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Band alignment and scattering considerations for enhancing the thermoelectric power
factor of complex materials: The case of Co-based half-Heuslers

Chathurangi Kumarasinghe∗ and Neophytos Neophytou
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

(Dated: May 17, 2019)

Producing high band and valley degeneracy through aligning of conducting electronic bands is an
effective strategy to improve the thermoelectric performance of complex bandstructure materials.
Half-Heuslers, an emerging thermoelectric material group, has complex bandstructures with multi-
ple bands that can be aligned through band engineering approaches, giving us an opportunity to
improve their power factor. Theoretical calculations to identify the outcome of band engineering
usually employ detailed density functional theory for bandstructure calculations, but the transport
calculations are kept simplistic using the constant relaxation time approximation due to the compli-
cations involved with detailed scattering physics. In this work, going beyond the constant relaxation
time approximation, we perform an investigation of the benefits of band alignment in improving the
thermoelectric power factor under different density of states dependent scattering scenarios. As a
test case we consider the Co-based p-type half-Heuslers TiCoSb, NbCoSn and ZrCoSb. First, using
simplified effective mass models combined with Boltzmann transport, we investigate the conditions
of band alignment that are beneficial to the thermoelectric power factor under three different carrier
scattering scenarios: i) the usual constant relaxation time approximation, ii) intra-band scattering
restricted to the current valley with the scattering rates proportional to the density of states as
dictated by Fermi’s Golden Rule, and iii) both intra- and inter-band scattering across all avail-
able valleys, with the rates determined by the total density of states at the relevant energies. We
demonstrate that the band-alignment outcome differs significantly depending on the scattering de-
tails. Next, using the density functional theory calculated bandstructures of the half-Heuslers we
study their power factor behavior under strain induced band alignment. We show that strain can
improve the power factor of half-Heuslers, but the outcome heavily depends on the curvatures of
the bands involved, the specifics of the carrier scattering mechanisms and the initial band separa-
tion. Importantly, we also demonstrate that band alignment is not always beneficial to the power
factor. In addition, we show that the bandstructure itself can undergo changes as the bands are
aligned in practice, which further affect the band alignment optimization. Our work illustrates the
importance of going beyond the constant relaxation time approximation, as well as understanding
how the bandstructure of each material behaves when considering band alignment.

I. INTRODUCTION

Thermoelectric (TE) materials are capable of directly
converting heat into electricity and vice versa, and are
useful in power generation from waste heat1–5. The abil-
ity of a material to produce thermoelectric power effi-
ciently is quantified by the dimensionless figure of merit:

ZT = σS2T/κ, (1)

where σ is the electrical conductivity, S is the Seebeck
coefficient, T is the temperature and κ is the thermal
conductivity of the material. For a high ZT , a high
electrical conductivity, a high Seebeck coefficient, i.e., a
high power factor (σS2), and a low thermal conductivity
κ are desirable. However, simultaneous optimization of
these parameters remains a challenge due to their com-
plicated adverse interdependencies. Recently emerged
advanced thermoelectric materials, such as half-Heusler
alloys6–13, SnSe, PbTe, and BiTe based compounds14–16,
clathrates17,18, skutterudites19,20, to name a few, pos-
sess complex crystalline and electronic bandstructures,
exhibiting multiple anisotropic valleys with high degen-
eracies capable of contributing to conduction. Such fea-
tures can be useful to overcome the unfavorable interde-
pendencies at least of the conductivity and the Seebeck

coefficient by application of bandstructure engineering
approaches to improve the power factor21–23.

One of the most promising and commonly employed
bandstructure engineering approaches in multi-band ma-
terials is to increase the valley or orbital degeneracy near
conduction or valence bands edges24–26, referred to as
band convergence or band alignment. The idea is that
when multiple bands contribute to transport, the con-
ductivity, and therefore the power factor, will improve.
In bulk materials, bandstructures can be manipulated
by applying strain, doping, alloying, and second phasing
with other suitable structures27–31. At nanoscale, ad-
ditional means of influence such as modifying the size,
shape and the chemical surrounding, to name a few, are
available32–35.

In addition to good thermoelectric performance, the
ideal thermoelectric material should have low toxicity,
relatively inexpensive elemental composition, good ther-
mal stability, and be easily produced on a large scale.
Half-Heusler alloys are one of the few classes of mate-
rials that fulfill the above requirements6,36. They are
known to have impressive power factors, but unfortu-
nately high thermal conductivities8,36–38. As a conse-
quence, much work on half-Heuslers focus on lowering
of the thermal conductivity by introducing multi-scale
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defects, manipulating grain sizes, and alloying with ele-
ments of large mass contrast. High ZT values close to 1.5
have been achieved under moderate temperatures using
such techniques39,40. Their complex electronic structure,
however, provides opportunities to further optimize the
inherently good power factors through bandstructure en-
gineering.

The majority of theoretical work related to bandstruc-
ture engineering (as well as material screening), involves
calculating the bandstructures using ab initio density
functional theory (DFT), which is then used in conjunc-
tion with the Boltzmann Transport Equation (BTE) in
the relaxation time approximation to compute the ther-
moelectric coefficients6,41. Due to the complexities in ac-
curate scattering treatment and the variety of scattering
mechanisms, it is common to adopt a constant relaxation
time (τ) approximation (usually τ ≈ 10−14 s is used at
300 K41,42). However, it is quite evident that such a sim-
plification will fail and lead to false estimations of the
power factor, particularly when multiple bands partici-
pate in transport, such as in studies of band-alignment
optimization. Simply, while aligning the bands can in-
crease the number of carriers available for conduction,
from simple Fermi’s Golden Rule considerations, it can
also increase the number of states that carriers scatter
into, which hinders the carrier transport. Therefore, the
energy dependence of the scattering mechanisms, as well
as the specifics of intra- or inter-valley scattering consid-
erations are important in identifying if a given bandstruc-
ture engineering approach leads to an improved power
factor, or not43–45.

In this work, we investigate the role of band alignment
in improving the power factor in complex bandstructure
materials, by considering three possible scattering con-
ditions: i) the commonly employed constant relaxation
time (τC), ii) scattering proportional to the density of
states of the band, but restricting to only intra-valley
scattering (τIV(E)), and iii) scattering proportional to
the total density of states, allowing both intra- and inter-
valley and inter- and intra-band scattering (τIIV(E)). We
note that one needs to understand the influence of all
three scenarios, as to date, there is almost complete lack
of understanding, either theoretical or experimental, in
providing evidence in the true nature of scattering in
these materials.

As a test case, we use the bandstructures of the Co-
based p-type half-Heuslers, TiCoSb, NbCoSn, ZrCoSb
and ZrCoBi, which have multiple valleys (or carrier pock-
ets) with multiple bands, that can be aligned at the va-
lence band edge (VB0). We show that when attempting
to improve the power factor of materials through band
alignment, depending on i) the scattering considerations,
ii) the masses of the aligned bands, iii) initial band sepa-
ration and iv) the changes that appear in the bandstruc-
ture upon alignment, different outcomes to the power fac-
tor are reached. We show that contrary to current view,
band alignment is not always beneficial to the power fac-
tor, in fact, in some cases it is misalignment that leads

to improvements. We then present in detail the condi-
tions for power factor improvements through simplified
equations that would prove useful to materials scientists.
We further consider the use of strain as a band alignment
strategy for these half-Heuslers for power factor improve-
ments. We show that strain can indeed align the bands
of Heusler materials, and this can result in even up to a
40% improvement in the power factor.

