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ABSTRACT 44 

Background: The heterogeneity of genetic effects on Major Depressive Disorder (MDD) may be 45 

partly attributable to moderation of genetic effects by environment, such as exposure to childhood 46 

trauma (CT). Indeed, previous findings in two independent cohorts showed evidence for interaction 47 

between polygenic risk scores (PRS) and CT, albeit in opposing directions. This study aims to meta-48 

analyze MDD-PRSxCT interaction results across these two and other cohorts, while applying more 49 

accurate PRS based on a larger discovery sample.  50 

Methods and Materials: Data were combined from 3,024 MDD cases and 2,741 controls from nine 51 

cohorts contributing to the MDD Working Group of the Psychiatric Genomics Consortium. MDD-PRS 52 

were based on a discovery sample of approximately 110,000 independent individuals. CT was 53 

assessed as exposure to sexual or physical abuse during childhood. In a subset of 1957 cases and 54 

2002 controls, a more detailed 5-domain measure additionally included emotional abuse, physical 55 

neglect and emotional neglect.  56 

Results: MDD was associated with the MDD-PRS (OR=1.24, p=3.6e-5, R
2
=1.18%) and with CT 57 

(OR=2.63, p=3.5e-18 and OR=2.62, p=1.4e-5 for the 2- and 5-domain measures respectively). No 58 

interaction was found between MDD-PRS and the 2-domain and 5-domain CT measure (OR=1.00, 59 

p=0.89 and OR=1.05, p=0.66).  60 

Conclusions: No meta-analytic evidence for interaction between MDD-PRS and CT was found. This 61 

suggests that the previously reported interaction effects, although both statistically significant, can 62 

best be interpreted as chance findings. Further research is required, but this study suggests that the 63 

genetic heterogeneity of MDD is not attributable to genome-wide moderation of genetic effects by 64 

CT.  65 

 66 

67 
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INTRODUCTION 68 

Recent studies have found the first associated genetic variants for Major Depressive Disorder (MDD) 69 

and depressive complaints (1–3), but research on MDD still hasn't met the success of research on 70 

schizophrenia, for which 108 genetic variants were found in 2014 (4). This discrepancy is attributable 71 

to several factors, including the higher population prevalence of MDD (so that the difference in 72 

liability between cases and controls is smaller than in schizophrenia) (5, 6), the lower heritability of 73 

MDD (assuming the same degree of polygenicity in terms of number of risk loci) (5), and the greater 74 

genetic and phenotypic heterogeneity of MDD (7). To illustrate the possible consequence of 75 

heterogeneity, Wray and Maier showed that the power to detect a causal SNP decreases 76 

dramatically when a disorder is caused by two distinct pathways (8), while Milaneschi et al found 77 

that genetic effects in those with typical MDD might partially differ from genetic effects in those 78 

with atypical MDD (9, 10).  79 

 Another source of genetic heterogeneity may arise from gene-by-environment (GxE) 80 

interaction: the moderation of genetic effects on MDD by specific environmental factors. Much 81 

research concerning GxE-interaction has been conducted with candidate genes, in particular the 82 

interaction between the serotonin transporter gene (5-HTTLPR) and childhood trauma (11), but this 83 

research has produced contradictory findings (12–15) that have been attributed, at least in part, to 84 

publication bias (16). Recently, Culverhouse et al published results from a collaborative meta-85 

analysis showing no evidence for interaction between 5-HTTLPR and childhood trauma (17) based on 86 

a previously published protocol for analyses (18). Nevertheless, in the last couple of years, methods 87 

have been developed to assess the combined impact of all genotyped SNPs, such as polygenic risk 88 

score (PRS) analyses (19). Kendler proposed that a confirmed main effect is a desirable condition for 89 

GxE-interaction testing (20). This suggests that PRS may be preferable over candidate genes to test 90 

for GxE-interaction, because PRS have a confirmed significant effect on MDD (21, 22) contrasting the 91 

non-replicated and non-consistent effects of candidate genes (23, 24). 92 

 In GxE interaction research numerous environmental factors can be tested, which may have 93 

catalyzed publication bias in the candidate gene literature (16) and may also present as a challenge 94 

for GxE interaction tests with PRS. Nevertheless, a plausible environmental factor to test in the 95 

context of GxE-interaction is childhood trauma, which is one of the strongest risk factors with a 96 

lifelong impact on MDD risk (25), and may perhaps be more uniformly defined than stress later in 97 

life. Moreover, exposure to childhood trauma has been hypothesized to distinguish a clinically and 98 

neurobiologically distinct subtype of MDD, because MDD patients exposed to childhood trauma 99 

have an earlier onset, more chronic course, higher severity with more neurovegetative and psychotic 100 
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symptoms, more comorbidities, more suicide attempts and poorer treatment outcome than MDD 101 

patients that did not experience childhood trauma (26).  102 

Following this reasoning, Peyrot et al. tested for GxE interaction between PRS and CT in the 103 

