УДК 544.032.72:547.781.4

СВОЙСТВА ВОДНОГО РАСТВОРА ИОННОЙ ЖИДКОСТИ [EMIM][CL] ПРИ НОРМАЛЬНОМ ДАВЛЕНИИ

© 2013 г. А.В. Клинов*, М.В. Федоров**, А.В. Малыгин*, Л.Р. Минибаева*

 * Казанский национальный исследовательский технологический университет,

Россия

** University of Strathclyde, Scottish Universities Physics Alliance (SUPA),

Glasgow, United Kingdom

E-mail: alklin@kstu.ru

Поступила в редакцию 11.12.2013

широком диапазоне температур И концентраций при нормальном давлении измерены плотность, вязкость, коэффициент электропроводность, объемного теплового расширения, температура плавления и показатель преломления водного раствора ионной жидкости [Emim][С1]. Предложены аналитические зависимости исследуемых свойств в зависимости от концентраций и температур.

Ключевые слова: водный раствор ионной жидкости [Emim][Cl], вязкость, плотность, коэффициент объемного теплового расширения, температура плавления, показатель преломления, электропроводность.

В настоящее время ионные жидкости (ИЖ) являются объектом пристального внимания как фундаментальной, так и прикладной науки. Это связано с возможностью синтеза огромного количества ионных жидкостей различающихся строением катиона и аниона и обладающих уникальными физико-химическими свойствами, которые определяют перспективы их широкого практического использования [1]. Например, сейчас известны успешные использования ЖИ В качестве эффективных примеры растворителей [2 – 4], реакционных и каталитических сред [5, 6], электролитов [7] и др. Важной особенностью ИЖ является их малая летучесть, практически отсутствующее давление насыщенных паров [8, 9] и не токсичность, что позволяет их рассматривать как элемент зеленной химии. Сдерживающим фактором практического использования ИЖ на современном

этапе является их высокая стоимость, а так же недостаточная изученность поведения теплофизических свойств их растворов. Последнее необходимо для разработки методов регенерации ИЖ из растворов, поиска эффективных вариантов их практического применения, например, в процессах разделения веществ или в качестве рабочих сред в технических устройствах. В данной работе экспериментально исследуются некоторые свойства водного раствора ИЖ 1-этил-3-метилимидазолия хлорид [Emim][Cl], который находит широкое применение в различных областях [10 - 14].

[Emim][Cl] при комнатной температуре - это белые или светло-желтые кристаллы с температурой плавления ~80°С.

Структурная формула:

Молекулярная формула: $C_6H_{11}ClN_2$

Молекулярная масса = 146.62 г/моль

Значения изучаемых свойств, полученные ранее другими авторами, сведены в таблицу 1, из которой видно, что данные практически ограничены свойствами чистой ионной жидкости [Emim][C1]. Однако для практики интерес представляют смеси, в частности водные растворы, свойства которых в широком диапазоне концентраций и температур исследованы в данной работе.

Таблица 1

Рассматриваемая ИЖ является гигроскопичной и наличие незначительного количества воды влияет на ее физико-химические свойства [16, 30]. Так, например, 3% воды уменьшает вязкость раствора вдвое при температуре 100°С. Гидрофильность [Emim][C1] открывает новые перспективы для ее использования в качестве газовых гидратов [10].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все экспериментальные методики предварительно проверялись на известных свойствах водных растворах триэтиленгликоля, либо этилового спирта. Приводимые в данной работе значения экспериментальных данных получены как среднее арифметическое из трех измерений.

Для приготовления раствора использовалась деонизированная вода, подготовленная на установке «Osmodemi 12» и ионная жидкость [Emim][Cl] производства «Sigma Aldrich» (99.7 %). Концентрация раствора контролировалась кулонометрическим титратором «C20 Compact Karl Fischer Coulometric» фирмы Mettler Toledo (с относительной погрешностью измерения ±3%).

В статье за концентрацию х принята массовая концентрация [Emim][Cl] в %, температура Т в °С.

Определение плотности производилось гравиметрическим методом: измерялась масса раствора в определенном объеме при различных температурах, соответствующих температурам измерения вязкости. Образцы подготавливались на весах «ShincoADJ» с погрешностью измерения ± 0.0001 г. Объем измерялся с помощью градуированной пипетки на 1 мл с точностью измерения ± 0.01 мл.