The paper is organized as follows: In Section II we
describe our theoretical approach. In Section III, we
start with two simple parabolic bands to illustrate op-
timum conditions for band alignment under the three
different carrier scattering considerations. In Section IV
we first describe simplified, computationally inexpensive
non-parabolic effective mass models derived out of DFT
calculated bands to identify potential improvements in
the power factor of Co-based half-Heuslers as a result of
band alignment. Then, in section V, using more compu-
tationally expensive DFT and semi-classical Boltzmann
transport calculations, we investigate how strain can be
used in reality to achieve band alignment. Finally, in
Section VI we conclude.

II. METHODS

A. Boltzmann Transport Equation

To compute the thermoelectric coefficients we employ
the Boltzmann transport formalism within the relaxation
time approximation (RTA). The materials under consid-
eration are described using effective mass approximations
(parabolic and non-parabolic), as well as DFT extracted
bandstructures. The thermoelectric coefficient tensors,
electrical conductivity σα,β(T,EF ) and Seebeck coeffi-
cient Sα,β(T,EF ), are expressed as46,47:

σαβ (T,EF ) = e2
∫

Ξαβ (E)
(
− ∂f(E,EF , T )

∂E

)
dE (2)

Sαβ (T,EF ) =
e
∫

Ξαβ (E) (E − EF )(−∂f(E,EF ,T )
∂E )dE

Tσαβ (T,EF )
(3)

where e is the charge of an electron and f(E,EF , T ) is
the Fermi distribution function at a given temperature
T and a chemical potential EF . The transport distribu-
tion (TD) function, Ξαβ (E) which is a function of carrier
energy E, is given by:

Ξαβ(E) =
∑
i,k

τi,k(E)vα(i,k)vβ(i,k)δ(E − Ei,k) (4)

where i and k are the band index and the k-point, respec-
tively. The electron relaxation time is denoted by τi,k(E)
and vα(i,k) (α = x, y, z) represents the αth component
of the group velocity v(i,k) which can be derived from
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FIG. 1. Transport distribution (TD) functions for different band mass combinations (row-wise) under different scattering
scenarios (column-wise). Band B1, which is already aligned with the valence band edge (VB0) has a mass m1 and band B2,
which is below it has a mass m2. (a) Schematic representation of aligning a lighter band (m1 = 1m0, m2 = 0.5m0) in the first
row, and (b) aligning a heavier band (m1 = 1m0, m2 = 2m0) in the second row. The displacement between the two bands
is given by ∆E. The first row shows the TD functions for aligning a lighter band in case of (c) constant rate of scattering
(τC), (e) intra-band scattering only (τIV(E)), (g) and inter- and intra-band scattering (τIIV(E)). The second row shows the
TD functions for aligning a heavier band in case of (d) constant rate of scattering (τC), (f) intra-band scattering only (τIV(E)),
and (h) inter- and intra-band scattering (τIIV(E)).

the slope of the bands in the bandstructure as:

v(i,k) =
1

~
∇kEi,k. (5)

It can be seen from Eqs.2 and 3 that the conductiv-
ity will increase with the TD function, while the See-
beck coefficient has a more complicated relation, with
the contribution of higher energies being weighted more.
Therefore, the Seebeck coefficient depends on the energy
derivative of the TD function. Numerical calculations
for the transport coefficients were carried out using the
BoltzTraP code48 (in the case of constant RTA and DFT
calculated bandstructures), in combination with our own
developed codes (for the cases of energy-dependent RTA
and parabolic/non-parabolic effective mass approxima-
tion bandstructures), as noted below in each described
case.

B. Ab initio electronic structure calculations

We have performed ab initio DFT calculations for the
Co-based half-Heuslers, NbCoSn, TiCoSb, ZrCoSb and
ZrCoBi with the QUANTUM ESPRESSO package49.
Projector augmented wave technique was used with the

PBE-GGA functional and a kinetic energy cutoff greater
than 60 Ry was used for the wavefunctions. An en-
ergy convergence criterion of 10−8 Ry for self-consistency
was adopted throughout our calculations. For trans-
port property calculations, a 15x15x15 MonkhorstPack
k-point sampling was used for the primitive unit cell with
three atoms. Calculations using denser k-points were also
carried out to confirm the convergence of the results. We
calculate an average of transport quantities in x, y and
z crystalline directions, when using DFT derived bands
in combination with BoltzTraP. Using the information of
three crystallographic orientations, rather than the full
anisotropy is known to give sufficient accuracy in thermo-
electric calculations50–52. In the DFT calculations, spin
orbit coupling (SOC) effects were not considered. SOC
introduces band splitting and changes in the separation
between the different valleys, but these effects do not af-
fect our analysis or our qualitative conclusions. In fact,
SOC effects are insignificant in the TiCoSn and ZrCoSb
cases, whereas in the case of NbCoSn, SOC effects the
upper valleys slightly50,53. For details of bandstructure
comparisons with and without SOC see our calculations
in Supplemental Matrial54.
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C. Parabolic band approximation

For our initial, first-order understanding of the effect of
band alignment, we construct a bandstructure consisting
of two parabolic bands (E = ~2k2/(2m)) with different
effective masses, m for each band (as shown in Figs.1(a)
and 1(b)). We then examine the thermoelectric power
factor upon aligning these bands under different scatter-
ing RTA scenarios: i) the commonly employed constant
relaxation time, τi(E) = 10−14 s, ii) scattering propor-
tional to the density of states of the band, but restrict-
ing to only intra-valley scattering (τi(E) ∝ 1/DOSi(E)),
and iii) scattering proportional to total density of states,
allowing both intra- and inter-valley and inter- and intra-
band scattering (τi(E) ∝ 1/

∑
i DOSi(E)). We have not

considered inter- and intra-band scattering with only in-
tra -valley scattering scenario because above mentioned
scenarios are sufficient to provide a general understand-
ing of the effect of scattering. Since under the parabolic
band approximation, the velocity and density of states

of each band is vi(E) = (2E/mi)
1/2

and DOSi (E) =

21/2m
3/2

i NiE
1/2/(π

2~3), respectively, the TD function
for valence bands is reduced to:

Ξ (E) ∝
∑
i

Niτi(E)m
1
2
i E

3
2H (−∆Ei) (6)

where the subscript i indicates each band, ∆Ei indicates
the distance to the band edge from the valence band
edge, Ni indicates the band degeneracy and H (∆Ei)
indicates the Heaviside step function. For conduction
bands, H (−∆Ei) should be replaced by H (∆Ei). We
label the band that is already at the valence band edge
VB0 as B1, and the second, as the ‘aligning band’ B2.

We note that which of the three scattering scenarios
is the most appropriate, is not possible at this point
to determine it might be that it will be different for
different materials, different energies in the same ma-
terial, or even a combination of all three in the same
material. Experimental studies could provide guidance
towards understanding the nature of scattering in half-
Heuslers, however, data are sparse at the moment, and
mostly for alloys and for specific charge densities. Even
when it comes to the constant relaxation times, the ac-
tual values can differ by orders of magnitude. Indeed,
in the Supplementary Information54 we analyzed data
from 2 experiments for doped-TiCoSb alloys55,56, which
point out to larger relaxation times, however, we still use
below the more commonly employed τ = 10−14 s. We
have also performed ab-initio electron-phonon scattering
calculations using the EPW package57, for TiCoSb and
ZrCoSb in an attempt to understand the nature of scat-
tering, where it seems that the relaxation times follow
roughly the downward trend of 1/DOS(E) for TiCoSb,
whereas for ZrCoSb a more constant trend followed by a
rough 1/DOS(E) at high energies, but extracting further
details seems at this point is difficult (see Supplemen-

tary Information54). Thus, separating the three cases
and studying them individually, provides a first order
understanding on the effect of each scattering scenario.

