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IDENTIFICATION OF MULTI-OBJECT DYNAMICAL SYSTEMS:
CONSISTENCY AND FISHER INFORMATION

JEREMIE HOUSSINEAU∗, SUMEETPAL S. SINGH† , AND AJAY JASRA‡

Abstract. Learning the model parameters of a multi-object dynamical system from partial and
perturbed observations is a challenging task. Despite recent numerical advancements in learning these
parameters, theoretical guarantees are extremely scarce. In this article we aim to help fill this gap and
study the identifiability of the model parameters and the consistency of the corresponding maximum
likelihood estimate (MLE) under assumptions on the different components of the underlying multi-
object system. In order to understand the impact of the various sources of observation noise on the
ability to learn the model parameters, we study the asymptotic variance of the MLE through the
associated Fisher information matrix. For example, we show that specific aspects of the multi-target
tracking (MTT) problem such as detection failures and unknown data association lead to a loss of
information which is quantified in special cases of interest. To the best of the authors’ knowledge,
these are new theoretically-backed insights on the subtleties of MTT parameter learning.

Key words. Identifiability, Consistency, Fisher Information

AMS subject classifications. 62F12, 62B10

1. Introduction. A multi-object dynamical system is comprised of an unknown
and randomly varying number of objects, each of which is a partially observed Markov
process. Multi-target tracking refers to the problem of estimating the state of each of
these objects from noisy observations that are also corrupted by detection failures and
false detections (a.k.a. false alarms). This type of problem arises in many different
fields such as Systems Biology [2], Robotics [15], Computer Vision [18] or Surveillance
[20]. Different formulations of multi-target tracking exist, including extensions of the
single-target approach to multiple targets [1] as well as formulations based on simple
point processes [13].

One of the main challenges in multi-target tracking is the uncertainty in the data
association, which refers to the problem of finding the right pairing between targets
and recorded observations over time, a task further confounded by the corruption
of these observations with false positives and detection failures. Inferentially, multi-
target tracking is notoriously difficult to solve as it involves an exponentially growing
numbers of possible configurations for the data association. Over the past decade there
has been significant advancements towards more practical solutions to this inference
problem. Some of these include solutions based on sequential Monte Carlo (SMC)
[26], hierarchical SMC [19] or Gaussian mixtures [25].

In this article, both the MTT observation model and the motion model of the
constituent individual targets are assumed unknown and are instead parameterised
and to be inferred from the data. Although multi-target tracking has been an active
research field for decades, questions concerning the identifiability and the consistency
of the corresponding model parameter estimates have not received the appropriate
attention. In this paper we aim to address this gap and shed some light on this issue.
Building on results from the literature on Markov processes (e.g. see [12, 6]), we prove
both identifiability and the consistency of the MLE of the MTT model parameters
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2 J. HOUSSINEAU, S.S. SINGH AND A. JASRA

in Theorem 3. Specifically, as each constituent target of the MTT model is a par-
tially observed Markov process, in Theorem 2 we show that identifiability transfers
from single to multiple targets under appropriate assumptions. The practical impli-
cations of results regarding identifiability include the understanding of the behaviour
of Markov chain Monte Carlo (MCMC) techniques in multi-target tracking [17, 10],
which is conditioned by the likelihood ratio between the correct parameter value and
all the other possible values. The consistency of the maximum likelihood estimator
raises the question of its asymptotic normality and the corresponding variance, which
in turns motivates the study of the Fisher information matrix (FIM) for this class of
problems. It is demonstrated in Theorem 4 that there is a strict loss of information
in the presence of data association uncertainty or detection failures. We characterise
the Fisher information more precisely in specific illustrated cases, e.g. we show that
when increasing the number of targets there is no gain in the Fisher information
for the model parameters which are common to all targets if large uncertainties on
the origin of the corresponding observations persist (see subsection 5.3). The FIM
is useful in applications such as sensor management [7] which aims at optimising the
position of the sensor or at finding the best ratio between probability of false alarm
and probability of detection.

The MLE and the FIM have been used in different ways in the multi-target
tracking literature. For instance, [8] suggests different expectation-maximization al-
gorithms based on the Fisher information for estimating the states of the targets in
problems with a known number of targets. Also, the analysis of the Cramér-Rao
lower bound (CRLB) proposed in [9], which is an extension of the approach proposed
in [24] for multiple targets, brings insight on the evolution of the information on the
target states in time under various assumptions on the observation process. A crucial
difference between [8, 9, 24] and our paper is that the Fisher information is taken with
respect to the targets’ state in [8, 9, 24] whereas in this paper the FIM pertains to the
estimation of the multi-target model parameters. More recently, MLE has become
one of the main techniques for calibrating hidden Markov models, as presented in
[11, 21]. These works show that recursive state estimation and maximum likelihood
estimation of the model parameters can be performed simultaneously using particle
filtering with remarkable accuracy. The application of these ideas to MTT was pi-
oneered in the articles [22] and [27], which provide one of the main motivation for
seeking some theoretical justifications for this type of approach in the context of MTT
model estimation.

The proof of identifiability of the MTT model as well as our approach for studying
the asymptotic variance of the MLE for the MTT model parameters are original and,
to the best of our knowledge, the first of their kind. Consistency of the data association
problem in MTT has been studied in [23] in the context of the estimation of multiple
splitting and merging targets observed without noise over a fixed time interval during
which n observations of the multiple targets are made at discrete times. The result in
[23] is limited to the case where the number n of observation tends to infinity which
effectively amounts to saying that targets are observed infinitely many times over a
fixed interval which is a scenario not typically encountered in practice. In any case,
our theoretical results and proof techniques are entirely different as they pertain to the
MTT model parameters and not the data association. Point-process-based theoretical
studies of MTT have also been conducted in [4, 5] for the stability of specific inference
methods.

The structure of the article is as follows: after introducing the required notations
and background concepts in section 2 and section 3, the consistency of the maximum
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likelihood estimator is established along with its asymptotic normality for a large
class of multi-object systems in section 4. Finally, in order to better understand the
effect of the various parameters on the asymptotic variance, the FIM is computed for
important special cases of multi-object systems in section 5. The article concludes in
section 6.

2. Notations. All random variables will be defined on the same probability
space (Ω,F ,P) and the expectation of a random variable X w.r.t. the probability
measure P is denoted E[X]. Probability densities will be denoted by lower-case let-
ters while probability measures will be denoted by capital letter. Similarly, random
variables will be denoted with capital letters whereas their realisations will be in
lower-case.

The time is indexed by the set N of positive integers and for every time t ∈ N, a
finite sequence yt of Mt ∈ N0

.
= N ∪ {0} observation points in the observation space

Y is made available. This space can be assumed to be a subset of the Euclidean
space Rd with d > 0. The sequences of observations of the form (y1, . . . ,yn) will be
denoted y1:n. In the standard formulation of multi-target tracking, no more than one
observation is associated with a given object at a given time step and, conversely,
observations are originated from one object only.

Objects’ states are modelled as elements of a set X which is assumed to be a
subset of the Euclidean space Rd′ with d′ > 0; usually satisfying d′ ≥ d. They are
propagated independently according to a Markov kernel density fθ from the state
space X to itself, which depends on a parameter θ from a compact set Θ. Densities
on X are defined w.r.t. a reference measure µ. The true value of the parameter θ is
denoted θ∗. The random variable Xt describing the state at time t only depends on
the state xt−1 at time t− 1, i.e. Xt ∼ fθ(· |xt−1). This transition does not depend on
time so that the associated Markov chain is said to be homogeneous. The observation
process at time t given the state xt is modelled by Yt ∼ gθ(· |xt), where gθ is a
likelihood function from X to Y, also parametrised by θ, so that the observation Yt at
time t is independent from the states and observations at other times. The process
(Xt, Yt)t≥1 is usually referred to as a hidden Markov model (HMM). Its law under
the parameter θ ∈ Θ is denoted P̄θ when initialised with its stationary distribution
assuming it exists, and Pθ(· |x0) when initialised at x0 ∈ X.

3. Background. The definition of specific properties of Markov chains that will
be used in the following sections is given here for completeness. Let (Xt)t≥0 be a
X-valued Markov chain with transition density f and let P (· |x) be the probability
measure on (XN0 ,X⊗N0), where X⊗N0 is the cylinder σ-algebra on XN0 , characterising
the chain when initialised at point x ∈ X. Also, let τA be the hitting time to a set
A ⊆ X defined as τA = inf{t ≥ 1 : Xt ∈ A}.

Consider the following concepts: A set A ⊆ X is said to be accessible if τA < ∞
has positive probability under P (· |x) for all x ∈ X. The Markov chain (Xt)t≥0 is said
to be phi-irreducible if there exists a density φ on X such that for any subset A ⊆ X,∫
A
φ(x)dx > 0 implies that A is accessible. A set A ⊆ X is said to be Harris recurrent

if the event τA <∞ happens almost surely (a.s.) under P (· |x) for all x ∈ X. A phi-
irreducible Markov chain is said to be Harris recurrent if any accessible set is Harris
recurrent. A density q is called invariant if it holds that q(x) =

∫
f(x |x′)q(x′)dx′ for

all x ∈ X. A phi-irreducible Markov chain is called positive if it admits an invariant
probability density function (p.d.f.). More details about these notions expressed in
a measure-theoretic formulation can be found in [14]. These concepts will be useful
when considering the long-time behaviour of the Markov chains involved in multi-
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target tracking problems.

4. Consistency of the maximum likelihood estimator.

4.1. The multi-target tracking model. In order to bring the target number
within the scope of parameter estimation, the true number of objects in the considered
system will be assumed to be fixed and will be denoted by K∗ ∈ N. We consider
a Markov chain (Xt)t≥0 in XK∗ with components independently evolving via the
Markov transition fθ from X to X. Observations at time t are gathered into a vector
yt in the space Y× .