Netherlands Study of Depression and Anxiety (NESDA) and found a significantly stronger impact of 104 

PRS on MDD risk in individuals exposed to childhood trauma compared to individuals not exposed to 105 

childhood trauma (27). In a replication study, Mullins et al found a significant but opposing 106 

interaction effect in the RADIANT UK sample with a stronger impact of PRS on MDD risk in those 107 

unexposed to childhood trauma (28). These opposing findings, that were both significant, are not 108 

well understood, and it remains unclear whether these reflect actual differences between cultures, 109 

between recruitment of participants into cohorts, or chance-findings. The aim of the current study is 110 

(i) to re-analyze NESDA and RADIANT UK with more accurate PRS based on discovery results from 111 

approximately 110,000 individuals (compared to ~15,000 applied previously), and (ii) to place the 112 

NESDA and RADIANT UK findings in a broader perspective by meta-analyzing their results with seven 113 

additional cohorts from the Psychiatric Genomics Consortium (PGC) MDD wave 2 (29). Secondary 114 

analyses used PRS calculated from discovery GWAS results for schizophrenia and bipolar disorder, as 115 

these are genetically related to MDD (7, 30). 116 

 117 

METHODS 118 

Subjects 119 

Subjects were recruited from the Psychiatric Genomics Consortium (PGC) wave 2, which combines 120 

genotype and phenotype data of individuals of European ancestry in 29 different cohorts (29). The 121 

combined samples include data of 16,823 MDD cases and 25,632 controls. Of these 29 cohorts, nine 122 

cohorts included a measure of childhood trauma: Cognition and Function in Mood Disorders Study 123 

(COFAMS) from Australia (31), Depression Gene Network (DGN) from the USA (32), the Netherlands 124 

Study of Depression and Anxiety (NESDA) (33), the Queensland Institute of Medical Research (QIMR 125 

in three different cohorts defined by genotyping platform) from Australia (23), RADIANT UK (34), and 126 

Study of Health in Pomerania (SHIP-0, and SHIP-TREND) from Germany (see Table S1 for more 127 

detailed information) (35). Briefly, SHIP-O, SHIP-T and QIMR are community studies with MDD cases 128 

and screened controls defined from responses to self-report questionnaires, whilst the other studies 129 

recruit MDD cases from in- or out-patient clinics and recruit screened controls with both cases and 130 

controls completing the same childhood trauma questionnaires. The definition of MDD in all studies 131 

was based on structured psychiatric interviews following DSM-criteria. 132 

 133 

Childhood Trauma Questionnaire 134 
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The Childhood Trauma Questionnaire (CTQ) was applied to assess childhood trauma, defined as 135 

trauma before the age of 16, in five of the nine cohorts (COFAMS, NESDA/NTR, RADIANT UK, SHIP-0, 136 

and SHIP-TREND). The CTQ covers the five domains of sexual abuse (SA), physical abuse (PA), 137 

emotional abuse (EA), emotional neglect (EN), and physical neglect (PN). Each domain is assessed by 138 

five questions (scored 1 to 5) resulting in a domain score ranging from 5 to 25, and an overall CTQ 139 

continuous score ranging from 25 to 125 (36). Per domain, cutoffs were applied to define a narrow 140 

definition of childhood trauma separating no or mild trauma from moderate or severe trauma 141 

(Supplemental Methods). From this, an overall dichotomous CTQ indicator was constructed to 142 

separate trauma in any of the five domains (indicator=1) from trauma in none of the domains 143 

(indicator=0). The analyses were based on the continuous and dichotomous 5-domain CT scores. The 144 

five domains were highly correlated: all pairwise correlation coefficients were larger than 0.4 except 145 

for sexual abuse which was slightly less connected (Table S2) as has previously also been reported by 146 

Spinhoven et al (37).   147 

 148 

Other childhood trauma instruments 149 

In addition to the five cohorts that assessed childhood trauma with the CTQ instrument, four 150 

additional PGC cohorts (DGN and the three sub-cohorts of QIMR) assessed childhood trauma with 151 

other instruments (before the age of 18 in QIMR). To obtain the largest possible dataset, childhood 152 

trauma information was matched across all nine cohorts for sexual abuse and physical abuse 153 