We perform band alignment investigations for the
three different scattering rates for two scenarios: 1) band
B1 has a heavier mass (m1 = 1m0) than the align-
ing band B2 (m2 = 0.5m0), and 2) B1 has a lighter
mass (m1 = 1m0 ) compared to the aligning band B2
(m2 = 2m0) as shown in Fig.1(a) and Fig.1(b), respec-
tively. The value m0 is the rest mass of the electron.
We assume the band degeneracy, N = 1, for this study.
Band B1 is already aligned with VB0, and we then bring
band B2 gradually closer to B1 by reducing ∆E. We first
examine the TD functions to understand the trends of
our results, because the influence of the different bands
at different ∆E appears there clearly. Figure 1(c)-(h)
shows the TD functions for two the bands with masses
m1 and m2 for different levels of alignment in units of
kBT , varying between unaligned (∆E = 10 kBT ) to fully
aligned (∆E = 0). Column-wise we show results for the
three different scattering situations we have considered,
as labeled. Row-wise we show results in the case where
we bring a lighter/heavier band into transport, respec-
tively. We note that all our calculations are performed
at T = 300 K.

III. BAND ALIGNMENT UNDER THE
PARABOLIC BAND APPROXIMATION

A. Constant scattering rate and time (τC)

Under the constant RTA, τi(E) is a constant and there-
fore the TD function relation given by Eq.6 can be sim-
plified to:

Ξ (E) ∝
∑
i

m
1
2
i E

3
2 H(−∆Ei). (7)

This indicates that aligning a band of any mass will in-
crease the TD function, resulting finally in an increased
conductivity, with the larger masses resulting in larger
improvements, a common scenario seen in most band
alignment literature. The TD functions for these cases
are shown in Figs.1(c) and 1(d) when bringing in a
light/heavy band, respectively. Indeed, it is clear that
for the fully aligned cases (blue lines), the TD function is
larger when a heavier band is aligned. The thermoelec-
tric coefficients, conductivities, Seebeck coefficients, and
power factors, calculated for each scattering scenario, are
shown in Fig.2. Here, the three different panels (1-3)
show the results for the three different scattering rate
scenarios, τC, τIV(E), and τIIV(E), respectively. Within
each panel, the left column shows the thermoelectric co-
efficients σ, S, and PF when a lighter band is aligned,
whereas the right column when a heavier band is aligned.
Focusing on the left panel, Fig.2.1, which deals with the
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FIG. 2. Thermoelectric coefficients when aligning bands with different mass combinations under three scattering scenarios:
Panel (1) for constant rate/time of scattering (τC), panel (2) for intra-band scattering only (τIV(E)) and panel (3) for inter-
and intra-band scattering (τIIV(E)). Each panel shows the coefficients: (a) electronic conductivity, (b) Seebeck coefficient, and
(c) power factor when the mass of B1 is larger than that of B2, i.e. m1 > m2 (m1 = 1m0, m2 = 0.5m0). Sub-figures (d-f) in
each panel show the (d) electronic conductivity, (e) Seebeck coefficient, and (f) power factor when the mass of B1 is smaller
than that of B2, i.e. m1 < m2 (m1 = 1m0,m2 = 2m0).

TE coefficients results under τC, we see that as a re-
sult of the band convergence, the conductivity increases
following the increase in the TD function (Fig.2.1(a, d)).
The impact of band alignment on the Seebeck coefficient,
however, is not significant (Fig.2.1(b, e)). The magni-
tude and sign of the Seebeck coefficient are related to the
asymmetry of the electron transport around the Fermi
level58,59, which is indicated by the energy gradient of
the TD function. For the range of band effective masses
we are concerned with, aligning does not additionally in-
troduce significant asymmetry (or significant change in
gradient of the TD function) in the electron transport
window around the Fermi level where the PF peak is
observed. The resulting power factor shows an improve-
ment upon band alignment (a maximum improvement
of 143% when a band of heavier mass is brought to the
band edge, as opposed to 69% when a band with lighter
mass is aligned), as seen in Fig.2.1(c, f). Therefore, in the
case of a constant relaxation time (τC), which is the most
commonly employed approximation in theoretical inves-
tigations, a power factor improvement is always achieved
upon band alignment, with a heavier second band being
preferred. As we show further below, this is not the case
when τ = τ(E).

B. Intra-band scattering only (τIV(E))

Within Fermi’s Golden Rule, the scattering rate is pro-
portional to the density of available states that a charge

carrier can scatter into43,60,61. Therefore, it is natural to
investigate the effect of such a scattering scenario on the
TE coefficients under band alignment. In multi-valley
multi-band materials the selection rules for each scat-
tering mechanism dictate if the carriers are allowed to
scatter only within their current band (intra-band) in
the current valley (intra-valley), or whether scattering
into states in other bands (inter-band) and other valleys
(inter-valley) is also allowed43–45,62. For intra-band scat-
tering (limited to intra-valley in multi-valley materials),
τIV(E), we have τi(E) ∝ 1/DOSi(E), and the TD func-
tion given by Eq.6 can be simplified to:

Ξ(E) ∝
∑
i

E

mi
H (−∆Ei) (8)

This indicates again that aligning a band of any mass
will increase the TD function, resulting in an increased
conductivity. As opposed to the previous τC scenario,
however, lighter bands benefit transport (since the band
mass is now in the denominator), and bringing lighter
bands closer to the band edge will provide a higher im-
provement. This is indicated in Figs.1(e) and 1(f) for the
TD functions in this scattering scenario, where the fully
aligned blue line shows largest improvement under light
band alignment, in contrast to the τC case in Fig.1(c)
and 1(d). Notice that the TD functions in Fig.1(e) and
1(f) are non-smooth, highlighting the additional trans-
port component that is added from the second band.
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FIG. 3. The color plot shows the maximum power factor
(PF) for a two-band system of different combinations of band
masses. The power factor is normalized by the maximum PF
of the case where the two bands are separated by a large en-
ergy interval ∆E = 10 kBT (essentially the single band case).
Results as a function of the mass ratio m1/m2 (y-axis) and
band separation ∆E (x-axis) are shown. (a) Constant rate of
scattering ( τc) is assumed in the calculation, (b) intra-band
scattering only (τIV(E)) with (c) a zoom of (b); and (d) inter-
and intra-band scattering (τIIV(E)) with (e) a zoom of (d).

The thermoelectric coefficients resulting out of these TD
functions as a function of the Fermi level position are
shown in the middle panel of Fig.2. It can be seen that
as a result of the band convergence, the conductivity
increases (Fig.2.2(a, d)), the Seebeck coefficient is still
not affected noticeably (Figs.2.2(b), 2.2(e)), and the re-
sulting power factor shows a large improvement of 200%
when a light band is brought in, as opposed to 49% when
a heavier band mass is aligned (Fig.2.2(c, f)), respec-
tively). Therefore, in the case of τIV(E) scattering with

τi(E) ∝ 1/DOSi(E), a power factor improvement is al-
ways achieved upon band alignment, but now a lighter
second band is preferred. Note that in this case the TE
coefficients are given in arbitrary units, as we do not con-
sider any specific value for the scattering rate other than
its energy dependence.

