28.5 6.2 11.74 5.54 1.97 15 
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The experimental results for the change in temperature and TCR for the newly introduced 

semi-circle shape are presented in Table 5.4. For this cut, the trim length is linked to the 

radius of the semi-circle and the values tested were for 3, 5, 8 and 10 mm. The temperature 

increase is shown to be stable for the various trim lengths while the resistance gain can 

reach up to 9.95 kΩ for the trim length of 10 mm. The semi-circle shape can be thought as 

an optimised version of the scan cut as it can offer similar results with less trimming time 

needed due to its ‘smoother’ shape without sharp corners and less waste in the material 

removed.  

Table 5.4: Experimental results for temperature change and TCR for the semi-circle. 

Type of 

cut 

Trim length 

(r=mm) 

Temperature 

(Initial in °C) 

Temperature 

(New in °C) 

Ri 

(kΩ) 

Rf  (kΩ) Resistance 

gain (kΩ) 

TCR 

(ppm/°C) 

Trim time 

(s) 

 

Semi-

circle 

 

3 25 29.2 5.25 7.1 1.85 1.48 5 

5 25 29.4 5.25 9.6 4.35 3.65 7 

8 25 29.5 5.25 11.42 6.17 5.29 10 

10 25 29.5 5.25 15.2 9.95 8.53 12 

 

As previously mentioned, the plunge cut and the L-cut are fundamental patterns which are 

commonly used in the industry. The double plunge cut consists of two plunges which means 

that additional trimming time is added in relation to a single cut and that makes this type of 

cut unsuitable for further analysis. The curved L-cut is a pattern that gives the accuracy of 

an L-cut and it gives us confidence that less laser power will be needed to perform the cut 

especially in the case of thin films. Also, the scan cut will not be analysed further due to the 

waste of material removed. But, the newer pattern of semi-circle offers promising results 

and it can be thought as a potential geometry.  

Thus, after all this analysis, it was decided which patterns will be further investigated using 

thin film resistors. The aim was to have as low a TCR as possible and high resistance gains. 

So, both newer patterns, the curved L-cut and semi-circle seem to be promising patterns 

for the geometry of the laser trimming and they will be applied to thin films, as well. 

Furthermore, the plunge cut, and the L-cut will also be tested again in order to have a proper 

comparison, since these are the most commonly used patterns in industry. 

 

5.5 Summary 

In this chapter, the laser trimming trials of the conductive paper were presented. As 

previously mentioned, conductive paper was used for the experiments of the first stages of 

this research in order to verify results obtained from simulation in less time and 
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economically. It is worthwhile thinking that certain consideration was taken for the set-up of 

the experiments in order to achieve the highest stability of the conductive paper and to be 

confident that the factors that might affect the results are minimised. 

It is shown that the results from the simulations are close to those obtained from the 

experiments for most of the patterns. The normalised resistance value is 6.54 for all the 

samples and the highest resistance value for trim length of 14 mm is around 15 kΩ for 

plunge and double plunge cuts and around 12 kΩ for the curved L-cut. 

The progression that the trim length is increased is clearly depicted in the results plots. It 

was shown that the theoretical results are close to the ones from the experiments and it is 

reasonable to suppose that the conductive paper has proven to be useful before the trials 

of the thin films so that a decision could be made on which patterns will be investigated 

further. In addition to this, conductive paper can also be used as an alternative method to 

emulate resistors and can give reliable results for laser trim patterns. 
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6 Trimming thin films  

 

6.1 Introduction  

In this chapter, the experimental procedure of laser trimming of thin film materials in various 

trim geometries is analysed. Multiple trimming patterns, both basic and novel ones, were 

previously tested using conductive paper as described in Chapter 5 and it was possible to 

clarify which patterns could be further investigated and applied to the thin films. Thus, the 

patterns that were chosen to be tested were the L-cut, the curved L-cut, angled L-cut, the 

semi-circle and elliptical pattern. A variety of trim lengths and dimensions for each type of 

trim pattern were applied on the thin films so that a proper comparison could be made for 

each design’s capabilities. These thin films were trimmed using the Epilog CO2 laser system 

with the specified settings for power, speed and frequency as detailed in Chapter 4. 

 

6.2 Thin film resistor 

 

6.2.1 Thin film materials 

The thin film resistor used for the experiments consists of a resistive manganese-based 

material. However, the exact composition of this material is confidential and it is not possible 

to disclose details of it in this thesis. The films were grown on 6 x 25 x 1 mm thick, 96% 

Al2O3 substrates. The resistor shape was patterned in a bar configuration using a screen-

printable mask, which was applied prior to deposition and was subsequently removed with 

a light solvent wash (Isopropylic alcohol). Once deposited, the annealing process followed 

for 4 hours at 428 °C in air. The different batches of thin films used are represented with 

capital letters and their thickness can be found in Table 6.1. 

Table 6.1: Types of batches of thin films and their thickness. 

Batch Thickness (nm) 

A 488 

B 496 

C 504 

D 614 

E 617 

 

In Figure 6.1, an SEM image with high magnification using the resolution mode was taken 

in order to depict the material morphology before being heat-treated and laser trimmed. As 
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shown in the figure, the magnification was set at x2.38k, the working distance was 15 mm 

while the voltage was set at 20 kV and the SE detector was used. As shown, there is a 

variation in grain shape and size due to the sputtering method used for the manufacturing 

of the thin film resistor. 

 

Figure 6.1: SEM Image of the untrimmed sample of the resistor before heat treatment. 

Spectrophotometry was also used to relate the reflectance of the thin film material surface 

with the wavelength of the laser system (700 nm). In Figure 6.2, the reflectance in relation 

to the wavelength based on the measurements of the spectrophotometer is presented for 

all different batches A to E.  

For the case of batch A, it is shown that the thin film can reflect light at a percentage of 34 

and 42.25% for the wavelengths of 700 and 1400 nm, respectively. As presented, there are 

slight fluctuations in the percentage of the reflectance between the different batches. 

Batches B and D appears to be more reflective until the wavelength of 500 nm and then the 

increase is similar for all batches. Another small increase for B and D appears again closer 

to wavelength of 1400 nm. 
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Figure 6.2: Reflectance vs. wavelength for batches A, B, C, D, E. 

As for batches C and E, they are following the same trend as the one from batch A. 

However, overall, these tests give confidence that the reflectance for all the batches 

investigated in this research are proportional and their characteristics are comparable. In 

Table 6.2, the value of reflectance for different batches was measured for the wavelengths 

of 700 and 1400 nm. As previously mentioned the percentage of the reflectance shown in 

the table can give an indication of the quantity of light reflected from the surface. 

Table 6.2: Reflectance measurements for 700 and 1400 nm. 

Batch Wavelength (nm) 
 

Reflectance (%) 

 
A 

700 34 

1400 42.25 

 
B 

700 34.11 

1400 42.25 

 
C 

700 34.2 

1400 43.26 

 
D 

700 34.27 

1400 42.35 

 
E 

700 34.25 

1400 42.86 

 

It is worth mentioning that the batches of the films seem to have similar reflectance values 

with slight differences that vary from 34.11 to 34.27% for the wavelength of 700 nm and 
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from 42.25 to 43.26% for the wavelength of 1400 nm. Batches D and E have the highest 

percentage of reflectance for both 700 and 1400 nm wavelengths in relation to the other 

thin film batches. However, overall there seems to be a trend for these specific wavelengths 

for all five batches. Thus, it was proven that these compositions have similarities and the 

same laser settings can be used for all of them. 

In addition to this, in Figure 6.3, the samples from different batches were trimmed with an 

L-cut up to a target value so that any differences could be investigated after trimming. The 

dimensions of the cut were x = 7 mm and y = 3 mm and k was 2 mm. The target set was 70 

Ω and as shown, the initial value for the untrimmed resistance was close to 55 Ω for all 

samples. All the samples seem to have a similar trend for the change of their resistance 

value. It is clear that their resistance value rapidly increases until the end of the y-leg at a 

trim length of 3 mm. However, after that point, the resistance increase is slower since the 

laser changes direction and it starts trimming the x-leg for the next 7 mm, which makes the 

total trim length of 10 mm.  

 

Figure 6.3: Resistance value vs trim length for the case of the L-cut until the target value of 70 Ω. 

It is shown that batch B has a difference in relation to the other four batches according to 

the resistance increase before the kerf starts to change direction and the cut progresses. 

Thus, the other four batches were actually used for the rest of the experiments in order to 

achieve repeatability and comparability on the results. 
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6.2.2 Direct and indirect method of the resistance value measurements 

The resistance value was continuously measured using the four-probe method while the 

laser was performing the cut and it was calculated per mm of the actual trim length. The 

experimental results were calculated based on the measurements shown and the changes 

were recorded using video so that the actual timeframe could be captured and calculated 

accordingly in relation to the laser speed. In this study, the laser speed of the cutter is 1 

mm/s, as detailed in Chapter 4, and was constant for the trimming of all the samples. So, 

the same speed and same power was used for the experiments. However, these results 

were also verified using the software Labview and a comparison between the two methods 

for the case of the L-cut is shown in Figure 6.4. 

 

Figure 6.4: Resistance vs. trim length for the L-cut using direct and indirect method. 

Labview is a software which offers a platform so that the real data from measurement 

hardware can be integrated and the results depicted. It can be thought as a direct method 

since it is synchronised with the measurement system so that accurate results are 

produced. It is clear that both methods follow the same trend with slight differences and the 

final value was the same as shown in Figure 6.4. It is worth noting that the results for most 

of the trimmed patterns were achieved using the indirect method. 

 

6.2.3 Dimensions of sample 

After research and trials with different dimensions of film resistors, especially with smaller 

samples of 10 x 6 mm, that were tested during the first stages of this study, it was finally 
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decided the size of the resistor should be larger for the experimental procedure. Thus, the 

dimensions of 25 x 6 x 1 mm were finally chosen for this research. It was proven that this 

size of resistor allows enough space for the different laser trim patterns to be tested 

effectively so that reliable conclusions could be made depending on the width of the cut. 

The dimensions of the thin film resistor are presented in Figure 6.5. The resistor consists of 

an aluminium oxide substrate and the actual dimensions of the film deposited are 21 x 6 

mm. It is also shown that the resistor consists of two square silver contacts of 2 mm each 

on the left and right sides. 

 

Figure 6.5: Schematic representation of dimensions of the thin film resistor used for the 
experiments. 

 

6.2.4 Position of the cut 

Before trimming the resistors, the position of the cut had to be set. Thus, several samples 

and a variety of positions were investigated in order to clarify the importance of the starting 

point of the cut. One of these tests concerned samples with a plunge cut of 5.94 mm, which 

is 99% of the width (6 mm) performed in different positions. In that way, it was possible to 

check the effect of the start position on the overall change of the resistance value. A 

schematic approach of the plunge in relation to the distance from the left contact k is shown 

in Figure 6.6. 
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Figure 6.6: Schematic approach of the position of the plunge cut in relation to distance k. 

In the following Table 6.3, five samples with similar untrimmed resistance values were 

tested with different values of k determining the starting point of the cut. As expected the 

trimmed value of the resistor and the gain is very high since the trim length of the cut is the 

highest possible. In that regard, the length of the plunge was kept the same and the value 

k varied. The trimming time for all the samples is the same since the length of the cut was 

constant. The trimmed resistance value is similar for the samples and the difference 

between the highest and lowest trimmed value is around 6%. 