(Supplemental Methods). A broad definition (no abuse versus mild, moderate or severe abuse) was 154 

applied to create a childhood trauma indicator separating those with trauma (exposed to sexual 155 

and/or physical abuse) from those not exposed to childhood trauma (neither exposed to sexual nor 156 

physical abuse). The correlation (Spearman’s rho) between the 2-domain dichotomous CT indicator 157 

and the 5-domain continuous CT score equaled 0.50 (p<2.e-16). 158 

 159 

Genotyping, quality control and imputation 160 

The cohorts were genotyped following their local protocols, after which quality control and 161 

imputation against the 1000 genomes reference panel (38) were performed centrally in the PGC per 162 

cohort (29). The SNP probabilities were converted to best guess data with a genotype call probability 163 

cut-off of 0.8, after which individuals were removed with missing-rate >2%. A total of 1,171,526 164 

HapMap 3 SNPs passed post-imputation QC in at least 2 of 9 batches (missing-rate <2%, minor allele 165 

frequency >0.01, and imputation INFO-score >0.6). These 1,171,526 SNPs were used to calculate the 166 

genetic relatedness matrix (GRM) with PLINK2 (39), which was thus based on a different set of SNPs 167 

for individuals from each cohort and between each pair of cohorts (Table S3), in this way providing 168 
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genome-wide coverage of well described HapMap 3 SNPs. From the GRM, unrelated individuals 169 

were selected with relatedness <0.05, and ancestry informative principal components were 170 

calculated with GCTA (40).  171 

 172 

Polygenic risk scores 173 

Polygenic risk scores for MDD (MDD-PRS) were based on meta-analysis of the GWAS results from the 174 

twenty PGC MDD wave 2 cohorts with no childhood trauma information available (10,409 cases, 175 

18,640 controls) (29), deCODE (1,980 cases, 9,536 controls) (29), GenScotland (997 cases, 6,358 176 

controls) (41, 42), GERA (7,162 cases, 38,307 controls) (43), iPsych (16,242 cases, 15,847 controls) 177 

(29) and UK Biobank (8,248 cases, 16,089 controls) (44, 45). This discovery sample comprised 45,038 178 

cases and 104,777 controls yielding a power similar to a sample of 56,134 cases and 56,134 controls 179 

(Neffective= 56,134 + 56,134= 112,268). Additional PRS were based on GWAS results from 180 

schizophrenia (SCZ-PRS) (4) and bipolar disorder (BIP-PRS) (46), because these disorders are 181 

genetically related to MDD (7, 30). PRS were calculated using 463,215 SNPs shared between the 182 

discovery sample results and passing QC in all cohorts (missing-rate <2%, minor allele frequency 183 

>0.01, and imputation INFO-score >0.6). Thus, PRS were based on the same set of SNPs in all 184 

analyses to increase comparability of results across cohorts. These SNPs were clumped with PLINK (--185 

clump-p1 1 --clump-p2 1 --clump-r2 0.25 --clump-kb 500), and provided 73,576 lowly correlated 186 

SNPs for MDD, 73,559 for SCZ, and 73,656 for BIP. The MDD-PRS were based on five different 187 

thresholds of GWAS significance for SNP inclusion (p-value smaller than 0.01, 0.05, 0.1, 0.5 and 1 188 

respectively). The SCZ-PRS was based on a threshold of p<0.05, which provided optimal predictive 189 

power on SCZ (4). The BIP-PRS was based on a threshold of p<0.5 with best predictive performance 190 

on BIP (46). The PRS were calculated by summing the number of risk alleles weighted by their effect 191 

size (--score command in PLINK) (39). 192 

 193 

Statistical analyses 194 

The prevalences at the population level of the 5-domain and 2-domain dichotomous CT indicators 195 

were approximated from this study assuming a population lifetime risk of MDD of 15%, with a 196 

lifetime risk of 20% in women and 10% in men (5, 47). The impact of the PRS, CT and PRSxCT was 197 

first estimated in the individual cohorts, and the effects in the total sample were subsequently 198 

assessed with random-effect meta-analysis. Within each cohort, the impact of CT on MDD was 199 

assessed with logistic regression including sex as covariate. The tests for the main effects of the PRS 200 

on MDD included sex and the first three ancestry informative principal components as covariates. 201 