Измерение концентрациях 40÷80% [Emim][Cl] вязкости при проводилось на вискозиметре ВПЖ-3 (с погрешностью измерения $\pm 0.3\%$.), который представляет собой капиллярную трубку с измерительным резервуаром, ограниченным двумя метками М1 и М2. Капиллярная трубка впаяна внутрь корпуса вискозиметра, имеющего два отвода. К прибору прилагается насадка с краном. Насадка соединяется конусом с корпусом. Принцип измерения вязкости основан на определении, после термостатирования, времени истечения через капилляр определенного объема жидкости из измерительного резервуара [31].

Вязкость жидкости определялась по формуле:

$$\mu = K \cdot t \cdot \rho$$
,

где K — постоянная вискозиметра, mm^2/c , (K=0.5144, указывается в паспорте прибора),

t – время истечения жидкости, с,

 μ – вязкость жидкости, м $\Pi a \cdot c$,

 ρ – плотность жидкости, г/см³.

Измерение коэффициента объемного теплового расширения.

Схема установки для измерения коэффициента объемного теплового расширения изображена на рис. 1. К стеклянной колбе объемом 60 мл плотно прикреплена узкая стеклянная капиллярная трубка с делениями. Колба помещена в термостат LOIP LT-105a, который позволяет поддерживать температуру от 10 до 100° С с точностью $\pm 0.1^{\circ}$ С.

Рис.1

Приготовленный водный раствор ионной жидкости [Emim][Cl] при предварительно измеренной температуре заливался в колбу до определенной метки на капилляре, которая считалась точкой начала отсчета. Колба помещалась в термостат и при температурах от 10°C до 100°C измерялось изменение объема. Измерения для чистой ионной жидкости [Emim][Cl] проводились при температурах от 80°C до 100°C, так как ниже 80°C данная ИЖ находится в твердом состоянии.

Коэффициент объемного теплового расширения рассчитывался по формуле:

$$\beta = \frac{1}{V} \cdot \frac{dV}{dT}$$
,

где dV – изменение объема (M^3),

V – объем жидкости (M^3),

dT – изменение температуры (K).

Определение температуры плавления водного раствора [Emim][Cl] проводилось визуально: раствор помещался в криостат КРИО-ВТ-05-02 (с погрешностью измерения ± 0.2 °C) и наблюдалось поведение раствора каждые 0.5°C при встряхивании.

Измерение показателя преломления водного раствора 5-95% [Emim][Cl] (с шагом 5%) проводилось при температурах, близких к комнатной ($20\div30$ °C) на рефрактометре Аббе ИРФ-454 Б2М с погрешностью измерения ±0.0001 .

Измерение электропроводности водного раствора 2.37-86% [Emim][Cl] проводилось кондуктометром «Crison GLP 31+» с погрешностью измерения $\pm 0.5\%$ при 20%С.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Плотность. В таблице 2 представлены значения плотности водного раствора [Emim][Cl] при различных концентрациях и температурах, из которой видно незначительное уменьшение плотности с увеличением температуры и содержания воды. Данные по плотности для чистой [Emim][Cl] взяты из работы [15].

Таблица 2

Вязкость. Полученные результаты по вязкости раствора в зависимости от концентраций и температур приведены в таблице 3 и на рис. 2, из которых видно, что вязкость раствора растет с уменьшением температуры и содержания воды в растворе.

Таблица 3

Изменение вязкости раствора от состава происходит существенно неравномерно. Так например вязкость чистой ионной жидкости [Emim][Cl] [16] при 70°С достигает 100 мПа·с, при наличии 20% воды вязкость раствора при этой температуре уменьшается в 20 раз, дальнейшее увеличение содержания воды до 100% приводит к уменьшению вязкости в 10 раз. Из таблицы 3 видна сильная зависимость вязкости от температуры в области больших концентраций.