=
⋃
k≥0 Yk where Y0 is a notation for the set containing the empty

sequence only. The observation yt is a superposition of
1. the independent observation of components of Xt via the likelihood gθ from X

to Y followed by a Bernoulli thinning with parameter pD corresponding to detection
failure, and

2. false alarms, or clutter, generated independently of the object-originated ob-
servations and assumed to come from an i.i.d. process whose cardinality at each time
is Poisson with parameter λ and common distribution Pψ which depends on the pa-
rameter ψ in a compact set Ψ and which true value is denoted ψ∗.
The number of objects K∗ is not assumed to be known so that it will also be considered
as a parameter of the model. The parameter for the multi-target model is then
defined as θ

.
= [θ,K, pD, λ, ψ]t ∈ Θ

.
= Θ× ST × (0, 1)× SC ×Ψ where t is the vector

transposition and where ST and SC are compact subsets of N and (0,∞) respectively,
with “T” and “C” standing for target and clutter respectively. The true parameter θ∗

is assumed to be an interior point of Θ. Special parameter sets that are not subsets
of Θ can also be introduced by fixing one or several parameters to special values, for
instance Θλ=0

.
= Θ×ST× (0, 1), ΘpD=1

.
= Θ×ST×SC×Ψ or Θλ=0,pD=1

.
= Θ×ST

correspond respectively to cases where the parameters λ, pD or both have known
values that are outside of their domain of definition in Θ. Alternatively, if the value
of a parameter is known but inside of its domain of definition, e.g. it is known that
K = 1, then the corresponding hyperplane will be expressed as Θ|K=1. Although the
Poisson distribution is not defined for the parameter λ = 0, this parameter value is
simply assumed to represent the case where there is no false alarm.

The Markov transition fθ associated with the K-target process (Xt)t can simply

be expressed as fθ(x |x′) =
∏K
i=1 fθ(xi |x′i), for any x,x′ ∈ XK , the likelihood

however takes a more sophisticated form so that additional notations are required. Let
Sym(k) be the symmetric group over k letters and uk be the uniform distribution over

Sym(k), also let qθ be the distribution on {0, 1}K such that qθ(d)
.
= p
|d|
D (1−pD)K−|d|

for any d ∈ {0, 1}K , where |d| is the 1-norm of d, i.e. the number of detected targets.
The variable d is such that di = 1 if and only if target i is detected for any i ∈
{1, . . . ,K}. The K-target likelihood gθ(yt |xt) of the observations yt ∈ Y× at time t
given the state x ∈ XK is characterised by

(1) gθ(yt |x)
.
=∑

d∈{0,1}K
|d|≤Mt

[
Poλ(Mt−|d|)

∑
σ∈Sym(Mt)

Mt∏
i=|d|+1

pψ
(
yt,σ(i)

) |d|∏
i=1

gθ
(
yt,σ(i) |xr(i)

)
uMt

(σ)qθ(d)

]

where Poλ denotes the Poisson distribution with parameter λ and where r(i) is the
index of the ith detected target that is the smallest integer verifying |d1:r(i)| = i, or

more formally r(i) = min
{
k : |d1:k| = i

}
. This choice of the likelihood gθ corresponds
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to a marginalisation over the observation-to-track data association. Note that |d| ≤ K
for any d ∈ {0, 1}K so that gθ(y |x) = 0 for any x ∈ XK if λ = 0 and if the number
of observations in y, denoted #y, is strictly greater than K. The law of the joint
Markov chain (Xt,Yt)t under the parameter θ ∈ Θ is denoted P̄θ when initialised by
the stationary distribution and Pθ(· |x0) when assumed to start at the state x0 ∈ XK .
The corresponding densities are written accordingly with lower-case letters.

The objective is to study the ratio pθ(y1:n |x0)/pθ∗(y1:n |x′0) for any x0 ∈ XK
and any x′0 ∈ XK∗ . The assumptions that are considered for this purpose are detailed
in the next section.

4.2. Assumptions and transferability. In order to bring a better understand-
ing of multi-object systems as a combination of single-object systems corrupted by
clutter, assumptions are primarily made on individuals systems. The properties of
multi-object systems will be deduced from these whenever this is possible.

A.1 The constants τ− = infθ inf(x,x′) fθ(x |x′) and τ+ = supθ sup(x,x′) fθ(x |x′)
satisfy τ− > 0 and τ+ <∞.
The condition on τ− in Assumption A.1 ensures that any point of the state space can
be reached from any other point in a single time step (otherwise fθ(x |x′) = 0 would
hold for at least one pair (x, x′) ∈ X2) while the condition on τ+ ensures the transition
is sufficiently regular when compared to the reference measure µ, i.e. the transition
should be diffuse (in the sense that there should be no concentration of probability
mass on a single point of the state space). Under Assumption A.1 it also holds that

(2) τK− ≤ fθ(x |x′) ≤ τK+

for any x,x′ ∈ XK , so that fθ straightforwardly satisfies the same type of conditions
as fθ, since ST is compact and hence K is finite.

Let Πθ be the transition kernel of the joint Markov chain (Xt, Yt)t on X×Y defined
as Πθ(x, y |x′, y′) = gθ(y |x)fθ(x |x′). The property (2) is sufficient to ensure that
the joint kernel defined as Πθ(x,y |x′,y′) = gθ(y |x)fθ(x |x′), for any x,x′ ∈ XK
and any y,y′ ∈ Y× is positive Harris-recurrent and aperiodic.

In the next assumption, the expectations Ēθ∗ [·], Eψ∗ [·] and Ēθ∗ [·] are taken with

respect to P̄θ∗ , Pψ∗ and P̄θ∗ respectively, also Bikp denotes the binomial distribution
with success probability p and k trials.

A.2 The constant b̂T+
.
= sup(θ,x,y) gθ(y |x) satisfies b̂T+ < ∞, the target- and

clutter-related functions

bT−(y) = inf
θ

∫
gθ(y |x)dx and bT+(y) = sup

θ

∫
gθ(y |x)dx,

bC−(y) = inf
ψ
pψ(y) and bC+(y) = sup

ψ
pψ(y),

satisfy bT−(y) > 0, bT+(y) <∞, bC−(y) > 0 and bC+(y) <∞ for any y ∈ Y as well as

(4) Ēθ∗ [| log bT−(Y )|] <∞ and Eψ∗ [| log bC−(Y )|] <∞,

and it holds that

(5) Ēθ∗
[∣∣ log inf

θ∈Θ
BiKpD

∗ Poλ(#Y )
∣∣] <∞.

Assumption A.2 ensures that all points of the observation space Y can be reached from
at least some states in X although gθ(y |x) = 0 might hold for some (x, y) ∈ X × Y.
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Equation (4) will ensure boundedness in the calculations related to identifiability. The

supremum b̂T+ of the likelihood function is also assumed to be finite so that no con-
centration of probability mass is allowed at any point of X×Y. It is demonstrated in
the following lemma that the upper and lower bounds considered in Assumption A.2
for a single target and for the clutter common distribution are sufficient to guarantee
the same type of result for multiple targets. The proof is in Appendix B.

Lemma 1 (Transfer of boundedness). Under Assumption A.2, it holds that the

constant b̂+
.
= sup(θ,x,y) gθ(y |x) is finite and that b−(y) = infθ

∫
gθ(y|x)dx and

b+(y) supθ
∫
gθ(y|x)dx, verify b−(y) > 0 and b+(y) <∞ for any y ∈ Y× as well as

Ēθ∗ [| log b−(Y )|] <∞.

An important result that follows from the assumptions introduced so far is the
uniform forgetting of the conditional Markov chain: it can be proved under Assump-
tions A.1 and A.2 that for any k, l ∈ N0 such that k ≤ l and any parameter θ ∈ Θ,
it holds that∫ ∣∣∣∣ ∫ p̄θ(xt |xk,yk+1:l)p(xk)dxk −

∫
p̄θ(xt |xk,yk+1:l)p

′(xk)dxk

∣∣∣∣dxt ≤ ρt−kθ ,

for all t ≥ k, all probability densities p, p′ on XK and all sequences of observations
yk+1:l, where ρθ

.
= 1− (τ−/τ+)K . The K-target forgetting rate ρθ will generally be

smaller than the single-target rate 1−τ−/τ+, although mixing is still guaranteed since
K is finite and hence ρθ ∈ [0, 1). It is also possible to conclude about the pointwise
convergence of the log-likelihood function to the function ` : θ ∈ Θ 7→ Ēθ∗

[
`Y−∞:0(θ)

]
,

where `y−∞:0
is defined on Θ for any realisation y−∞:0 of the observation process as

`y−∞:0
: θ 7→ limm→∞ log p̄θ(y0 |y−m:−1,x−m−1), and this limit does not depend on

x−m−1. Indeed, under Assumptions A.1 and A.2, it holds for all K ∈ ST and all
x0 ∈ XK that

(6) lim
n→∞

1

n
log pθ(Y1:n |x0) = `(θ), P̄θ∗ -a.s.

This result shows that for any realisation y1:∞ of the observation process, the empir-
ical average n−1 log pθ(y1:n |x0) will converge to `(θ) irrespectively of the assumed
initial state x0. A continuity assumption is required in order to turn the pointwise
convergence result of (6) into a uniform convergence result.

A.3 For all x, x′ ∈ X and all y ∈ Y, the mappings θ 7→ fθ(x |x′), θ 7→ gθ(y |x)
and ψ 7→ pψ(y) are continuous.
It follows directly from Assumption A.3 that for all K ∈ ST, all x,x′ ∈ XK and
all y ∈ Y×, the mappings θ 7→ fθ(x |x′) and θ 7→ gθ(y |x) are continuous on the
hyperplane of Θ made of parameters with a number of targets equal to K, since these
mappings are sums and products of continuous functions. Although the continuity
for the multi-target Markov kernel and likelihood function is limited to hyperplanes,
the result of [6, Lemma 4] can be extended to: for all θ ∈ Θ

lim
δ→0

Ēθ∗
[

sup
|θ′−θ|≤δ

∣∣`Y−∞:0(θ′)− `Y−∞:0(θ)
∣∣] = 0,

where | · | is the 1-norm on Θ, since θ′ and θ will be in the same hyperplane for δ
small enough. The addition of the continuity assumption enables the derivation of
the following result regarding the uniform convergence of the log-likelihood function:
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Under Assumptions A.1 to A.3, it can be proved by following the same steps as in
[6, Proposition 2] that

(7) lim
n→∞

sup
θ∈Θ

sup
x0∈XK

∣∣∣∣ 1n log pθ(Y1:n |x0)− `(θ)

∣∣∣∣ = 0, P̄θ∗ -a.s.