Table 6.3: Resistance value for samples trimmed with plunge cut of 5.94 mm but different value of 
k. 

Sample No. k (mm) Rinitial (kΩ) Rtrimmed (kΩ) Resistance gain Trimming time (s) 

1 2 0.0596 37.63 630.37 6 

2 6 0.0568 36.76 646.18 6 

3 11 0.0512 35.44 691.19 6 

4 16 0.0555 35.87 645.31 6 

5 18 0.0517 36.45 704.03 6 

 

Thus, the position of the cut has a very small effect on the trimmed resistance value of the 

sample. However, the analysis of the L-cut contains different starting points so that their 

performance can be assessed taking into account variable k.  
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6.3 Laser trim patterns 

 

6.3.1 The L-cut 

According to previous studies that were reviewed in Chapter 2, the L-cut is thought to be 

the most popular laser trim pattern and it is widely used in manufacturing of thin film resistors 

because of its stability and tolerance accuracy [2]. Thus, this pattern, even after the trials 

on the conductive paper, was chosen to be further analysed so that it can be compared with 

the novel patterns. A schematic diagram of the L-cut is shown in Figure 6.7, where x refers 

to the length of the x-leg while y concerns the length of the y-leg. The variable k is also 

depicted and it refers to the distance between the end of the contact and the beginning of 

the cut. The resistance value was measured before and after trimming using the four-probe 

method with the Agilent multi-meter. 

 

Figure 6.7: Schematic approach of the L-cut for length of x-leg and y-leg. 

The samples were also analysed using SEM imaging, as shown in Figure 6.8. In image 6.8 

(a), the sample was scanned using an SE detector on the wide field mode and the working 

distance was set at 20 mm while the voltage was 10 kV. This image depicts the overall 

pattern hence the magnification was lower in relation to image 6.8 (b) in which the 

magnification used was higher. From the SEM images, it is shown that the film was cut 

through and the cut was clean in the greatest proportion of the samples. However, in a few 

samples, some very small remains of the film were detected in the area of the cut but their 

effect is proven to be insignificant to the overall performance of the resistor. These are 

possibly causing the small fluctuations of the resistance value in between the samples of 

around ± 5%. Furthermore, the area of the film that was affected from the heat of the laser 

kerf is also found around the cut. 
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Figure 6.8: (a) SEM image for the L-cut with x = 3 mm and y = 7 mm for (a) at x114 and (b) at 
x226. 

The resistance value was measured before and after the thin film resistor was trimmed 

using the four-probe method. Table 6.4 shows the resistance values of the untrimmed and 

trimmed samples, the trim lengths for x and y legs as well as the value of the parameter k 

with a range of 1 to 5 mm. The resistance gain was also calculated and the trimming time 

needed to perform the cut was measured. The trimming time is the same as in the previous 

case and it is proportional to the trim length. As for k = 3 mm, the trend is similar, once 

again, to the one for the previous cases. It is shown that the resistance gain is between 

17.06 and 19.65% for the case of y = 2 mm and it is between 74.81 and 78.49% for y = 5 

mm. The trimming time varies from 8.95 to 15 s. The resistance gain for the case of y = 2 

mm and k = 4 mm is between 17.06 and 19.67%, while for y = 5 mm it is between 74.84 

and 79.68% based on the results. The trend is similar to the previous cases for k = 5 mm, 

as shown in Table 6.4. The resistance gain is between 17.09 and 20.67% for the length of 

the y-leg of 2 mm and between 74.83 and 78.85% for y-leg of 5 mm. As expected the longer 

the y-leg the larger the resistance gain. However, the longer the trim, the more expensive 

the cut since more laser power and trimming time is needed. 

Table 6.4: Resistance gain for L-cut samples trimmed with a variety of trim lengths for k from 1 to 5 
mm. 

   
 
 
 
 
 
 
 
 

k=1 mm 

y (mm) x (mm) Rinitial (Ω) Rtrimmed (Ω) Trim gain (%) Trimming time (s) 

 
 

2 

6  
 

58.70 

68.61 16.88 7.95 

7 69.20 17.88 8.99 

8 69.82 18.94 10 

9 70.02 19.28 11 

10 70.21 19.60 11.99 

 
 

3 

6  
 

60.60 

73.20 20.79 9 

7 75.17 24.04 10 

8 76.14 25.64 11 

9 76.85 26.82 12 

10 76.92 26.93 13 

 
 

6  
 

80.10 19.91 10 

7 80.40 20.36 11 
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4 8 66.80 81.52 22.04 12 

9 81.75 22.38 13 

10 81.96 22.69 14 

 
 

5 

6  
 

58.40 

102.08 69.01 11 

7 103.40 71.19 12 

8 103.62 71.55 13 

9 103.87 71.97 14 

10 104.21 72.53 15 

15 115.23 80.99 19.6 

 
 
 
 
 
 
 
 
 

k=2 mm 

 
 

2 

6  
 

58.20 

68.05 16.92 8.2 

7 68.62 17.90 9 

8 69.22 18.93 10 

9 69.50 19.41 11 

10 69.65 19.67 12 

 
 

3 

6  
 

56.80 

68.61 20.79 9 

7 70.45 24.03 10 

8 71.36 25.63 11 

9 72.05 26.84 12 

10 72.09 26.91 13 

 
 

4 

6  
 

55.80 

66.91 19.91 10 

7 67.16 20.36 11 

8 68.09 22.02 12 

9 68.29 22.38 13 

10 68.46 22.69 14.2 

 
 

5 

6  
 

55.70 

97.37 74.81 11 

7 98.74 77.27 12 

8 98.85 77.47 13 

9 99.06 77.84 14.3 

10 99.42 78.49 15.2 

 
 
 
 
 
 
 
 

k=3 mm 

 
 

2 

6  
 

61.20 

71.64 17.06 8.95 

7 72.15 17.81 9 

8 72.80 18.95 10 

9 73.10 19.44 11.2 

10 73.23 19.65 12 

 
 

3 

6  
 

56.90 

68.73 20.79 9 

7 70.58 24.04 10 

8 71.52 25.69 11 

9 72.18 26.85 12 

10 72.22 26.92 13 

 
 

4 

6  
 

60.70 

72.78 19.90 10 

7 73.06 20.36 11 

8 74.08 22.04 12 

9 74.32 22.44 13 

10 74.51 22.75 14 

 
 

5 

6  
 

59.40 

103.85 74.83 11 

7 105.17 77.05 12 

8 105.41 77.46 13 

9 105.65 77.86 14 

 
10 

 
106.23 78.83 

 
15 

 
 
 
 
 
 
 

k=4 mm 

2 6  
 

56.80 

66.49 17.06 8.2 

7 66.96 17.89 9.2 

8 67.57 18.96 10 

9 67.85 19.45 11 

10 67.97 19.67 12 

3 6  
 

57.20 

69.11 20.82 9 

7 70.95 24.04 10 

8 71.15 24.39 11 

9 72.58 26.89 12.2 

10 72.61 26.94 13 

4 6  
 

60.40 

72.42 19.90 10 

7 72.71 20.38 11 

8 73.71 22.03 12 

9 73.95 22.43 13 

10 74.24 22.91 14 

5 6  104.03 74.84 11.2 
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7  
59.50 

105.35 77.06 12 

8 105.58 77.44 13 

9 106.41 78.84 14 

10 106.91 79.68 15 

 
 
 
 
 
 
 

k=5 mm 

2 6  
 

61.5 

72.01 17.09 8 

7 72.53 17.93 9 

8 73.16 18.96 10 

9 73.45 19.43 11 

10 74.21 20.67 12 

3 6  
 

57.5 

69.48 20.83 9 

7 71.32 24.03 10 

8 72.27 25.68 11 

9 72.86 26.71 12 

10 72.98 26.92 13 

4 6  
 

61.2 

73.40 19.93 10 

7 73.67 20.37 11 

8 74.71 22.07 12.2 

9 74.93 22.43 13.2 

10 75.12 22.74 14 

5 6  
 

58.1 

101.58 74.83 11 

7 102.87 77.05 12 

8 103.11 77.47 13 

9 103.34 77.86 14 

10 103.91 78.85 15 

 

As previously presented, the initial resistance value for the untrimmed samples had to be 

normalised since the values of the samples were not identical so that we have a common 

reference point for the rise of the value after the trimming. The samples were carefully 

chosen beforehand with similar values for each set of trimming with the same y leg so that 

proper comparisons can be made and repeatability achieved. It is clear that the chosen 

lengths for y were 2, 3, 4 and 5 mm. As for the values of x, these were 6, 7, 8, 9 and 10 

mm, for y from 2 to 4 mm. In this table, there is also an additional case with trim length for 

x = 15 mm and y = 5 mm for the case of k = 1 mm. These cut dimensions could not be 

tested for different values of k due to the limited size of the resistor. 

The samples with a larger y leg have the greater resistance gain based on these results. 

For instance, the case of the L-cut with y = 5 mm and x = 10 mm has a resistance gain of 

72.53% while the one with y = 2 mm and x = 10 mm has a resistance gain of 19.60%. This 

trend was expected since the longer the plunge of the y leg the higher the resistance 

increase, hence the percentage of resistance gain. It is also shown that there is an increase 

in the resistance with the increase of the length of the x-leg. For the case of y = 2 mm and 

x = 6 mm the resistance gain was 16.88% while for the sample with the same y-leg and x = 

10 mm the resistance gain was 19.60%, meaning that there is a difference in the percentage 

of 2.72%. Thus, the length of x leg is also important depending on the resistance gain 

requirements for the resistor. Furthermore, the sample with y = 5 mm and x = 15 mm gives 

a resistance gain of 80.99% which is logical since the longer the trim length the higher the 

resistance gain. As for the trimming time, it varies from 7.95 to 19.6 s, for total lengths of 8 

and 20 mm, respectively. The resistance gain, in both k = 1 mm and k = 2 mm, have a 
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similar trend with a value of 19.67% for the case of y = 2 mm and x = 10 mm and 78.49% 

for y = 5 mm and x = 10 mm. It is also shown that the trend is similar for the case of y = 3 

mm and x = 4 mm. It is clear that the longer the y-leg the larger the resistance gain. 

Overall, several positions for k were investigated for the L-cut, as shown in detail in the 

previous table. However, as discussed previously, the position of the cut based on the k 

value does not have a significant effect on the case of the L-cut as presented in Figure 6.9, 

for x = 7 mm and y = 3 mm. The resistance trim gain is the same for the same dimensions 

with a very small fluctuation of 0.01%, even though the starting point of the cut is different. 

In addition to this, the trimming time needed for the cut to be performed was also not 

affected by the different values of k since it remained at 10 seconds. It is shown that the 

trimming time is mostly affected by the trim length and not the start position. 

 

Figure 6.9: Trim gain vs. trimming time for the case of L-cut (x = 3 mm and y = 7 mm) for different 
values of k. 

Thus, the trim length plays an important role. As it was expected, based on previous studies, 

the longer the y-leg, the larger the resistance gain since the y-leg has similar behaviour to 

a plunge cut and it is not surprising due to the fact that the plunge is a type of cut that can 

give a large percentage of resistance increase.  

Based on these results, Figure 6.10 was plotted to show the resistance change with an error 

margin of ± 3% in the case of total trim length of 10 mm but with x values from 2 to 4 mm 

and y values from 6 to 8 mm. The larger increase in resistance is shown for x = 4 mm and 
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y = 6 mm, which is more than 21% in comparison with the L-cut of x = 2 mm and y = 8 mm, 

which had an increase of 15.5%. 