Interaction analyses were conducted with the 5-domain continuous CT measure and with the 2-202 
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domain dichotomous CT indicator. Interaction analyses of PRSxCT were corrected for sex, three 203 

principal components, PRS, CT, and the interaction-terms of PRS and CT with sex and the principal 204 

components in line with Keller’s recommendation (48). With logistic regression, interaction is tested 205 

as departure from multiplicativity (combined impact different from the product of the individual 206 

effects), but it has been argued that interaction as departure from additivity (combined impact 207 

different from the sum of the individual effects) is more meaningful biologically (49). For testing 208 

interaction as departure from additivity, the relative excess risks due to interaction (RERI) were 209 

estimated with the coefficients from logistic regression as �����
����	
 �������	�

− �����
�

− ���	


+ 1, 210 

and their 95% confidence intervals by means of bootstrapping with 10,000 iterations. The impact of 211 

the PRS on MDD was further expressed as variation explained on the liability scale, R
2
 (50). The PRS 212 

and continuous 5-domain CT measure were standardized (i.e. mean of 0 and variance of 1), and the 213 

presented ORs can thus be interpreted as increased MDD risk per standard deviation increase in PRS 214 

or CT. The analyses were conducted in R (51).  215 

 216 

Genetic Relationship Matrix (GRM)-based analyses 217 

The variance in MDD liability and CT explained by genotyped SNPs (SNP heritability) was assessed 218 

with cross product Haseman-Elston regression (52). These analyses were corrected for covariates by 219 

calculating the residuals of linear regression of MDD and CT on sex, genotyping batch and 20 220 

ancestry informative principal components (PCs). We included 20 PCs, because GRM-based analyses 221 

are more sensitive to population stratification than PRS analyses (7). To test for interaction between 222 

CT and genome-wide genetic effects in MDD, the genetic correlation between MDD in unexposed 223 

individuals and MDD in exposed individuals can give information about differences in genetic effects 224 

(53). Unfortunately, the current data did not allow for the latter analyses because of limited sample 225 

size (e.g. only 389 exposed controls) while analyses had to be corrected for 9 cohorts.   226 

 227 

RESULTS 228 

Phenotypic association between MDD and CT 229 

The 5-domain continuous and dichotomous CT measures were available for 1957 cases and 2002 230 

controls, and the 2-domain dichotomous indicator was available for 3024 cases and 2741 controls. 231 

The prevalence of CT was estimated at 0.25 based on the 5-domain indicator (Table 1), and at 0.17 232 

for the 2-domain indicator (Table 3). As expected, the prevalence was considerably larger in cases 233 

than controls (0.50 vs 0.21 for the 5-domain measure and 0.35 vs 0.14 for the 2-domain measure). 234 

This was reflected in an OR for MDD of 3.80 (p=3.0e-6) for the 5-domain dichotomous measure, and 235 

an OR of 2.63 (p=3.5e-18) for the 2-domain measure. For the 5-domain continuous CT measure, an 236 
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OR for MDD of 2.62 (p=1.4e-5) per standard deviation increase in CT was found (Table 1 & Figure 1). 237 

The impact of CT on MDD was comparable in men and women, with ORs of 2.18 (males, p=1.1e-4) 238 

and 2.74 (females, p=3.6e-5) per standard deviation increase in the continuous 5-domain CT 239 

measures (Table 1). CT had an impact on MDD risk in all cohorts (Table 1), and the five CTQ domains 240 

all had an impact on MDD risk (Table S4). 241 

 242 

Polygenic risk score analyses 243 

The MDD-PRS based on all SNPs (inclusion threshold of p<1) had the greatest predictive power, with 244 

an OR of 1.34 (p=5.1e-11, R
2
=1.71%) in the 1957 cases and 2002 controls with availability of the 5-245 

domain CT measures (Table 2). The SCZ-PRS and BIP-PRS also predicted MDD but to a lesser extent 246 

than the MDD-PRS (Table 2), reflecting the well-described genetic correlation between MDD, BIP 247 

and SCZ (7). Because GE-correlation can lead to spurious GxE-results (54), we tested for an 248 

association between the MDD-PRS and CT. The MDD-PRS did predict the 5-domain continuous CT 249 

measure (beta=0.76, p=0.004 in linear regression), but this was approximated to only reflect a small 250 

correlation in terms of the full population of ~0.04 (Table S5). No interaction between the PRS and 251 

the 5-domain continuous CTQ measure was found, with an impact of MDD-PRSxCT on MDD of 252 