Since the conditional log-likelihood function log pθ(y1:n |x0) is continuous and
uniformly bounded, it follows from (7) that ` is also continuous on the hyperplanes
of Θ of constant target number.

The following identifiability assumption is considered in order to show the con-
sistency of the maximum likelihood estimator

A.4 P̄θ = P̄θ∗ if and only if θ = θ∗ and Pψ = Pψ∗ if and only if ψ = ψ∗

Assumption A.4 is fundamental since there would be no chance to discriminate
the true value θ∗ among all the other possible θ ∈ Θ\{θ∗} if some of these parameters
did yield the same law for the observations. For instance, if the colour of the target
is considered as a parameter but if the likelihood of the observations does not depend
on this characteristics of the target, e.g. if the observations come from a radar, then
any θ obtained by changing the colour in θ∗ would induce a law P̄θ that is equal to
P̄θ∗ and Assumption A.4 would not be verified. It is shown in the next theorem that
identifiability of the multi-target problem can be deduced from the identifiability of
the single-target one under important special cases. The proof is in Appendix C.

Theorem 2 (Transfer of identifiability). Under Assumption A.4 it holds that
a) if the true parameter θ∗ is in Θλ=0, then it holds that P̄θ = P̄θ∗ if and only

if θ = θ∗ for any θ ∈ Θλ=0,
b) if the true parameter θ∗ is in the subset Θ|K=1 of Θ made of parameters of

the form (θ,K, pD, λ, ψ) with K = 1, then it holds that P̄θ = P̄θ∗ if and only
if θ = θ∗ for any θ ∈ Θ|K=1.

It is more challenging to prove that identifiability transfers to the whole parameter
set Θ and this property is assumed to hold rather than demonstrated.

A.5 P̄θ = P̄θ∗ if and only if θ = θ∗.
Assumption A.5 does not seem to be a stringent condition since Theorem 2 shows

that the single-target identifiability is sufficient to ensure multi-target identifiability in
some important special cases. However, Assumption A.5 would not hold for p∗D = 0
since identifiability w.r.t. θ∗ and K∗ would clearly be lost in this case because of
the absence of observations from the targets. The same remark can be made about
K∗ = 0 for the identifiability w.r.t. θ∗ since there is obviously no way to learn about
the dynamics and observation of the targets if none of them is present.

The different assumptions considered here are combined in the next section in
order to prove the consistency of the maximum likelihood estimator.

4.3. Consistency and asymptotic normality. As a consequence of (6) and
by the dominated convergence theorem it holds that for any θ ∈ Θ, any infinite
observation sequence y1:∞ and any initial states x0 ∈ XK and x′0 ∈ XK∗

lim
n→∞

1

n
log

pθ(y1:n |x0)

pθ∗(y1:n |x′0)
= `(θ)− `(θ∗)

= lim
m→∞

Ēθ∗
[
Ēθ∗

[
log

p̄θ(Y0 |Y−m:−1)

p̄θ∗(Y0 |Y−m:−1)

∣∣∣∣Y−m:−1

]]
≤ 0,

(8)
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where the inequality holds since the conditional expectations are Kullback-Leibler
divergences. Yet, it could happen that some θ ∈ Θ would verify p̄θ(Y0 |y−m:−1) =
p̄θ∗(Y0 |y−m:−1) P̄θ∗ -a.s. for all m ∈ N0 and for all y−m:−1, which would compromise
identifiability. However, Assumption A.5 is equivalent to the following statement

θ = θ∗ if and only if Ēθ∗
[

log
p̄θ(Y1:n)

p̄θ∗(Y1:n)

]
= 0, ∀n ≥ 1.

The objective is to show that this, in turn, is equivalent to “θ = θ∗ if and only if
`(θ)− `(θ∗) = 0” since this is the term that appears in (8). Following the same line
of arguments as [6, Proposition 3], we find that under Assumptions A.1 to A.3 and
A.5, it holds that `(θ) = `(θ∗) if and only if θ = θ∗, from which we conclude that the
considered approach allows for studying the identifiability of θ∗. Applying the strict
Jensen inequality to the conditional expectation in the r.h.s. of (8), it indeed follows
that

lim
n→∞

1

n
log

pθ(y1:n |x0)

pθ∗(y1:n |x′0)
< 0,

for any θ 6= θ∗, which implies that the likelihood of the observation sequence y1:n

under the parameter θ decreases exponentially fast when compared to the likelihood
under θ∗, irrespectively of the assumed initial states x0 and x′0. Denoting θ̂n,x0

the argument of the maximum of log pθ(y1:n |x0), the consistency of the maximum
likelihood estimator can be expressed as in Theorem 3 below. This theorem also states
the asymptotic normality of the estimator which makes use of the Fisher information.
The latter involves differentiation with respect to the parameter θ, however since the
number of target K is a natural number, differentiations has to be performed for a
fixed K. This is what is understood by default when writing ∇θ. Under the standard
regularity assumptions (see Assumptions A.6 to A.8 in Appendix A), the FIM can
be expressed as

I(θ∗) = lim
n→∞

1

n
Ēθ∗

[
∇θ log p̄θ∗(Y1:n) · ∇θ log p̄θ∗(Y1:n)t

]
,

where ·t is the matrix transposition.

Theorem 3. Under Assumptions A.1 to A.3 and A.5, it holds that

lim
n→∞

θ̂n,x0
= θ∗

for any x0 ∈ XK with K ∈ N. Considering additionally Assumptions A.6 to A.8
(see Appendix A) and assuming that I(θ∗) is positive definite, it holds that

√
n(θ̂n,x0 − θ∗)→ N

(
0, I(θ∗)−1

)
,

for any x0 ∈ XK and any K ∈ N, where → denotes the convergence in distribution
as n tends to infinity and where N (0, V ) is the normal distribution with mean 0 and
variance V .

The proof of Theorem 3 follows from Lemma 1 combined with [6, Theorems 1
and 4]. It can be demonstrated that the result of Theorem 3 also holds for the special
parameter sets Θλ=0, ΘpD=1 and Θλ=0,pD=1. These special-parameter sets will be
used to understand the behaviour of the FIM in simple cases in the next section.
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5. Analysis of the Fisher information. Theorem 3 guarantees the conver-
gence of the maximum likelihood estimator under certain conditions and proves the
asymptotic normality of the estimator, the variance of the latter being the inverse of
the FIM. It is therefore of interest to understand how the Fisher information behaves
in different multi-target configurations.

This section is structured as follows: an equivalent observation model for which
the FIM is easier to study is introduced in subsection 5.1 and yields a characterisa-
tion of the configurations in which the information loss induced by data association
uncertainty and detection failures is strictly positive. Qualitative estimates of the
information loss are then obtained when isolating the different sources of loss from
subsection 5.2 to subsection 5.4. Each of these qualitative estimates are confirmed
by numerical results on simulated data obtained by direct Monte Carlo integration of
the original expression of the Fisher information, so as to confirm the validity of the
derived alternative expressions.

Henceforth, if A and B are two square matrices of the same dimensions then
A ≥ B is understood as A − B ≥ 0, i.e. A − B is positive semi-definite, and A > B
stand for A−B > 0, i.e. A−B is positive definite.

Example 1. Assuming that θ∗ is in ΘpD=1 and that the data association is
known, the joint probability of the observations becomes

p̄θ∗(y1:n) =

n∏
t=1

[
Poλ∗(Mt −K∗)

Mt∏
i=K∗+1

pψ∗
(
yt,i
)]

×
∫
π×K

∗

θ∗ (x0)

n∏
t=1

K∗∏
i=1

[
gθ∗(yt,i |xt,i)fθ∗(xt,i |xt−1,i)

]
dx0:n.

The score is then found to be

∇θ log p̄θ∗(y1:n) =

K∗∑
i=1

∇θ log p̄θ∗(y1:n,i)+

n∑
t=1

[
Mt −K∗

λ∗
−1+

Mt∑
i=K∗+1

∇θ log pψ∗(yt,i)

]
so that I(θ∗) = K∗I(θ∗) + 1/λ∗ + λ∗IC(θ∗) because of the independence between the
targets and clutter, with I(θ∗) and IC(θ∗) the Fisher information for the distribution
of one target and one clutter point respectively, where the gradient is taken w.r.t. θ,
that is

I(θ∗) = lim
n→∞

1

n
Ēθ∗
[
∇θ log p̄θ∗(Y1:n) · ∇θ log p̄θ∗(Y1:n)t

]
IC(θ∗) = Eψ∗

[
∇θ log pψ∗(Y ) · ∇θ log pψ∗(Y )t

]
.

In spite of its simplicity, Example 1 yields important remarks: unsurprisingly, if
there is no missing information and no data association uncertainty, the information
increases with the number of targets. Similarly, if the Fisher information of the
clutter distribution pψ∗ increases, then the overall information increases too. The
interpretation for the Poisson parameter λ∗ is less straightforward, the main objective
is however to study the Fisher information w.r.t. the targets rather than the false
alarms so that it is of interest to compute the score without differentiating with
respect to ψ or λ.

Although the Fisher information becomes more difficult to compute when p∗D ∈
(0, 1), some conclusions can be drawn by focusing on the cardinality. Only the term
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E[∇pD
log qθ∗(D) ·∇pD

log qθ∗(D)t] = K∗/(p∗D(1−p∗D)) remains when computing the
FIM since the parameter θ does not affect the cardinality, withD the random variable
induced by Y on {0, 1}K∗ . This term is minimal when p∗D = 0.5 and increases when
p∗D goes toward 0 or 1. This is not sufficient to conclude since the fact that information
is lost when detection failures happen is not taken into account in the cardinality and
the information is the same for, e.g. p∗D equal to 0.99 or 0.01. Indeed, it is equally
easy to estimate p∗D when an observation is always or never received. For this reason,
it is useful to consider the information w.r.t. θ∗ only.