 

Figure 6.10: Resistance change vs. trim length for L-cut samples with total trim length of 10 mm. 

The experimental results for the case of the L-cut with dimensions of x = 10 mm and y = 4 

mm for five samples are presented in Figure 6.11. The purpose of these results is to 

investigate the repeatability of the resistance value increase for the same trim length.  The 

value of the resistance appears to be increased quickly until the length of the trim is 4 mm 

and then it starts to increase gradually with a slower rate since the laser has changed 

direction and it is trimming towards the x-axis. It is shown that the initial value of the resistor 

before trimming is around 6 kΩ and then the final resistance value after trimming is around 

11.5 kΩ which means there is a resistance gain of 91.66%. Thus, this type of cut is reliable 

and as shown even though there are slight changes between the each sample the length 

of the cut once again plays a more important role. 
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Figure 6.11: Experimental results for the L-cut with x=10 mm and y=4 mm. 

To sum up, the L-cut has been proven to be a reliable trim pattern since it offers repeatability 

and its resistance gain can be managed depending on its trim length, particularly for the y-

leg. Thus, it is reasonable that it has been widely used for the manufacturing of thin film 

resistors all these years. 

 

6.3.2 Curved L-cut 

The curved L-cut can be thought as one of the newer design patterns due to the fact that 

research for this type of cut was limited and it could be investigated further. As previously 

mentioned in Chapter 4, this cut can be proven quite promising since there is no corner 

between the y and x leg and the laser can perform a continuous cut that can decrease the 

trim time significantly. In Figure 6.12, a schematic diagram of the curved L-cut is shown and 

x is referred to the length of the straight part of x-leg while y concerns the length of the 

straight part of the y leg.  
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Figure 6.12: Schematic representation of the curved L-cut with trim length variables y and x. 

In Figure 6.13 (a) and (b), images using SEM and the SE detector are shown. In image (a), 

the overall image of the curved L-cut is depicted with dimensions of x = 3 mm and y = 7 

mm. In image (b), the focus is on the curve of the cut and a higher magnification of x60 was 

used. The HAZ around the cut is also clearly visible in both. 

                                                                  

Figure 6.13: SEM image of the curved L-cut with dimensions x = 3 mm and y = 7 mm for (a) at x45 
and (b) at x60.  

Similar length variations like the L-cut were chosen for the tests of the curved L-cut and they 

are presented in Table 6.6. The starting point of the curved L-cut was for the values of k of 

2 and 3 mm. As explained previously, for the plunge cut and the L-cut, the start position, k, 

of the cut is not causing a large difference to the resistance value and that is the reason 

why the tests only concerned the two mentioned values above. 

Once again, the values for the resistance of the untrimmed samples are presented, which 

were normalised so that proper comparisons could be made. The resistance gain is 

significantly lower than that of the L-cut for values of y = 2 mm and x = 6 mm, since it is only 

12.42% in relation to 16.92% for the case of the L-cut. While in general it produces a higher 

resistance gain of 22.26 and 27.88% for k = 2 mm and k = 3 mm, respectively. The trimming 

time varies from 8.2 to 15 s for this type of cut as well. 
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Table 6.5: Resistance gain for curved L-cut samples with a variety of trim lengths for values of k of 
2 and 3 mm. 

 
 
 
 
 
 
 
 
 

k=2 mm 

y (mm) x (mm) Rinitial (Ω) Rtrimmed (Ω) Resistance 
gain (%) 

Trimming 
time (s) 

 
 

2 

6  
 

58.70 

65.99 12.42 8.2 

7 66.32 12.98 9 

8 68.10 16.01 10 

9 68.22 16.22 11 

10 68.55 16.78 12 

 
 

3 

6  
 

61.60 

67.52 9.61 9 

7 68.25 10.80 10 

8 68.53 11.25 11 

9 69.23 12.39 12 

10 69.55 12.91 13 

 
 

4 

6  
 

66.80 

70.95 6.21 10 

7 71.61 7.20 11 

8 71.82 7.51 12 

9 72.23 8.13 13 

10 72.65 8.76 14 

 
 

5 

6  
 

65.80 

78.53 19.34 11 

7 78.92 19.94 12 

8 79.12 20.24 13 

9 80.25 21.96 14 

10 80.45 22.26 15 

 
 
 
 
 
 
 
 

k=3 mm 

 
 

2 

6  
 

58.95 

66.22 12.33 8.2 

7 66.54 12.87 9 

8 68.23 15.74 10.2 

9 68.56 16.30 11 

10 68.95 16.96 12 

 
 

3 

6  
 

60.60 

67.36 11.15 9 

7 68.12 12.41 10 

8 68.45 12.95 11 

9 69.42 14.55 12 

10 69.98 15.48 13 

 
 

4 

6  
 

66.50 

71.23 7.11 10 

7 71.56 7.61 11 

8 71.98 8.24 12 

9 72.12 8.45 13 

10 72.56 9.11 14 

 
 

5 

6  
 

58.40 

72.53 24.19 11.2 

7 73.13 25.22 12.3 

8 73.85 26.45 13 

9 74.25 27.14 14 

10 74.68 27.88 15 

 

The experimental results of the trials of the curved L-cut with dimensions of x = 10 mm and 

y = 4 mm are shown in Figure 6.14. Five samples were tested with the exact same trim 

pattern applied to them so that resistance value variations can be observed between 

samples of different batches. In that way, the repeatability of the cut was tested and as 

shown, the difference between the samples was around 15%. Thus, it can be thought that 

the resistance values are repeatable for the samples that were trimmed with the curved-L 

cut applied to them. It is shown that a faster increase of resistance value occurs at the point 

of 1 mm since the plunge cut is performed and then the curve of the cut is starting until the 

distance of 4 mm and then the laser is slowly changing direction and starts trimming towards 

the x-axis until the length of x reaches 10 mm. 
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Figure 6.14: Resistance value vs trim length for five curved L-cut samples with x = 10 mm and y = 
4 mm. 

 

6.3.3 Angled L-cut 

The angled L-cut can be characterised as a type of modified L-cut based on previous studies 

[116]. The design of this trim pattern is shown in Figure 6.15.  

 

Figure 6.15: Schematic representation of the angled L-cut with trim length variables a and x. 

The difference of this pattern is that the angle of the cut is 120° instead of 90° like in the 

case of the common L-cut. This pattern was chosen to be investigated since previous 

research on it is really limited but it has shown that it might be beneficial for the production 

of thin film resistors and it mostly concerned theoretical results.  In Figures 6.16 and 6.17, 

SEM images of the angled L-cut are shown for reference. 
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Figure 6.16: SEM image of the angled L-cut for a = 3 mm and x = 7 mm. 

 

Figure 6.17: SEM image of the a-leg of the angled L-cut. 

In Table 6.6, the resistance values of the untrimmed and trimmed samples are shown for 

different trim lengths. The value of y was between 2 and 5 mm while the value of x was 

between 6 and 10 mm, like the cases of L-cut and curved L-cut. However, it is clearly shown 

that the resistance gain for this pattern is quite small in comparison with the two previous 

geometries. The trimming time for this pattern varies from 7.96 to 14.97 s for trim length of 

8 and 15 mm respectively. 

For instance, for the trim length of a = 2 mm and x = 6 mm, the resistance gain is only 

10.45% in comparison with gain of 12.42 and 17.96% for the curved L-cut and L-cut, 

respectively. Thus, with the angled L-cut we can achieve a resistance gain of 5.13 to 

13.70%. Even though the gain of the resistance value is not as high as the other types of 
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cuts, this pattern can be used if the value needs to reach a certain target slowly and with 

reduced current crowding. 

Table 6.6: Resistance gain of the angled-cut for value of k of 2 and 3 mm. 

 
 

 
 
 
 
 
 
 

k=2 mm 

a(mm) x(mm) Rinitial (Ω) Rtrimmed (Ω) Resistance 
gain (%) 

Trimming 
time (s) 

 
 

2 

6  
 

62.70 

69.25 10.45 8.2 

7 69.54 10.91 9 

8 69.23 10.41 10 

9 69.65 11.08 11 

10 69.98 11.61 12 

 
 

3 

6  
 

61.60 

68.37 10.99 9 

7 69.14 12.24 9.95 

8 69.52 12.86 10.95 

9 69.62 13.02 11.95 

10 70.04 13.70 12.95 

 
 

4 

6  
 

67.30 

71.23 5.84 9.92 

7 71.56 6.33 10.98 

8 71.98 6.95 11.95 

9 72.12 7.16 12.89 

10 72.56 7.81 13.78 

 
 

5 

6  
 

65.90 

72.53 10.06 10.85 

7 73.13 10.97 11.92 

8 73.85 12.06 12.96 

9 74.25 12.67 13.79 

10 74.68 13.32 14.97 

 
 
 
 
 
 
 
 

k=3 mm 

 
 

2 

6  
 

66.70 

69.25 3.82 7.96 

7 69.54 4.26 8.95 

8 70.23 5.29 9.89 

9 70.85 6.22 10.99 

10 71.58 7.31 11.95 

 
 

3 

6  
 

62.60 

69.37 10.81 9 

7 70.14 12.04 9.99 

8 70.52 12.65 10.95 

9 70.62 12.81 11.96 

10 71.08 13.54 12.98 

 
 

4 

6  
 

66.80 

70.23 5.13 10.3 

7 70.56 5.63 10.94 

8 70.98 6.26 11.91 

9 71.12 6.47 12.87 

10 71.36 6.83 13.68 

 
 

5 

6  
 

69.80 

73.53 5.34 10.81 

7 74.13 6.20 11.85 

8 74.85 7.23 12.92 

9 75.25 7.81 13.84 

10 76.68 9.85 14.93 

 

In Figure 6.18, the experimental results for the angled L-cut are shown for a trim length of 

10 mm for five samples of different batches. The procedure followed for the measurements 

is the same as previously described. The test samples were chosen to have untrimmed 

values as close as possible to each other. Thus, the average value of the untrimmed 

samples is 56.25 Ω. For samples 1 and 2, the trend is similar and the value of the resistance 

is increased close to 60 Ω following trimming. However, for samples 3, 4 and 5, it is shown 

that they have a similar trend and the resistance is increased close to 65 Ω but the starting 

point is slightly higher than that of samples 1 and 2. Thus, the angled L-cut cannot be used 
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for applications that need a large resistance gain but it can be thought that it optimises the 

trimming time while reaching a certain target value. 

 

Figure 6.18: Experimental results for the angled L-cut for x = 7 mm and a = 3 mm. 

 

6.3.4 Semi-circle cut  

The semi-circle cut can be characterised as a novel pattern since no previous investigation 

has been noted. It has a similar design to the one of the scan cut as described in Chapters 

2 and 5, while avoiding the sharp corners that add additional trimming time and increase 

current crowding. The design of the trim pattern is presented in Figure 6.19. The cut consists 

of a semi-circle and different values of the diameter d were tested in this study. 

 

Figure 6.19: Schematic approach for the semi-circle pattern for diameter d. 
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In Figure 6.20, the SEM image is shown for the semi-circle pattern with magnification of 

x313.  

 

Figure 6.20: SEM image of the semi-circle with d = 4 mm at x313. 