OR=1.05 (p=0.52; Table 2). In addition, no evidence was found for interaction as departure from 253 

additivity (RERI=0.83, 95%CI= -0.62 to 18.03). The BIP-PRS and SCZ-PRS showed no evidence for 254 

interaction with the 5-domain CT measure.  255 

Applying the 2-domain dichotomous CT indicator of sexual or physical abuse allowed 256 

inclusion of four additional cohorts in the analyses (Table 3): DGN and 3 QIMR cohorts (one of the 257 

QIMR cohorts was split in two to acknowledge different instruments applied to assess childhood 258 

trauma). The total sample size thus increased to 3024 cases and 2741 controls, in which the MDD-259 

PRS had an impact on MDD with an OR of 1.24 (p=3.6e-5, R
2
=1.18%). The polygenic risk scores did 260 

predict MDD in DGN, but not in all QIMR cohorts, which is attributable to the relatively small 261 

number of QIMR subjects with CT information available compared to the full QIMR sample (in which 262 

PRS predict MDD as expected). No interaction was found between the PRS and 2-domain 263 

dichotomous CT indicator (Table 3).    264 

An alternative method sometimes applied to test for interaction as departure from additivity 265 

is linear regression with the disease trait as outcome (28). We suggest for caution in interpreting 266 

findings from this approach, because this method has, to the best of our knowledge, not been 267 

formally described. Nevertheless, for reasons of completeness, this approach was applied and also 268 

showed no evidence for interaction with the 5-domain CT measure (beta=-0.004, p=0.67) and the 2-269 

domain CT measure (beta=-0.005, p=0.45). 270 
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 271 

GRM based analyses 272 

The SNP heritability of MDD was estimated at 0.14 (SE=0.03; p=3.7e-8) based on the 6,348 cases and 273 

6,751 controls across the nine cohorts (Table S1; these analyses included additional individuals with 274 

no CT information available). The SNP heritability of CT was estimated at 0.00 (SE=0.07; p=1; 275 

N=3,959) for the 5-domaine continuous measure, and at 0.09 (SE=0.08; p=0.27; N=5,765) for the 2-276 

domain dichotomous indicator.  277 

 278 

DISCUSSION 279 

This study was conducted to test for interaction between polygenic risk for MDD and childhood 280 

trauma (CT) in 5,765 individuals from nine cohorts contributing to the Psychiatric Genomics 281 

Consortium that had a childhood trauma assessment available. CT occurred in 25% of individuals 282 

based on an indicator of 5-domains (sexual abuse, physical abuse, emotional abuse, emotional 283 

neglect, and physical neglect), and in 17% based on broad definition of 2-domains (sexual and/or 284 

physical abuse). As expected, the prevalence was considerably higher in cases than controls (0.50 vs 285 

0.21 for the 5-domain measure and 0.35 vs 0.14 for the 2-domain measure). The 5-domain measure 286 

was more detailed and uniformly assessed in 1957 cases and 2002 controls; the 2-domain indicator 287 

was assessed heterogeneous across cohorts, but available for a larger sample comprising of 3024 288 

cases and 2741 controls. The polygenic risk scores (PRS) explained 1.18% to 1.71% of variation in 289 

MDD risk. No evidence for interaction between PRS and childhood trauma was found with 5-domain 290 

CT measure (Table 2) and the 2-domain CT indicator (Table 3). Secondary analyses also showed no 291 

evidence for interaction in analyses with PRS based on discovery results from schizophrenia and 292 

bipolar disorders, in tests for interaction as departure from additivity, in analyses in males and 293 

females separately (Table S6), and in analysis in the five separate domains of CT (Table S7; 294 

significance threshold 0.01=0.05/5). Analyses excluding NESDA and RADIANT UK showed no 295 

evidence for interaction between the MDD-PRS (p-value threshold 1) and 5-domain CT measure 296 

(OR=1.06, p=0.67) and 2-domain CT measure (OR=0.98, p= 0.61) in the remainder of the cohorts.  297 

 Remarkably, no interaction-effects were found in NESDA (OR=1.08, 95%CI=0.83-1.39, 298 

p=0.56) and RADIANT UK (OR=0.93, 95%CI=0.66-1.31, p=0.67) with the 5-domain CT measure (Table 299 