C. Inter- and intra-band scattering (τIIV(E))

In this case, carriers are allowed to scatter elasti-
cally to the total density of states available at the en-
ergy under consideration, without any selection rules,
i.e. both inter- and intra-band (with inter- and intra-
valley in multi-valley materials) scattering is allowed
(τi(E) ∝ 1/

∑
i DOSi(E)). The TD function relation

given by Eq.6 in this case can be simplified to:

Ξ (E) ∝
∑
im

1
2
i E

3
2H (−∆Ei)∑

im
3
2
i E

1
2H (−∆Ei)

(9)

From Eq.(9), since the denominator has a higher mass
exponent, it can be deduced that upon full band align-
ment, the TD function will only increase when a light
band (B2) is brought close to the band edge and is aligned
with a heavier band (B1), i.e. m1 > m2 (see details in
Appendix A). The TD functions for this scattering sce-
nario under bringing in a light/heavy mass are shown
in Fig.1(c) and 1(f), respectively. Here also we assume
that ∆Ei is large enough so that initially, before aligning,
only B1 contributes to conduction (green lines). When
an additional band B2 is gradually brought close to the
band edge to be aligned with band B1, three compet-
ing effects take place: 1) the presence of the additional
conducting states from B2 tends to increase the TD func-
tion, 2) the same states increase the scattering out of B1,
which tends to reduce the TD function 3) scattering from
B2 reduces since there are less states to scatter into in
B1 at energies closer to VB0, increasing the TD func-
tion. These interdependences do not allow for the sig-
nificant improvements in the TD, the conductivity, and
the PF that were observed in the previous two scatter-
ing scenarios. When m1 < m2, at the energy where
the second band is reached, the TD experiences a sharp
drop due to increased scattering (Fig.1(h)). This drop is
not very notable when m1 > m2 (Fig.1(g)). The ther-
moelectric coefficients for this scenario are shown in the
right panel of Fig.2, for cases where we bring in a lighter
band (Fig.2.3(a-c)), and a heavier band (Fig.2.3(d-f)).
In the first case where m1 > m2, the conductivity is
improved upon band convergence, even though not as
much as observed in the previous scattering scenarios.
The power factor shows an improvement of only 26%
upon full alignment. When a heavier mass is aligned,
on the other hand in Fig.2.3(d-f), the conductivity is re-
duced and as a result, the power factor is reduced (by
58%) due to increased scattering, as opposed to all the
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previous cases (compare the blue fully aligned with the
green unaligned lines in Fig.2.3(f)). This indicates that
aligning bands is not always advantageous. It is worth
mentioning that this reduction is calculated between the
∆E = 10 kBT and ∆E = 0 cases. However, when com-
paring the power factors in a narrower energy region be-
tween the ∆E = 2kBT and ∆E = 0 (compare the blue
with the red lines in Fig.2.3(f)), there is a small improve-
ment. This indicates that if there is an improvement to
the power factor or not, depends on initial band separa-
tion, ∆E. As shown in inset of Fig.2.3(e), this increase is
due to an increase in the Seebeck coefficient. The change
in gradient of the TD function, as the B2 approaches the
vicinity of VB0, caused the Seebeck coefficient to reduce
slightly (see inset of Fig.2.3(f)). Upon full alignment,
however, the sharp drop disappears increasing the See-
beck coefficient again. This increase in Seebeck coeffi-
cient close to the PF peak overcomes the reduction in
conductivity upon full alignment, in this situation (inset
of Fig.2.3(d)). Note that such non-monotonic behaviour
can also be present in the conductivity, with increased
number of carriers and reduced scattering from B2 over-
coming the disadvantage of increased scattering from B1.

In the case of 3 bands, where two bands of masses m2

and m3 are aligned with a band of mass m1, the con-
dition for an improved 3 band TD function when those
three bands are completely aligned compared to the sin-
gle band TD function is given by (see details in Appendix
C):

m1 >

(
m

3/2
2 +m

3/2
3

)
(m

1/2
2 +m

1/2
3 )

(10)

From the above equation, we see that in general terms,
in the case of τIIV(E), bringing in lighter bands into
transport is beneficial for the TD function. Note, how-
ever, that this trend is not monotonic when considering
the power factor versus ∆E as we will be discussing be-
low.

In order to have a more comprehensive first-order un-
derstanding of the benefits of band alignment, we have
calculated the power factor using the effective mass ap-
proximation for combinations of different band effective
mass ratios (m2/m1) from 0.1 up to 10, and for band
separations (∆E) of up to 10 kBT , as first adopted by
Jeong et al.63. The maximum power factors for all cases
are shown in the color-plots of Fig.3 for the three scatter-
ing scenarios, τC, τIV(E) and τIIV(E). For the ranges we
have considered, under a constant rate of scattering(τC)
in Fig.3(a), aligning a band with any mass is going to im-
prove the power factor (brighter colors towards the left
for smaller ∆E) and aligning heavier bands is more bene-
ficial (brighter colors towards the top of Fig.3(a)). This is
a result of more states being involved in transport, with-
out however increasing scattering rates, which are kept
constant. When energy dependent τIV(E) is considered,
the transport in each valley and each band is independent

of the other and therefore we observe in Fig.3(b) (and its
zoomed version Fig.3(c)), that aligning a band with any
mass is going to improve the power factor. However, in
this case, it is the lighter bands (m2/m1 < 1) that are
more beneficial.

When τIIV(E) is considered, interestingly, we no longer
have a monotonic relationship between the alignment
∆E, mass ratio, and the power factor improvement.
When initially the ∆E is large, i.e. when only one band
is initially contributing to conduction within the range
we consider (10 kBT ), aligning masses heavier than the
existing mass (m2/m1 > 1) is going to reduce the power
factor, as shown in Fig.3(d). This shows that, counter-
intuitively, aligning bands is not always beneficial for the
power factor. This is because the benefit of increase in
conduction band states is offset by increase in scatter-
ing. For m2/m1 > 1, when ∆E is gradually reduced, the
peak power factor is reduced at first and reaches a mini-
mum, but then it experiences an increase (still less than
the max power factor at band separation ∆E = 10 kBT ).
One reason for this non-monotonic behavior is an increase
in the Seebeck coefficient closer to VB0 where the power
factor peak is observed as a result of asymmetry in the
electron transport introduced by the placement of the
second band. Another reason for this non-monotonic be-
havior is the increment seen in conductivity as a result
of competing effects of increased conduction states and
scattering, as ∆E becomes smaller (contribution from
B2 keeps increasing with reducing ∆E as a result of re-
duced number states in B1 to scatter into, closer to VB0).
Therefore, for certain initial smaller ∆E, even under the
m2/m1 > 1 condition, we will observe an improvement in
the power factor with both reducing and increasing ∆E
due to non-monotonic behavior in the conductivity and
the Seebeck coefficient. Similar non-monotonic behav-
ior is seen when lighter bands are aligned (m2/m1 > 1),
but unlike for heavier bands, improvements to the power
factor can be seen under most m2/m1 ratios (areas with
colors close to red seen in Fig.3(e)), even when the initial
∆E is large. Based on Fig.3(d), note that it is possible to
improve the power factor though misaligning the bands
(increasing ∆E) for certain m2/m1 ratios.