In Table 6.8, the resistance value of the untrimmed and trimmed samples are presented 

and the percentage of the resistance gain was also calculated. The range of the values of 

d tested was from 1 to 5 mm. Once again, the initial resistance value was chosen to be 

close for the samples. It is shown that the resistance gain for this trim pattern can reach up 

to 43.89% for the diameter of 5 mm.  

Table 6.7: Resistance gain for semi-circle pattern with different values of d. 

d (mm) Rinitial (Ω) Rtrimmed (Ω) Resistance gain (%) Trimming time (s) 

1 78.81 89.96 14.15 1.6 

2 78.91 92.45 17.16 3.2 

3 78.50 97.5 24.20 4.7 

4 77.92 104.56 34.19 6.3 

5 78.25 112.6 43.89 8 

 

6.3.5 Elliptical cut 

The idea of the elliptical cut was based on a previous study in which a third contact was 

used to adjust the value of the resistor [9, 11] and it was adjusted to the needs of this study. 

A schematic approach of the elliptical cut is shown in Figure 6.21. In general, the ellipse is 
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a curve in a plane surrounding two focal points such that the sum of the distances to the 

two focal points is constant for every point on the curve. The equation is 

                                                    
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1                                                        Equation 6-1 

in which the horizontal major axis of the ellipse is marked as a while the vertical major axis 

of the ellipse is marked as b. The same theory was applied to this design and different 

values of a and b were tested to investigate this type of cut. SEM images of the cut are 

shown in Figure 6.22 (a) and (b). 

 

Figure 6.21: Schematic representation of the elliptical cut with variables a and b. 

 

 

Figure 6.22: SEM image of the elliptical cut with a = 6 mm and b = 3 mm for (a) at x14 and (b) at 
x105. 

In Table 6.8, the change in the resistance value of the elliptical cut is shown and the 

resistance gain is calculated. The values of a tested started from 5 mm up to 7.5 mm while 

b started from 0.3 mm to 2 mm. The elliptical cut shows a unique trend on its resistance 

gain and it starts from 11.06 % and it can reach up to 31.71% for the case of a = 5 mm and 

b from 1 to 5 mm within the fixed area. 
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Table 6.8: Resistance gain for the elliptical cut for different values of a and b. 

a (mm) b (mm) Rinitial (Ω) Rtrimmed (Ω) Resistance 
gain (%) 

Trimming time 
(s) 

5 1 72.30 80.3 11.06 15 

2 81.2 12.31 15.2 

3 85.32 18.01 16.3 

4 91.05 25.93 17.52 

5 95.23 31.71 19.3 

5.5 1 68.25 76.52 12.12 16.3 

2 77.36 13.35 18.5 

3 79.56 16.57 19.2 

4 85.36 25.07 20.3 

5 89.80 31.57 21.4 

6 1 78.8 86.95 10.34 19.56 

2 91.36 15.94 20.12 

3 94.65 20.11 20.78 

4 97.35 23.54 21.36 

5 101.2 28.43 21.68 

6.5 1 68.52 77.52 13.13 16.35 

2 77.95 13.76 17.56 

3 79.56 16.11 18.95 

4 85.34 24.54 20.3 

5 89.96 31.29 21.5 

7 1 69.23 78.65 13.61 15.3 

2 78.95 14.04 17.23 

3 79.47 14.79 18.45 

4 83.26 20.26 19.65 

5 91.20 31.73 20.1 

7.5 1 72.56 84.56 16.54 16.35 

2 86.95 19.83 18.74 

3 91.23 25.73 19.89 

4 96.5 32.99 20.13 

5 97.56 34.45 20.65 

 

This type of cut can offer a significant resistance gain which is obviously higher in the case 

of a = 7.5 mm and b = 2 mm at the value of 34.45%, since a larger quantity of the film was 

removed. 

 

6.4 Temperature measurements 

The designs that were investigated and presented in the previous sections in relation to 

their resistance value were also tested in relation to their temperature rise with application 

of power. This type of test is beneficial for checking the performance of the various trim 

geometries in high temperatures and how effective these could be when ultimately used as 

devices within electronic circuits. Four samples were examined for each type of cut so that 

the repeatability could be measured. The trimmed resistors were connected to a DC 

regulated power supply (Model 305D) with voltage range of 0-30 V and current from 0-5 A 

and power was applied to them. The set power values were related to the normalised 

resistance and the temperature change was measured using a thermal camera (Model: Flir 

B620). Thermal images were taken each time for different values of power. Four thermal 
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images for the case of the L-cut are shown in Figure 6.23, for indication of the temperature 

values with different loads applied to the sample. 

 

 

Figure 6.23: Thermal image of the L-cut (a) before applying power, (b) after application of power of 
2 W, (c) power of 8 W and (d) power of 12 W. 

 

Based on measurements from the thermal camera for various samples, the temperature 

change for the L-cut was plotted as shown in Figure 6.24 for trim lengths of x = 7 mm and 

y = 3 mm. The initial temperature of the resistor is depicted at the starting point before power 

was applied to it. Then, the temperature starts to rise in steps for all the samples until the 

final temperature value was close to 80 °C including the difference expressed in the error 

bars. The trend of the temperature rise is similar for all the samples and the results are 

repeatable to within ± 8%. 
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Figure 6.24: Temperature vs. power graph for the case of the L-cut with x = 7 mm and y = 3 mm. 

 

The temperature change in the case of the curved L-cut is presented in Figure 6.25. Four 

samples were again tested which were trimmed with the same trim lengths of x = 7 mm and 

y = 3 mm. The starting point of the temperature is close to 28 °C for the lowest point of the 

power and the highest temperature value is around 83 °C for power of 11.5 W. The trend of 

the temperature rise is not that close in comparison with the L-cut and the temperature 

shows a higher increase for the curved L-cut. It is worth mentioning that the starting point 

is higher than the one for the L-cut. The fluctuations between the samples are represented 

using error bars and in this case the difference varies from 10 to 15%. 
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Figure 6.25: Temperature vs. power graph for the case of the curved L-cut with x = 7 mm and y = 3 
mm. 

As for the angled L-cut, the temperature change of four samples is presented in Figure 6.26, 

with trim lengths of x = 7 mm and y = 3 mm. As shown, the temperature reaches up to 

around 68 °C.  

 

Figure 6.26: Temperature vs. power graph for the case of the angled L-cut with x = 7 mm and y = 3 
mm. 
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The plot contains error bars to show the difference between the samples tested so that the 

repeatability of the results to be checked. The error is between 10 to 15% which gives 

confidence for the results of the temperature change. 

For the case of the semi-circle, the temperature rise between the samples seem really close, 

as shown in Figure 6.27 and there are small variations with error of 5 to 15%. The initial 

temperature is close to 22 °C before power was applied to the resistor and it reached up to 

around 76 °C for power value of 5.8 W. 

 

 

Figure 6.27: Temperature vs. power for the case of the semi-circle pattern with d = 4 mm. 

The elliptical cut, as shown in Figure 6.28, also appears to have a similar trend for all the 

samples tested. The initial value of the temperature before power was applied is close to 

28 °C and then it was gradually increased up to the value of 73 °C.  
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Figure 6.28: Temperature vs. power for the case of the elliptical cut with a = 5 mm and b = 2 mm. 

The increase in temperature seems to have a similar trend for semi-circle and elliptical patterns 

since both patterns offer a very large resistance increase which leads to higher voltage needed 

to heat up the sample. 

 

6.5 Discussion 

In this section, a comparison of the performance of the trim patterns is made based on the 

results previously presented. The graph in Figure 6.29 includes the resistance change in 

relation to the trim length for the L-cut, angled-L, curved-L, semi-circle and elliptical cut for 

k = 2 mm. The trim length refers to the length of the cut, while for the semi-circle and elliptical 

cut the length was calculated based on the circumference of the shapes. For the semi-circle, 

the trim length was calculated at 8 mm for the case of d =  5 mm and for the elliptical cut 

the full trim length was obviously larger than 8 mm for all the cases so it refers to the change 

up to 8 mm.  
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Figure 6.29: Resistance change vs. trim length for all the trim patterns investigated. 

As for the L-cut, angled-L and curved-L, the length refers to the sum of the two legs for y = 

2 mm and x = 6 mm. It is clearly shown that the semi-circle offers a very large resistance 

gain which reaches up to 44% for the trim length of 8 mm in relation to the other patterns. 

The L-cut, as expected, shows a quick increase until 2 mm of the film were removed and 

then the resistance increase gradually continues up to around 16%. As for the angled L-cut, 

there is an increase of the resistance which is lower than the one from the L-cut at the value 

of around 10.5%. The increase in the case of the curved L-cut is a bit higher than the one 

of the angled L at the final value of 11.3%. The L-cut, angled L and curved L-cut have a 

similar trend of the rate of the increase of the resistance even though the L-cut offers a 

larger resistance gain in comparison with the other two variations of L. The elliptical cut 

appears to have a small resistance gain which is not the case but this was the calculated 

gain up to the trim length of 8 mm which only covers the 34.88% of the full trim length. Thus, 

the trim pattern plays an important role in the overall performance of the resistor and 

especially in the change of the resistance value. 

In Figure 6.30, the resistance gain in relation to the trimming time is presented for all the 

trim patterns for k = 2 mm and the same total trim length of 10 mm. The dimensions for the 

L-cut and curved L-cut were once again for x = 7 mm and y = 3 mm. For the dimensions of 

the angled L-cut, these were a = 3 mm and y = 7 mm and the trim length of the semi-circle 

refers to the one of d = 5 mm.  



 

123 
 

 

Figure 6.30: Trim gain vs. trimming time for all different geometries. 

Once again, the trim gain for the elliptical cut is shown up to the trim length of 8 mm since 

the total length of the cut was 22.94 mm so that a fair comparison in relation to the trim 

length of the samples to be made. It is worth noting that only up to the point of trim length 

of 8 mm is displayed on the graph for a comparison with the other patterns even though it 

does not depict the total trim gain that this cut can offer which can reach up to around 30%. 

It is also shown that the semi-circle has the largest trim gain which reaches up to 43%. 

The patterns were also compared in relation to the change in their temperature when power 

was applied to them, see Figure 6.31. The process of the tests and measurements was 

described in the previous section. The starting point was normalised for a common 

reference point. The semi-circle pattern is shown to have a large overall increase in the 

temperature of 140%, which means that it has doubled from its starting point. For the 

elliptical cut, there is a 98% increase in temperature for power of 6 W. As for the L-cut, 

angled L and curved L, the trend of the increase in temperature is similar and it reaches up 

to around 90%. Thus, the semi-circle appears to have the largest increase in temperature 

change in relation to the rest of the patterns. 
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Figure 6.31: Temperature change vs. power for all types of trim patterns. 