The objective will therefore be to characterise how the Fisher information

(10) I(θ∗) = lim
n→∞

1

n
Ēθ∗

[
∇θ log p̄θ∗(Y1:n) · ∇θ log p̄θ∗(Y1:n)t

]
,

of a multi-object dynamical system behaves when compared to the information of
the unperturbed system that excludes false alarms, detection failures and for which
data association is known. We refer to the difference between (10) and the latter
as the information loss. Since the Fisher information of the unperturbed system is
a quantity that depends on the number of objects in the system, the aim is to ex-
press the information loss as a function of the single-object FIM I(θ∗). The FIM
of the unperturbed multi-object system is clearly equal to K∗I(θ∗) because of the
independence between the targets’ observation in the absence of data association un-
certainty. In order to compute I(θ∗), we have to take the logarithm of the p.d.f.

p̄θ∗(y1:n,x0:n) = π×K
∗

θ∗ (x0)
∏n
t=1

[
gθ∗(yt |xt)fθ∗(xt |xt−1)

]
. However, the presence

of a sum in the term gθ∗(yt |xt) prevents from further analysing the Fisher informa-
tion in a general setting. To avoid directly dealing with these sums, an equivalent
observation model which depends explicitly on the assignment is introduced in the
next section. This observation model is an important contribution since it allows us
to understand the behaviour of the Fisher information for multi-target tracking.

5.1. Alternative observation model. Let dH be the Hamming metric on the
symmetric group Sym(k) characterised by letting dH(σ, σ′) be the number of points
moved by σ′ ◦ σ−1 for any given σ, σ′ ∈ Sym(k). Let ⊕ be the vector concatenation
operator such that if y = [y1, . . . , yn]t ∈ Yn and y′ = [y′1, . . . , y

′
m]t ∈ Ym then

y ⊕ y′ .= [y1, . . . , yn, y
′
1, . . . , y

′
m]t ∈ Yn+m. Let Rd be the matrix of size |d| × K∗

such that (Rd)i,j = δj,r(i) for any d ∈ {0, 1}K∗ , i.e. Rd has as many lines as there are
detected targets and can be seen as a mask matrix that removes the observations of
non-detected ones. Let Sσ be the permutation matrix corresponding to σ ∈ Sym(k)
for any k ≥ 1, i.e. Sσ

.
= [et

σ(1), . . . , e
t
σ(K∗)]

t, with ei the row vector with 1 at the

ith position and 0 elsewhere. The observation model with known data association is
written as Yt = h(Xt) + η with h and η the multi-target observation function and
the observation noise respectively, where η is i.i.d. across its K∗ components. The
false alarms are defined as a random variable Ŷ in Y×, independent of Yt, such that
Ŷi ∼ pψ and Ŷi is independent of Ŷj for any 1 ≤ i, j ≤ #Ŷ . The observation model
of interest can then be defined for given integers α > 0 and 0 ≤ β ≤ K∗ as

(11) Y α,β
t = Sς

(
(RDYt)⊕ Ŷ

)
,

where D is a random element of Bβ
.
= {d′ ∈ {0, 1}K∗ : |1 − d′| ≤ β} having as

a distribution the restriction qβθ of qθ to Bβ and where ς is a random permutation

drawn from the uniform law uαk with k = #Ŷ + |d| on the set Aαk
.
= {σ ∈ Sym(k) :

dH(id, σ) ≤ α} with id denoting the identity function. Henceforth, the letter ς will
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be used for a random permutation and σ for a realisation. The case α = 0 is not
considered to avoid redundancy: it holds that A0

k = A1
k = {id} for any k ≥ 1 since

permutations that are different from the identity move at least two points. The case
of Example 1 is recovered by considering α = 1 and β = 0, i.e. ς = id and D = 1
a.s., whereas the full data-association problem corresponds to the choice α =∞ and
β =∞.

The alternative observation model (11) brings insight about the associated FIM
Iα,β(θ∗), when compared to the unperturbed case. The corresponding information

loss is Iα,βloss(θ∗)
.
= K∗I(θ∗) − Iα,β(θ∗). In some cases, the relative information loss

Iα,βloss(θ∗)/(K∗I(θ∗)) will be used instead. The next theorem is the central result of
this section, its proof can be found in Appendix D.

Theorem 4. Under Assumptions A.1, A.2 and A.6 to A.8, the information
loss Iα,βloss(θ∗) verifies Iα,βloss(θ∗) ≥ 0 for any α ≥ 1 and any β ≥ 0, the inequality being
strict if either α > 1 or β > 0 and if I(θ∗) 6= 0.

Notice that the condition α > 1 would not be sufficient to make the inequality in
Theorem 4 strict if λ∗ were equal to 0 since data association might have no influence
in some specific configurations, e.g. when the individual likelihood does not depend
on the objects’ state. Theorem 4 does not provide a quantitative characterisation of
the information loss. Doing so is challenging in the general case, yet, the behaviour of
the information loss can be analysed for special cases, and such will be the objective
in the remainder of this section.

One of the advantages with the modified observation model (11) is that the Fisher
identity can be utilised as an alternative way of computing the score function based
on the unobserved random variables in this model:

(12) ∇θ log p̄θ(y1:n) = Ēθ
[
∇θ log p̄θ(Y α,β

1:n , ς1:n,D1:n,X0:n) |Y α,β
1:n = y1:n

]
,

where

p̄θ(y1:n, σ1:n,d1:n,x0:n) = π×Kθ (x0)

n∏
t=1

[
Poλ(Mt − |dt|)

×
Mt∏

i=|dt|+1

pψ(yt,σt(i))

|d|∏
i=1

gθ(yt,σt(i) |xt,r(i))
K∏
i=1

fθ(xt,i |xt−1,i)u
α
Mt

(σt)q
β
θ (dt)

]
.

The simplification of the expression of ∇θ log p̄θ(y1:n) is only notational. The random

variables ς1:n, D1:n and X0:n are conditioned on the event Y α,β
1:n = y1:n in (12), so

that their respective distributions are now the conditional distributions given the
observations, which are more complex than their priors. Yet, the Fisher identity
enabled to move the sums and integrals outside of the logarithm, hence making easier
the analysis of the FIM.

5.2. Single static target with false alarm. Consider the case of one almost-
surely detected static target with state x ∈ X which observation is corrupted by false
alarms and unknown data association. The corresponding θ∗ is in the hyperplane
ΘpD=1|K=1 of the special parameter set ΘpD=1 composed of parameters for which
K = 1. It is sufficient to study one time step since the observations at different times
are now independent and it holds that I(θ∗) = Ēθ∗ [∇θ log p̄θ∗(Y1) · ∇θ log p̄θ∗(Y1)t].
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Fig. 1: Information loss as a function of the Poisson parameter λ in log-scale, cal-
culated with 5 × 105 samples (Gaussian: worst-case scenario; U([−a, a]): uniform
distribution over [−a, a]).

Making use of the Fisher identity (12), the FIM I∞,0(θ∗) can be expressed as

I∞,0(θ∗) = Eθ∗
[ M∑
i,j=1

ci(Y )cj(Y )∇θ log gθ∗(Yi |x) · ∇θ log gθ∗(Yj |x)t

]
,

where M = #Y and where

ci(y) =
∑

σ∈Sym(M)
σ(1)=i

uM (σ |y) =
gθ∗(yi |x)/pψ∗(yi)∑M
j=1 gθ∗(yj |x)/pψ∗(yj)

.

Identifying the parameter θ∗ is most challenging when the distribution of the false
alarm is equal to the one of the target-originated observation at θ∗, i.e. pψ∗ = gθ∗(· |x),
since all the observations will look alike for θ close to θ∗. In this case it holds that
ci(Y ) = 1/M for any 1 ≤ i ≤ M so that I∞,0(θ∗) = E[1/(N + 1)]I(θ∗) where
the expectation is taken w.r.t. the random variable N ∼ Poλ∗ . It follows that the
relative information loss is equal to E[N/(N + 1)] so that it is strictly increasing
with λ∗ and tends to 1 when λ∗ tends to infinity. This result is supported by the
experiments displayed in Figure 1 where the observation of one static target in X = R
at x = 0 is corrupted by false alarms. The observation model is assumed to be linear
and Gaussian with variance θ such that θ∗ = 1. Note that the loss of information
is indeed with respect to a parameter of the MTT model, here the variance of the
observation noise. Cases where the false alarm is uniform over the subset [−a, a]
with a ∈ {5, 10, 25, 50, 100} are also considered. The scenario where the false alarm
is distributed in the same way as the target-originated observation at θ∗, i.e. pψ∗ =
gθ∗(· |x), is also confirmed to be the worst-case scenario.

Since a static target is considered in this scenario as well as in subsection 5.3
below, the CRLB becomes equal to the inverse of the asymptotic FIM. Analysis of
the information loss for the targets’ state due to association uncertainty, false alarms
and detection failures have been conducted in this case for specific models and for a
single target in [16, 28]. More specifically, [16] studies the information loss when the
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observation noise is assumed to be either a generalized Gaussian distribution with
different shape parameters or a Johnson distribution for different kurtosis values,
while [28] considers a dynamic version of the CRLB for a single target and quantifies
the information loss for different values of the probability of detection and of the
false-alarm rate. In contrast, our analysis here applies to the parameters of the MTT
models, as opposed to the targets’ state, and therefore brings additional insight on
Fisher information beyond the results reported in [16, 28].

In the next two sections, the focus will be on understanding the role played
specifically by unknown data association and detection failures.