There is an optimum m2/m1 ratio which gives the best
power factor under m2/m1 < 1 as seen in Fig.3(e). To
provide an indication about the band mass ratio for the
maximum PF, we find the m2/m1 that gives the max-
imum TD function, when bands are fully aligned. The
TD function for 2 bands can be written as:

Ξ (E) ∝ (
1 + p

1
2

1 + p
3
2

)
E

m1
(11)

where p = m2/m1 (Appendix B). By taking the deriva-
tive of Ξ(E) with respect to the mass ratio p, we can find
the ratio that maximizes the Ξ(E). We find this value to
be p = 0.25 and this corresponds to the value of m2/m1

that gives the maximum power factor in Figs.3(e).
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with the highest improvement seen when the bands
are completely aligned (∆E = 0) under τC and τIV(E)
scattering scenarios. For the mass ranges we have con-
sidered, under τC, aligning heavy masses are more ben-
eficial, but under τIV(E), aligning light bands are more
beneficial. Under τIIV(E) the outcome is more complex
and whether there is an improvement or not depends on
masses of the bands and the initial ∆E. In general, for
τIIV(E), again aligning lighter masses is more beneficial
under most initial ∆E values.

IV. NON-PARABOLIC BAND (NPB)
APPROXIMATION RESULTS FOR CO-BASED

HALF-HEUSLERS

FIG. 4. Bandstructures of the half-Heuslers NbCoSn,
TiCoSb, ZrCoSb, and ZrCoBi.

Here onwards, we start our investigations of band
alignment in Co-based half-Heuslers. When examin-
ing the DFT extracted bandstructures of the four half-
Heuslers, NbCoSn, TiCoSb, ZrCoSb and ZrCoBi shown
in Fig.4, it is apparent that multiple bands from several
valleys are available close to the VB0. For instance, in
NbCoSn in Fig.4(a), in addition to the bands at the L
and W points that are already aligned at the VB0, there
exist heavy and light bands at the X and Γ points within
0.3 eV of the VB0. Aligning these bands that are in the
vicinity of the VB0, particularly the bands at the X point
that have a large equivalent valley degeneracy of 3, can
lead to an improved conductivity and power factor. Simi-
lar features that are useful for bandstructure engineering
strategies to be applied can be seen in the other three
materials as well, especially near the VB0. The TE co-
efficients for these materials for n-type and p-type cases
versus the Fermi level position, extracted numerically us-

ing BoltzTraP, under a constant relaxation time, τC, are
shown in Appendix C. From here on, we have selected to
use band alignment to further improve the p-type power
factor, however, similar studies could be performed for
improving the n-type material power factor as well.

As a first approach in examining how these materi-
als would behave if certain bands are brought closer, or
completely aligned with the VB0, we pick two of the ma-
terials in Fig.4, namely NbCoSn (because of high initial
∆E between the X and L valleys) and TiCoSb (of a lower
initial ∆E between Γ and L). We then used the simple
non-parabolic band approximation to create the essen-
tial features of the bandstructures of these materials in
the [100] transport direction. Once we form and calibrate
our approximate bands to the DFT bands, we can control
their alignment at will, without worrying at the moment
about how this alignment will be achieved in practice.
The E − k relation for a non-parabolic band is given by:

E (1 + αE) =
~2k2

2m
(12)

where α is the non-parabolicity parameter. The pa-
rameters DOSi(E) and vi(E) that are necessary to cal-
culate the TD function using Eq.(6) can be also analyt-
ically calculated under the NPB approximation for 3D
bands as:

DOSi(E) =
m

3
2
i

π2~3
Ni
√

2E (1 + αiE) (1 + 2αiE) (13)

vi(E) =

√
2E (1 + αiE)−∆Ei

mi

1

(1 + 2αiE)
(14)

The Fermi surface of NbCoSn at an energy 0.1 eV be-
low the VB0 is shown in Fig.5(a). This captures the two
bands seen at L and W points of NbCoSn (see band-
structure in Fig.4). Despite the fact that the bands are
strongly curved, we find that a NPB approximation can
fit the bands reasonably well, at least up to 0.25 eV below
VB0. The bandstructure contains two already aligned
bands at the L point (L1 and L2) and one band at W
(W1) with equivalent valley degeneracies of 4 and 6, re-
spectively (Fig.4). The two bands at the X (X1 and X2),
with equivalent valley degeneracies of 3 are positioned
at 315 meV (12.24kBT at T = 300 K) below VB0, and
these are the bands that we will align with VB0. The
non-parabolic model parameters that describe the rele-
vant bands at X, L and W valleys are given in the table
of Fig.5(b). Here we assume the [100] direction as the
transport direction. Figure 5(c) shows the bands recon-
structed using the NPB approximation. To verify the
accuracy of the NPB approximation using the parame-
ters that we have extracted for NbCoSn, in Fig.5(b) we
have compared the power factor of the bandstructure we
constructed with that of the DFT bandstructure using a



9

FIG. 5. Thermoelectric coefficients for band alignment in NbCoSb described using the non-parabolic band (NPB) approxima-
tion, under three different scattering scenarios. (a) The Fermi surface of NbCoSn at 0.1 eV below VB0. (b) NPB parameters
calculated for valence bands at W, L (L1 and L2) and X (X1 and X2) valleys, assuming transport in the [100] direction. (c)
The resulting NbCoSb bands extracted using the NPB approximation. The energy position of bands X1 and X2 is shifted
by ∆E (in units of kBT ) until it is fully aligned with the VB0. Column-wise: (d)-(f) Thermoelectric coefficients (σ, S, and
PF) calculated using the NPB approximation for NbCoSn under constant rate of scattering (τC). (g-i) σ, S and PF under
intra-band\intra-valley scattering only (τIV(E)). (j-l) σ, S and PF under inter- and intra-band\inter- and intra-valley scattering
(τIIV(E)). The percentage improvement given is the peak to peak improvement between the ∆E = 0 and ∆E = 12.24kBT
(given by the yellow-solid line and red-dashed lines respectively).

fully numerical calculation performed using BoltzTraP in
Appendix E. Good agreement is found between the NPB
and DFT bandstructures for EF positioned up to -0.1 eV
(4 kBT into the valence band), which is anyway beyond
where the EF needs to be placed at for maximum PF,
or under realistic scenarios. Beyond E = −0.15 eV the
two methods slightly diverge, signaling that the shape of
the actual bandstructure cannot be mapped to a NBP
approximation beyond those energies.

After constructing an equivalent simplified bandstruc-
ture, we now proceed in extracting the electrical con-
ductivity, Seebeck coefficient and PF for NbCoSn under
gradual alignment of bands X1 and X2. We extract the
TE coefficients under the three different scattering cases
we described above (τC- Fig.5(d-f), τIV(E)- Fig.5(g-i),
τIIV(E)- Fig.5(j-l)). The alignment energy step we im-
pose is in units of kBT as indicated in the caption of
Fig.5(d). With the dashed-red line we show the results
for the original NPB bandstructure, before attempting
any alignment. Upon band alignment, improvements to

the conductivity, and hence to the power factor, can be
observed in all three scattering scenarios. No significant
variations appears in the Seebeck coefficient. The highest
improvement is achieved when the bands are fully aligned
(yellow lines, for ∆E = 0). Since the bands we are align-
ing are effectively lighter than two of the bands that are
already aligned at VB0, the most improvement (63% in
Fig.5(i)) is seen under τIV(E) scattering, because states
with higher velocities are brought into transport, as dis-
cussed earlier. Smaller improvements are achieved in the
other two scattering cases, the τC(E) and the τIIV(E)
(37% in Fig.5(f) and 19% in Fig.5(l), respectively), as
the advantage of bringing in high velocity states can be
utilized in all cases, as explained above.