 

6.6 Summary 

In this chapter, details of the thin film used for the experiments of this study along with a 

description of how it was manufactured were presented. The common trim pattern of the L-

cut as well as novel ones such as the curved L-cut, the angled L-cut, the semi-circle and 

the elliptical cut were investigated in relation to their resistance gain and temperature rise 

under load conditions. The results of the resistance change in relation to the trim length 

were measured and calculated for all the trim patterns and these were compared with the 

established trim patterns such as the L-cut. The L-cut has proven its popularity since its 

resistance gain can be easily adjusted to the targeted value and the temperature change 

was increased up to a certain point. The angled L-cut cannot offer a large increase in 

resistance but the trimming time needed was less that the other two variations of L. As for 

the curved L-cut, it had a similar behaviour to that of the L-cut as far as the resistance gain 

and the change in temperature are concerned. The elliptical cut offers a large resistance 

gain which is expected since the trim length is by far larger than the other ones due to its 

geometry. The semi-circle appears to give a large increase in the resistance in a very low 

trimming time in relation to the other patterns and it is suggested that it can be used for 

applications where a large resistance value is needed. The value d can be adjusted in 

relation to the target value of the resistor. The semi-circle and elliptical patterns seem to 

follow a similar trend in terms of temperature rise, with the semi-circle having the largest 

change of 140%. However, according to the results, the trimming time for the elliptical cut 
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was higher than the one for the other patterns since the trim length was larger and it can 

also be thought that a larger quantity of material was actually removed. 
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7 Reliability testing and verification of the model 

 

7.1  Introduction 

In this chapter, the performance of the thin film resistors with the optimum laser trim patterns 

was assessed in relation to their reliability, pulse durability and stability for the verification 

of the model. Reliability refers to the probability that a resistor will perform its desired 

function and it tends to be generally higher at lower power levels. Resistor tolerance is 

expressed as the deviations from nominal value in percent and is typically measured at 25 

°C. In general, a resistor’s value will also change with applied voltage (VCR) and 

temperature (TCR) [8, 70]. Stability is the change in resistance with time at a specific load 

or ambient temperature. When these stresses are minimized, the stability of the resistor is 

better and this is the goal for the manufacturing of thin film resistors. 

In general, failure modes on the performance of the thin film resistors include mechanical 

failures, environmental factors, thermal issues, electrostatic discharge (ESD), overload and 

surge conditions, load life stability and changes in TCR and PCR [136]. Mechanical failures 

refer to ongoing vibration which can cause micro-cracking of the resistor material that will 

lead to change in the resistance value, damage to the resistive element. Common 

environmental issues such as moisture, contamination and some chemical elements need 

to be considered since these can affect the performance of the resistor.  

It is also important to understand the resistor’s heat dissipation properties. The primary heat 

dissipation mechanism of a low power resistor is by conduction through its component leads 

or connections, while a high power resistor dissipates heat primarily through radiation. 

When current passes through a resistor it generates heat and the differential thermal 

expansions of the different materials comprising the resistor induces relative mechanical 

changes (stresses) in the resistor [20, 136].  

TCR is the best known parameter used to specify a resistor’s stability and defines the 

resistive element’s sensitivity to temperature change [20]. PCR quantifies the resistance 

change due to self-heating when power is applied and is particularly important for resistors 

used in power applications [136]. Electrostatic discharge (ESD) is another potential problem 

that can cause unpredictable failure. A resistor that is exposed to an ESD event may fail 

immediately, or may not operate effectively. As for overload conditions, a continuous over-

load of a resistor device tends to degrade the insulation resistance and changes the resistor 

parameters over time. Voltage stresses can cause conduction from normally non-

conductive materials in the resistor film leading to deterioration and occasionally failure due 

to hot spots. It is therefore important to observe the resistor maximum specified voltage [8]. 
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The geometry of a resistor also affects its surge withstand capability. A larger surface area 

results in a higher film mass and ultimately an improved surge performance. In addition, this 

increased surface area allows more heat dissipation which is important for power resistor 

applications. Resistor trimming and the method used for trimming can create weak spots 

that can cause failure under surge conditions. 

In very high-precision resistors, which are designed for critical applications, very accurate 

and stable resistance values are required. These effects must be taken into account to 

achieve high stability with changes in load (Joule effect) and ambient temperature. In any 

material, the internal resistance will change as the temperature changes [20]. This extends 

to resistors as well. The rate of resistance change based on temperature is expressed using 

TCR. As previously mentioned, it is indicated in units of ppm/°C and determined from the 

resistance change from some reference temperature and the change in temperature [8, 70]. 

Thus, in this chapter, the trim patterns were tested further so that their performance and 

stability could be assessed in relation to dry heat testing, PCR and TCR. 

 

7.2 Dry heat test 

In this section, the process of dry heat testing is analysed. After the film was deposited on 

the substrate and the thin film resistor was formed, the stability of the resistor was assessed. 

All the samples before trimming took place were dry heat tested. The resistance value of 

the resistor was measured after the formation and it is characterised as the initial value. 

After that the resistors were placed in the glass tube of the furnace (Model: Carbolite Tube 

Furnace 1200C). Before the tests, the temperature of the furnace at 3 points of the glass 

tube (centre, left and right) was measured using a thermocouple so that the uniformity of 

the temperature distribution could be established. In Figure 7.1, the measurements of the 

temperature in °C are presented in relation to time in minutes. The furnace was switched 

on and its temperature was set at 220 °C and it was operating for 2 hours. The graph 

consists of three lines which refer to the different position that the measurements were 

taken, pointing at the left part, the centre and the right part of the tube of the furnace. As 

shown, the temperature was gradually increased for the first half an hour and then it reached 

220 °C and it was stable after that point. Thus, that gives confidence that the overall 

temperature distribution is uniform and that this factor was stable for all three positions.  
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Figure 7.1: Temperature measurements using thermocouple in relation to time to check the 
temperature distribution. 

It is worth mentioning that the samples were placed at the centre of the furnace to make 

sure that these were treated at the expected temperature and any heat losses to be avoided 

and the most reliable results achieved. 

Since the reliability of the furnace was assessed, the heat treatment of the samples started, 

which were placed in the centre of the glass tube, as shown in Figure 7.2 and they were 

sealed using glass ampule connected on both ends (left and right) to the nitrogen (N2) 

supply. The two sides had to be firmly sealed and high vacuum grease was used for the 

connections as well as high temperature polyimide tape to cover the outer part of the 

connection for additional safety.  

 

Figure 7.2: Schematic approach showing the position of the samples in the furnace. 
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For the test with nitrogen, the temperature of the furnace was set at 330 °C and they were 

treated for 3 hours. After this step was finished, the tube was unsealed left for around 10 

minutes and then their resistance value was once again measured and the changes were 

recorded. It is also worth mentioning that changes in the colour of the thin film were found 

after the treatment with nitrogen. However, this optical change in colour was uniform 

throughout the sample and these samples were also checked using spectrophotometry to 

evaluate if there would be any changes in the behaviour of the film but the change was 

insignificant, as presented previously in Chapter 6 and the next treatment took place after 

that step. 

Next, the samples were treated in open air and the glass tube was not sealed so that the 

test could be performed. The temperature of the furnace was set at 240 °C and the samples 

were treated for 16 hours. After this step, the resistance value of the samples was 

measured. In Figure 7.3, the percentage of the resistance change is shown in relation to 

the normalised initial resistance value for 15 samples. The figure refers to the two previously 

mentioned tests, and one line represents the measurements from the exposure to nitrogen 

and the other one with the samples left in open air. The line which refers to the initial 

resistance value which was normalised for common point for the comparisons to be made. 

After the exposure to nitrogen, the samples appear to have a slight increase in their initial 

value except for sample 12 which appears to have an increase of more than 5% and sample 

14 for which a decrease of 5% was recorded. After the open air treatment, the resistance 

value appears to be decreased for all the samples in relation to the initial value and the 

decrease has even reached 14% for the case of sample 12. Thus, it is clear that trimming 

is required in order the resistance value to be adjusted. 
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Figure 7.3: Resistance change for 15 samples tested in nitrogen for 3 hours and then in open air 
for 16 hours. 

After the samples were treated with nitrogen and then in open air, these were further tested 

and were exposed to open air for 7 days for the stability to be checked. The temperature of 

the furnace was now set at 155 °C and the changes of the resistance value were recorded 

so that we have the final resistance value.  

In Figure 7.4, the percentage of resistance change is shown for 10 samples with normalised 

initial value. It is clear that most of the samples show a slight increase of the resistance 

value up to the second day of the test and then it seems that the value is stabilised. The 

samples S1, S2 and S9 seem to have a large decrease of their resistance value until the 

second day and then the value becomes stable. 
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Figure 7.4: Resistance change for 10 samples after dry heat treatment and in open air for 7 days at 
155 °C. 

Thus, after the results of the 7-day trial, the rest of the batches of the samples were only 

tested for 2 days, since it gives confidence that the value will be stable after that point. 

Results for the resistance change for 20 samples for 24 and 48 hours, respectively, are 

shown in Figure 7.5. The initial resistance value was once again normalised so that there 

is a common reference point. The trend of the change is similar for most of the samples for 

both days. It is worth commenting that for this batch of samples the percentage change is 

quite small with range of 0.05 to 0.35%. The samples that appear to have larger fluctuations 

are sample number 8, 11, 15 and 20. Sample 8 has an increase in its resistance value of 

0.12% while samples 11, 15 and 20 show a decrease up to 0.15%. However, the value in 

general for all the samples appear to have the same trend and the fluctuations between 

these 2 days are not that large. Thus, the overall resistance is stable and the samples are 

ready for laser trimming and further stability tests after the patterns are applied. 



 

132 
 

 

Figure 7.5: Resistance change for 20 dry heat tested samples, left in open air at 155 °C for 24 and 
48 hours, respectively. 

 

7.3 Power coefficient of resistance (PCR)  

The power coefficient of resistance (PCR) can help to test the stability of the resistor by 

destabilising thermal shock of suddenly-applied power [136]. The trimmed resistors 

underwent tests by applying power to them so that the PCR factor to be determined. It is 

worth commenting that even though PCR is not a well-known factor and not commonly used 

from manufacturers, it is of great importance since it can show the value of power that a 

resistor can handle before being damaged or cracked. In general, the PCR is expressed in 

ppm/W since it is related to the power applied to the resistor [136]. 

In Figure 7.6, the resistance change is shown in relation to power so that the value of the 

PCR could be calculated for samples that were trimmed with L-cut, angled L-cut and curved 

L-cut. The trim length for three designs were 10 mm so that the results were comparable 

regarding this factor. An increase in the resistance is clearly depicted for all three designs 

while power was applied to them and as expected the increase of the resistance is higher 

while higher power was applied to the resistor. 



 

133 
 

 

Figure 7.6: PCR based on the resistance change for the L-cut, curved L-cut and angled L-cut. 

However, the higher the power, the more changes in colour of the film appeared in the 

resistor and especially at the part above the x leg of the cut where the current density is 

higher as generally expected. It is a common fact that the current flows from the contact 

and it travels through the area above the x-leg until it reached the next contact. When power 

above 10 W was applied to the resistors, the sample started to show damages and some 

of them even started to crack. 

In Figure 7.7, the resistance change is shown in relation to power for the case of the semi-

circle with radius of 4 mm. It is clear that this type of cut gives a larger increase in the 

resistance as discussed in previous chapters and the power applied to it was adjusted 

respectively. The error bars represent the resistance change for the 10 reference samples. 

A sudden increase is happening when power of 0.5 W is applied to the samples and then 

there is a decrease but overall the change of the resistance value is increased until the 

highest value of the power is applied to the samples. Once again, the higher the power 

applied to the samples, the larger the changes in colour and after a certain point damage 

or small cracks started to appear due to possible thermal shock. As shown in Figure 7.7, 

the highest power applied to the samples for this case was 10 W. 
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Figure 7.7: PCR for the case of the semi-circle pattern for r = 4 mm based on the change of the 
resistance for 10 samples. 