В работе [16] приведены значения вязкости раствора [Emim][Cl] при малом содержании воды, которые представлены на рис. 2. в сравнении с результатами, полученными в данной работе при x=97.18%, из которого

видно удовлетворительное согласование. Также видно, что незначительное содержание воды (3%) способно уменьшить вязкость раствора вдвое. Кроме того, видна сильная зависимость от температуры: вязкость также уменьшается вдвое при увеличении температуры на 20°C.

Рис. 2

Полученные данные по поведению вязкости водного раствора [Emim][Cl] от концентрации (в диапазоне 40÷80%) и температуры (в диапазоне 20÷80°С) были аппроксимированы выражением вида:

$$\mu = A \cdot \exp(BT^{0.5}),$$

где A=-21.96+2.645x-8.366 \cdot 10⁻²x² +9.195 \cdot 10⁻⁴x³, B=-0.691+3.042 \cdot 10⁻²x-6.335 \cdot 10⁻⁴x² +3.778 \cdot 10⁻⁶x³.

Средняя относительная погрешность $\delta_{\rm cp}$ составила 3.13%, а максимальная относительная погрешность $\delta_{\rm max}$ = 10.6%.

Здесь и далее средняя относительная погрешность $\delta_{\sf cp}$ рассчитывалась по выражению:

$$\delta_{cp} = \frac{\sum_{i}^{n} \left(\frac{\left| f_{exp,i} - f_{calc,i} \right|}{f_{exp,i}} \cdot 100\% \right)}{n}, \tag{1}$$

где n – количество экспериментальных данных,

 $f_{\mbox{\tiny exp},i}$ — экспериментально измеренные величины исследуемого свойства,

 ${
m f}_{{
m calc},i}$ — значения исследуемого свойства, рассчитанные по предложенным в работе зависимостям.

Максимальная относительная погрешность δ_{max} определялась как:

$$\delta_{\text{max}} = \max\left(\frac{\left|f_{\text{exp,i}} - f_{\text{calc,i}}\right|}{f_{\text{exp,i}}} \cdot 100\%\right),\tag{2}$$

Коэффициент объемного теплового расширения.

Результаты измерений коэффициент объемного теплового расширения водного раствора [Emim][Cl] в диапазоне температур от 10 до 100 °С были сглажены линейной зависимостью от температуры, коэффициенты которой определены как функция от концентрации х:

$$\beta(x,T)\!\!=\!\!A\!+\!B\cdot T\,,$$
 где $A=8.3\cdot 10^{\text{-}5}-5.44\cdot 10^{\text{-}6}x\!+\!4.58\cdot 10^{\text{-}7}x^2-7.56\cdot 10^{\text{-}9}x^3+4.46\cdot 10^{\text{-}11}x^4,$
$$B=6.91\cdot 10^{\text{-}6}-1.67\cdot 10^{\text{-}9}x+6.29\cdot 10^{\text{-}11}x^2-1.46\cdot 10^{\text{-}11}x^3.$$

Средняя относительная погрешность составила 4%, а максимальная относительная погрешность наблюдается при малых значениях температур и при x=0%, и составляет 12%.

Анализ данных изображенных на рис. 3 позволяет выявить закономерность изменения угла наклона температурной зависимости коэффициента объемного теплового расширения при изменении состава раствора. Угол наклона изменяется от положительного для чистой воды, до чистого [Emim][Cl]. Соответственно, существует отрицательного ДЛЯ концентрация, при которой коэффициент объемного теплового расширения водного раствора [Emim][Cl] не зависит от температуры. Из полученной аппроксимации было найдено, что эта концентрация равна 79%, при этом коэффициент объемного теплового расширения равен 0.0005228 К⁻¹. Наличие этой особенности позволяет рассматривать водный раствор [Emim][Cl] в качестве рабочей среды для жидкостных термометров. При постоянном коэффициенте объемного теплового расширения шкала термометра будет равномерной. Кроме того, перспектива применения растворов ИЖ в медицине в качестве рабочей среды в жидкостных термометрах расширения связана с их нетоксичностью и нелетучестью [32] по сравнению, например, с ртутью, что позволяет устранить последствия разрушения термометра с меньшими последствиями для окружающей среды. Так же, как показали исследования раствор [Emim][Cl] обладает более быстрым по сравнению с ртутью откликом на изменение температуры, и в отличие от других жидкостей, широко используемых в термометрии (например, этанол), у

водного раствора [Emim][Cl] широкий температурный диапазон в жидком состоянии.

