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Abstract Class noise, as know as the mislabeled data in
training set, can lead to poor accuracy in classification no
matter what machine learning methods are used. A reason-
able estimation of class noise has a significant impact on the
performance of learning methods. However, the error in es-
timation is inevitable theoretically. In this work, we propose
an ensemble with estimation method to overcome the gap
between the estimation and true distribution of class noise.
Our proposed method does not require any a priori knowl-
edge about class noises. We prove that the optimal classifier
on the noisy distribution can approximate the optimal clas-
sifier on the clean distribution when the training set grows.
Comparisons with existing algorithms show that our meth-
ods outperform state-of-the-art approaches on a large num-
ber of benchmark datasets in different domains. Both the
theoretical analysis and the experimental result reveal that
our method can improve the performance, works well on
clean data and is robust on the algorithm parameter.

1 Introduction

typical machine learning method uses a classifier learned
from a labeled dataset (i.e., the training data) to predict the
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class labels of new samples (i.e., the testing data). In most of
classification applications, labels of the training data are as-
sumed correct. However, real-world datasets often contain
noise which may occur either in the features of the data,
defined as the attribute noise, or in the labels of the data,
defined as the class noise.

Many studies have focused on handling attribute noise
since it is quite common in machine learning and data min-
ing tasks. However, researchers, such as [1],[2], have indi-
cated that class noise can be potentially more detrimental
than attribute noise. The study on class noise problem has
an essential impact on classification performance improve-
ment [1]. We must point out that class noise is unavoidable
in many real world applications such as disease prediction in
medical applications [3], food labeling for the food industry
[4], and manual data labeling in some natural language pro-
cessing applications [5].

Generally speaking, there are two types of strategies to
deal with class noise. The first entails learning with noisy
data and the second is based on noise elimination.

Learning with noise assumes that each training sample
is assigned to a weight based on an estimated probability
of class noise, that is, the class noise rate. The learning al-
gorithm will consider the class noise rate while learning
from the original noisy training data [6]. Unfortunately, this
method requires a priori knowledge of the class noise rate in
the training data.

Noise elimination strategy attempts to detect and remove
erroneous data from the training set [7][8][9]. This method
can reduce the rate of class noise in the training data, yet
it often leads to an overall reduction of training samples.
Even though the reduced training data may be less noisy,
reduced training data may result in reduced performance of
a learning algorithm compared to the result from using the
original noisy data. Therefore, good noise estimation meth-
ods are important to avoid overrating class noises which can
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lead to large data reduction. One successful approach for
class noise elimination is called kernel density estimation
including methods such as k-Nearest Neighbors (kNN) or
Parzen Window to detect and remove noisy data [8][10][11].
However, there is a theoretical flaw in these methods. Their
work reposes on kernel density estimation, which requires
a small radius of neighborhood ε,to satisfy both the mani-
fold assumption and the Central-Limit Theorem which re-
quires a large ε to estimate the parameter for Guassian dis-
tribution.The contradicting assumptions will limit the per-
formance of their methods in applications.

In this paper, we propose a novel method to estimate the
noise rate for each training sample. In order to avoid the
overrating of class noise rate and the contradict assumptions,
we introduce the sum of Rademacher distribution [12] in-
stead of the Central-Limit Theorem to estimate class noise.
We choose the kNN graph for the kernel density estimation
because it is more sensitive to class noise.

Based on this noise estimation method, we then mod-
ify a given surrogate loss function based on the estimated
class noise rate. The modified surrogate loss function is the
optimization objective of the classifier. According to the the-
oretical analysis, this loss function is sensitive to the param-
eter in the estimation algorithm. So, we propose a sampling
based algorithms to obtain a strong classifier through a se-
ries of weak classifiers as an ensemble to overcome the sen-
sibility of the parameter,which is adopted to optimize the
loss function on the training data. Traditionally, the ensem-
ble method is not suitable to handle class noise because it
will also enhance the noise in the learning process [13][14].
However, in our method, we take into consideration of the
noise rate and make the algorithm to adapt the noisy distri-
bution. Both the theoretical analysis and the experimen-
tal result reveal that our method can improve the perfor-
mance, works well on clean data and is robust on the al-
gorithm parameter.

The main contributions of this paper are:

– A class noise estimation approach is proposed based and
a new weighted loss function is given;

– The proposed loss function based on the estimated class
noise experimentally demonstrates better class noise es-
timation performance than the existing popular algorithms;

– In comparison with the existing methods of noise es-
timation, our approach requires no a priori knowledge
about the class noise and it makes up for the contradic-
tion of the currently used theory. Performance evaluation
also show that we can indeed achieve state-of-the art re-
sults.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a review of related works on class noise es-
timation and the two types of strategies to deal with class
noise. Section 3 presents the problem setup and background.

Sections 4 and Section 5 present our proposed class noise
estimation method and our method to incorporate the esti-
mation into class noise elimination, respectively. Section6
shows the performance evaluation on real-world public datasets
in different domains. Section 7 lists our conclusion and fu-
ture work.

2 RELATED WORK

Identifying class noise is an important issue in machine learn-
ing. Previous publications cover both the theory [15] and the
application aspects [10][11] of this topic. In this section, we
briefly introduce related works from three perspectives: the
source of class noise, the handling of class noise and the
application of class noise.

Class noises can exist for different reasons. When used
for disease prediction in medical applications [3], training
data contains a probability of false positive or negative be-
cause data comes from medical experiments. In other words,
class noises naturally exist and cannot be avoided. Food la-
beling for the food industry [4] also faces class noise prob-
lem. As shown by [4], beef has a higher price than mutton
in some countries in South Africa. Miss-labeling is thus an
aforethought to achieve more benefit. The manual labeling
of data in some natural language processing applications [5]
also contains class noise because there is always a possibil-
ity of inter-annotator inconsistency.

Given x, being the set of features of a sample, let ỹ be
the observed label of x; y the true label of the sample x and
p is the probability to flip the true label into a noise label
(thus p is the class noise rate, or noise rate for short). For
any training algorithm, only x and ỹ can be observed. In
general, class noises can be simply categorized into three
different models based the dependence of noise to y and
p [16]. The first model in is called the Noise Completely
at Random Model [15],[17],[18]. The basic idea is that the
class noise rate of a sample is completely random and inde-
pendent of the labels and the feature set. Thus, an observed
label is only determined by the true label and the class noise
rate. The second model shown is called the Noise at Ran-
dom Model [19–21]. In this model, the class noise rate is
dependent on the true label of a sample and is independent
of the feature set of the sample. In other words, different la-
bels have different probabilities to flip to the wrong label.
The third model shown is the Noise Not at Random Model
[22],[23]. This model assumes the class noise rate should be
affected by both the label and the feature set of the sample.
Informally, this model can be described as: a sample will be
miss-labeled to the most similar category.

The theoretical research on class noise and learning was
first proposed by Angluin and Laird in 1988 [15]. In their
work, all instances of the labeled data for binary classifica-
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tion have a uniform invert probability p ∈ [0, 1/2). This is
referred to as the random classification noise.

Class noises are typically assumed to be stochastic in
algorithms that can handle class noises. The work by [6]
assumed a learned noise rate from a priori knowledge and
every sample was given the same probability, a simple as-
sumption that may not be reasonable in all scenarios. The
Cut Edge Weight Statistic method [8] also required prior as-
sumed noise rate. This method used the prior probability as a
hypothesis to test if the training sample satisfies the null hy-
pothesis. The method also required the neighbors of a train-
ing sample to follow the central limit theorem, which is not
reasonable because the set of neighbors are too small. Other
works simply did not consider noise rate [5,7,9,24].