5.3. Unknown data association. In order to set the focus on data association,
it is assumed that θ∗ belongs to the special parameter set Θλ=0,pD=1. In these
conditions, the joint probability of the observations and states becomes

(13) p̄θ∗(y1:n,x0:n) = π×K
∗

θ∗ (x0)

×
n∏
t=1

∑
σ∈Sym(K∗)

[ K∗∏
i=1

[
gθ∗(yt,σ(i) |xt,i)fθ∗(xt,i |xt−1,i)

]
uK∗(σ)

]
.

The sum in the previous expression makes it difficult to directly compute the FIM.
Some insight about it can however be obtained by considering static objects as in the
following example.

Example 2. Let x1, . . . , xK∗ be the known position of K∗ static objects. The
joint distribution of the observations is then found to be

pθ∗(y1:n) =

n∏
t=1

∑
σ∈Sym(K∗)

[ K∗∏
i=1

gθ∗(yt,σ(i) |xi)uK∗(σ)

]
.

In this simplified setting, we can assume that gθ∗ has finite support so that the objects’

state can be chosen far enough from each other for
∏K∗

i=1 gθ∗(Yt,σ(i) |xi) = 0 to hold
P-a.s. whenever σ 6= id. In this case, and as expected, there is no loss of information
when compared to the case with known data association. A less intuitive result can be
found when all the objects’ state are equal to a given x ∈ X. In this situation, it holds

that all permutations are equally probable so that pθ∗(y1:n) =
∏n
t=1

∏K∗

i=1 gθ∗(yt,i |x),
and once again, there is no loss of information. These two cases correspond to extreme
configurations where the uncertainty on the data association is either resolvable or
irrelevant.

The Fisher identity can be used to provide an expression of the Fisher information
for static objects as follows. For any fixed x1, . . . , xK∗ , the Fisher information for
α =∞ (fully unknown association) and β = 0 can be deduced from

∇θ log pθ(y) = Eθ
[
∇θ log pθ(Y , ς) |Y = y

]
=

∑
σ∈Sym(K)

K∑
i=1

∇θ log gθ(yσ(i) |xi)uK(σ|y).

The FIM Iα,β(θ∗) with α =∞, β = 0 and without false alarm is found to be

I∞,0(θ∗) =

K∗∑
i,j,k,l=1

Eθ∗
[
ci,k(Y )cj,l(Y ) Scoi(Yk) · Scoj(Yl)

t
]
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with Scoi(y) = ∇θ log gθ∗(y |xi) for any y ∈ Y and with

ci,k(y) = gθ∗(yk |xi)
∑

σ∈Sym(K∗)
σ(i)=k

∏
j 6=i

gθ∗(yσ(j) |xj)
( ∑
σ∈Sym(K∗)

K∗∏
j=1

gθ∗(yσ(j) |xj)
)−1

for any y ∈ YK∗ and any i, k ∈ {1, . . . ,K∗}. The term ci,k(y) is the conditional
probability for the object with state xi to have generated observation k given all
observations y.

In order to obtain a quantitative characterisation of the information loss, a special
likelihood has to be introduced. We consider an observation model of the same form as
the one displayed in Figure 2, i.e. such that Y is compact and there exists a collection
of disjoint subsets {Bi}K

∗

i=1 of Y such that gθ(· |xi) uniformly distributes a probability
mass ε > 0 outside of Bi. An example of such a distribution is given in Figure 2 for
two objects. Then, for K objects,

(17) I∞,0(θ∗) =

K∑
i,j,k,l=1

Ek,li,j (θ∗)

with Ek,li,j (θ∗)
.
= Eθ∗

[
ci,k(Y )cj,l(Y ) Scoi(Yk) · Scoj(Yl)

t
]

for any i, j, k, l ∈ {1, . . . ,K}.
The objective is now to understand the behaviour of I∞,0(θ∗) when K is large. The
order of the term ci,k(y) is in O(1) when i = k and in O(K−1) when i 6= k. The order
of the summand in (17) can then be determined for the different values of i, j, k, l.
For instance:
• If i 6= k 6= l 6= j then

(18) Ek,li,j (θ∗) =
ε2

|Y \Bk|2

∫
Ck,li,j

ci,k(y)cj,l(y)
∇θ gθ∗(yk |xi) · ∇θ gθ∗(yl |xj)t

gθ∗(yk |xi)gθ∗(yl |xj)
dy,

where Ck,li,j
.
= {y ∈ YK : yk ∈ Bi, yl ∈ Bj}, because gθ∗(y |xk) = ε/|Y \ Bk| for

all y /∈ Bk and because Bi ∩ Bk = ∅ since i 6= k. When K increases, Y needs to
be augmented at least linearly to ensure that the family {Bi}Ki=1 is disjoint and (18)
shows inverse proportionality with |Y|2, so that it is of order O(K−4) at most. There
are O(K4) terms of this form in the sum in the r.h.s. of (17) so that the sum of these
terms is of order O(1) at most.

• If k = l and i 6= j then Ek,li,j (θ∗) = 0 since in this case it holds that Scoi(yk) ·
Scoj(yk)t = 0 for any y ∈ YK which follows from the facts that Scoi(y) 6= 0 when
y ∈ Bi only and that Bi ∩Bj = ∅.
• If i = j = k = l then

Ek,li,j (θ∗) =

∫
1Bi(yi)ci,i(y)2∇θ gθ∗(yi |xi) · ∇θ gθ∗(yi |xi)t

gθ∗(yi |xi)
dy,

which does not depend on K or |Y| and is therefore of order O(1).
Following the same principles for the other values of i, j, k, l, we find that I∞,0(θ∗)

is of order O(K). Since the information in the idealised observation model, i.e. when
data association is known, is equal to KI(θ∗), it follows that the relative loss is
constant. In other words, for a large number of targets, adding more targets increases
the information at the same rate as in the idealised model.
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Fig. 2: Example of likelihood with two objects at states x1 and x2.

Validation via simulations. The special likelihood is taken of the form gθ(y |xk) =
N (y;xk + m, 1) if y ∈ Bk

.
= (xk + m − r, xk + m + r) and gθ(y |xk) = ε/|Y \ Bk|

otherwise, with ε = 0.1 and with r characterised by
∫
Bk
N (y;xk, 1)dy = 1− ε via Bk.

In this case, the displacement m is considered as the parameter θ and the true value
is θ∗ = 0. The relative information loss associated with this likelihood is displayed
in Figure 3a under two different configurations. The first one (Constant observation
space in the figure) corresponds to the case where the observation space is large enough
to meet the requirements associated with (17); the relative loss can be seen to increase
linearly with the number of targets. The second case (Adaptive observation space in
the figure) corresponds to the case where the observation space has to be augmented
to fit new targets and shows a constant relative information loss. This last result is
consistent with the conclusion above that the information loss is of the same order as
the number of targets when the observation space has to be augmented.

Further simulations. Five static objects on X = R at positions xi = τ(i − 3)
with i ∈ {1, . . . , 5} are observed via a linear Gaussian model with variance equal to
1. The objective is to understand how the FIM Iα,0(θ∗) evolves with α and with the
position of the objects. It is assumed that θ parametrises the variance of the Gaussian
observation model only, so that Iα,0(θ∗) is a scalar. The relative information loss is
displayed in Figure 3b and confirms the intuition that the information loss increases
with α, except in the case α = 1 where there is no loss by definition since A1

k = {id}
for any k ≥ 1 so that the data association is known in this case. Also, the loss is
increased when the individual likelihoods overlap while being increasingly different
and then decreases when the overlap becomes negligible. The maximum is reached
when τ = 1, that is when the distance |xi − xi−1| between two consecutive objects is
1 for any i ∈ {2, . . . , 5}. The fact that there is no loss when τ = 0 follows from the
irrelevance of data association uncertainty when all objects are at the same position,
as explained in Example 2. To better understand the behaviour w.r.t. the number of
targets, Figure 3c displays the relative information loss for 1 to 10 targets in the case
of full data association uncertainty with τ = 1.

The results for the two sets of simulations are consistent and show the same
trend: the relative information loss increases with the number of targets but tend to
stabilise. To sum up, there is no loss for 1 target by construction, the loss is linear
in the number of targets when there are sufficiently many, and it increases the fastest
during the transition between these two modes.

5.4. Detection failures. In this section, the case of detection failures is anal-
ysed when assuming that there are no false alarms, that is when θ∗ is in the special-
parameter set Θλ=0. To establish our main result in this section (Theorem 5), we
will use the concept of missing information (see for instance [3] in the context of
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spatial separation τ (104 MC runs).
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(c) For a varying number of objects with sep-
aration τ = 1 and α =∞ (104 MC runs).
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(d) For a varying probability of detection pD,
compared to 1− pD.

Fig. 3: Information loss with association uncertainty (3a-3c) or detection failures (3d)
according to the models introduced in subsection 5.3 and subsection 5.4 respectively.
See relevant subsections for interpretations.

Approximate Bayesian Computation).

Theorem 5. Assuming θ∗ ∈ Θλ=0, the information loss Iα,βloss(θ∗) for known data
association with unconstrained detection failures, i.e for α = 1, β =∞, is found to be

I1,∞
loss (θ∗)

.
= (1− p∗D)K∗I(θ∗).

The proof can be found in Appendix E. It follows from Theorem 5 that in the
considered configuration the FIM I1,∞(θ∗) can be made arbitrary close to 0 by making
p∗D tend to 0. Also, there is no loss at all when p∗D = 1, as expected. In order to verify
the result of Theorem 5 in practice, a single-object scenario with detection failures and
without false alarms is considered. The object starts at time t = 0 from the position
x0 = 0 and evolves in X = R according to a random walk with standard deviation 0.1
until time n = 50. The observation is linear and Gaussian with variance equal to 1.
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The integral over the state space in the expression of the score is computed by Monte
Carlo simulation with 103 samples while the expectation in the Fisher information
utilises 104 samples. The relative information loss is displayed in Figure 3d and
confirms the coefficient 1 − pD found analytically in Theorem 5. The next example
shows how the Fisher information evolves in general when adding new objects without
involving them in data association uncertainty.