Температура плавления.

В процессе понижения температуры визуально не удалось зафиксировать начало кристаллизации части раствора, признаком которого обычно является помутнение образца. В таблице 4 приведены температуры плавления водного раствора [Emim][Cl], определенные по температуре кристаллизации всего образца.

Данные по температурам плавления в области от 50 до 85 % отсутствуют, вследствие того, что при минимально возможной температуре, минус 80°С, которую обеспечивал криостат, кристаллизация раствора в этом интервале концентраций не происходила. При 95% образующаяся твердая фаза (при минус 4°С) состояла из двух слоев: нижний – мутно-белого цвета, верхний – прозрачный, что говорит об образовании двух несмешивающихся твердых фаз. Полученные экспериментальные данные позволяют утверждать, что линия плавления имеет минимум в области 50 – 85%, что определяет наличие азеотропной точки в этом интервале концентраций.

Таблица 4

Показатель преломления. Как видно из рис. 4, где приведены результаты экспериментальных данных для температуры 25 °C, зависимость показателя преломления от концентрации близка к линейной. Было выявлено, что в исследуемом интервале температур (10÷30°C) показатель преломления меняется незначительно и может быть аппроксимирован следующим выражением:

Рис. 4

$$n_D = 1.3325 + 1.661 \cdot 10^{-3} x + 4.7 \cdot 10^{-6} x^2$$
.

Область применения данной зависимости: $T = 20 \div 30$ °C; $x = 0 \div 95$ %.

Средняя относительная погрешность составила 0.08%. а максимальная относительная погрешность — 0.32%.

Определение концентрации по показателю преломления смеси является наиболее простым и быстрым способом, поэтому для удобства использования данная зависимость ранее была приведена в виде $\mathbf{x} = \mathbf{f}(\mathbf{n}_D^T)$ [33].

Электропроводность.

Зависимость электропроводности от концентрации [Emim][Cl] в водном растворе при 20°С приведена на рис. 5. Видно, что поведение электропроводности имеет вид характерный для сильных электролитов с ярко выраженным максимумом 85 мСм/см при х=37 %.

Рис. 5

Полученная аналитическая зависимость электропроводности от концентрации при 20 °C. выглядит следующим образом:

$$\sigma = -1.318 + 5.667 x - 0.123 x^2 + 1.008 \cdot 10^{-3} x^3 - 3.709 \cdot 10^{-6} x^4 \,.$$
 где σ – электропроводность, мСм/см.

Средняя относительная погрешность составила 1.97%, а максимальная относительная погрешность — 15% в области малых концентраций, в остальной области не превышает 3%.

ЗАКЛЮЧЕНИЕ

В данной работе изучено влияние состава и температуры на свойства водного раствора ионной жидкости [Emim][Cl] и выявлены следующие закономерности: 1) увеличение содержания воды в растворе приводит к уменьшению плотности, вязкости и показателя преломления. Аналогичная картина наблюдается при увеличении температуры; 2) угол наклона температурной зависимости коэффициента объемного теплового расширения изменяется от положительного для чистой воды, до отрицательного для чистого [Emim][Cl]; 3) линия плавления имеет минимум в области 50 – 85%, что определяет наличие азеотропной точки в этом интервале концентраций; 4) зависимость показателя преломления от концентрации близка к линейной, влияние температуры в интервале 10÷30°С незначительное; 5)

электропроводность водного раствора аналогична поведению электропроводности сильных электролитов.

На основе экспериментальных данных получены аналитические зависимости измеренных свойств водного раствора ионной жидкости [Emim][Cl] от температуры и концентрации при атмосферном давлении.

Зависимости исследуемых свойств от содержания воды могут эффективно применяться для проведения экспресс-анализа состава водных растворов [Emim][Cl].