There are two basic categories of strategies to deal with
class noise in training data: either learning with class noise
[5,6] or class noise elimination [7–9]. The learning with
noise strategy approximates a distribution of noiseless train-
ing data using the distribution of the original training data
with class noise and must have a priori knowledge about the
class noise [6]. The problem, however, is that a priori knowl-
edge of the class noise is not typically available, limiting the
applicability of this method. Li [18] uses the Kernel Fisher
method to estimate the class noise. The estimation is then
used to use a robust algorithm that can tolerate noise.

The class noise elimination strategy attempts to detect
the samples with high noise probabilities and remove them
from the training set. There are different methods to detect
class noise and they can be categorized as classification-
based methods and graph-based methods. The classification-
based method was first proposed by Brodley in 1999 [7].
He used k-fold cross-validation to split the training set into
k subsets, and used any k − 1 sets as the training data to
classify the remaining data. If the classification result for
a sample is different from the original label, that sample
is considered class noise and is removed. Zhu et al. pro-
posed a more efficient algorithm suitable for large datasets
[24]. Zhu also proposed a cost-sensitive approach based on
k-fold cross-validation [1]. Sluba employed a 10-fold cross-
validation to detect class noise [9]. The graph-based method,
known as the Cut Edge Weight Statistic method, was pro-
posed by Zighed [8]. The principal idea is based on the
manifold assumption and Bernoulli distribution assumption.
A similar approach was proposed by Jiang and Zhou, who
used a kNN graph to detect class noise without consider-
ing noise rate [25]. There are three major problems with
the elimination approach. First, some correctly labeled train-
ing data can be eliminated because of potentially inaccu-
rate class noise identification. Second, the number of sam-
ples in the training data will be reduced, potentially leading
to an adverse effect on the learning algorithm performance.
Third, the manifold assumption requires small k and the sum
of Bernoulli distribution converges to Gaussian distribution

if and only if k is larger than 25. The paradox leads to a
limited performance gain in the class noise estimation. In
elimination-based methods, reliable noise estimation is cru-
cial and inaccurate estimations can potentially degrade per-
formance compared to no noise elimination.

Some works also use some revision to the AdaBoost
learning algorithm to handle noise data[26–28]. In princi-
ple, AdaBoost[29] is not a suitable learning algorithm for
noisy data. The reason is that during the learning process
AdaBoost will enhance the misclassified training samples in
the next iteration. For a noisy sample, which is actually clas-
sified correctly, may be regarded as a misclassified sample
due to the noisy label to lead to worsened performance[13,
14]. However, some strategies can be used to smooth out
weight updating in the learning steps of AdaBoost to avoid
over-fitting on noisy data [26,27]. Another method simply
allows boosting to miss-classify some of the training sam-
ples to obtain a more robust boosting [28]. There are also
adaptive methods by using a confidence score and removing
a sample if its noise estimation confidence is higher than a
threshold [30–32].

3 PROBLEM SETUP AND BACKGROUND

Before presenting our proposed algorithm, we need to ex-
plain the background and the problem setup first. The funda-
mental problem is that each sample in the training data has
the probability to be a miss-labeled sample, which means
that the samples have class noise. Hence, we need to esti-
mate the probability for the miss-labeling of each training
sample, referred to as the class noise rate in the rest of this
paper. After that, we can train a classifier on the noisy train-
ing data based on the estimated probability.

The second problem is how to measure the learning abil-
ity of the classifier with the obtained noise rate? Is it possible
that our classifier, trained on noisy distribution, can achieve
similar performance to the classifier trained on the clean dis-
tribution? If the answer to this question is yes, we can then
use the differential between the two classifiers to measure
the learning ability of the classifier trained on noisy distri-
bution. If the classifier trained on noisy distribution is the
optimal classifier on the clean distribution, this differential
should be a small number theoretically.

In this section, we first give a strict formalized defini-
tion of the class noise rate, followed by the learning ability
measure of the classifiers.

Let D denote the clean distribution without class noise,
and (x1, y1), (x2, y2), . . . , (xn, yn) denote n training sam-
ples fromD with true binary label yi (yi = ±1, i = 1, 2, . . . , n)

When there are class noises, D̃ denotes the observed distri-
bution which contains class noise, and the training sample
from a noisy distribution D̃ are (x1, ỹ1), (x2, ỹ2), . . . , (xn, ỹn),
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where the label ỹi may be different from the true label yi. In
this paper , we want to estimate noise rate at the level of
the individual samples. Here, we give the definition of class
noise rate as follows:

Definition.1. Let (xi, ỹi) ∈ D̃ be a sample from the
noisy distribution.The class noise rate is the probability of
the observed label different from the true label of xi, de-
noted by P (ỹi 6= yi|xi).

According this definition, class noise rate defines on in-
dividual data samples. In other words, we allow different
samples to have different noise rate.Thus, the first issue is
how to estimate the class noise rate for each training sam-
ple. The main challenge, however, is that a learner can only
observe the noisy data (xi, ỹi) ∈ D̃ and there is no a priori
knowledge about the class noise rate and the clean distribu-
tion D.

For the time being, let us assume that we have a rea-
sonable estimation method. Then the second issue is how to
measure the performance of a classifier. Generally speaking,
the objective of a classifier is to minimize a given loss func-
tion on a given set of training data. However, in this paper,
the observed training data contains class noise. The mini-
mized loss function on noisy training data may not be the
minimized loss function on the clean data. So the issue is
whether we can use the estimation of the class noise rate for
each individual sample to modify the loss function on the
noisy distribution so that the modified loss function can also
minimize the loss on the clean distribution.

In order to address the problem in a formally, we give
some definitions below.

Definition.2. let f : X → R be a real-value decision
function, defined as f(x) = P (y = 1|x)− 1/2. The risk of
f for each sample on the clean distribution is 0-1 loss given
by RD(f) = E(x,y)∼D(1sign(f(x)6=y))

Let l(f(x), y) denote a loss function with a real-value
prediction, for the clean distribution where y = ±1 is the
true label of x. We can then use the estimation of the class
noise rate for each individual sample to modify the loss func-
tion on the noisy distribution with an observed label, de-
noted as l̃(f(x), ỹ). The modified loss function is marked
with a hat ·̃. Because the loss function is defined under the
noisy distribution D̃. Then, we can define three related risks
as follows:

Definition.3.1. The empirical l̃-risk on the training data
: R̂l̃(f) =

1
n

∑n
i=1 l̃(f(xi), ỹ).

Definition.3.1. The excepted l̃-risk under noisy distribu-
tion D̃: Rl̃,D̃(f) = E(x,ỹ)∼D̃(l̃(f(x), ỹ)).

Definition.3.1. The excepted l-risk under clean distribu-
tion D: Rl,D(f) = E(x,y)∼D(l(f(x), y)).

(Here, the hat ·̂ means that the marked object is a esti-
mated result. The hat ·̃ means that the noisy label will influ-
ence the marked object.)

Here the empirical l̃-risk R̂l̃(f) is is the expected error
of the trained classifier on noisy distribution, and the ex-
pectation of l-risk Rl,D(f) is the expected error of a clas-
sifier training on clean distribution. The learning ability of
a training classifier is the difference between the two risks:
|R̂l̃(f)−Rl,D(f)| It indicates the distance between our trained
classifier on noisy data and the optimal classifier on the clean
distribution. The objective of our algorithm is to make |R̂l̃(f)−
Rl,D(f)| approaching 0 when the size of noisy training set
grows.