The corresponding band alignment results using the
NPB approximation for the second material we con-
sider, namely TiCoSb, is shown in Appendix 6. In sum-
mary, improveents to the power factor are seen under
all three scattering scenarios for this material as well,
with the most improvement (39% in Fig.15(l)) seen un-
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FIG. 6. (a)-(e) Application
of strain in NbCoSb to align
the X valley with the va-
lence band edge. Strain val-
ues are as indicated in the
figures, with (d) showing
the unstrained bandstruc-
ture. (f) The calculated ef-
fective masses for the rele-
vant bands at L,W and X
valleys of NbCoSn using the
parabolic band approxima-
tion for different strain lev-
els [-5% (compressive), un-
strained, and +5% (ten-
sile)]. The energy sepa-
ration ∆E between the X
valley and VB0 are noted
above the sub-figures.

der τIIV(E)).

V. THE INFLUENCE OF REALISTIC
ALIGNMENT THROUGH STRAIN ON THE

POWER FACTOR

A. The use of strain to achieve band alignmenet

In reality, band alignment can be achieved using
a variety of methods such as applying strain64,65,
alloying24,66,67, increasing temperature (as in
skutterudites25 and lead tellurides68), etc. Here,
for the purposes of our investigation into the influence
of band alignment on the PF, we use the easier method
within DFT, which is the use of hydrostatic strain,
either compressive or tensile. We investigate the effect of
strain in the bandstructures of three of the half-Heuslers
we consider, NbCoSn, TiCoSb and ZrCoSb. In the
following sections, for each material, the thermoelectric
coefficients were calculated from DFT derived band-
structures numerically using BoltzTraP (under the
constant relaxation time, τC, approximation) and our
own codes (for τIIV(E)) still by using the DFT extracted
numerical DOS and velocities (i.e. we do not use either
the parabolic, or the non-parabolic band approximations
in this section). Due to difficulty in obtaining valley
specific velocities and density of states from DFT, in
this section we do not consider the τIV(E) scattering
case. We use these examples to highlight the different
PF observations under different band conditions that
can take place. Because our purpose is to provide an
indication as to what alignment will do to the PF, and

not how alignment can in practice be achieved, in our
study we sometimes use strain even up to unrealistic
values (i.e. 10% in some cases), until close to full
alignment is achieved, for example. Large distortions
in lattices could be achieved by alloying, however, due
to the larger computational complexity, we perform the
calculations using strain.

B. NbCoSn under strain

The bands of NbCoSn can be manipulated with com-
pression and expansion as shown in Figure 6(a-e). When
compressed, the bands at the X point are brought closer
to VB0, reducing ∆E. To fully align, a compressive strain
as large as 10% is required. When the material is under
tensile strain (expansion), ∆E increases (see red arrows
in Fig.6(a-e) for the energy shift of the bands in each
strain case). It is important to note, however, that the
curvatures of the bands also change with strain. The
effective masses reduce with compressive strain and in-
crease with tensile strain as documented in the table of
Fig.6(f). Figure 7 shows the TE coefficients conductivity,
Seebeck coefficient and PF for the two scattering cases
considered (τC -Fig.7 first column, and τIIV(E)- Fig.7
second column). The PF is improved in both scatter-
ing scenarios under compressive strain, which aligns the
bands (solid lines). The improvement, however, is larger
in the case of τIIV(E) compared to constant scattering
τC, something that was not observed in the simple NPB
analysis we performed earlier in Section IV. The fact that
the masses reduce with band convergence is unfavorable
under a constant scattering rate. It is, however, favor-
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FIG. 7. Column-wise: (a)-(c) Thermoelectric coefficients (σ,
S, and PF) calculated using the non-parabolic band (NPB)
approximation for NbCoSn under constant rate of scatter-
ing ( τC). (d)-(f) σ, S, and PF under inter- and intra-band
\inter- and intra-valley scattering (τIIV (E)). The percentage
improvement given is the peak to peak improvement between
the unstrained (∆E = 315 meV) and 7% compressive strain
(∆E = 182 meV), given by the red-solid lines and green-solid
lines, respectively.

able under τIIV(E) as it brings bands with higher veloc-
ities that results in less scattering within the transport
window, in the cases where ∆E is large. Note here the
difference between the simplified NPB approximation ex-
tracted TE coefficients as shown earlier in Fig.5. In that
case, the constant relaxation time approximation pro-
vided larger benefits to the power factor. However, under
the realistic alignment scenario, where additional effects
such as the masses reduction with band convergence ap-
pear, the τIIV(E) scattering scenario gives a better im-
provement.

C. TiCoSb under strain

The next material we attempt to manipulate with
strain is TiCoSb. The energy separation ∆E between
bands at L and Γ points of ≈ 40 meV can be reduced
by applying compressive strain, leading to band conver-
gence, as shown in Fig.8(a-c). The curvatures of all the
bands close to VB0 are reduced with compressive strain

FIG. 8. (a)-(c) Application of strain in TiCoSb to align the
L valley with the valence band edge. Strain values are as in-
dicated in the figures, with (b) showing the unstrained band-
structure. (d) The calculated effective masses for the relevant
bands at L and Γ valleys of TiCoSb using the parabolic band
approximation for different strain levels [-5% (compressive),
unstrained, and +5% (tensile)]. The energy separation ∆E
between the L valley and VB0 are noted above the sub-figures.

and is increased with tensile strain as documented in the
Table in Fig.8(d). Figure 9 shows the TE coefficients con-
ductivity, Seebeck coefficient and PF for the two scatter-
ing cases considered (τC - Fig.9 first column and τIIV(E)
Fig.9 second column). Under a constant rate of scatter-
ing, we only see 6% improvement when the bands are
fully aligned using compressive strain (Fig.9(c)), but the
improvement is 17% under τIIV(E) scattering (Fig.9(f)).
The fact that masses reduce with alignment as before is
favorable under the latter scattering scenario, which has
contributed to the larger improvement observed. The
∆E value in this situation is only 40 meV (1.55 kBT at
T = 300 K), i.e. bands are almost aligned even without
strain. The bands can be fully aligned by applying only
≈ 2% compressive strain (a much more realistic value
compared to the ones needed for NbCoSn). Another
observation, different compared to NbCoSn is that the
bands we are aligning have higher masses than the bands
that are already aligned. Although this is favorable un-
der τC, only moderate improvements to the conductiv-
ity, and hence to the power factor, are observed in this
case, because ∆E is only 40 meV to begin with, and the
masses reduce with band alignment. Again, the highest
improvement is seen when the bands are fully aligned.
The higher improvement that is observed in the PF un-
der τIIV(E), is benefitted by the fact that bands become
lighter as they are aligned. This behavior was seen earlier
in Fig.3(d). With expansion, which misaligns the bands
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FIG. 9. Column-wise: (a)-(c) Thermoelectric coefficients (σ ,
S , and PF) calculated using the non-parabolic band (NPB)
approximation for TiCoSb under constant rate of scattering (
τC). (d)-(f) σ,S , and PF under inter- and intra-band\inter-
and intra-valley scattering (τIIV (E)). The percentage im-
provement given is the peak to peak improvement between
the unstrained (∆E = 40 meV) and 2% compressive strain
(∆E = 26 meV), given by the red-solid lines and blue-solid
lines, respectively.

