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Abstract
Inmost experiments which search for violations of Born’s rule using light the diffractive elements are
formed frommaterial slits, or waveguides, which are treated classically. In this article we propose an
alternative approachwhere the internal energy levels of particles are used instead of slits to test the
superposition principle, thus removing the effect of the finite width of the slits. By quantising both the
lightfield and the diffraction elements we propose a newway to probe Born’s rule for light in a fully
quantummechanical way.

1. Introduction

Non-relativistic quantum theory uses the Schrödinger equation,

 ¶Y
¶

= Y
 ( ) ˆ ( ) ( )i
r t

t
H r t

,
, , 1

to describe the dynamics of quantum systems.Here, ÿ is the reduced Planck constant,

r is a position vector, t is

time, and Ĥ andΨ are theHamiltonian and thewavefunction of the system concerned. Despite its prevalence in
modern physics the philosophical interpretation of thewavefunction is something still debated [1, 2]. During the
early days of quantum theory, while considering the scattering of electrons, Born realised that themodulus-
squared value of solutions to the Schrödinger equationmust always be a positive, real and normalisable quantity.
He asserted thatΨ represents the probability amplitude tomeasure a quantumparticle to be at a given potision
[3], assigning physicalmeaning toΨ, such that the probability density for an event to occur is described by the
relation,

= Y
 ( ) ∣ ( )∣ ( )P r t r t, , . 22

Commonly referred to as Born’s rule, equation (2) is nowfirmly embeddedwithin themodern formalismof
quantummechanics, and it can be shown to arise quite naturally from the unitary, linear structure of the
dynamics of the Schrödinger equation [4–6]. Despite this fundamental role within quantum theory, there are
relatively few experiments which seek to directly verify this relation [7–13]. This in itself is reason enough to
stimulate further experimental investigations. Additionally, the difficulty in reconciling quantummechanics
and general relativity raises the question of whether our dynamical description of quantumparticles is
incomplete.

A direct consequence of Born’s rule, equation (2), is that the probability of an event occurring can always be
decomposed into a linear combination of termswhich contain information only relating to atmost two-paths
— the super position principle. One can therefore probe the validity of Born’s rule by looking for higher-order
interference terms, or contributions to the interference pattern beyondBorn’s predictions and conventional
quantum theory. A relativly simple way to search formulti-path interference is to look for deviations from the
classical additivity of probabilities formutually exclusive events where only three paths are available [14].
Experiments using light have already looked at the diffraction of laser beams and single-photons at amaterial
mask [7] or using optical waveguides [12]. Thesemethods rely on the classical diffraction of light—although the
light itself is quantised the diffractive elements are not. This can have subtle consequences which can effect the
interpretation of experiments [15–17].
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Phenomenological attempts to include gravity within a quantum theory typically introduce non-linearities
[18] and alternatives to the Schrödinger equation can result inmodifications to Born’s rule [19, 20]. It therefore
seems natural that experiments sensitive to violations of Born’s rule can be used to search for physics beyond
existing quantum theory.Non-linear extensions to quantummechanics can be physically unrealistic,
introducing problems ranging from entanglement fromnothing and super luminal signaling [21] to the cloning
of quantum states and polynomial-in-time operations for exponentially hard tasks [22]. However, as no
establishedmodel for quantum gravity currently exists, and given the problems associatedwithmany of the
existing extensions, it remains interesting to consider how to probe quantumdynamics beyond those of the
Schrödinger equationwithout assuming a particular functional form. Recently, tests ofmulti-path interference
have been extended tomassive particles [10]. The effects of gravity aremore pronounced formassive particles,
comparedwith photons, and therefore any gravitationalmodification to quantumdynamicsmay be
significantly larger—although how tomake a quantised grating formassive particles remains a challenge. An
experiment usingmicrowave photons [23], in a classical regime, has recently application of the superposition
principle breaks down in away consistent with classical electrodynamics when boundary conditions are
included.

In this article we consider what happenswhen the internal states of spatially separated single particles are
used instead of slits in an interference experiment. By quantising both the field and the diffraction elementwe
propose away to probemulti-path interference and therefore test Born’s rule in a fully quantummechanical
framework.

2.Detecting photons after absorption and re-emission by a quantised particle

2.1. A single quantumabsorber-emitter
Consider a single particle,A, with two internal energy levels ñ∣g and ñ∣e which represent the ground and excited
states, respectively. This is shown schematically infigure 1(a). In practice this particle could be a trapped ion [24]
or neutral atom [25–27], amolecule [28, 29] or quantumdot [30] on the surface of a substrate or anNV-centre in
a diamondmatrix [31].