- Рис.1 Схема экспериментальной установки для измерения коэффициента объемного теплового расширения
- Рис. 2 Зависимость вязкости от концентрации при малом содержании воды,
- Zhiping Liu, Berend Smit, and Alexis T. Bell [16] при 100°С, ■, ▲ и ◆ –
 наши экспериментальные данные при 100, 90 и 80°С соответственно
- Рис.3 Коэффициент объемного теплового расширения водного раствора [Emim][C1]
- Рис. 4 Зависимость показателя преломления водного раствора [Emim][Cl] от концентрации при температуре 25°C
- Рис. 5 Зависимость электропроводности водного раствора [Emim][Cl] от концентрации. Геометрические фигуры экспериментальные данные; линия аппроксимация

Таблица 1 – Свойства [Emim][Cl] и ее водных растворов, имеющиеся в литературе

производитель	метод / прибор	температура	концентрация [Emim][Cl], % масс.	ссылки		
	Плотность					
-	Pyrex dilatometric tubes	304 – 366 K	100	[15]		
Sigma-Aldrich (98%)	MD Simulations	373 K	97 – 100	[16]		
-	MD Simulations, DL_POLY simulation package	348.15 – 363.5 K	100	[17]		
-	The Group Contribution Method (метод групповых вкладов)	в жидком состоянии	100	[18]		
-	метод artificial neural network ANN (искусственная нейронная сеть)	295 К	100	[19]		
-	COSMO-RS метод	298 К	100	[20]		
	Вяз	кость				
-	MD Simulations	378 – 489К	100	[21]		
Merck	вискозиметр Brookfield	353 – 393K	≥ 95	[22]		
-	MD Simulations	400 K	100	[23]		
Sigma-Aldrich	вискозиметр Brookfield Engineering (DV-II+ Pro), MD Simulations	353 - 420K	98	[16]		
Sigma-Aldrich (98%)	вискозиметр Brookfield Engineering (DV-II+ Pro),	373К	97 – 100	[16]		

	T	T			
MD Simulations					
-	LVDV-II	323 – 363K	100	[24]	
	Brookfield Cone				
	and Plate				
	Viscometer				
температура плавления					
-	дифференциаль	84	100	[15]	
	ный				
	сканирующий				
	калориметр				
	Perkin-Elmer				
	DSC-2				
авторское	дифференциаль	82 - 87	100	[25]	
получение	ный				
	сканирующий				
	калориметр				
	Perkin-Elmer				
	DSC-2				
авторское	дифференциаль	89	100	[26]	
получение	ный				
	сканирующий				
	калориметр				
	Mettler Toledo				
	DSC 821e				
-	дифференциаль	80	100	[27]	
	ный				
	сканирующий				
	калориметр				
	Perkin-Elmer				
	DSC-2				
	Электроп	роводность			
_	MD Simulations	380 – 486 K	100	[21]	
D A CE		250 450 16			
BASF	кондуктометр	250 – 450 K	> 93	[28]	
	CRISON GLP31			5007	
-	кондуктометр	312.8 – 433	≥ 99	[29]	
	CRISON GLP31	К			
-	MD Simulations	400 K	100	[23]	
-	кондуктометр	325 – 383 K	100	[15]	
	Beckman RC-			L J	
	18A				
авторское	кондуктометр	295.15 К	0 - 76	[30]	
получение	DDSJ-308A		-	L . J	
(чистота > 99%)					
	1	<u> </u>		1	

Таблица 2 – Плотность водного раствора [Emim][Cl] от состава и температуры

	ρ, κг/м ³					
T, °C	X, %					
	40	50	60	70	80	100 [15]
20	1002	1028	1072	1087	1111	1169
30	997	1022	1063	1078	1101	1161
40	993	1015	1054	1072	1092	1153
50	999	1009	1046	1066	1084	1146
60	984	1003	1039	1060	1078	1138
70	980	996	1032	1056	1073	1130
80	976	990	1024	1052	1068	1122

Таблица 3 – Вязкость водного раствора [Emim][Cl] в зависимости от состава и температуры

	μ, мПа∙с				
T, °C	x, %				
	40	51	60	70	80
20	3.060	4.555	7.993	13.24	23.12
30	2.329	3.473	5.637	9.202	15.54
40	1.835	2.627	4.223	6.373	11.19
50	1.556	2.093	3.261	5.069	8.914
60	1.337	1.760	2.672	3.995	6.876
70	1.206	1.580	2.154	3.280	5.235
80	1.043	1.405	1.770	2.804	4.032