4 Class Noise Estimation

In this section, we deploy a class noise estimation method
proposed in our previous work [34]. Due to the length limi-
tation, we only introduce the basic idea and theorem. The de-
tails of mathematical proof can be found in paper [34]. The
idea is based on the kernel density estimation method. In this
method, the label of an individual sample should be simi-
lar to the most similar neighbors even if there is class noise
in the data. Therefore, we first present a class noise model
in IV.A based on the kernel density estimation method. We
mainly introduce the kNN graph as kernel density estima-
tion method, and we will also introduce the formula based
on Parzen Window (known as e-graph).Since the kernel den-
sity estimation method is sensitive to class noise and it can
overrate the class noise. To avoid overrating of noises, we
introduce a loose distribution called the Sum of Random
Noise in section IV.B. As will be seen in the evaluation, our
method is more reasonable theoretically and shows a higher
performance in the experiments when compare to the exist-
ing estimation methods [8,10,11].

For any (xi, ỹi) from the training set with true label yi,
we can define a sign function on the individual sample

(xi, ỹi) and its k nearest samples (xj , ỹj):

Iij =
{

1, if ỹj 6= ỹi

−1, if ỹj = ỹi
(1)

Iij indicates the difference between an individual sam-
ple and its nearest labels. Even ỹj can also contain noise
with some probability, the noise level of ỹi should still be
similar to that of ỹj . Furthermore, the noise estimation method
should also consider similarity. Thus, we define a statistic,
Si, referred to as the sum of noisy similarity, which can be
used to measure the total noise level.

Definition.4. For any individual sample (xi, ỹi) ∈ D̃

and the top k nearest sample (xj , ỹj), j = 1, 2, . . . , k un-
der Formula (1) and a normalized similarity wij , the sum of
noisy similarity is :

Si =

k∑
j=1

Iijwij (2)
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Now, we can define the class noise rate for (xi, ỹi) as the
probability of Si being opposite from SRN. Because Iij = 1

indicates that the sample xi has different label to its near-
est neighbor and the similarity metric is between 0 to 1, the
larger Si is, the higher the probability it should be that xi has
a noisy label. So, we should only consider the upper quan-
tile of SRN here. Now, we can give the class noise rate under
Definition.5.

Definition.5. For any individual sample (xi, ỹi) ∈ D̃

and the sum of noisy similarity Si, the probability of SRN
denoted as PSRN , the class noise rate of (xi, ỹi) is 1 −
PSRN (s ≥ Si).

The formal definition above would be easier to under-
stand using the following explanation. If the principle of en-
tropy maximum reveals a best guessed label, the upper quan-
tile of SRN is the probability of the individual sample having
a "worse" label than a guessed one. So Definition 5 can be
presented as a descriptive definition as: the class noise rate
of a sample is the probability of the observed label being
worse than a guessed label.

Definition 5 defines the class noise rate of the sample
(xi, ỹi) as the probability of Si not following SRN. We can
explain the definition in a different way. If the label of a
training samples totally random under PEM, the label of the
training sample can be considered as a label from guessing.
Then we can get the distribution of Si from a "guessing re-
sult". If the individual sample (xi, ỹi) contains class noise,
the corresponding Si should be larger than the "guessing re-
sult". Thus, we can say the probability of Si does not follow
SRN. The formal theorem is given below:

Theorem.1. The estimated class noise rate of (xi, ỹi) ∈
D̃ denoted by Pc(xi), is:

Pc(xi) ≥ 1− 0.5 ∗ exp

−
(∑K

j=1 wijIij

)4
2 (‖ wi ‖1‖ wi ‖2)2

.

 (3)

Lemma.2. Let Ii1, Ii2, . . . , Iik be independent Bernoulli
random variables (P (Iij = 1) = P (Iij = −1) = 1/2),
wi1, wi2, . . . , wik be a sequence of real number such that
wi = (wi1, wi2, . . . , wik) ∈ L2 and t > 0. We can the
conclude that

P

 k∑
j=1

Iijwij > K1,2(wi, t)

 ≤ e− t2

2 , (4)

where K1,2(wi, t) is defined as:

K1,2(wi, t) = inf {‖ w′i ‖1 +t ‖ w′′i ‖2} .

Here ‖ · ‖1 and ‖ · ‖2 are theL1 andL2 norms; andw′i+
w′′i = wi. The formula of K1,2(wi, t) is well known as the
K-method of real interpolation for Banach Space [33]. The

proof of Lemma.2. was given by [12] in details. According
to Lemma.2., we can easily get the Lemma.3. by a sub-
optimal solution of K1,2(wi, t).

Lemma.3. Let Ii1, Ii2, . . . , Iik be independent Bernoulli
random variables (P (Iij = 1) = P (Iij = −1) = 1/2),
wi1, wi2, . . . , wik be a sequence of real number such that
wi = (wi1, wi2, . . . , wik) ∈ L2 and t > 0, we have,

P
(∑k

j=1 Iijwij >
√
t ‖ wi ‖1‖ wi ‖2

)
≤ e− t2

2 ,

where ‖ · ‖1 and ‖ · ‖2 are the L1 and L2 norms.
The proof of Lemma.3. is given in our previouse work

[34].
According to Definition.4., the estimated class noise rate

Pc(xi) for (xi, ỹi) ∈ D̃ is the probability of (xi, ỹi) not
following SRN. According to Lemma.3., the probability of

(xi, ỹi) from SRN is less than exp

(
− (

∑K
j=1 wijIij)

4

2(‖wi‖1‖wi‖2)2
.

)
when

t > 0.
Thus, consider the assumption ofP (Iij = 1) = P (Iij =

−1) = 1/2, the estimated class noise rate is:

Pc(xi) ≥ 1− 0.5 ∗ exp
(
− (

∑K
j=1 wijIij)

4

2(‖wi‖1‖wi‖2)2
.

)
�

For noise detection, the lower boundary is more signifi-
cant since it pertains to the minimum noise rate of a labeled
training sample. In practice, we can then use

Pc(xi) = 1− 0.5 ∗ e−r(xi)/2 (5)

as the estimation for each training sample. Here,

r(xi) =

(
(
∑K

j=1 wijIij)
4

(‖wi‖1‖wi‖2)2
.

)
Pc(xi) can be either be incorporated in the learning al-

gorithms to weight the importance of a training sample or
used to identify for elimination. It should be noticed that
r(xi) is symmetrical on Si. It means that Si is less than 0,
which indicates the label of the individual is similar to the
nearest label, the upper quantile of Si needs to be solved by
the lower quantile of SRN which is introduced by opposite
sign function.

5 Learning In Noise Data

In this section, we introduce our learning algorithm based
on the estimated class noise rate. We propose to modify a
given surrogate loss function based on the estimated class
noise rate. The modified surrogate loss function is the opti-
mization objective of the classifier. In this section, two train-
ing algorithms are used to optimize the loss function on the
training data. One is a perceptron based method, which is
based on the learning with noise strategy and aims to reduce
the impact of noisy data. The other one is a sampling based
Adaboost method, which is based on the class noise elimina-
tion strategy and focuses on selecting high quality training
data rather than to identify low quality data.
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5.1 Class noise estimation based on loss function

Based on the class noise estimation given in Formula(5),
we propose a surrogate loss function based on the estimated
class noise rate. The key is to ensure that the surrogate loss
function can adequately approximate the loss function for
the clean training data. Then the loss function on the ob-
served distribution is defined as

l̃(f(xi), ỹi) =
(1− Pc(xi))l(f(xi), ỹi)− Pc(xi)l(f(xi),−ỹi)

1− 2
∑

i Pc(xi)

n

(6)

Without loss of generality, we do not specify any particu-
lar loss function on the observed distribution. Theoretically,
any loss function can be used in Formula (6) to modified
a surrogate loss function. In Formula (6), the numerator is
formed by two parts. The first part is the original loss func-
tion with the observed labels weighted by their label cor-
rectness probabilities. The second is a penalty for the loss
function with an inverted label (i.e., the probability of the
observed label is incorrect) weighted by the class noise rate.
The denominator is based on the average class noise rate to
ensure that the expectation of loss on noisy training data ap-
proximates the expectation of loss on the clean data. This
is an updated version of the original loss function on noisy
data.