Let us assume that particleA is initially prepared in ñ∣g . Illuminationwith a single photon g ñ∣ 0 results in the
state,

f a b gñ = ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ( )e g0 , 30

where a∣ ∣2 and b∣ ∣2 are the probabilities for the particle to absorb and not to absorb the photon respectively and
ñ∣0 represents the vacuum state.Once excitedA can spontaneously decay to the ground state at a rateΓ, emitting

a photon as it does so. The re-emitted photon can be described by the state vector,
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Here, gk is the particle-photon coupling constant,ωeg is the frequency separation between the states ñ∣e and ñ∣g ,
and ñ∣1k is the state vector representing a singlemode of electromagnetic radiationwithwavenumber k. For

Figure 1. (a)Aparticle consisting of two internal energy levels ñ∣g and ñ∣e separated in energy by E=ÿω. The excited state ñ∣e decays to
the ground state ñ∣g through spontaneous emission at a rate ofΓ. (b)A single, two-level particle is positioned a distance


rA from a

single photon detector (SPD)which can detect photons scattered by particleA.
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simplicity, the prefactors in gñ∣ can be gathered into a single coefficientE0, which represents the electric field
amplitude of the photon.Wewill also assume that the repetition rate of single photons is low comparedwith the
decay lifetime of the excited state such that stimulated emission can be neglected.

Figure 1(b) shows an ideal single-photon-detector (SPD)positioned a distanceD away fromparticleA such
that it can only detect photonswhich have been absorbed and then re-emitted through spontaneous emission.
By translating the SPD and recording the number of detection events at different positions, the first order
correlation function,

y y¢ ¢ = á  ¥  ¥ ñ- +   ( ) ( )∣ ( ) ( )∣ ( ) ( )( ) ( ) ( )G r t r t t E r t E r t t, ; , , , 51

can bemeasured. For brevity we shall write ¢ ¢ =
 

( )( ) ( )G r t r t G, ;1 1 fromhere on.
Let us assign y  ¥ ñ∣ ( )t as the state of our particle after it has decayed andwrite the electric field of the

photon in terms of its positive and negative field operators,
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Here,  k is the polarisation vector of ourfield and âk is the annihilation operator, whereby ñ = ñ ˆ ∣ ∣a 1 0k k . Let us
also assume the same linear polarisation throughout and reduce  = 1k . At time t=0we have
y = ñ = ñ ñ∣ ( ) ∣ ∣t e0 0 . After a time t?Γ, the particle has decayed to y g ¥ ñ = ñ ñ∣ ( ) ∣ ∣t g and the correlation
function becomes,
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Recalling that the probability of the particle absorbing the initial photon g ñ∣ 0 is a∣ ∣2, thenwe find that the
probabillity of detecting a photon is,

a=( ) ∣ ∣ ∣ ∣ ( )P z E , 8A
2

0
2

which is independent of the detector position. Here, we have assumedD to be large comparedwith the size of the
detection region, such that the solid angle subtended by the screen relative to the particle is small.

2.2. Young’s double slit experimentwith single photons andquantised particles
Let us now consider the case of two identical particles, labelledA andB, separated by a distance d along z,
illuminated by a single photon g ñ∣ 0 ofwavelengthλ=2π / k. This system is shown infigure 2(a) and is
analogous to a Young’s double slit experiment where each narrow slit has been replaced by a two-level quantum
system [32]. The positions of each particle relative to the SPD are described by the vectors


rA and


rB. The

absorption of g ñ∣ 0 by one of eitherA orB produces the superposition state,

y = ñ = ñ + ñ ñ∣ ( ) (∣ ∣ )∣ ( )t g e g e0
1

2
, , 0 . 9A B B A

If it is unknownwhich of the particles absorbed and then re-emitted the photon—i.e. there is nowhich-path
information available—then a superposition of singlemodes of the electromagnetic spectrum are populated,

Figure 2. (a)Two identical particles, each containing two internal states, are separated fromone another by a distance d. After
illuminationwith a single photon g ñ∣ 0 one of the particles absorbs and eventually re-emits the photonwhich can then bemeasured
using a single photon detector (SPD). (b) If there is noway if tellingwhetherA orB absorbed and then scattered the photon then a
superposition of different single photonmodes are populated. Thismodifies the correlation functionG(1), introducing a strong cosine
dependence to the probability of detecting a photon at a given position z.

3

J. Phys. Commun. 3 (2019) 045012 J PCotter andRPCameron



y g g ¥ ñ = ñ ñ + ñ∣ ( ) ∣ (∣ ∣ ) ( )t g g
1

2
, , 10A B A B

and the total state vector can bewritten as,
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Throughout this article we shall consider the case where emission by one particle and absorption by another
before re-emission and then detection can be neglected.

By combining the state vector from equations (11)with (5)wefind thefirst order correlation function to be
= + -∣ ∣ ( [ ( )])( )G E k r r1 cosAB A B

1
0

2 . However, onemust also account for the increased probability that one of the
particles,A orB, absorb g ñ∣ 0 after illumination—two particles are twice as likely to absorb than one. This
increased probability of absorption is a∣ ∣2 2 and results in a probability for the SPDdetecting a scattered photon
of,

a= + -( ) ∣ ∣ ∣ ∣ ( [ ( )]) ( )P z E k r r2 1 cos . 12AB A B
2

0
2

figure 2b) shows how the number of scattered photons varies as the detector is translated laterally with respect to
the particlesA andB. As onemight expect, this result takes the same form as the classical description of two
interfering planewaves after propagating through a Young’s double slit apparatus where the single slit
contribution to the diffraction pattern can be ignored.