Таблица 4 — Температуры плавления водного раствора [Emim][Cl] в зависимости от состава

	температура
концентрация	плавления,
	°C
10	-10.5
30	-24
50	-46.5
85	-60
90	-52
95	-4

СПИСОК ЛИТЕРАТУРЫ

- 1. Ionic Liquids: Applications and Perspectives Edited by Alexander Kokorin Croatia: InTech 2011, p.674
- 2. Teaca C.-A., Bodirlau R., Spiridon I. // Rev. Roum. Chim. 2011. 56(1). P. 33.
- 3. Xiaojun L., Yushan S., Qiang Z. // Advanced Materials Research. 2013. 690-693. P. 1568.
- 1. 4. Enslow K.R., Bell A.T. // RSC Advances. 2012. 2. P. 10028.
- 5. Angueira E.J., White M.G. // Journal of Molecular Catalysis A: Chemical. 2005. 227. P. 51.
- 6. Park D.-W., Mun N.-Y., Kim K.-H. et al. // Catalysis Today. 2006. 115. P. 130.
- 7. Vila J., Gines P., Rilo E., Cabeza O. et al. // Fluid Phase Equilibria. 2006. 247. P. 32
- 8. Pereiro A.B., Araujo J.M.M., Esperanca J.M.S.S. et al. // J. Chem. Thermodynamics. 2012. 46. P. 2.
- 9. Ge Y., Zhang L., Yuan X. et al. // J. Chem. Thermodynamics. 2008. 40. P. 1248.
- 10. Partoon B., Wong N.M.S., Sabil K.M. et al. // Fluid Phase Equilibria. 2013. 337. P. 26.
- 11. Ishii T., Kurokawa T., Nakano M. et al. // Proceedings of Symposium on Ultrasonic Electronics. 2011. 32. P. 187.
- 12. Zhang L., Qiao B., Ge Y. et al. // J. Chem. Thermodynamics. 2009. 41. P. 138.
- 13. Li J., Yang X., Chen K. et al. // Ind. Eng. Chem. Res. 2012. 51. P. 9376.
- 14. Jork C., Kristen C., Pieraccini D. et al. // J. Chem. Thermodynamics. 2005. 37. P. 537.
- 15. Fannin A.A., Floreani D.A., King L.A. et al. // J. Phys. Chem. 1984. 88. P. 2614.
- 16. Chen T., Chidambaram M., Liu Z. et al. // J. Phys. Chem. B. 2010. 114. P. 5790.
- 17. Raabe G., Köhler J. // The journal of chemical physics. 2008. 128. P.154509-1.
- 18. Valderrama J.O., Sanga W.W., Lazzus J.A. // Ind. Eng. Chem. Res. 2008. 47. P. 1318.

- 19. Lazzús J.A. // Int J Thermophys. 2009. 30. P. 883.
- 20. Palomar J., Ferro V.R., Torrecilla J.S., Rodriguez F. // Ind. Eng. Chem. Res. 2008. 47. P. 1318.
- 21. Rey-Castro C. and Vega L.F. // J. Phys. Chem. B. 2006. 110. P. 14426.
- 22. Fendt S., Padmanabhan S., Blanch H.W., Prausnitz J.M. // J. Chem. Eng. Data. 2011. 56. P. 31.
- 23. Rey-Castro C., Tormo A.L., Vega L.F. // Fluid Phase Equilibria. 2007. 256. P. 62.
- 24. Clean Solvents: Alternative Media for Chemical Reactions and Processing / Editors M.A. Abraham, L. Moens. Washington: American Chemical Society, 2002. Vol. 819. P. 34 49.
- 25. Wilkes J. S., Levisky J. A., Wilson R. A., Hussey C. L. // Inorg. Chem. 1982.
- 21. P. 1263
- 26. Ngo H.L., LeCompte K., Hargens L., McEwen A.B. // Thermochimica Acta. 2000. 357 358. P. 97
- 27. Studzinska S., Sprynskyy M., Buszewski B. // Chemosphere. 2008. 71. P. 2121
- 28. Vila J., Franjo C., Pico J.M. et al.// Portugaliae Electrochimica Acta. 2007. 25. P. 163.
- 29. Vila J., Varela L.M., Cabeza O. // Electrochimica Acta. 2007. 52. P. 7413.
- 30. Guangxiu M., Anfeng Z. // Iran. J. Chem. Chem. Eng. 2013. 32. No.1. P.77.
- 31. Паспорт к вискозиметру капиллярному стеклянному ВПЖ 3.
- 32. Ягфарова А.Ф., Габдрахманова А.Р., Минибаева Л.Р. и др. // Вестник Казанского технологического университета. 2013. 16. 8. С.282.
- 33. Фазлыев А.Р., Ягфарова А.Ф., Габдрахманова А.Р. и др. // Вестник Казанского технологического университета. 2013. 16. 18. С.108.