Our question is whether the minimum risk of the pro-
posed surrogate loss function on the noisy training data can
approximate the minimum risk of the original loss function
on the clean data. In general, the main question is whether
we can train a classifier for the cleaning distribution by the
noisy data only without any prior knowledge? Let us assume
that the training data is clean. Then, the risk of the loss func-
tion on the clean distribution and noisy distribution are de-
fined under Definition 3.1, 3.2 and 3.3. Based on these def-
initions, the main question can be split into two questions:

– Will R̂l̃(f) converge to Rl̃,D̃(f) under the noisy distri-
bution when n grows? If the answer is "Yes", it means
that we could train a stable classifier on the noisy train-
ing data.

– Will Rl̃,D̃(f) converge to Rl,D(f) under the clean dis-
tribution? If the answer is "Yes", it means that the trained
classifier by noisy training data is also the optimal clas-
sifier on the clean distribution.

For the frist question, we can use the Chebyshev law
of large numbers to prove. Given n independent (xi, ỹi),
Pc(xi) denotes the class noise rate estimated by Formula (5)
with the expectation E(Pc(xi)). According to the Cheby-
shev law of large numbers, ∀ε > 0,∃δ > 0, and N > 0,
when n > N , it is true that

|
∑
i
Pc(xi)
n − E(Pc(xi))| ≤ ε

For the same reason, ∀ε > 0,∃δ > 0, and N > 0, when
n > N , it is true that

| 1n
∑
i l̃(f(xi), ỹi)− E

(
l̃(f(xi), ỹi)

)
| ≤ ε

with a probability of at least 1− δ.
Then the risk on D̃ and the empirical l̃-risk on the train-

ing data satisfies

|R̂l̃(f)−Rl̃,D̃(f)| ≤ 2ε

with probability at least 1− δ. �
In other word, if we have a perfectly correct estimation

of the class noise rate, the empirical l̃-risk on the training
data R̂l̃(f) will converge to the risk Rl̃,D̃(f) of the loss
function on the noise data when the size of the training data
is sufficiently large.

For the second question, the proof is given in detail by
[6], which will not repeated here, Based on the proof in [6],
the following inequality holds:

|Rl,D(f̂p)−Rl,D(f∗)| ≤ 2R(l̃ ◦ F) + 2

√
log(1/δ)

2n
(7)

with probability of at least 1− δ.
Here, f∗ is the minimizer of Rl,D(f) on the clean distri-

bution, f̂p is the minimizer of Rl,D(fp) on the clean distri-
bution and

R(l̃ ◦ F) = Exi,ỹl,εi

[
supf∈F = 1

n

∑n
i=1 εi l̃(f(xi), ỹl)

]
where εi is an independent and identically distributed

Rademancher random variable. The right side of the inequal-
ity in Formula (7) is bound by the richness of the function
family F and the sample size of n.

Thus the risk of our estimation methodRl,D(f̂) satisfies:

|Rl,D(f̂)−Rl,D(f∗)| ≤
(
|Rl,D(f̂)− Rl,D(f̂p)|+ |Rl,D(f̂p)− Rl,D(f∗)|

)
(8)

Because the second item is bound, the risk of our esti-
mation is determined by the first item which is related to
the estimation result. This can be interpreted as that the per-
formance of the classifier trained on the noisy data is deter-
mined by the estimation result when the size of the training
set grows.

5.2 Learning in class noise

According to Section V.A, the basic idea is to use the surro-
gate loss function defined in Formula(6) to train a classifier
on the noisy training data. In a previous work [34], a sim-
ple Perceptron based on-line learning method is used with
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noisy class data. However, the theoretical analysis has re-
vealed that the result of the surrogate loss function would
be affected by the estimated class noise rate. It is shown in
Formula (8).

In Formula (8), |Rl,D(f̂p) − Rl,D(f∗)| is dependent on
the size of the training dataset. Theoretically speaking, when
the size of the training set grows, this absolute value will ap-
proximate to 0. It means that the risk of the surrogate loss
function is decided by |Rl,D(f̂) − Rl,D(f̂p)|, which is re-
lated to the estimation result. If we have a good estimation,
this item should be small. Otherwise, we will face the prob-
lem with a risky surrogate loss function.

Algorithm 1: ALGORITHM: AdaBC
Input :

S: The training dataset with N samples;
(xi, ỹi): The training sample (xi, ỹi) ∈ S;
T : Number of iterations.

begin
For each (xi, ỹi) in S, build a kNN graph and calculate
Pc(xi) according to formula (5);

Initialize the weight vector: w1
i = 1− Pc(xi) ;

for j = 1 to T do

Set pji =
w

j
i∑

i w
j
i

;

Sampling based on pj for each (xi, ỹi), the result is
Sj ;

Use the learner on Sj to get a classifier
hj : X → [0, 1] ;

Calculate the error of hj : ε̃j =
∑N

i=1 p
j
i f(xi, ỹi)

(Here, ferror = (xi, ỹi) = |(1− Pc(xi))(hj(xi)−
ỹi)− Pc(xi)(hj(xi)− (−ỹi))|) ;

Set βj = ε̃j/(1− ε̃) ;
Set the new weight as wj+1

i = wj
i β

1−ferror(xi,ỹi)
j

end
end
Output:

The classifier:

hf (xi) =


1 if

T∑
j=1

(log(1/βj))hj(x) ≥
1

2

T∑
j=1

(log(1/βj))

0 otherwise

According to theoretical analysis, direct use of a per-
ceptron or any other linear optimizer as the basic classifier
(proposed in our previous work [34]) can face one problem:
when the estimation is unreliable, the performance of the
surrogate loss function may be limited because the first item
in |Rl,D(f̂)−Rl,D(f̂p)|may not be sufficiently small. Since
the estimation method proposed in Section IV is based on
kNN graph, estimation is related to the parameter k and the
similarity measure. The incorrect parameter of the similarity
measure may misguide the estimation result, and the error in
the estimation will affect the learning algorithm according to
our analysis.

Hence we propose an Adaboost based method based on
the class noise elimination strategy to whittle the impact of
estimation. The reason is that Adaboost makes use of a bag
of weak classifiers to achieve a better classification by en-
hancing the “misclassified” sample in the learning process.
However, for a noisy data, “misclassified” by a base classi-
fier may actually indicate a good performance because the
observed label is incorrect. These samples should be given
a lower weight since they have been trained well. If we give
these samples a higher weight as traditional AdaBoost, it
may lead to worsened performance because the algorithm
enhances the noisy data with noisy label causing overfitting
on these samples.

In our method, we solve the problem by adjusting the
weight. The basic idea is to use the surrogate loss function
given in Formula (6) as the objective function. We then use
the AdaBoost.M1 [29] method to achieve optimal result on
the noisy training data. In the learning step, we use the sur-
rogate loss function to avoid overfitting on the noisy data
without the need to eliminate any training sample. In the op-
timization, the samples with high class noise probability is
given a low weight when "misclassified" by the base clas-
sifier so that even if the noisy sample is "misclassified" in
the training, it will not obtain a higher weight in the next
iteration to enhance learning. By using this strategy, our al-
gorithm can adaptively handle class noise in the training in-
stead of overfitting on noisy data. The pseudo code is shown
in algorithm II. The weight of each sample is initialized
to the probability of the correct label. Then, this weight is
used to sample the training data. That is, we use the samples
seemed "correct" as the training data to train the base classi-
fier. Based on the error of the whole dataset, we will update
the weight to make sure that the sample with high correct
label probability but misclassified will have a high weight
so that it will be added into training in the next round.