Example 3. The Fisher information Iα,β(θ∗,K) of a K-object problem can be
related to the information Iα,β(θ∗,K+N) where the N new objects are not perturbed
by data-association uncertainties, i.e. when the random variable ς in the observation
model (11) verifies ς|D = id a.s. with D

.
= {|d1:K+1|, . . . , |d1:N |}. It then follows from

Theorem 5 that Iα,β(θ∗,K + N) = Iα,β(θ∗,K) + p∗DNI(θ∗) for any α > 0 and any
β ≥ 0. This example gives an upper bound for the increase of the Fisher information
when the number of objects is increased, since it depicts the case where there is no
data association uncertainty for these objects. This would correspond in practice to a
case where the added objects are in an area where there is no false alarm and where
these objects are “far” from the existing objects as well as “far” from each other,
where “far” depends on the likelihood.

6. Conclusion. The first important result in this article is the proof of con-
sistency of the maximum likelihood estimator for multi-target tracking under weak
conditions, where weak means that these conditions are as often as possible applying
to the single-target dynamics and observation. Asymptotic normality holds under
additional assumptions and the second part of the article brings understanding to
the asymptotic variance of the maximum likelihood estimate by analysing the FIM
corresponding to multi-target tracking. Qualitative results are obtained in the gen-
eral case, that is, the Fisher information decreases with data association uncertainty,
detection failures and in the presence of false alarms. Quantitative results are also
derived in important special cases: a) one static target with false alarm and unknown
data association, b) multiple static targets with unknown data association under a
particular observation model, and c) multiple targets with detection failures.

Future works include the study of identifiability of specific observation-to-track
associations, instead of marginalising over all possibilities as considered in this article.
Such an approach involves additional challenges since the parameters to be learned
increase in dimensionality with time, so that it is not a special case of the results
presented here.

Acknowledgement. All authors were supported by the Singapore ministry of
education tier 1 grant number R-155-000-182-114.

Appendix A. Assumptions for Theorem 3. The following assumptions
are required for the proof of the asymptotic normality of the maximum likelihood
estimator in multi-target tracking. The norm ‖ · ‖ is defined as ‖M‖ =

∑
i,j |Mi,j | for

any matrix M .
A.6 For all K ∈ ST, all x,x′ ∈ XK and all y ∈ Y×, the mappings θ 7→ fθ(x |x′)

and θ 7→ gθ(y |x) are twice continuously differentiable on the hyperplane of Θ made
of parameters with a number of target equal to K

A.7 It holds that

sup
θ∈Θ

sup
x,x′∈XK

‖∇θ log fθ(x |x′)‖ <∞ and sup
θ∈Θ

sup
x,x′∈XK

‖∇2
θ log fθ(x |x′)‖ <∞
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and that

Ēθ∗
[

sup
θ∈Θ

sup
x∈XK

‖∇θ log gθ(Y |x)‖
]
<∞ and Ēθ∗

[
sup
θ∈Θ

sup
x∈XK

‖∇2
θ log gθ(Y |x)‖

]
<∞

A.8 For all y ∈ Y×, there exists an integrable function hy :
⋃
k≥0 Xk → R+

such that supθ∈Θ gθ(y |x) ≤ hy(x). For all θ ∈ Θ and for all x ∈ XK , there
exist integrable functions h1

x, h
2
x : Y× → R+ such that ‖∇θ gθ(y |x)‖ ≤ h1

x(y) and
‖∇2

θ gθ(y |x)‖ ≤ h2
x(y)

Appendix B. Proof of Lemma 1. It follows from Assumption A.2 that
the supremum bC

+ of the clutter density p(λ,ψ) characterised for any k ∈ N0 and any

y ∈ Yk by p(λ,ψ)(y) = Poλ(k)
∏k
i=1 pψ(yi) verifies bC

+ <∞ since

sup
λ∈SC

(∑
k≥0

sup
(ψ,y)∈Ψ×Yk

p(λ,ψ)(y)

)
= sup
λ∈SC

∑
k≥0

(λbC+)ke−λ

k!
= sup
λ∈SC

eλ(bC+−1) <∞,

and since all the terms in the sum are positive. It then holds that

b̂+ ≤ sup
(pD,K)∈(0,1)×ST

bC
+(1− pD + pDb

T
+)K <∞,

which concludes the first part of the proof. For any k ∈ N0 and any y ∈ Yk∫
gθ(y |x)dx ≥ inf

θ∈Θ
BiKpD

∗ Poλ(k)

k∏
i=1

[
bT−(yi) ∧ bC−(yi)

]
.

It also holds that infθ∈Θ BiKpD
∗ Poλ(k) > 0 for any k ∈ N0 since the support of

Poλ is N0 for any λ ∈ SC which guarantees that the convolution has also N0 as a
support so that the infimum is strictly greater than zero. It follows that b−(y) > 0
and, considering (5), that Ēθ∗ [| log b−(Y )|] < ∞. Similarly, for any k ∈ N0 and any

y ∈ Yk it holds that b+(y) ≤ supθ∈Θ BiKpD
∗ Poλ(k)

∏k
i=1

[
bT+(yi) ∨ bC+(yi)

]
, which is

finite when k is finite. In the infinite case, noticing that Poλ(k−K)pKD is the leading
term in the convolution, we find that

lim
k→∞

sup
y∈Yk

b+(y) ≤ sup
θ∈Θ

cθ lim
k→∞

e−λ

(k −K)!

[
sup
y∈Y

(
bT+(y) ∨ bC+(y)

)]k−K
<∞

where cθ is a finite constant, which concludes the proof of the lemma.

Appendix C. Proof of Theorem 2. The two cases of Theorem 2 are proved
separately as follows:

a) When θ ∈ Θλ=0, the joint probability of the observations when the system is
initialised with its stationary distribution is characterised by

P̄θ(B) =

∫
1B(y1:n)

n∏
t=1

gθ(yt |xt)
K∏
i=1

[
πθ(x0,i)

n∏
t=1

fθ(xt,i |xt−1,i)

]
dy1:ndx0:n,

for any measurable subset B = B1 × · · · ×Bn of (Y×)n with

gθ(y |x)
.
=

∑
d∈{0,1}K
|d|=m

[ ∑
σ∈Sym(m)

m∏
i=1

gθ
(
yσ(i) |xr(i)

)
um(σ)qθ(d)

]
.
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for any m ∈ N0 and any (x,y) ∈ XK ×Ym. Assuming that Bt is a measurable subset
of YK of the form At × · · · × At for any 1 ≤ t ≤ n, then the sum over d collapses to
a single term where all targets are detected and all the terms in the sum over σ are
equal, so that w1

θ
.
= P̄θ(B) with

P̄θ(B) = pKnD

∫ K∏
i=1

[
πθ(x0)

n∏
t=1

[
1At(yt,i)gθ

(
yt,i |xt,i

)
fθ(xt,i |xt−1,i)

]]
dy1:ndx0:n.

A second case that can be considered is when Bt represents the configuration where
there are m ≤ K observations without considering their locations for all 1 ≤ t ≤ n,
i.e. Bt = Y × · · · × Y, in which case it holds that w2,m

θ
.
= P̄θ(B) =

(
BiKpD

(m)
)n

If

(K, pD) 6= (K∗, p∗D) then we can show that w2,K
θ = w2,K

θ∗ and w2,K−1
θ = w2,K−1

θ∗ cannot
hold at the same time for any θ ∈ Θλ=0. Alternatively, if (K, pD) = (K∗, p∗D) then
w1
θ 6= w1

θ∗ follows easily from the identifiability of θ∗. These two cases considered
together show that the distributions associated to θ and θ∗ differ in some subset of
the multi-target observation space so that P̄θ 6= P̄θ∗ .

b) When θ ∈ Θ|K=1, the multi-target likelihood becomes

gθ(y |x) = (1− pD)Poλ(m)

m∏
i=1

pψ∗(yi) +
pD

m

m∑
i=1

gθ∗
(
yi |x

)
Poλ(m− 1)

∏
1≤j≤m
j 6=i

pψ∗(yj),

for any m ∈ N0 and any (x,y) ∈ X× Ym. Marginalising over the location of the ob-
servations at each time step and considering the case where there are m observations,
i.e. Bt = Y× · · · × Y, gives wmθ

.
= P̄θ(B) = (1− pD)Poλ(m) + pDPoλ(m− 1), m ≥ 1

and w0
θ
.
= (1−pD)e−λ. Assuming that θ 6= θ∗ and considering that (pD, λ) 6= (p∗D, λ

∗)
it follows that w0

θ = w0
θ∗ , w

1
θ = w1

θ∗ and w2
θ = w2

θ∗ cannot all hold at the same time,
which concludes the proof.

Appendix D. Proof of Theorem 4.

Lemma 6. For given integers m and K, let Pθ be a family of probability measures
on YmK indexed by θ ∈ Θ and let pθ denote the corresponding probability density w.r.t.
a common reference measure, for all θ, on YmK . Assume that pθ (y1, . . . ,ym) > 0
for any θ and (y1, . . . ,ym).

For any integers α ≥ 1 and β ≥ 0, let the random vectors (Y ′1 , . . . ,Y
′
m) be con-

ditionally independent given (Y1, . . . ,Ym), with law P α,β
Y ′1:m|Y1:m

= P α,β
Y ′1 |Y1

. . .P α,β
Y ′m|Ym

and each P α,β
Y ′i |Yi

is defined as in (11) via a process of thinning, augmentation with

clutter with density pψ on Y and random permutation. Assume pψ > 0.
1. Consider any θ and (α, β) such that α > 1 or β > 0. If f(Y1, . . . ,Ym) =

E[f(Y1, . . . ,Ym)|Y ′1 , . . . ,Y ′m] then f(Y1, . . . ,Ym) is constant a.s..