The case of the elliptical cut with dimensions of a = 5 mm and b = 4 mm before and after 

application of power is shown in Figure 7.8. It is clear that the cut is uniform and the HAZ 

around the cut is not visible by human eye at this stage in Figure 7.8 (a). However, in Figure 

7.8 (b), the point of the top of the cut in the centre the damage of the film due to the high 

power applied to it is obvious and this is the high current density area.  

                                                             

Figure 7.8: (a) Thin film resistor trimmed with the elliptical cut before application of power, (b) the 
resistor after application of higher power value. 

The PCR for the case of the elliptical cut is shown in Figure 7.9. The resistance change in 

relation to the power is presented for the case of the previous mentioned sample trimmed 

with the elliptical cut. The error bars represent the changes between the samples that were 

trimmed with the same dimensions. It is shown that there is a small increase on the 

resistance when the lower power of around 0.4 W is applied to the sample and then the 

resistance seems to decrease slightly and then increase again.  
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Figure 7.9: PCR for the case of the elliptical cut for a = 5 mm and b = 4 mm based on the 
resistance change for 10 samples. 

Overall, the change in the resistance appears to have a similar trend throughout the 

measurements showing a small increase until the higher power of 11.5 W was applied to 

the sample. The trend of the resistance change for the case of the elliptical cut appears to 

be similar to the semi-circle one, even though in that case the change has shown more 

fluctuations and also the higher power applied to it was a bit higher due to the fact that there 

was a higher resistance gain after the trimming. 

 

7.4  Evaluation of the experimental results in relation to simulations 

 

7.4.1  Resistance change 

In this section, the experimental and simulation results are evaluated for the different 

geometries. One comparison refers to the difference in the value of the resistance change 

based on experimental and simulation results in relation to the trim length. The process of 

the experiment and simulations were discussed in previous chapters. Thus, in Figure 7.10, 

the results for the L-cut is shown in relation to the trim length. As shown the length of the 

cut is 10 mm and it refers to an L-cut with y = 3 mm and x = 7 mm.  
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Figure 7.10: Resistance change vs trim length comparing experimental and simulation results for 
the case of the L-cut. 

According to the simulation the resistance change is not that high, even though it is 

increased as the cut progressed and the trim length was changed. There is an obvious 

increase in the resistance in general shown in both simulation and experiments but the 

percentage of the resistance change from the experiments can reach up to 6.8%. It is shown 

that the results from simulations and the results from experiments are quite close, even 

identical at some points and they follow the same trend for the case of the L-cut. Some 

fluctuations appear after the 8 mm between the experimental and simulation results.  

As for the angled L-cut, the trend appears to be similar to both experimental and simulation 

resistance change. In Figure 7.11, the results of the resistance change are presented in 

relation to the trim length as the previous case of the L-cut. There are small fluctuations 

which can be defined due to the fact that simulations usually correspond to ideal conditions 

while the experiments are affected from many external factors such as temperature, 

equipment fault and clarity of the cut. Also, the experimental value appears to be a bit 

smaller than the simulation one at 6.5 kΩ and 6.55 kΩ, respectively, but the values are still 

really close with each other. 
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Figure 7.11: Resistance change vs. trim length comparing experimental and simulation results for 
the case of the angled L-cut. 

The curved L-cut, on the other hand, has the same resistance increase in both simulations 

and experiments until the point in which the curve starts and then the increase is 

proportional and gradual. It is shown, in Figure 7.12, that it reaches the value of 13 kΩ and 

12.3 kΩ for the simulation and experimental result for the higher trim length of 14 mm. 

 

Figure 7.12: Resistance change vs. trim length comparing experimental and simulation results for 
the case of the curved L-cut. 
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As for the case of the semi-circle, some fluctuations of the resistance change between 

experimental and simulation results appear, see Figure 7.13. The change of the resistance 

value can reach up to 25 % for trim length of 9.42 mm, based on the calculation of the 

circumference for the experimental results. While the change of the value for the simulation 

results is around 23% for the same trim length.  

 

Figure 7.13: Resistance change vs trim length comparing experimental and simulation results for 
the case of the semi-circle. 

 

7.5 Temperature change 

In this section, the temperature change is calculated for the trim patterns that were 

investigated previously. For the experiments, the temperature was measured in relation to 

the power applied to the sample each time and the values were recorded. These 

measurements along with the experimental values that were produced using ANSYS, were 

plotted and the case of the L-cut is presented in Figure 7.14. It is shown that the temperature 

can reach up to 90 °C in the simulation results while for the experiments the highest value 

was 80 °C for a power of 5 W for both cases. The increase of the temperature value is high 

for both sets of results and the increase is steady. 



 

139 
 

 

Figure 7.14: Simulation and experimental results for the L-cut. 

On the other hand, the temperature of the angled L-cut, as shown in Figure 7.15, was higher 

for the experimental part rather than the value from the simulations with 69 and 65 °C, 

respectively. There are a few fluctuations between the two sets of the results but overall the 

trend is the same regarding the temperature increase. 

 

Figure 7.15: Simulation and experimental results for the angled L-cut. 
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As for the curved L-cut, see Figure 7.16, the temperature of the experimental part was lower 

than the one from the simulations with 81 and 82 °C, respectively. There are a few 

fluctuations between the two sets of the results but once again overall the trend is the same 

even though it seems that it increases faster when a power of 2 W is applied to the sample 

on the simulation part. 

 

Figure 7.16: Simulation and experimental results for the curved L-cut. 

As for the semi-circle, as shown in Figure 7.17, the temperature of the experimental part 

was higher than the one from the simulations with 78 and 76 °C, respectively. There are a 

few fluctuations between the two sets of the results but once again overall the trend is the 

same since the higher the power applied to the sample the higher the increase in 

temperature.  
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Figure 7.17: Simulation and experimental results for the semi-circle. 

 

7.6  Summary 

In this chapter, the verification of the results of the laser trimming was presented. A 

comparison of the different trim patterns in relation to the resistance change based on 

experimental and simulation results was investigated. It was shown that both experimental 

and simulation results were similar for the trim patterns. In addition to this, the temperature 

measurements in relation to the power applied to the samples with a variety of patterns was 

also analysed so that the PCR could be determined and clarify the performance of the 

resistors. 

In most cases, the trimming patterns appeared to have similar trends in relation to PCR 

values and temperature change. The L-cut had the higher change in temperature in 

comparison with the other cuts while the angled L-cut had the lower increase in temperature 

which reached up to 65 °C. 
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8 Conclusions 

 

The research detailed in this thesis has investigated different trim geometries so that the 

laser trimming method is improved and the patterns were compared in relation to various 

factors such as the laser trimming time, resistance gain, stability and tolerance accuracy. 

In general, laser trimming is an expensive processing step which significantly increases the 

production costs of integrated circuits from trimming costs. That is the reason why basic 

and novel geometries were modelled and tested experimentally so that their performance 

could be assessed. The modelling has shown significant results in relation to the 

temperature change and the resistance value for the trimming patterns. The numerical 

simulation was proven very effective and offered reliable results which were extremely close 

to the experimental ones. An analysis based on the sensitivity of the pattern to the HAZ was 

also calculated for the basic patterns and the results were a close match to previous studies 

and reports. 

The modelling of the geometries was initially verified experimentally using conductive paper 

which was used in previous similar studies. Conductive paper proved to be a challenging 

material regarding its repeatability and overall behaviour. However, it was generally used 

easily and it offered results fast for the first stages of the verification of the model. Thus, it 

can be used with confidence in order to emulate resistors and use it for trials with trimming 

patterns. The experiments were focused on the change of the resistance, TCR and 

temperature of various common and novel patterns. Thus, it is found that variation in 

trimming shape and length, has a direct effect on the performance of resistors giving 

significant increases in the TCR of the resistor. In the case of the trials on the conductive 

paper, the TCR for the plunge cut reached up to 18.29 ppm/°C and when an additional 

plunge is added (double plunge), decreased to a value of 14.21 ppm/°C. As for the L-cut, 

the TCR was found 11.86 ppm/°C and for the scan cut 17.89 ppm/°C. However, for the 

novel patterns, the TCR for the curved L reached up to 17.22 ppm/°C while the value was 

found to be lower for the semi-circle at 8.52 ppm/°C. As for the HAZ, it is found that the L-

cut has a lower sensitivity to the HAZ, with a value of 10%, in relation to the other patterns. 

The processing parameters of the laser cutter which was used, were set after a series of 

trials so that the optimum settings could be used for the trimming of the films. The laser 

power, laser speed and frequency were assessed for the materials used for this research. 

In addition to this, the dimensions of the thin film resistor that was used for the experiments 

was set at 21 x 6 mm. The samples were also compared based on their reflectance since 

there has been a variety of batches and thicknesses. The novel patterns and the common 

pattern of the L-cut were applied to the thin films in a variety of trim lengths and start 
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positions. Based on both simulation and experimental results the semi-circle has proven to 

give the largest resistance increase in less time in relation to the others. The L-cut is the 

most popular cut and this fact was verified from the trials of this study in comparison with 

the other patterns. 

The patterns were also assessed for other factors such as the PCR and laser trimming time. 

The semi-circle can be used in cases needing a large resistance increase, as the film was 

cut in less time. It was proven that the trim length is the most important factor that affects 

the trimming time and resistance gain. It is also shown that the higher the power applied to 

the resistor, the higher was the temperature increase and the L-cut appeared to have the 

largest temperature increase. As for the PCR, most of the designs appeared to have a 

similar trend. 

To sum up, the results obtained from modelling were extremely close and could verify 

reliably the experimental results. The L-cut was proven to be one of the most reliable ones 

based on its repeatability and resistance gain. The angled L-cut and the curved L-cut even 

though they are variations of the L-cut are not as good as the common pattern even though 

their characteristics are similar. As for the elliptical cut, it was shown that it can give a large 

resistance increase since the length of the trim was longer, hence more laser trimming time 

was needed. The semi-circle pattern can be thought as an alternative geometry for 

applications where large resistance increase is needed and its cost is slightly reduced due 

to less trimming time. It also appears to have a similar behaviour with the other patterns in 

relation to temperature increase and PCR. 

 

8.1 Financial benefits 

This research has not investigated the financial benefits of using the new geometries but it 

can estimate the advantages they have over the common trim patterns. The novel 

geometries offer a small reduction of trimming time which eventually lead to financial benefit 

since the production cost will be reduced at a certain point without the performance of the 

resistor being affected. For instance, the novel trim patterns and especially the semi-circle 

one offers a high trim gain in a reduced trimming time. 

 

8.2 Suggestions for future research 

This section highlights the potential areas worthy of further consideration. 
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8.2.1 Optimisation of the prediction algorithm for the HAZ 

An algorithm that can predict the exact amount of HAZ surrounding the cut. This study tried 

to express an estimation of the HAZ based on the sensitivity of the cut. However, an 

algorithm that can actually predict the area affected by the removal of the film can be 

beneficial for further optimisation of the performance of the resistor. 

 

8.2.2 Prediction algorithm for the optimum trim pattern 

Another algorithm that could be developed would be the one that can predict the optimum 

trim pattern based on the performance needs. A code that can estimate the best geometry 

depending on the characteristics and the use of the resistor. 
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Abstract. This paper explores the key developments in thin film resistive trimming geometry 

for use in the fabrication of discrete precision resistors. Firstly an introduction to the laser 

trimming process is given with respect to well established trim geometries such as the plunge, 

‘L’ and serpentine cuts. The effect of these trim patterns on key electrical properties of 

resistance tolerance and temperature co-efficient of resistance (TCR) of the thin films is then 

discussed before the performance of more recent geometries such as the three-contact and 

random trim approaches are reviewed. In addition to the properties of the standard trim 

patterns, the concept of the heat affected zone (HAZ) and ablation energy and the effect of 

introducing a ‘fine’ trim in areas of low current density to improve device performance are 

also studied. It is shown how trimming geometry and laser parameters can be systematically 

controlled to produce thin film resistors of the required properties for varying applications 

such as high precision, long term stability and high power pulse performance. 