Next, we need to provide the training error of Algorithm
II. Since the observed labels are noisy, we can only get the
training error on noisy data. That is, 1

N

∑N
i=1 [hf (xi) 6= ỹi],

We need to prove that the error on the clean data is also
optimized in our algorithm. [35] has given the boundary of
training error for Adaboost.M1 on the clean training data.
Take the training error in each iteration j as εj , take γt =

1/2− εj . If ∀γj > 0, ∃γj > γ. Then the training error is:

1
N

∑N
i=1 [hf (xi) 6= yi] ≤ exp(−2Tγ2)

However, in our task, we cannot observe the correct label of
training data and we do not know the training error in each
iteration neither. So, we cannot obtain the training error on
the cleaning data directly. Fortunately, Formula(8) reveals
that the gap between the training error on the clean data and
the noisy data is decided by the estimation result. In each
iteration, if we define the training error on the clean data as:
εj = [hj(xi) 6= yi], and the training error on the noisy data
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as: ε̃j = [hj(xi) 6= ỹi]. There is a positive real number g to
indicate the gap between the two errors: |εj − ε̃j | ≤ g . So,
we can obtain the inequality:

ε̃j +
1

2
− g ≥ 1

2
− εj ≥

1

2
− ε̃j − g

According to the Hoeffding boundary from Angluin and Laird
[15], we have 1

2 − εj ≥ 0 here. It means that if we take
γt = 1/2− εj , then ∀γj > 0, ∃γj > γ such that the training
error is:

1

N

N∑
i=1

[hf (xi) 6= yi] ≤ exp(−2Tγ2) (9)

This means that the classifier can be optimized on the noisy
distribution and achieves an optimal result on the clean dis-
tribution.

6 PERFORMANCE EVALUATION

6.1 Experimental setup

Our experiments evaluate the performance of the noise es-
timation method and show its usefulness in improving the
learning performance. The evaluations are based on experi-
ments with varying class-noise rates and training-set sizes
compared to other state-of-the-art systems. We use seven
public datasets for binary classification with different class-
noise rates: (1) the LEU[36] set of cancer data, we reduce
the dimensions into 20 by PCA; (2) the Splice for DNA
sequence splice-junction classification; (3) the UCI Adult
dataset collection containing seven subsets (referred to as
UCI.a1a to UCI.a7a in this paper) of independent training
and testing data [37]; (4) the DBWorld e-mails DataSet in
English (in short, DB), which consists of 64 e-mails manu-
ally collected from DBWorld mailing list and are classified
into two classes: "announces of conferences" and "every-
thing else"; (5) the Farm Ads DataSet in English (in short,
FADS), which is collected from text ads found on twelve
websites that deal with various farm animal related topics
with binary labels based on whether the content owner ap-
proves of the ad; (6) the Twitter Dataset for Arabic Sen-
timent Analysis Dataset (in short, TDA), the class labels
are opinion polarity; (7) the Product Reviews from Ama-
zon in three categories, Book, DVD and Music (in short,
PRA) with class labels being the opinion polarities. (8) Ban-
knote is the banknote authentication Data Set. Data were
extracted from images that were taken from genuine and
forged banknote-like specimens. For digitization, an indus-
trial camera usually used for print inspection was used. (9)Haber-
man contains cases from a study that was conducted be-
tween 1958 and 1970 at the University of Chicago’s Billings
Hospital on the survival of patients who had undergone surgery

Table 1 OVERVIEW OF DATASETS

Data Type Dimension Training
size(+/-)

Testing
size(+/-)

LEU Cancer 7129(20) 38(0.71/0.29) 34(0.59/0.41)
Splice DNA 60 1000(0.52/0.48) 2175(0.52/0.48)
UCI.a1a Adult 123 1605(0.37/0.63) 30956(0.24/0.76)
UCI.a2a Adult 123 2265(0.25/0.75) 30296(0.24/0.76)
UCI.a3a Adult 123 3185(0.24/0.76) 29376(0.24/0.76)
UCI.a4a Adult 123 4781(0.25/0.75) 27780(0.24/0.76)
UCI.a5a Adult 123 6414(0.24/0.76) 26147(0.24/0.76)
UCI.a6a Adult 123 11220(0.24/0.76) 21341(0.24/0.76)
UCI.a7a Adult 123 16100(0.24/0.76) 16461(0.24/0.76)
DB English 4698 64(0.45/0.55) ——-
FADS English 54877 4143(0.51/0.49) ——-
TDA Arabic 7415 2000(0.50/0.50) ——-
PRABook Chinese 74643 4000(0.50/0.50) ——-
PRADVD Chinese 74638 4000(0.50/0.50) ——-
PRAMusic Chinese 74638 4000(0.50/0.50) ——-
Banknote Image 5 1372(0.56/0.44) ——-
Haberman Medical 3 306(0.26/0.74) ——-
ILPD Medical 10 583(0.29/0.71) ——-
QSAR Chemicals 41 1055(0.34/0.66) ——-
Spect Medical 22 80(0.50/0.50) 187(0.92/0.08)

for breast cancer [38]. (10)ILPD contains 416 liver patient
records and 167 non liver patient records [39]. (11) QSAR
contains values for 41 attributes (molecular descriptors) used
to classify 1055 chemicals into 2 classes (ready and not ready
biodegradable) [40]. (12) SPEC cardiac Single Proton Emis-
sion Computed Tomography (SPECT) images. Each patient
classified into two categories: normal and abnormal [41].

The datasets (1) and (2) can be downloaded from the
website of LibSVM1. The datasets (3) to (6) and (8) to (12)
are from UCI 2. Dataset (7) is from NLPCC 2013 cross lin-
gual opinion analysis evaluation task. Datasets (4)-(7) are
text data. The size, class ratio, types and dimensions of the
datasets are listed TABLE 1.

To introduce class noise into the training set, we stochas-
tically invert the binary labels of training samples with prob-
ability of 10%, 20%, and 30%. For datasets (1) to (3), we
train the binary classification algorithm on the inverted noisy
data. The algorithm is tuned on a development set before be-
ing used on the testing set. We use SVMlight3 as the basic
classifier for this experiment. We choose two kind of simi-
larity measures, the cosine similarity for text data, and the
Euclidean Distance based similarity for other data. The pa-
rameter k in the kNN graph is 5, set experimentally. For
datasets (4) to (11), the experiment result is from a 5-folds
cross-validation as they do not have separate testing data.

We compare the performance of ouralgorithm with other
state-of-the-art learning algorithms for noisy data:

1. LiC [34]: a Perceptron based on-line learning method
from our previous work ;

1 http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
2 http://www.ics.uci.edu
3 http://svmlight.joachims.org
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2. NHERD [42]: a widely used open source robust method;
3. llog [6] : a log loss method using the same loss function

as LiC;
4. IMTD [7]: a method using [7];
5. CEWS [8]: a method using cut edge weight statistics.

Furthermore, in order to see the necessity to use an en-
semble or not, we also compare our methods with:

6. the original SVMs;
7. an ensemble SVMs without class noise handling;
8. an e-graph based method (two samples will be linked if

the similarity between them is larger than e, including
three different parameters, e = 0.2, 0.1 and 0.05);

9. Laplace distribution based CEWS;

Notice that llog, CEWS, and Laplace distribution based CEWS
require prior knowledge of class-noise rate in training data.
Thus, they are more appropriate for use as benchmarks rather
than direct comparison to other algorithms, and should be
discussed separately.