(increases ∆E), under the τIIV(E) scenario, the conduc-
tivity and therefore the power factor, increases slightly
as seen in Figs.9(d) and 9(f) (compare the green-dotted
line with the solid red line), in contrast to τC case. Sim-
ilar non-monotonic behavior was observed in Fig.3(d).
The percentage improvement values differ from the NPB
approximation calculations because of the change in the
masses.

D. ZrCoSb under strain

The third material we examine under strain is ZrCoSb
(Fig.10). The bands at the Γ point (Γ1,Γ2 and Γ3) re-
side 193 meV (or 7.48 kBT with T = 300 K) below VB0

(Fig.10(b)). We attempt to align them with the bands at
the L point (L1 and L2) at VB0. As opposed to the previ-
ous two materials, band convergence can be achieved by
applying tensile strain (expansion), rather than compres-
sion (Fig.10(a-e)). The already aligned bands L1 and L2

become lighter with compressive strain and heavier with
tensile strain, as documented in the Table of Fig.10(f).
Increase in band masses is beneficial under a constant

scattering time τC, as explain above in Section III. There-
fore, in the thermoelectric coefficients in Fig.11 (τC- first
column Fig.11(a-c)), we find a substantial improvement
in the power factor when the bands are fully aligned un-
der τC (≈53% in Fig.11(c) for 7% strain, but ≈20% for a
more realistic strain value of 3%). However, this increase
in the effective masses and alignment of heavier masses
are unfavorable in general under the τIIV(E) (second col-
umn Fig.11(d-f)) scattering scenario. Therefore, we see
a decrease in the power factor by 17% when the bands are
aligned under τIIV(E) in Fig.11(f) (compare the red-solid
line to the blue-dashed line). In the case of compressive
strain, which further misaligns the Γ valley, but reduces
the effective mass of the already aligned bands at L valley,
we see an increase in the power factor (red-solid line vs
blue-solid line), as lighter masses are favorable under the
τIIV(E) scenario, as explained in Section III. In the case
of 5% compression in Fig.11(f), therefore, we observe a
12% improvement.

The strain required to completely align the bands can
be high as ≈10% in NbCoSn and ZrCoSb, which is unre-
alistic to achieve. However, as seen in Figs.7, 9 and 11,
reducing the distance ∆E is sufficient to see an improve-
ment to the PF, even though fully aligning the bands
gives the maximum improvement. Our aim, however, be-
yond indicating the possibilities of band alignment with
strain, was also to demonstrate different scenarios of how
the bands’ mass can change with alignment, and that
this is a factor that can change the expectations out of
simple models and needs to be taken into consideration.
Importantly, the changes can be different for different
materials and strain conditions. In Fig.12, finally, we
show a summary of the power factor improvements with
strain of only up to 5% for the three materials we ex-
amined (note that we did not perform a strain study
for the ZrCoBi since the bandstructure looks similar to
the other half-Heuslers we examined). In Fig.12(a), un-
der a constant scattering rate, ZrCoSb (green lines in
Fig.12) shows the best performance improvement with
tensile strain. Here, a ≈ 15% improvement in the power
factor can be seen even with 1-2% tensile strain, but the
improvement jumps to ≈ 30% at 5% strain. TiCoSb
shows nearly 5% improvement when 1-2% compressive
strain is applied. The outcomes, however, are different
under τIIV(E) scattering. It is compressive strain that
allows for PF improvements for all three materials under
band alignment up to values between 20%-40% at 5%
strain, which is quite significant. Tensile strain degrades
the performance of ZrCoSb and NbCoSn, but still al-
lows improvements for TiCoSb. Interestingly, in the case
of τIIV(E) scattering, TiCoSb allows PF improvements
with either compressive or tensile strain. However, to
achieve these benefits in practice, the precise scattering
conditions need to be identified, as different conditions
lead to different conclusions.
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FIG. 10. (a)-(e) Application
of strain in ZrCoSb to align
the Γ valley with the va-
lence band edge. Strain val-
ues are as indicated in the
figures, with (b) showing
the unstrained bandstruc-
ture. (f) The calculated ef-
fective masses for the rele-
vant bands at L and Γ val-
leys of ZrCoSb using the
parabolic band approxima-
tion for different strain lev-
els [-5% (compressive), un-
strained, and +5% (ten-
sile)]. The energy sepa-
ration ∆E between the Γ
valley and VB0 are noted
above the sub-figures.

VI. CONCLUSION

In this work, we have provided a comprehensive inves-
tigation into the benefits of band alignment (or band con-
vergence) of complex bandstructure thermoelectric mate-
rials in improving the power factor, by going beyond the
constant relaxation time approximation. After a generic
investigation using the alignment of simple parabolic
bands, we used the actual DFT extracted bandstruc-
stures of the p-type Co-based half-Heuslers NbCoSn,
TiCoSb and ZrCoSb, and used strain to align the var-
ious bands that appear in the valence band. Using the
Boltzmann transport equation under the relaxation time
approximation, we explored the band alignment effect on
the power factor under three different scattering condi-
tions (as the detail scattering physics of half-Heuslers are
still not known): i) constant relaxation time approxima-
tion as is common in most literature, ii) scattering rates
proportional to the density of final states, but under only
intra-band\intra-valley considerations, and iii) scattering
rates proportional to the density of final states, with both
inter- and intra-band\inter- and intra-valley scattering
considerations. We showed that the outcome of band
alignment can be completely different in each of the dif-
ferent scattering cases. Specifically, constant relaxation
time scenarios favour alignment of heavier bands (i.e.
bringing heavier bands closer to lighter ones) for larger
improvements, as those provide more transport states,
but without increase in scattering. On the other hand,
alignment of lighter bands is favoured for the second
scattering situation, where only intra-band (and intra-
valley) scattering is considered, as they provide a small
number of carriers with higher velocities, and do not in-

terfere significantly with the scattering of carriers in al-
ready aligned bands. The third scattering scenario where
both intra- and inter-band (with inter- and intra-valley)
scattering is considered, shows a more complicated non-
monotonic relationship between power factor benefits,
band separation and mass ratio. Under this scattering
scenario, band convergence can lead to reduction of the
power factor in certain cases particularly when heavy
bands are aligned, due to increased carrier scattering off-
setting the advantage of increase in conducting states.
Because of this, we showed that it is the misalignment of
the bands, instead of the alignment, which leads to power
factor improvements in certain situations. We show that
there is an optimum band separation - mass ratio combi-
nation, to obtain the best PF improvements. In general,
however, we showed that aligning lighter bands favours
the power factor in this situation as well. We stressed
that aiming for a multi-band multi-valley bandstructure
does not always improve thermoelectric performance and
band alignment strategies need to consider the scattering
physics, as they determine whether the power factor will
increase, or decrease upon alignment. In addition, we
point out that under band alignment in realistic material
engineering scenarios (i.e. by applying strain), the band
curvature can be changed, which adds another complica-
tion in determining whether alignment can help or not.
In general, however, under constant scattering rate sce-
narios, bringing in heavy masses helps the power factor,
whereas under density of states dependent rates, bring-
ing in lighter masses is what helps. With regards to the
application of strain to improve the power factor of half-
Heuslers, we showed that application of strain up to 5%
can improve the power factor by up to 40%, but whether
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FIG. 11. Column-wise: (a)-(c) Thermoelectric coefficients
(σ, S, and PF) calculated using the non-parabolic band ap-
proximation for ZrCoSb under constant rate of scattering (
τC). (d)-(f) σ, S, and PF under inter- and intra-band\inter-
and intra-valley scattering (τIIV(E)). The percentage im-
provement given is the peak to peak improvement between
the unstrained (∆E = 193 meV) and 10% tensile strain
(∆E = 27 meV), given by the red-solid lines and blue-dashed
lines, respectively.