 

 

Introduction 

For thin film resistors it is generally impossible to deposit batches of product with resistance 

tolerances better than about 10% [1-3]. This is due to problems in attaining uniform sheet resistance, 

but mainly due to dimensional variation of the individual resistor elements in the batch, a problem 

which is amplified as the resistor size decreases [3, 4].  

Thus, it is normal to fabricate the resistor film to a lower resistance value than required and 

then adjust it by removing or ‘trimming’ away sections of the film material to increase the resistance 

to its target value in order precision of less than 10% to be succeeded [5, 6].  

There are many different trimming methods which can be used to adjust the value of the 

resistor such as anodisation, heat trimming, electrical trimming, mechanical trimming, chemical 

trimming and laser trimming [1, 2]. However, laser trimming is by far the most effective and popular 

method and is still a subject of continuing theoretical and experimental research and optimisation [7-

24].   

 This paper discusses the laser trimming process of thin film resistors with regard to both 

conventional and well established trim patterns and the influence of their geometry on key electrical 

performance properties such as resistor tolerance and temperature co-efficient of resistance (TCR). 

The concept of the heat affected zone (HAZ) bordering the kerf is also introduced and some recent 

trim patterns design to reduce its effects are discussed.   

Laser trimming 

 

2.1. Laser trimming process  

The laser uses a light beam of a few μm in diameter to remove the resistive film from the ceramic 

substrate in a very short time period of less than 1 ms. The high intensity light pulse is then absorbed 

by the material causing it to heat and vaporise. This process depends on the intensity of the laser 

pulse, or the power level, the focus of the pulse as well as the properties of the material being ablated 

[1]. 

The laser beam is scanned across the resistor to produce a continuous kerf, changing the 

resistance value of the film as it progresses. The accuracy of the adjustment of the resistance value 

is dependent on the properties of the laser beam itself, the shape of the cut and also the speed at which 

the measurement system can switch the laser beam off between pulses once the target resistance 

value is reached [1, 12-13].      

There are two main types of laser used for the adjustment of resistive films; the pulsed 

carbon dioxide (CO2) and the neodymium: yttrium-aluminium-garnet (Nd: YAG) laser. As for the 

CO2, it has a long pulse width with high energy per pulse, which causes vaporisation of the film [1]. 

However, the long pulse width can also cause damage to the substrate and the material at the edge of 
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the kerf, the heat affected zone (HAZ) [17]. On the other hand, the YAG laser uses an acousto-optic 

Q-switch for a two way optical switching of the laser beam. This system is able to produce short 

pulses of high peak power at a wavelength of 1064nm, to rapidly vaporise the film, whilst minimizing 

heat flow and damage to the material surrounding the kerf [1]. Additional reductions in the HAZ can 

be succeeded by lasers operating in the green region of the visible spectrum due to the decrease in 

laser spot size resulting from the shorter wavelength of 532nm [14].    

 

2.2. Conventional trimming geometries  

There are various different laser trim patterns which can be used for the adjustment of surface mount 

bar shape resistors as shown in Figure 1. The influence of the width and length of the cutting line, 

the number of cuts is really important concerning the device geometry [25]. The plunge cut (Figure 

1a) is the simplest and economical cut consisting of a single kerf orthogonal to the current flow 

through the resistive element but its overall tolerance accuracy can be less than other methods [5,15-

16].  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Commonly used laser trim kerf shapes [15]  

 

The ‘L’ cut (Figure 1b) is perhaps the most frequently employed method due to its superior 

stability and tolerance accuracy. With this type of cut the resistance increases rapidly as the kerf is 

cut perpendicular to the current flow (y direction), which is called transverse cutting. Then, more 

gradually when it turns through 90º and cuts parallel to the current flow (x direction), which is called 

longitudinal cutting, until target value is reached i.e. in an area of equal current density, see Figure 

2. [26, 27] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Typical plots of resistance increase with kerf length and correspondingmodel of current 

density for the ‘L’ cut and shadow cut [15]. 
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The stability of the resistor can be maximised according to the variations on the x and y 

lengths. It is worth noting that when the y leg is as short as possible leaving maximum resistor line 

width remaining, the optimum performance is achieved. However, the trim time is increased and 

there is also the risk of trimming into the resistor termination with the extended x leg. Thus, with the 

‘L’ cut, there is the opportunity to find a balance between trim speed and tolerance and stability 

accuracy but it is slightly more expensive than the plunge cut due to the additional time required to 

perform this cut [12-13, 23]. 

A shadow cut (Figure 1c) consists of an additional plunge to the side of an ‘L’ cut or plunge 

cut (double plunge (Figure 1d)). As a result, tighter resistance tolerances can be achieved as the kerf 

is cut in an area of low current density in the ‘shadow’ of the first cut, see Figure 3. The additional 

trimming time needed makes this type of cut quite expensive [5, 15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Variation in standard deviation of resistance and resistance stability with increasing trim 

gain for CuAlMo TFR’s trimmed with both ‘L’ cut and serpentine cut [15]. 

 

A serpentine cut (Figure 1e) consists of multiple cuts made in areas of high current density 

which effectively increase the geometric length of the resistor and thus its resistance value. It has the 

ability to give a large resistance gain. As a result, the tolerance accuracy of the resistor is improved 

as shown in Figure 4. This type of cut can be employed when the pre-value resistance is much lower 

than the target value. However, a long trim length can lead to stability problems due to the large 

amount of HAZ surrounding it. In addition to this, when the resistance gain is very large, the TCR 

increases and  causes instabilities due to the amount of material which has been raised to temperatures 

in excess of the zero TCR heat treatment temperature without being vaporised. [28, 29]  

However, a solution to this issue would be a two stage serpentine trim to be employed when 

precision thin film resistors are required. During the first trim stage, the majority of the trimming is 

performed in order the resistor to be adjusted to around -1% from its target value. Then, the device 

is stabilised, typically overnight at around 200ºC to relieve stresses built up in the HAZ [15]. 

Predicting the resistance change that occurs during this stabilisation operation is not possible. As a 

consequence, the second stage of the process, which is called fine trim, is required for the accurate 

adjustment of the resistor to target value. It usually consists of one or two plunges in the shadow of 

the first serpentine as shown in Figure 4. However, this type of cut can be very time consuming and 

expensive, but the increasing availability of auto substrate handling equipment can help reducing the 

labour cost involved [15, 16].  

The scan cut (Figure 1f) is the most commonly used due to its stability [28] and especially 

when the device is required for high frequency applications to minimise creation of capacitive 

reactance components of an RC circuit. It also finds use in high voltage situations as the likelihood 

of voltage breakdown across the trim kerf is greatly reduced. This type of cut is very time consuming 

to perform and is not cost effective for general use [15, 28]. 
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Figure 4. Two stage serpentine trim pattern and corresponding variation in resistance stability with 

increasing trim gain for CuAlMo TFR’s trimmed with both first and fine trims [15]. 

 

 

2.3. The heat affected zone (HAZ)  

A major cause of post-trim drift in laser trimmed resistors is due to the HAZ bordering the kerf [15, 

29] and it would be beneficial to consider this area in more detail. It is worth commenting that the 

energy profile of the beam has a Gaussian distribution due to the fact that a Q-switched YAG laser 

is adjusted to operate in single traverse electromagnetic (TEM00) mode. This profile can be translated 

into a Gaussian temperature profile as far as the thin films are concerned and it is shown in Figure 5. 

It is noted that the central part of the profile has sufficient intensity to cause vaporisation 

of the thin film. As for the areas of film adjacent to the kerf, the energy absorbed from the laser beam 

is less than the threshold required for vaporisation. Thus, this region of the film becomes a heat 

affected zone and can considerably cause more changes and variations in the resistance than areas of 

film that are not irradiated by the laser beam [20, 21]. 

This aging effect is caused due to the fact that the film which was stabilised prior to the 

adjustment process and it has now been re-exposed along the edges of the laser kerf. The changes in 

the resistance are related to changes in the structural properties of the film material because of the 

rapid heating and cooling during the trimming process such as the sheet resistance and TCR [29-31]. 

It is worthwhile thinking that the length of the kerf and the effect of the HAZ in the trimmed 

resistors are important parameters that can determine the overall stability of the resistor [22]. These 

parameters can be optimised by varying the shape of the continuous trim and the properties of the 

laser beam itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The fundamental mode laser beam profile as a Gaussian distribution [15, 29-31]. 

 

2.4. Alternative trimming geometries  

An alternative trimming method in order to avoid the issues associated with the HAZ is link cutting 

[13]. This process can be applied by opening up shorting bars in loop and ladder type patterns to 

increase the resistance in discrete steps. Once the trimming bars are opened the current is redirected 

around the new longer path and any current crowding in the trimmed area or HAZ is eliminated. 

Although this method can provide a solution to the issues caused by the aging effects, a greater chip 
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area is required compared to the conventional bar design. Moreover, as the resistance is adjusted in 

discrete steps a very large number of links may be required [13]. 

However, there have been methods applying the link cutting approach to bar resistors. The 

Swiss cheese pattern can be thought as the most popular cut using the benefits of the link cutting 

approach. This method forces current crowding only in non-heat affected areas [29-31]. 

Another study proposed a type of laser trimming performing an L-cut in a ‘top hat’ shape 

thin film resistor, avoiding excessive crowding of the current lines after trimming [27]. A more recent 

study has focused on the effect of replacing the two contact bar resistor with a three contact 

distributed structure and then trimming the resistor by narrow cuts in a variety of shapes around the 

additional contact and it can be shown in Figure 6(a) [17]. In addition to this, another approach 

proposed for designing resistors was the random trimming. This method is performed by cutting a 

hole in a random point that was combined with a single plunge cut as shown in Figure 6(b). First, the 

single plunge is applied in order to offer rough adjustment and wide trim range fast and then random 

trim spots and voids helped to get closer to the target resistance [5]. 

Both of these methods have shown encouraging results and it was found that the resistance 

could be increased more controllably than an L-cut [5,6], but the additional trimming time and 

materials required were negative factors concerning satisfying improvements in the production of 

thin film resistors.   

 

 

 

 

 
Figure 6. (a) Illustration of laser cut length used in three-contact resistors with 

rectangular additional contact [17], (b) Random trimming with single plunge cut [5]. 

 

 

Conclusions 

 

This paper introduced the laser trimming process which can be thought as the most precise and 

reliable method in order to adjust the resistance value of bar-shaped thin film resistors. The 

advantages and disadvantages of common trim patterns were discussed and the effect of the HAZ on 

the performance of the resistors was also introduced. It is worth noting that trimming geometries play 

an important role on the characteristics of the resistors such as stability and tolerance accuracy. 

Moreover, trim pattern design has an effect on the resistance distribution and long term resistance 

performance of thin film resistors. It was also noted that the L-cut is the most commonly used trim 

pattern due to its expected tolerance which is less than 1% as well as its stability.  