Comparison with Other Methods
Table 2 shows the performance of our proposed algo-

rithms compared to the other state-of-the-art methods using
the 12 datasets. Results show that our proposed algorithms
outperform other algorithms in most of the cases. Both the
macro average and the weighted micro average over the size
of the different class labels clearly show that our algorithm
outperform all other methods. Note that llog, CEWS, and
Laplace are provided with the class-noise rate. So the com-
parison to our method is not completely fair. Even with pro-
vided class-noise rate to llog, CEWS, and Laplace, they out-
perform LiC and AdaBC only for the relatively low class
noise levels(10% and 20%) in two to three datasets only.
This is because these methods require all samples to have
the same class-noise rate for the probability weighting.

For the tiny training sets, such as LEU which has only
37 training samples and DB which has only 64 samples for
training, the size effect is very prominent. The noisy data
elimination based method does not work well in these data
because the removal of noisy data also removed useful train-
ing data. This is particularly true when the class noise rate
increases to 20% and 30%. Obviously, the high percentage
of noise has a big effect on the training data. Most methods
perform well on 10% class-noise rate but have large degra-
dation in the 20% and the 30% class-noise rates. Different
from these methods, LiC performs well and shows a signif-
icant advantage in these two sets of data at all three levels
of class-noise rate. This is because when the training data
is small, the size of the training data is more important than
the quality, LiC does not remove any training data. Thus, it
can make full use of the data for training. Due to its good
class noise estimation, LiC also shows a better performance
than llog even though llog does not remove any training data
either.

When the training set grows, such as Splice which has
1,000 samples or TDA which has 2,000 samples, the qual-
ity of training samples becomes much more important. In
these relatively large datasets, AdaBC shows better perfor-
mance than the other methods. When the training set size
becomes larger, the advantages of our methods become even
more obviously. For example, the UCI.Adult at most 16,100
samples, or the review text from Amazon with 4,000 sam-
ples. When the noisy level is at the 30% level, AdaBC can
achieve a 5% higher accuracy than other methods which can
be shown in the micro average of accuracy with 30% class
noise.

We also compare the performance of SVMs and Boost-
ing of SVMs on noisy data with other methods.When class
noise rate is low, the class noise handing approach does not
show significant performance gain compared to SVMs. But,
as class noise increases, our proposed method and other class
noise handling approach start to work and have marked im-
provements over SVMs [16]. have claimed that IMTD is
cheap and easy toimplement.However,it is also likely to re-
move a substantialamount of data. CEWS has similar prob-
lem. When the class noise is 30%, which is at a high level,
our proposed method is better than other methods.

Note that the e-graph based method and the Laplace based
CEWS are also compared to our proposed methods. Since
an e-graph does not need the ranking processing, it is more
convenient than a knn graph. However, experimental results
shows that the value of e should be different for different
tasks. How to choose a reasonable e is an important issue.
This is even more serious in our experiments because of the
diversity of the datasets. By tuning e for each task, we did
not get any better performance compared to LiC nor to Ad-
aBC. This, again, shows that knn graph is a better choice be-
cause k is much easier to find. For the Laplace based CEWS,
it uses the Laplace distribution and the Bernoulli distribution
both are similar to Gaussian distribution. Since CEWS is a
discretized result of these distributions, the performance of
this method is quite similar to the original CEWS.

Generally speaking, AdaBC shows a more stable perfor-
mance in most cases as shown in Table.IV. For the cases
which AdaBC cannot achieve the best performance, they are
at least as competitive as the other methods. Considering
the performance across all datasets, our proposed AdaBC
method has achieved the state-of-the-art performance.

6.2 Further Discussion and Experimental Analysis

We further answer remaining questions: in this section.(1)
"Can we use kNN directly?"; (2)"If the SRN distribution
seems to be similar to the Gaussian distribution, what is
the difference between them?"; (3) "Since the performance
of AdaBC looks similar to LiC, is it necessary to use Ad-
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Table 2 PERFORMANCE OF THE 10 SYSTEMS

Data Noise AdaBC NHERD llog
* Lic IMTD CEWS* E-graph

(0.2)
E-graph

(0.1)
E-graph
(0.05) Laplace* SVMs Boosting

LEU
10% 90.91 81.62 90.91 87.88 78.79 73.53 58.82 73.53 76.47 73.53 73.53 73.53
20% 87.88 76.62 84.85 90.91 67.65 73.53 58.82 73.53 73.53 67.65 67.65 67.65
30% 76.62 58.68 57.58 78.79 58.82 58.82 58.82 58.82 67.64 58.82 58.82 58.82

SpliceUCI
10% 85.56 72.14 83.99 84.67 83.42 83.15 85.28 85.05 85.37 83.07 83.15 83.15
20% 83.44 66.63 83.02 83.05 82.91 82.39 82.76 82.80 82.94 81.99 82.34 82.34
30% 81.71 61.14 78.31 79.53 80.83 73.54 79.54 79.53 79.54 73.65 75.68 78.34

UCI.a1a
10% 83.68 81.23 83.33 83.40 83.40 82.86 82.93 83.17 83.48 83.01 82.87 83.20
20% 83.49 79.30 81.85 81.40 79.79 82.95 83.34 82.95 83.27 82.99 80.18 80.12
30% 81.46 74.78 77.10 77.30 78.39 81.31 79.11 78.30 78.30 81.46 79.65 78.30

UCI.a2a
10% 84.40 82.25 83.92 84.24 83.79 83.71 84.19 84.10 84.11 84.00 83.85 83.79
20% 83.53 79.34 82.72 83.16 82.32 81.54 81.72 82.63 82.99 80.96 80.86 82.62
30% 82.28 74.13 76.22 80.66 76.58 81.05 76.50 77.19 77.19 81.09 77.79 77.19

UCI.a3a
10% 84.06 82.79 83.93 84.17 83.96 83.07 83.91 83.97 83.83 83.22 83.70 83.60
20% 83.45 81.14 82.23 83.49 78.02 82.83 81.18 82.19 82.17 82.59 78.52 78.39
30% 82.28 77.52 80.23 81.02 79.28 81.35 76.91 78.30 78.30 81.53 77.25 78.31

UCI.a4a
10% 84.19 83.48 84.05 84.28 83.95 83.37 84.33 84.31 84.24 83.02 84.13 83.95
20% 84.17 82.34 82.90 84.10 82.70 83.51 83.11 83.96 84.01 83.33 82.64 82.14
30% 82.62 80.05 81.54 81.81 78.09 82.31 78.66 79.06 78.06 82.12 78.31 78.06

UCI.a5a
10% 84.60 83.57 83.78 84.45 84.03 83.87 84.47 84.23 84.22 83.64 84.40 84.12
20% 84.04 82.88 83.06 84.20 83.55 83.23 83.62 84.05 83.68 83.12 83.07 83.46
30% 82.12 80.42 74.71 79.20 80.30 82.22 79.45 79.52 78.23 82.27 79.49 79.52

UCI.a6a
10% 84.64 83.97 83.20 84.77 83.83 84.44 84.50 84.56 84.61 84.05 84.46 83.75
20% 84.04 82.45 80.37 83.38 78.00 81.48 80.21 78.00 78.65 81.64 83.96 78.00
30% 81.60 80.22 77.83 81.83 78.00 78.00 78.36 78.00 77.99 78.00 77.99 78.00

UCI.a7a
10% 84.96 84.58 82.93 85.65 84.45 83.14 84.66 84.75 84.81 82.99 84.45 84.64
20% 84.53 82.87 80.43 84.27 78.17 81.65 83.90 78.18 78.18 82.01 78.18 78.18
30% 83.26 80.28 78.67 83.49 79.33 80.86 79.33 80.33 79.63 81.13 79.33 77.35