2. Let the probability measure of (Y ′1 , . . . ,Y
′
m) be P α,β

θ and its corresponding

probability density be pα,βθ . Assume that the densities pθ and pα,βθ are differ-
entiable w.r.t. θ then

(24) E[∇θ log pθ(Y1, . . . ,Ym) · ∇θ log pθ(Y1, . . . ,Ym)t]

≥ E[∇θ log pα,βθ (Y ′1 , . . . ,Y
′
m) · ∇θ log pα,βθ (Y ′1 , . . . ,Y

′
m)t],

with the inequality being strict if and only if α > 1 or β > 0 and if the l.h.s.
is strictly greater than 0.
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The observation model (11) does not imply the equality of the gradients of
log pθ(Y ′,Y ) and logpθ(Y ) w.r.t. θ since Pθ(dY

′ |Y ) depends on pD, λ and ψ
which are parameters included in θ. The interest is however in the information loss
w.r.t. θ so that the result of Lemma 6 is satisfying.

Proof of Theorem 4. The considered perturbed observation model has the same
properties as the one in [3], i.e. that ∇θ log pα,βθ (Y ,Y α,β) = ∇θ log pθ(Y ) holds a.s..
The result of [3, Lemma 3] and [3, Remark 9] can therefore be used directly in the

context of interest to give, for any integer m ≥ 1, Iα,βloss(θ∗) = Ēθ∗ [I(m)

Y−∞:−1,Y
α,β
m:∞

(θ∗)],

where

I
(m)

Y∞:−1,Y
α,β
m:∞

(θ∗) =
1

m
Ēθ∗
[
∇θ log pθ∗

(
Y0:m−1 |Y−∞:−1,Y

α,β
m:∞

)
·

∇θ log pθ∗
(
Y0:m−1 |Y−∞:−1,Y

α,β
m:∞

)t ∣∣Y−∞:−1,Y
α,β
m:∞

]
− 1

m
Ēθ∗
[
∇θ log pθ∗

(
Y α,β

0:m−1 |Y−∞:−1,Y
α,β
m:∞

)
·

∇θ log pθ∗
(
Y α,β

0:m−1 |Y−∞:−1,Y
α,β
m:∞

)t ∣∣Y−∞:−1,Y
α,β
m:∞

]
.

The objective is to prove that

(26) Ēθ∗
[
I

(m)

Y−∞:−1,Y
α,β
m:∞

(θ∗)
]

= 0

for all m ≥ 1 implies that I(θ∗) = 0. From Lemma 6 applied to the involved condi-
tional laws, (26) implies that ∇θ log pθ∗(Y0:m−1 |Y−∞:−1,Y

α,β
m:∞) = 0 a.s. for almost

all Y−∞:−1 and almost all Y α,β
m:∞. Following the same principle as in [3, Lemma 4], it

follows that if (26) holds for all m ≥ 1 then ∇θ log pθ∗(Y0 |Y−∞:−1) = 0 a.s., which
in turn implies that I(θ∗) = 0.

Proof of Part 1 of Lemma 6. The proof of the first part of Lemma 6 is lengthy so
only the case where m = 1 is given below (and it serves as a proof sketch for m > 1.)
For m = 1, the statement of Part 1 of Lemma 6 will read as follows once we drop the
subscript “1”: if f(Y ) = E[f(Y )|Y ′] then f(Y ) is constant a.s.1

I When α = 1 and β > 0, which corresponds to no random permutation but
only random thinning, the result follows from Lemma 7 (which main assump-
tion is satisfied because of the positivity of the density pθ).

II When α > 1 and β = 0, which corresponds to no random thinning but only
random permutation, the result follows from Corollary 9.

III When α ≥ 1 and β > 0, i.e. both random thinning and random permutation
are present.

i Notice that σ(Y ′) ⊆ σ(ς,YD, Ŷ ); see (11) for the mapping from

(ς,YD, Ŷ ) to Y ′. Thus the σ-algebra generated by Y ′ is coarser than

the one generated by (ς,YD, Ŷ ). The fact that f(Y ) = E[f(Y ) |Y ′] a.s.

implies that f(Y ) is also σ(ς,YD, Ŷ ) measurable or equivalently

f(Y ) = E[f(Y ) | ς,YD, Ŷ ] a.s.,

ii Since Y is independent of Ŷ and ς, it holds that

E[f(Y ) | ς,YD, Ŷ ] = E[f(Y ) |YD] a.s.,

1Full details can be obtained from the authors upon request
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which implies that f(Y ) is also σ(YD) measurable and thus is constant
a.s. by Lemma 7.

The rest of the proof is concerned with the second part of Lemma 6.
Let Y be the K measurements of K targets, Ŷ be the clutter, ς the random permu-
tation, D the K dimensional vector of deletions. Let Y ′ = Sς((RDY ) ⊕ Ŷ ). The
missing target generated observations are Ym = RD′Y where D′ = 1−D. Since the
joint distribution of Y and Y ′ does not have a density w.r.t. the Lebesgue measure,
the proof of loss of information has to rely on a reparametrisation from (Y ,Y ′) to
(Y ′, ς,D,Ym).

Let pY ′,Ym,D,ς(y
′,ym,d, σ) denote the joint pdf/pmf of (Y ′,Ym,D, ς) that de-

pends implicitly on θ. Using the change of variable formula, noting that (Y , Ŷ ) =
F (Y ′,Ym,D, ς) where the mapping F (·, ·,d, σ) is a permutation of (Y ′,Ym) for any
given d and σ and hence the Jacobian of the transformation has determinant 1, it
follows that pY ′,Ym,D,ς(y

′,ym,d, σ) = pY ,Ŷ ,D,ς(F (y′,ym,d, σ),d, σ) holds for y′ =

Sσ((Rdy)⊕ ŷ), ym = Rd′y where d′ = 1− d. Since only the law of Y depends on θ,
it holds that ∇θ log pY ,Ŷ ,D,ς(y, ŷ,d, σ) = ∇θ log pY (y) so that

∇θ log pY ′,Ym,D,ς(y
′,ym,d, σ) = ∇θ log pY (FT(y′,ym,d, σ))

where FT(y′,ym,d, σ) is the projection of F (y′,ym,d, σ) on the coordinates describ-
ing Y . It follows that ∇θ log pY ′,Ym,D,ς(Y

′,Ym,D, ς) = ∇θ log pY (Y ) a.s.. Let pY ′

denote the density of Y ′. Then, using the Fisher identity, it follows that
(27)
∇θ log pY ′(Y

′) = Eθ[∇θ log pY ′,Ym,D,ς(Y
′,Ym,D, ς)|Y ′] = EPθ [∇θ log pY (Y )|Y ′].

Applying (27) to the joint random variables Y1:m and Y ′1:m defined in the lemma, it

follows that ∇θ log pα,βθ (Y ′1:m) = EPθ
[
∇θ log pθ(Y1:m) |Y ′1:m

]
. Let v ∈ RdΘ , then

Jensen’s inequality applied to the function x 7→ x2 and to the random variable
vt∇θ log pθ(Y1:m) yields

EPθ
[
vt∇θ log pθ(Y1:m) |Y ′1:m

]2 ≤ EPθ
[(
vt∇θ log pθ(Y1:m)

)2 |Y ′1:m

]
a.s., so that

vtEPα,βθ
[∇θ log pα,βθ (Y1:m) · ∇θ log pα,βθ (Y1:m)t]v

≤ vtEPθ [∇θ log pθ(Y1:m) · ∇θ log pθ(Y1:m)t]v

which proves (24). Since Jensen’s inequality has been applied to a strictly convex
function, the case of equality:

vtEPα,βθ
[∇θ log pα,βθ (Y1:m) · ∇θ log pα,βθ (Y1:m)t]v

= vtEPθ [∇θ log pθ(Y1:m) · ∇θ log pθ(Y1:m)t]v,

holds if and only if, for all v ∈ RdΘ , vt∇θ log pθ(Y1:m) = E[vt∇θ log pθ(Y1:m) |Y ′1:m]
is σ(Y ′1:m)-measurable. Part 1 of the lemma yields that ∇θ log pθ(Y1:m) is σ(Y ′1:m)-
measurable if and only if it is constant a.s.. Given that EPθ [∇θ log pθ(Y1:m)] = 0 it
follows that the function itself is equal to 0 since it is constant, hence proving the
lemma.

Lemma 7 (Multiple deletions for K > 2.). Let Y = (Y1, . . . , YK) be a random
vector, D ⊆ {1, . . . ,K} and YD denote the thinned version where components not in
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D have been removed. Assume 0 < P(D = σ) < 1 for all subsets σ ⊂ {1, . . . ,K} such
that |σ| = K − 1. Furthermore, assume the following:

• For each i, j ∈ {1, . . . ,K}, i 6= j, let Z ⊆ Y1:K\{i,j}. If P((Yi, Z) ∈ A) < 1
and IA(Yi, Z) 6= E[IA(Yi, Z)|Z] then P((Yi, Z) ∈ A|(Yj , Z) ∈ A) < 1. (Here
f 6= g means P(f 6= g) > 0.)

Then f(Y ) = E[f(Y )|YD] implies f(Y ) = c a.s. for some constant c.

The main assumption of Lemma 7 is satisfied if ν1×· · ·×νK � PY � ν1×· · ·×νK
where νi are probability measures, i.e. PY and ν1 × · · · × νK are mutually absolutely
continuous.

Proof of Lemma 7. The random variable YD belongs to Y×, that is to the disjoint
union ∪Kk=0Yk with Y0 ≡ ∅. Thus we can write

0 = E[|f(Y )− g(YD)|] =

K∑
i=0

∑
σ:|σ|=i

E[|f(Y )− gi(Yσ)|]P(D = σ)

where g0 is a constant, gi : Yi → R are measurable functions and independence of
D and Y has been invoked. If P(D = ∅) > 0 then it is trivial since this implies
E[|f(Y )− g0|] = 0. So assume P(D = ∅) = 0. Having assumed 0 < P(D = σ) < 1 for
all subsets σ ⊂ {1, . . . ,K} such that |σ| = K − 1, we focus on these terms only: i.e.∑
σ:|σ|=K−1 E[|f(Y )− gK−1(Yσ)|]P(D = σ) which also implies

(29) gK−1(Yσ) = gK−1(Yσ′) or IA(Yσ) = IA(Yσ′) a.s.

for all σ, σ′ and A = g−1
K−1(B) for a measurable set B in R. For example, when

σ = (1, 3, . . . ,K), σ = (2, 3, . . . ,K) and Z = (Y3, . . . , YK), we get

P((Y1, Z) ∈ A) = P((Y1, Z) ∈ A, (Y2, Z) ∈ A) = P((Y2, Z) ∈ A).