In addition to this, recent studies have focused on alternative trimming geometries and were 

presented in this paper such as the three-contact geometry and the random trim approach besides 

their positive results. However, these approaches, besides their promising results, did not appear to 

fulfil the improvements in the resistor performance reported due to the additional trimming time and 

materials needed. Therefore computer modelling of laser trim patterns could help in predicting and 

optimizing the resistor design process by designing new trim strategies. Within these limits, the 

maximum trim speed, overall performance and quality characteristics could be achieved. Thus, 

further research could focus on the possibility of improving the trimmed structures taking into 

account the factors that affect the performance of the resistors such as TCR and HAZ. 
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Abstract 

Purpose - This paper studies the effects of varying laser trim patterns on several performance parameters of thin film 

resistors such as the temperature coefficient of resistance (TCR) and target resistance value. 

Design/methodology/approach - The benefits and limitations of basic trim patterns are taken into consideration and the 

plunge cut, double plunge cut and the curved L-cut were selected to be modelled and tested experimentally. A computer 

simulation of the laser trim patterns has been developed for the modelling process of the resistors. The influence of the trim 

length and resistor dimensions on the TCR performance and resistance value of the resistors is investigated. 

Findings - It is found that variation in trim length, with the range of 5 up to 15mm, can give significant increases in the 

TCR of the thin films. Thus, for the plunge cut can reach up to 11.51ppm/oC, for the double plunge cut is 14.34 ppm/oC 

and for the curved L-cut up to 5.11 ppm/oC. 

Originality/value – Research on the effects of various laser trimming geometries on the TCR and target resistance accuracy 

is limited, especially for patterns such as the curved L-cut, which is investigated in this paper. 

Keywords Laser trimming process, optimization, thin film resistor. 

Paper type Research Paper
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1. Introduction 

Nowadays, there is a high demand for cost-effective electronic devices with tolerances better than ±10%. Thin film resistors 

with such accuracy and low resistivity are required especially in portable devices in order to reduce energy consumption 

[1-4].Laser trimming is the most popular trimming method for the manufacture of thin and thick film resistors [1-2]. In 

general, resistors are fabricated to lower resistance values than needed and then the target value is increased by trimming 

away sections of the material. 

There is a variety of different trim patterns, as presented in Figure 1, that are commonly used in the manufacture of thin 

film resistors such as the plunge cut, L-cut, double plunge cut, serpentine cut and scan cut.  

 

The plunge cut is simple and economical and it consists of a single kerf orthogonal to the current flow but its tolerance 

accuracy is limited.  

Figure 1 Basic resistor trimming patterns [2]. 

 

The L-cut consists of a cut perpendicular to the current flow in the resistor which quickly increases the resistance close to 

the target value and then the direction of the trim changes to parallel to the current flow in order to fine trim to the desired 

value. It is commonly used due to its stability and tolerance accuracy. As for the double plunge cut, an additional plunge is 

added to the side of the plunge cut. This method allows even tighter resistance tolerances to be achieved due to the fact that 

the kerf is cut in an area of low current density but it is more expensive because of the additional trimming time needed. 

The scan cut is mostly used in high frequency applications but it is very time consuming and thus not cost-effective for 

general use. Another trimming pattern is the serpentine cut that consists of multiple cuts in areas of high current density in 

order to give large increases in resistance value and improvements in tolerance accuracy but it appears to have stability 

issues. 

However, the performance of these patterns can be optimised in order to achieve tolerance of 1% and better stability. Thus, 

further study of specialized cuts like the curved L-cut is needed [2-5]. 

Previous studies on modelling of trimmed resistors include numerical trim simulations using computer aided design, finite 

difference method and boundary element method in order to design and predict trimmed resistors [7-18]. 

In this paper, a simulation model is described and is verified experimentally by trimming resistive paper. The model can 

make comparisons between the selected trim patterns investigating the effect of the trim length, resistor dimensions and 

TCR. 

2. Resistor Trim Modelling 

2.1 Simulation of resistor trimming 

For the modelling procedure, a numerical simulation is proposed in which different trim patterns can be modelled and 

analyzed. The resistance value R is given by: 

  𝑅 =
𝜌𝐿

𝐴
=

𝜌𝐿

𝑇𝑊
=

𝜌

𝑇
(

𝐿

𝑊
) = 𝑅 (

𝐿

𝑊
) (1) 

Where; ρ is the bulk resistivity, A is the cross-sectional area of the resistor, R is the sheet resistance, and L, W and T are 

the length, width and thickness of the resistor respectively.  

For the plunge cut, see Figure 2, the formulations are given by equations 2 and 3. 

  𝑅 = 𝑅1 + 𝑅2 + 𝑅3                                       (2) 
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2
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] 𝑚
𝑖=1                                     (3) 

Where; n and m are the number of rectangles on either side of the trim and r is a specified value which depends on the 

normalised resistance value, L and W [7-13]. 

The TCR is determined as follows: 

𝑇𝐶𝑅 =
𝑅𝑇2−𝑅𝑇1

𝑅𝑇1(𝑇2−𝑇1)
× 10−6                          (4) 

Where; RT1 is the resistance value at room temperature, T1, and RT2 is the resistance value at operating temperature, T2.  

Figure 2 Model for the plunge cut [6],[7]. 
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Moreover, the change of the resistance value due to the effect of the TCR is given by: 

𝑅𝑑𝑒𝑙𝑡𝑎=𝑅𝑛𝑜𝑚𝑖𝑛𝑎𝑙×𝑇𝑑𝑒𝑙𝑡𝑎×𝑇𝐶𝑅                      (5) 

Where Rnominal is the initial resistance value, Tdelta is the increase or decrease of the temperature and TCR is the temperature 

coefficient of resistance. 

A similar approach to the one above for the plunge cut was followed for the double plunge cut in order to calculate the 

resistance and TCR.  

As for the L-cut, it is shown in Figure 3 that the total resistance is the parallel-series combination of R1, R2 and R3 and the 

following equation was used: 

𝑅 =
𝑅1×𝑅2

𝑅1+𝑅2
+ 𝑅3                                         (6) 

Where; R1 and R2 are two resistors in parallel and R2 is affected by the trimming due to the fact that it contains the HAZ. R3 

is in series with the parallel combination of R1 and R2 and is the area that is not affected by the laser trimming [11-15]. 

Figure 3 Model for the curved L-cut. 

 

2.2 Experimental analysis 

The experimental procedure concerns tests with the use of resistive paper (PASCO Scientific PK-9025) with resistivity of 

approximately 5000 Ω/. The resistance value of the paper was found to vary slightly from sheet to sheet and normalization 

of the measurements was needed. To normalize the various sheets 10 initial measurements from each sheet were taken 

before trimming and then the measurements were averaged.  

For a constant ratio (
𝐿

𝑊
), resistors of varying sizes can have similar resistance characteristics. Thus, the desired shape of the 

resistive paper is a rectangle with dimensions 30mm x 20mm. These dimensions were chosen for the experiments in order 

to depict the change in temperature effectively.  

Then, five samples of each of the selected trim patterns were created using an Epilog Laser Mini Model 8000. Carbon ink 

contacts were added to the two ends of the resistor and alligator clips were then connected to measure the resistance value 

at room temperature. It was found that with the addition of the contacts the measurement error can be significantly reduced. 

The temperature change was also measured each time with the use of a thermal camera (Model: FLIR B620) when a 

potential of 10V was applied across the resistor element.  Thus, the TCR can be found from the resistance measurement at 

different temperatures. 

3. Results and discussion 

The room temperature for the modelling and experiments was set at 23oC. The width of the trim of the samples was 3mm 

for the plunge and double plunge cut and 5mm for the curved L-cut. Some indicative results for the TCR of different 

samples with various trim lengths are shown in Table 1.  

Table 1 Experimental results for Temperature and TCR. 

Type 

of cut 

Trim 

length 

(mm) 

Temperature 

(oC) 

TCR  

(ppm/oC) 

 

 

Plunge 

cut 

5 30 2.6 

10 33.8 10.81 

15 34.5 11.51 

 

 

     5 24.3 12.14 

10 

5 26.3 12.74 
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Double 

Plunge 

cut 

15 

10 27 14.34 

15 

 

 

Curved 

L-cut 

 

3 25.7 4.10 

5 27.5 4.91 

10 28.1 5.11 

It is worth commenting that the resistor with the plunge cut appears to have a significant rise in temperature when voltage 

is applied to it. Thus, for trim length of 5mm the temperature reaches up to 30oC while for the trim length of 10mm and 

15mm, the values of temperature are 33.8oC and 34.5oC respectively.  

For the double plunge cut, the temperature for trim length of 5mm and 10mm is 24.3oC. For the cuts of 5mm and 15mm as 

well as 10mm and 15mm, the values of temperature are 26.3 oC and 27 oC respectively. As for the curved L-cut, the 

temperature is  25.7oC, 27.5oC and 28.1oC for trim lengths of 3mm, 5mm and 10mm, respectively. 

It is also shown that the TCR varies in relation to the trim geometry and length. For the plunge cut, the TCR can reach 

11.51 ppm/oC and 14.34 ppm/oC for the double plunge cut. As for the curved L-cut, the value of TCR is lower in comparison 

with the plunge and double plunge cut, with values of 5.11 ppm/oC. 

The change in the resistance value for the trim length with range of 0-14mm from simulations in comparison with the 

experiments for the plunge cut, double plunge and the curved L-cut are shown in Figure 4.  

It is shown that the results from the simulations are close to those obtained from the experiments for all three patterns. The 

normalised resistance value before trimming is 5.25 kΩ for all the samples and the highest resistance value for trim length 

of 14mm is around 15kΩ for plunge and double plunge cut and around 12kΩ for the curved L-cut. 

The progression that the resistance makes as the trim length is increased is clearly depicted at the plots. It is worth 

commenting that the resistance value in the plunge cut increases faster and less trimming time is needed to perform this cut 

than the other two patterns. Furthermore, for the double plunge cut, it is shown that the resistance value increases fast for 

the first plunge and then for the second cut (shadow) the increase is slower. This cut seems to be a good option but the 

additional trimming time needed, increases the production costs. 

As for the curved L-cut, the resistors were trimmed so that the trim changed direction after 10mm. In the plot, the change 

of direction of the cut is shown when the slope of the line changes. As for the highest trimmed value for this pattern was 

12.2 kΩ for trim length of 14mm. It is worth noting that once again the resistance value increases fast until the point in 

which the cut changes direction after 10mm. As a result, this type of cut can be considered to be the most accurate pattern 

in comparison with the other ones. 

Figure 4 Resistance value change in plunge (a), double plunge (b) and curved L-cut (c). 
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4. Conclusion 

This paper describes the development of the model of laser trim patterns and it is also verified experimentally. The 

importance of appropriate laser trim pattern design and the effect of trim length and TCR of the thin film resistor material 

was demonstrated. It is found that variation in resistor dimensions, trim length and type of cut play an important role in the 

fabrication of thin film resistors due to their effect in the final resistance value. 

In addition to this, significant increases in the TCR were shown especially for the plunge and double plunge cut. Trimming 

patterns affect the resistance value, as the plunge cut shows a rate of resistance increase in relation to the double plunge 

cut.  Thus, both trim patterns can produce a high target resistance fast. As for the curved L-cut, it is shown to have different 

characteristics as far as the rate of increase in the resistance value is concerned which is slower than the other patterns. 

Thus, it can be thought as a potential method to control the rate of change of resistance and it can lead to more accurate 

results. 
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