DB
10% 91.66 91.66 87.98 91.66 66.67 73.53 91.66 87.98 73.53 74.01 91.66 91.66
20% 58.33 75.00 84.50 91.66 58.33 67.65 58.33 58.33 58.33 67.65 58.33 58.33
30% 58.33 58.33 80.52 81.82 58.33 58.33 58.33 58.33 58.33 58.33 58.33 58.33

FADS
10% 89.55 86.44 90.91 82.81 75.15 60.74 86.74 85.66 86.97 61.06 89.12 90.04
20% 85.23 81.27 81.82 84.38 73.47 53.78 82.81 81.43 84.36 53.66 83.61 84.99
30% 83.31 78.42 63.64 85.58 71.07 49.58 71.07 49.58 49.58 49.68 79.95 80.82

TDA
10% 83.61 82.92 82.35 84.06 71.88 47.68 81.25 80.97 79.66 48.06 82.56 82.13
20% 79.46 76.81 77.70 79.66 65.28 45.97 76.53 75.45 62.33 45.68 75.41 73.82
30% 79.64 68.70 76.23 77.94 58.92 47.19 71.22 69.91 48.56 47.99 73.22 73.56

PRA Book
10% 79.55 75.65 78.02 77.72 63.38 64.36 78.43 78.26 78.00 65.24 76.91 77.36
20% 78.06 74.31 76.29 75.55 61.65 56.97 76.59 77.94 74.51 57.91 77.56 77.25
30% 77.93 69.52 76.97 77.03 59.43 70.04 77.03 76.21 73.22 73.33 74.31 72.51

PRA DV
10% 78.93 79.21 79.55 80.42 69.24 80.20 79.21 79.06 74.69 79.99 78.03 78.09
20% 78.42 74.33 79.30 79.43 73.10 69.86 77.98 77.98 71.29 70.21 74.66 74.94
30% 77.24 70.16 77.55 78.96 62.39 71.98 78.00 76.92 69.55 71.78 74.31 72.76

PRA Music
10% 80.65 71.39 79.35 78.83 72.16 52.06 79.65 80.21 74.69 52.06 80.25 79.33
20% 79.36 77.27 76.25 79.84 68.30 52.45 78.99 79.22 75.44 52.45 74.69 74.76
30% 74.88 69.78 72.13 75.23 71.26 70.75 73.21 75.46 71.06 70.75 73.99 72.96

Banknote
10% 98.29 93.25 90.07 89.38 94.54 97.95 97.95 98.29 98.29 97.95 98.29 98.29
20% 98.29 91.44 87.32 91.43 93.86 97.61 97.26 97.61 97.26 97.61 97.61 97.61
30% 97.61 83.21 76.38 80.13 91.47 97.61 92.74 97.61 97.61 97.61 97.61 97.61

Haberman
10% 79.81 70.29 72.46 73.42 72.52 73.91 71.43 71.43 71.43 73.91 71.43 71.43
20% 75.44 69.71 73.91 74.21 70.96 72.46 69.71 69.71 66.53 72.46 71.43 71.43
30% 77.69 66.53 75.36 75.96 70.11 71.43 66.53 66.53 66.53 71.43 71.43 71.43

ILPD
10% 77.26 53.77 64.35 73.26 74.25 74.25 50.98 50.98 50.98 74.69 50.98 72.55
20% 75.25 49.27 74.25 74.25 72.55 70.13 50.33 50.33 50.33 69.96 50.33 72.55
30% 76.24 48.51 62.37 75.24 66.45 69.14 46.21 50.33 50.33 70.04 46.21 72.55

QSAR
10% 74.89 72.67 67.26 67.26 71.36 72.54 71.81 71.81 71.81 72.54 70.40 71.81
20% 71.36 69.35 67.26 67.26 70.91 69.51 66.96 66.96 66.96 69.51 66.96 66.96
30% 66.96 66.96 66.96 66.96 66.96 66.96 66.96 66.96 66.96 66.96 66.96 66.96

Spect
10% 94.86 73.25 82.79 90.32 62.30 70.59 74.33 74.33 74.33 70.36 74.86 74.33
20% 85.93 80.98 83.87 94.08 56.68 77.01 70.05 71.42 72.33 76.44 77.01 70.05
30% 81.49 69.69 71.51 78.49 50.27 59.36 58.82 69.51 66.35 60.21 59.89 58.82

Macro-Average
10% 84.68 79.18 81.27 82.36 77.07 75.55 80.93 80.69 79.42 75.62 80.82 81.96
20% 82.73 76.66 79.95 82.04 74.24 73.31 77.12 76.90 75.55 73.27 76.60 77.15
30% 79.41 71.49 74.96 78.85 71.45 72.26 73.05 73.03 70.80 72.60 73.77 74.91

Micro-Average
10% 84.23 82.38 83.40 83.88 82.61 81.61 83.73 83.72 83.57 81.59 83.58 83.56
20% 83.55 80.62 81.69 82.96 79.52 80.24 81.99 81.70 81.48 80.16 80.44 80.11
30% 81.87 77.00 77.45 80.27 77.32 79.46 77.82 77.72 76.87 79.59 78.15 77.86
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aBC?"; and (4)"Can we use the estimation method on the
clean data?".

kNN, SRN and Gaussian
In the estimation method proposed in section IV, kNN

graph is to comparean individual sample with its most sim-
ilar neighbors. kNN graph is used because it is sensitive
to class noise[43,44]. The Gaussian distribution based es-
timation method also used kNN graph [8,10].To see the dif-
ferences, we conduct the following experiment to estimate
the class noise rate for each individual sample by differ-
ent methods on the UCI.Adult dataset. The parameter k is
5 in this experiment because a small k always leads to bet-
ter performance. After the estimation, the mean value of the
class noise rate for each disagreement in kNN is shown in
Fig.1.For the kNN method, we take the class noise rate equal
to 0 when the number of different labels is less than 3, and
the class noise rate is 1 otherwise. In Fig.1(a), the Gaussian
based method is sensitive to class noise. When the number
of different labels is 2, the probability of class noise esti-
mation is near 95%. If this result is used as a probability,
it will lead to an overrated class noise rate. Note that in [8,
10], the author takes the Gaussian distribution based method
as a hypothesis testing method, and the threshold is indeed
0.95. If the individual sample achieves a higher p value, the
individual sample will be considered as a noisy sample. We
should note that, the threshold of an estimation method is the
same as the experimental threshold for kNN. Due to the sen-
sibility of kNN to class noise, this threshold is an overrated
result for class noise rate. It will lead to misclassified noisy
samples, which have the correct label. When the class noise
increasing, the threshold of kNN and Gaussian distribution
based method do not change. However, SRN is quite differ-
ent. First, SRN will not over-rate class noise. It is obvious
that even if there is no class noise, the number of disagree-
ment labels can still be 3 when k = 5 in kNN graph. So
SRN gives quite a reasonable estimation according to com-
mon sense. Another benefit is that, when the class-noise rate
increases, SRN also gives a higher estimation of class-noise
as indicated in Fig. 1(a), 1(b) and 1(c), with increasing noise
levels.

From the experiment above, we can see that the estima-
tion method proposed in this paper is more flexible. Only
when most of neighbors have different labels, the individual
sample is considered a noisy sample with high probability.
If the training data has high probability of noise label, the
number of disagreements should be high. In addition, com-
paring to kNN and Gaussian distribution, SRN gives a more
reasonable estimation based on our analysis above. That is
why the performance of our method is better than CEWS
(Gaussian distribution based method) in the experiment.We
do not compare SRN with the original kNN based method
because the performance of kNN is similar to CEWS, and
CEWS is a more sound method theoretically speaking.