FIG. 12. Percentage improvement of the power factor (from
peak to peak) under: (a) constant rate of scattering ( τC),
and (b) inter- and intra-band\inter- and intra-valley scatter-
ing (τIIV(E)) versus strain percentage is applied for NbCoSn,
TiCoSb and ZrCoSb. Positive strain indicates expansion
while negative strain indicates compression.

this is achieved by compression or tension, depends on
the specific material and which valleys are aligned. Thus,
our work stresses the importance of more accurate theo-

retical treatment for each material in examining its ther-
moelectric properties, as the specific details can lead to
different conclusions.
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Appendix A: Condition for TD function
improvement under τIIV(E) scattering: Case of 2

bands

When ∆E is large, only the first band B1 contributes
to conduction. Therefore, from Eq.(9) the TD function
can be written as:

Ξ (E) ∝ m
1
2
1 E

3
2

m
3
2
1 E

1
2

(A1)

When bands B1 and B2 are completely aligned, i.e.
∆E = 0, both B1 and B2 contribute to conduction.
Therefore, from Eq.(9), the TD function can be written
as:
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To have gains by alignment, we set the TD function
given by Eq.(A2) to be larger than what is given by
Eq.(A1), which leads to:
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⇒ m1 > m2 (A5)

Appendix B: Band masses that maximize the TD
function under τIIV(E): Case of 2 bands

When the bands B1 and B2 are completely aligned,
∆E = 0, and both B1 and B2 contribute to conduction.
We set m2/m1 = p, and from Eq.(9) the TD function
can be written as:
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⇒ Ξ (E) ∝

(
1 + p

1
2

1 + p
3
2

)
E

m1
(B2)

Therefore, the value of the mass ratio p that maximizes
the TD function can be obtained by:

d

dp

(1 + p
1
2

1 + p
3
2

)
= 0 (B3)

⇒
3
(
p

1
2 + 1

)
p− (1 + p

3
2 )

(1 + p
3
2 )

= 0 (B4)

⇒ 2p
3
2 + 3p− 1 = 0 (B5)

The solution to Eq.(B5) gives p = 0.25.

Appendix C: Condition for TD function
improvement under τIIV(E) scattering: Case of 3

bands

When the separation of bands, ∆E, is large, only the
first band B1 contributes to conduction. Therefore, from
Eq.(9) the TD function can be written as:

Ξ (E) ∝ m
1
2
1 E

3
2

m
3
2
1 E

1
2

(C1)

When all three bands B1, B2 and B3 are completely
aligned, ∆E = 0, and all B1, B2 and B3 bands con-
tribute to conduction. Therefore, from Eq.(9) the TD
function can be written as:
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By setting the TD function given by Eq.(C2) to be
larger than what is given by Eq.(C1), we find the condi-
tion of the mass of B1 compared to that of B2 and B3
for TD improvement as:
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FIG. 13. (a) Conductivity, (b) Seebeck coefficient and the
(c) power factor of NbCoSn, TiCoSb, ZrCoSb and ZrCoBi
for both electrons and holes, calculated using BoltzTraP,
employing the constant relaxation time approximation with
τ = 10−14 s.

Appendix D: Calculation of transport coefficients of
half-Heuslers

Figure 13 compares the conductivity, Seebeck coeffi-
cient and the power factor for the half-Heuslers NbCoSn,
TiCoSb, ZrCoSb and ZrCoBi, under a constant relax-
ation time of 10−14 s. They all have similar power fac-
tors, but TiCoSb and NbCoSn are slightly better when
the p-type power factor is considered.

Appendix E: Comparison of the non-parabolic band
(NPB) approximation with the full-band calculations

The outcome of the NPB approximation is compared
with the full-band (DFT derived) results obtained from
BoltzTraP calculations, where no approximation about
the band shape is made. The NPB parameters used
for Figs.14(a) and (b) are given in Figs.5(b) and 15(b),
respectively. The left and right figures show the com-
parison for NbCoSn and TiCoSb, respectively. Black-
solid lines are power factor results calculated using the
full band structure with BoltzTraP while the red-dashed
lines are calculated using the NPB approximation and
our Boltzmann transport codes. A good match is ob-
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FIG. 14. Comparison of results from the non-parabolic band
(NPB) approximation(red-dashed lines) and numercal full-
band calculations (black-solid lines) using BoltzTraP, under
the constant relaxation time approximation with τ = 10−14 s,
for (a) NbCoSn and (b) TiCoSb.

served between the two models, indicating the validity
of the NPB approximation for the relevant energies un-
der consideration, when the NPB parameters used are
extracted from DFT calculated bands.

Appendix F: Thermoelectric coefficients for TiCoSb
under the NPB approximation

In this section we examine the possibility of improv-
ing the power factor by using band alignment in TiCoSb,
as shown in Fig.15, using non-parabolic bands extracted
from the DFT bandstructure. The Fermi surface of
TiCoSb at energy 0.1 eV below the VB0 is shown in
Fig.15(a). The two bands at L point (L1 and L2) are
only 40 meV below VB0, which is not a significant sep-
aration. Therefore, we would not expect significant im-
provements upon aligning those bands. We still perform
this analysis, however, to demonstrate that the trends
here are different compared to what observed in the main
text for NbCoSn, and that in this case one observed in

a real material the peculiar non-monotonic trend that is
shown in Fig.3(e). In Fig.15(b) we present the NPB ap-
proximation parameters that describe bands at L point
(L1 and L2) and Γ point(Γ1,Γ2 and Γ3) assuming the
transport to be in the [100] direction. Again, to verify
the accuracy of the NPB approximation for TiCoSb, we
compare in Appendix E the PFs of the bandstructure we
constructed (Fig.15(c)) with a fully numerical calculation
done on a DFT derived bandstructure using BoltzTrap
and found good agreement between two methods within
-0.2eV (8 kBT into the valence band, which is sufficient
for our study). Beyond -0.2 eV, PF calculated for the two
methods deviate, since the shape of the actual bandstruc-
ture diverges from the NPB shape at higher energies.

Now we move on to calculate thermoelectric param-
eters for TiCoSb under the NPB approximation for
different scattering scenarios (τC- Fig.15(d-f), τIV(E)
- Fig.15(g-i), and τIIV(E)- Fig.15(j-l)), under different
alignment levels in units of kBT . The results for the
original bandstructure, before attempting any alignment
is shown by the dashed-red lines. The bands we are align-
ing have higher masses than the bands already aligned.
This is the favorable PF improvement condition under a
constant rate of scattering and and moderate improve-
ments of ≈ 8% are observed. Moderate improvements
to the conductivity and hence to the power factor can
also be observed in second scattering scenarios. The im-
provements are small, however, because ∆E = 1.55 kBT ,
only, and on the other hand, no significant variation is
observed in the Seebeck coefficient. The largest improve-
ment (of ≈ 39%) is observed when bands are close to-
gether, but not fully aligned (yellow lines) under τIIV(E).
This is a combined effect of increase in conductivity by
bringing another band together, but without increasing
yet scattering from the light band into the heavy band,
while also slightly increases the Seebeck coefficient due to
the presence of the second band i.e. the band alignment
is fine-tuned as in the situation described in Fig.3(e).
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