Henceforth we refer to gK−1 simply as g. We need to show that g(Yσ) = c, for some
constant c, a.s.. If this is not the case then there exists subsets of variables Yi ∈ Yσ,
Z ⊂ Yσ and Yi /∈ Z (recall σ ⊂ {1, . . . ,K} with |σ| = K − 1) such that

(30) g(Yσ) = E[g(Yσ)|Yi, Z] a.s. and g(Yσ) 6= E[g(Yσ)|Z] a.s.

The interpretation is that g(Yσ) can potentially be a function of the reduced set
of variables (Yi, Z) (as asserted by the first equality) but it must genuinely be a
function of at least the variable Yi. For clarity and simplicity assume i = 1 and
Z = (Y3, . . . , YK). Consider the terms in the sum due to σ = (1, 3, . . . ,K) and
σ = (2, 3, . . . ,K). We assume that there exists a measurable set A = g−1(B) such
that 0 < P(A) < 1 and IA(Y1, Z) 6= E[IA(Y1, Z)|Z]. But (29) implies P((Y1, Z) ∈
A|(Y2, Z) ∈ A) = 1 which violates the main assumption of the lemma.

Lemma 8 (Randomly permuting a random vector.). Let Y = (Y1, . . . , Yn) and

Ŷ = (Yn+1, . . . , Yn+m). Let ς denote the randomised permutation which is indepen-

dent of (Y , Ŷ ) and let Z = (Yς(1), . . . , Yς(m+n)). Assume ς permits, at the least, the
exchange of any two indices, i.e. P(ς(i) = j, ς(j) = i, {ς(k) = k : k 6= i, j}) > 0

for all i, j. Furthermore, P(ς = (1, . . . , n)) > 0. Assume the law of (Y , Ŷ ) satisfies
νn+m � PY ,Ŷ � νn+m where ν is some probability measure and νn+m the product

probability measure on Yn+m. If f(Y ) = E[f(Y )|Z], then f(Y ) is a constant a.s..
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Proof of Lemma 8. The proof is completed for the case m = 1 and easily gener-
alised to m > 1. Let g(Z) = E[f(Y )|Z]. For any σ such that P(ς = σ) > 0,

E[|f(Y )− g(Yσ(1), . . . , Yσ(n+1))|I[ς=σ]] = 0.

Since ς is independent of (Y , Ŷ ), we have E[|f(Y ) − g(Yσ(1), . . . , Yσ(n+1))|] = 0 and
thus g(Yσ(1), . . . , Yσ(n+1)) = g(Yσ′(1), . . . , Yσ′(n+1)) a.s. for any other σ′ such that
P(ς = σ′) > 0. To present the arguments we employ in the clearest way, we consider
the case (n = 2,m = 1). The preceding statements imply, PY ,Ŷ almost everywhere

(and hence ν3 almost everywhere),

g(Y1, Y2, Y3) = f(Y1, Y2)(31)

g(Y1, Y2, Y3) = g(Y3, Y2, Y1)(32)

g(Y1, Y2, Y3) = g(Y1, Y3, Y2).(33)

We will show that the further implication

(34) f(Y1, Y2) = f(Y3, Y2) = f(Y1, Y3)

holds ν3 almost everywhere may be derived. Once this is done, to complete the proof,
we will further manipulate (34) under the assumption that the random variables Yi
are independently and identically distributed with respect to measure ν to show that
f = c, for some constant c, ν3 almost everywhere. From the first equality of (34),

f(Y1, Y2) = Eν3(f(Y3, Y2)|Y1, Y2) = Eν3(f(Y3, Y2)|Y2) = h(Y2)

for some function h. That is f(Y1, Y2) collapses to a function of variable Y2 only,
which is denoted by h(Y2). Using the second equality of (34), h(Y2) = f(Y1, Y3) and
thus it must be that h is a constant as Yi are independent. We now verify (31)-(32)
implies f(Y1, Y2) = f(Y3, Y2) of (34). We have Eν3 [|f(Y1, Y2)− g(Y3, Y2, Y1)|] = 0 and
a change of variable gives Eν3 [|f(Y3, Y2) − g(Y1, Y2, Y3)|] = 0. The same procedure
applied to (31)-(33) shows the second equality of (34).

Corollary 9 extends Lemma 8 to the situation when Ŷ therein follows the law of
a clutter process as defined in (11).

Corollary 9. Let (Ŷ1, Ŷ2, . . .) be an infinite sequence of independent Y-valued
random variables with Ŷi ∼ P̂ . Let Y = (Y1, . . . , YK) be a vector of Y-valued random
variables which is independent of (Ŷ1, Ŷ2, . . .). Let M̂ ∈ N0 be non-negative random

variable independent of (Y , Ŷ1:∞). Let Z = Sς(Y ⊕ Ŷ ) where Ŷ = Ŷ1:M̂ and Sς is

the random permutation matrix defined as in 11. Assume (P̂ )K � PY � (P̂ )K . If
f(Y ) = E[f(Y )|Z], then f(Y ) is a constant a.s..

Proof. Let g(Z) = E[f(Y )|Z] then E[|f(Y ) − g(Z)||M̂ = m] = 0 for all m such
that P(M̂ = m) > 0. Since M̂ is independent of (Y , Ŷ1:∞) and the random per-
mutation matrix is itself independent of (Y , Ŷ1:∞) given M̂ = m, the law of (Y ,Z)
conditioned on M̂ = m satisfies the assumptions of Lemma 8. Thus, by Lemma 8,
E[|f(Y ) − g(Z)||M̂ = m] = 0 implies f(Y ) = cm a.s. for some constant cm. (It is
clear that cm is independent of m.)

Appendix E. Proof of Theorem 5. The case where K∗ = 1 is first considered
so that the number of observations Mt at time t can only be equal to zero or one.
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The joint probability of the observations and states becomes

p̄θ(y1:n, x0:n) = πθ(x0)

n∏
t=1

[
(1− pD)1−Mt(pDgθ(yt |xt))Mtfθ(xt |xt−1)

]
,

where yt is the empty sequence when Mt = 0. The size of yt at any time t can be
made explicit in this expression for the sake of clarity as follows

p̄θ(y1:n, x0:n,m1:n) = πθ(x0)

n∏
t=1

[
(1− pD)1−mt(pDgθ(yt |xt))mtfθ(xt |xt−1)

]
.

Let Y εt be a noisy version of the original observation Yt for any t ≥ 1 so that the
HMM (Xt, Y

ε
t )t is equal in law to the HMM (Xt, Yt + εZt)t where (Zt)t is an i.i.d.

sequence of random variables which common law is the uniform distribution over the
ball of radius 1 and centre 0. A switching process (st)t is also introduced as follows:
st = 1 when the target is detected and st = 0 otherwise. In order to study the
Fisher information more easily, we introduce an alternative observation model where
a detection failure at time t is replaced by an observation Y εt from the target. The
law of this observation model is

p̄εθ(ỹ1:n, x0:n, s1:n) = πθ(x0)

n∏
t=1

[
[pDgθ(yt |xt)]st [(1− pD)gθ(y

ε
t |xt)]1−stfθ(xt |xt−1)

]
where ỹt = yt if st = 1 and ỹt = yεt if st = 0. The quantity of interest is

p̄εθ(ỹ0, s0 | y−∞:−1, y
ε
1:∞) =

[pDgθ(y0 |x0)]s0 [(1− pD)gθ(y
ε
0 |x0)]1−s0 p̄θ(x0 | y−∞:−1, y

ε
1:∞),

which we compare with p̄εθ(y0 | y−∞:−1, y
ε
1:∞) = gθ(y0 |x0)p̄θ(x0 | y−∞:−1, y

ε
1:∞), i.e.

the full-detection case. To justify the equivalence of the two observation model for
the considered purpose, we can verify that the score ∇θ log p̄θ(y0,m0 | y−∞:−1) is
equal to the score ∇θ log p̄εθ(ỹ0, s0 | y−∞:−1, y

ε
1:∞) when ε → ∞. With the required

modifications and after [3, Theorem 5], it follows that the loss of information Iεloss(θ
∗)

when replacing the original observations by the ε-perturbed ones can be expressed as

Iεloss(θ
∗) = Ēθ∗

[
∇θ log p̄θ∗(Y0 |Y−∞:−1,Y

ε
1:∞) · ∇θ log p̄θ∗(Y0 |Y−∞:−1,Y

ε
1:∞)t

]
− pDĒθ∗

[
∇θ log p̄θ∗(Y0 |Y−∞:−1,Y

ε
1:∞) · ∇θ log p̄θ∗(Y0 |Y−∞:−1,Y

ε
1:∞)t

]
− (1− pD)Ēθ∗

[
∇θ log p̄θ∗(Y

ε
0 |Y−∞:−1,Y

ε
1:∞) · ∇θ log p̄θ∗(Y

ε
0 |Y−∞:−1,Y

ε
1:∞)t

]
.

Considering the limit ε→∞, it follows that Iloss(θ
∗)

.
= limε→∞ Iεloss(θ

∗) verifies

Iloss(θ
∗) = (1− pD)Ēθ∗

[
∇θ log p̄θ∗(Y0 |Y−∞:−1) · ∇θ log p̄θ∗(Y0 |Y−∞:−1)t

]
.

In the multi-target case, it simply holds that the information loss is equal to (1 −
p∗D)K∗I(θ∗) since targets’ detection are independent when the data association is
known, which terminates the proof of the proposition.
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