(a) (b)

(c) (d)

(e) (f)

Fig. 1 Distribution of three estimation results (a.10% class noise, b.
20% class noise, c. 30% class noise) & Different k in the kNN graph
for the two methods (d.10% class noise, e. 20% class noise, f. 30%
class noise)

Lic v.s AdaBC on Different Parameters
In the experiments of Section 4.C, LiC achieves better

performance in most datasets than AdaBC. Then, why we
need the AdaBoost based method, which seems to be more
complicated? Fig.1 shows the set of performance evalua-
tions of CUI.Adult using different k of the kNN graph under
10%, 20% and 30% class noise, respectively. Fig.1 shows
very clearly that when k increases, the performance of LiC
shows a sharp degradation. That is the gap between the noisy
training data and clean training data revealed by the theoret-
ical analysis. The performance of LiC is dependent on the
estimation result. In fact, it is a well-known conclusion that
the best k in kNN should be no larger than 5 (in most text-
book of A.I or machine learning such as [45]), or the preci-
sion of this method will be limited and proven in Fig.1 here
again. When k is no larger than 5, LiC achieves the best per-
formance among all k values.

In the Fig.1(d),1(e),1(f) the gap between the two meth-
ods becomes larger when k increases, it also provides proof
of our analysis. AdaBC, seems to be quite robust to k value.This
is because even if the estimation is wrong, it still reveals
some truth of the clean distribution, and the adaptive sam-
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Comparison of performance based on iterations (a. LiC, 10%
class noise; b.LiC, 20% class noise; c.LiC, 30% class noise; d.AdaBC,
10% class noise; e. AdaBC, 20% class noise; d. AdaBC, 30% class
noise)

pling method ensemble a series of weak classifiers into a
strong classifier.The error boundary in Formula(9) also is af-
fected by the class noise rate. The low class noise rate does
less harm to the performance of the base classifier obviously.
That is why AdaBC is robust to the k value.

Stability of LiC and AdaBC Both LiC and AdaBC are
iteration based learning algorithms. With the growth of iter-
ations, the risk of overfitting on the training data becomes
higher. With noisy training data, overfitting will certainly
lead to misclassification directly. In the following set of ex-
periments, we compare LiC and AdaBC with iterations as
the variable to identify the stability of the two algorithms.

Fig.2(a),2(b),2(c) show the performance of LiC at noise
level of 10%, 20%, and 30% on the UCI.Adult data, respec-
tively. Since LiC is a perceptron based method, we also care
about the effect of different learning rates. We take three
different learning rate of 0.02, 0.01 and 0.005 in this experi-
ment. Different learning rate can achieve similar top perfor-
mance. It is also obvious that a smaller learning rate picks up
performance slower, but it will outperform the higher learn-
ing rate after iteration 5. The performance gain with smaller
learning rate is much more obvious when the noise level in-

Table 3 PERFORMANCE ON CLEAN DATA

Data LiC AdaBC SVMs Data LiC AdaBC SVMs
LEU 57.58 73.53 73.53 FADS 78.42 89.55 90.91
Splice 66.63 84.97 85.29 TDA 68.70 84.97 85.64
UCI.a1a 78.45 84.57 84.29 PRABook 72.03 79.98 80.13
UCI.a2a 77.21 84.15 84.57 PRADVD 69.96 81.25 81.63
UCI.a3a 77.96 83.96 84.51 PRAMusic 68.71 79.61 78.61
UCI.a4a 78.33 84.11 84.51 Banknote 83.21 97.95 97.95
UCI.a5a 78.41 84.27 84.39 Haberman 72.52 80.34 81.43
UCI.a6a 77.25 83.59 84.71 ILPD 74.25 81.25 82.55
UCI.a7a 78.00 84.66 84.80 QSAR 67.26 77.35 77.35
DB 58.33 91.66 91.66 Spect 77.00 92.34 97.64

creases. In fact, for the 30% class noise case, there is a 4%
gap between different learning rates.

Fig.2(d),2(e),2(f) show the boxplots of the respective noise
levels for AdaBC. Since AdaBC is an AdaBoost based method,
the experiment about AdaBC focuses on the mean value and
variance of accuracy. In Fig.2, the top performances of the
two methods are similar. But AdaBC gives a more stable per-
formance because the mean value of accuracy is in a similar
level when iteration number increases. The variance is also
small in the figure. However, the performance of LiC will
peak at certain iteration number and then degrade because
the accumulated noise will take its tolls on performance.

Now we can answer the question proposed at the begin-
ning of this section. Even though the performances of the
two methods are similar, we still have reason to use AdaBC
because LiC needs to choose the optimal iteration number
and learning rate to achieve top performance. The stability
of LiC is also not as good as AdaBC. If the parameter is not
suitable for a dataset, the performance degradation is obvi-
ous. Comparing to LiC, AdaBC shows a stable and robust re-
sult and that is the reason why we propose AdaBC although
AdaBC may not be suited for small training datasets.

Estimating the Noise on Clean Data. In practice, we do
not know if the data contains noise or not. So an interesting
question is that if we estimate the noise rate on the clean
data, what will happen. In this experiment, we run both LiC
and AdaBC on clean data. As a comparison, a linear kernel
SVMs is used as the baseline method. The result is show
below in TABLE 3.

Note that LiC performs worse than the original SVMs
on the clean dataset. The main reason is that, in the loss
function of LiC given by Formula (6), the samples with high
class noise rate will have a penalty. When the estimated class
noise rate is higher than 50%, the weight of the penalty item
will be larger than the original loss function item. It is ac-
tually an operation of label inversing on the training sam-
ple. Since LiC can introduce class noise into clean data this
way, it performs worse than the original SVMs is reason-
able. Different from LiC, AdaBC is an ensemble method.
The basic classifier is still SVMs. The loss function is to es-
timate the error rate of the basic classifier and calculate the
weight based on this error rate. Usually, the error rate is less
than 0.5. It means that each basic classifier will have a pos-
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itive weight. So, the AdaBC algorithm becomes a bagging
method of SVMs. Each basic classifier in the bagging has a
weight, but the weight is meaningless since the training data
is clean. Since each classifier trains on only part of the train-
ing set, the performance is no better than the original SVMs,
but it is still comparable.

In conclusion, the estimation of class noise is used to
weigh the samples in LiC but to weigh classifiers in AdaBC.
In clean data, the incorrect weight on samples is much more
harmful than the incorrect weight on classifiers. This is be-
cause the former leads to a miss-labeled sample, yet the later
only introduces an incorrect weight. Fortunately, the weight
is still with correct polarity and the training data of classifier
is clean. That is the reason why AdaBC also works well on
clean data.

6.3 Summary

Generally speaking, AdaBC achieves the best performance
in the evaluation. However, by examining their performance
in details in the experiments, we can see that LiC is sen-
sitive to algorithm parameters including the k value in the
kNN graph and the learning rate of the perceptron as well
as the termination point of the algorithm, it cannot work on
the clean data neither. AdaBC is better than LiC in this per-
spective. AdaBC is robust to all theabove parameters. An-
other advantage of AdaBC is the performance on clean data.
Even the data does not contain noise, the AdaBC still per-
form well. Therefore, the Adaboost based improvement is
necessary.

7 Conclusion And Future Work

In this paper, we present a novel class noise estimation method.
We apply our estimation result into an Adaboost based al-
gorithm to handle class noise. The algorithm is competi-
tive compared to the state-of-the-art techniques and show
superior performance on real datasets. We analyze the al-
gorithm performance on different training dataset sizes and
class-noise rates. Results confirm to the learning theorem
provided in Equation (8). In future works, we will investi-
gate noise handling in semi-supervised tasks such as semi-
supervised classification, transductive transfer learning, and
also look into the domain adaptation problem. We will also
consider different noise rate for different classes since label
noise rates are often class label dependent in practice.
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