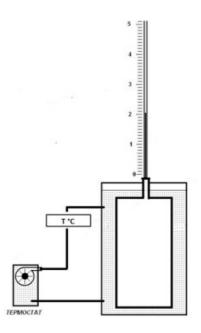


Рис.1

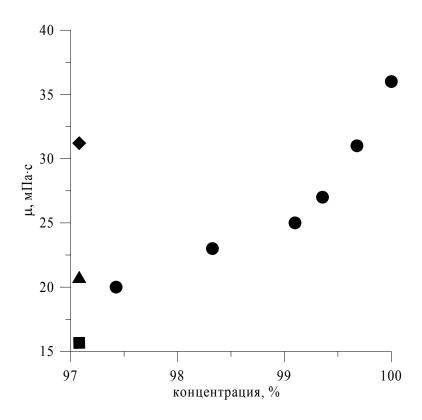


Рис. 2

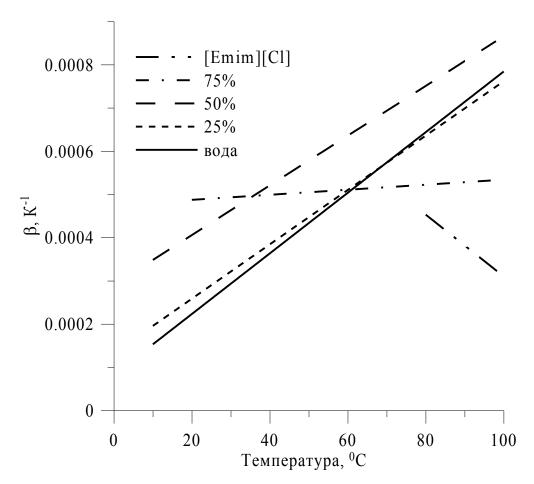


Рис.3

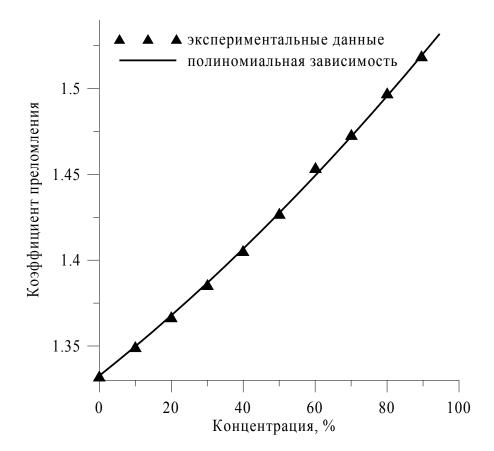


Рис. 4

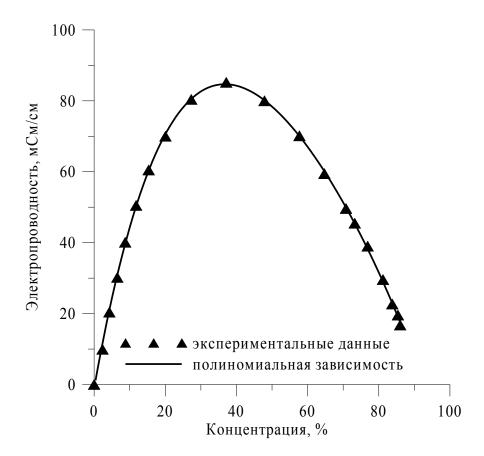


Рис. 5