2.3. Three path interference using single photons
Let us now extend our system from two particles to three. Following on from the previous section onefinds that
if a single photon is absorbed by one of three particlesA,B, orC, as shown infigure 3, the system initially resides
in the state,
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After a time t?1/Γ this decays to,
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and therefore,
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Once the factor of a∣ ∣3 2 is included in order to account for the increased probability of one particle absorbing,
the total probability of detecting a photon at a given position reduces to

a= + - + -
+ -
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2.4. N-path interference using single photons
Recently tests ofmulti-path interference usingmore than three slits have been demonstrated [13]. Let us
therefore now extend our chain of particles from3 toN, each separated from their nearest neighbour by a

Figure 3. (a)Three particles each separated by a distance d can scatter single photoswhich can be detected by SPD. (b)The probability
of detecting scattered photons as a function of the detector position along z.
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distance d. This is shown schematically infigure 4. Following the same reasoning as in section 2wefind the
probability of detecting a photon at position z forN different emitters can bewritten as,

a= + - + - + -
+ - + - + -
+ - + - + - +
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WhenD?d this equation can be simplified. In this limit, the separation between two particles is well
approximated by the relation d- = - =+ +( )r r n r r n rj n j j j1 , where d q=r d sin .

This enables equation (17) to be expressed in terms of the finite series,
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Reassuringly, this resembles the familiar formula for a linear array of in phase dipole emitters [33].

3. In search ofmulti-path interference

Born’s rule dictates that the probability of detecting any event can always be decomposed into a series of terms
which contain atmost information relating to two paths. Let us consider the simplest scenariowhere higher
order contributions to the interference patternmay become apparent, namely a three slit type experiment. Using
equations (8), (12) and (16) from the previous section one arrives at the following equality,

= + + - - - ( )P P P P P P P , 20ABC AB AC BC A B C

which can be used to define the parameter

 = - + + + + +( ) ( ) ( )P P P P P P P , 21ABC AB AC BC A B C

first introduced by Sorkin [14]. According to conventional quantum theory ò=0, withfinite values
corresponding to some degree ofmulti-path interference—illustrative of dynamics beyond the Schrödinger
equation, or in experiments usingmaterial slits it can arise from the change of boundary conditions.

One can seek to bound anymulti-path contribution bymeasuring ò. In order to do this onemust compare
the interference pattern for three scattering pathswith those of all linear combinations of two and one paths as
described in equation (21). In experiments where physical slits are used to define the paths, the interference
patterns corresponding to all different permutations ofA,B andC are controlled by selectively covering
individual slits [7]. An appealing alternative, when using particles containing two-internal states to scatter
incoming single-photons, is to selectively detune the particles from resonancewith g ñ∣ 0 —for example bymaking
(ωeg−ωγ) in equation (4) very large. Figure 5 illustrates away this can be achieved. By applying a local potential
to only some of the particles in the chain, for example by Stark-shifting the internal states using an electric field,
then the absorption of g ñ∣ 0 can be controlled and under appropriate condition switched on and off. This removes

Figure 4. (a)N particles each separated by a distance d from their nearest neighbour. Each particle can scatter single photonswhich can
be detected by SPD.Herewe have shown an array containing an oddnumber of particles.We find identical results when using an even
number. (b)The probability of detecting scattered photons as a function of the detector position along z for a linear array ofN=30
particles.We find the probability of detecting a scattered photon peaks sharply at values constant with the Bragg relation
p q=m kd2 sin , wherem is an integer describing the diffraction order.
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the need to physicallymask the individual scattering sites which could distort the trajectories of scattered
photons and thereby introduce erroneous, finite vales of ò. Bymanipulating the internal energy levels of each
scattering particle in this way a non-invasivemeasurement of ò can be performed, where each effective slit
remains near-identical.

4.Discussion

Wehave derived the probability density of detecting single photons scattered by linear arrays of particles each
containing two internal states. The case of one, two, three andN particle scattering is derived andwe showhow
these can be used to place bounds on themulti-path contribution to the resulting interference pattern.

During the preparation of thismanuscript a complementary perspective was published [34], which
highlights the importance of the photon detector usedwhen interpretingmulti-path interference experiments,
although it retains the the use ofmaterial slits. Here, we propose amethod using single-particles to scatter single-
photonswhich avoids the complex diffraction processes that occur for light atmaterial slits [7, 8, 15], or
waveguides [12], which complicate experimental realisations of optical tests of Born’s rule. For particles with a
scattering probability which can be sufficiently controlledwithout affecting their neighbours we have shown
how they can be used to probe Born’s rule and the underlying dynamics of the Schrödinger equation.Namely,
how to perform amulti-path photon interference experiment where the effective slits can be treated in a fully
quantummechanical fashion.
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