2), which contrasts previous findings in these respective cohorts by Peyrot et al (OR=1.12, p=0.018, 300 

discovery sample Neffective=15,295) (27) and Mullins et al (OR=0.96 based on differently scaled PRS 301 

and CT, p=0.002, discovery sample Neffective=15,540) (28). Aiming to clarify these discrepancies, we 302 

analyzed PRS based on discovery results from PGC MDD wave 2 with an effective sample size of 303 

approximately 37,000 (Table S8) and confirmed the previously reported interaction-effects in NESDA 304 
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(OR=1.38, 95%CI=1.07-1.76, p=0.011) and RADIANT UK (OR=0.67, 95%CI=0.51-0.90, p=0.006). 305 

Therefore, it appears that the OR of the interaction-effects are reduced by adding deCODE (29), 306 

GenScotland (41, 42), GERA (43), iPsych (29) and UK Biobank (44, 45) to the PRS discovery sample. 307 

These discrepancies in interaction results may reflect different study designs in the discovery 308 

datasets with application of self-reported depression status in UKB and clinical records in iPsych and 309 

GERA, contrasting the semi-structured interviews (such as the SCID, CIDI and MINI) applied in most 310 

PGC cohorts (29). However, these discrepancies may also reflect random variation in effects with 311 

discovery sample size increasing from ~37,000 to ~110,000. The latter possibility seems more likely 312 

since: (1) we observe an increase in the variance explained by the PRS from 0.66% (p=2.8e-5) to 313 

1.71% (p=5.1e-11) (Table S8), which corresponds with the increase predicted from theory given the 314 

increased sample size (55); (2) a genetic correlation of 0.91-0.96 between the PGC wave 2 discovery 315 

results and the extended discovery results as estimated with LD-score regression (30); and (3) an 316 

overlap of the 95% CI of the interaction-effects based on the PGC discovery sample and the larger 317 

discovery sample applied in this paper (Table S8). In other words, our results suggest that the 318 

additional discovery cohorts (deCODE, GenScotland, GERA, iPsych, and UK Biobank) capture the 319 

same genetic information as the PGC cohorts. Therefore, we hypothesize that the previously 320 

reported interaction results in NESDA (27) and RADIANT UK (28) were both chance findings. The fact 321 

that these findings were both significant in an opposite direction may reflect the statistical 322 

vulnerability of interaction testing (48, 54, 56).  323 

 A source of spurious interaction effects can be found in gene-environment (GE) correlation 324 

as explained for twin analyses by Purcell (54). Notably, the PRS based on the PGC wave 2 discovery 325 

results were slightly more correlated with childhood trauma in the full population (with 326 

approximately -0.09 in NESDA and 0.13 in RADIANT UK) than the PRS based on the extended sample 327 

(~0.02 and ~0.06 respectively). A simulation study suggested that the type I error rate can indeed be 328 

inflated in the context of GE-correlation, but to a modest extent of 0.075 (with alpha set at 0.05) for 329 

a strong correlation of 0.3 between G and E (Supplemental Methods). It is, therefore, unlikely that 330 

the GxE-interactions previously found would be attributable to GE-correlation.  331 

 The current study has both strengths and limitations. First, this study is the largest to date to 332 

test for interaction between polygenic risk scores and CT in MDD risk. Second, polygenic risk scores 333 

were based on a powerful discovery GWAS with approximately 110,000 individuals. Third, diagnoses 334 

were DSM-based aiming to select clinically relevant cases of MDD. A limitation of our study is that CT 335 

was not assessed uniformly across cohorts for the 2-domain measure, but analyses restricted to 336 

cohorts assessed uniformly with the 5-domain CTQ-instrument showed similar results. Although this 337 

study is the largest to date, power to detect an interaction-effect between PRS and CT was still 338 
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limited (power≥0.8 for interaction effects with OR≤0.83 or OR≥1.21 for analyses with the 2-domain 339 

CT measure in 5,765 individuals based on power analyses with the QUANTO software) (57). Of note, 340 

tests of interaction with PRS do not rule out interaction with individual SNPs; the PRS were based on 341 

many SNPs, some, but not all of which may be involved in interaction. The current study tested for 342 

interaction with childhood trauma, because childhood trauma has been hypothesized to define a 343 

distinct type of MDD,(26) but other environmental factors could have also been tested. 344 

Nevertheless, testing too many environmental conditions assessed with a variety of instruments 345 

may increase risk of publication bias when significant findings would be published selectively (16, 346 

58).   347 

 Lastly, we would like to emphasize the complex nature of interaction testing with PRS based 348 

on genome-wide SNPs. For analyses with twin data, Purcell described the distinction between 349 

qualitative interaction (different genes have an effect across different environments) and 350 

quantitative interactions (the same genes have an effect but they explain a different proportion of 351 

variance) (54). In an attempt to elucidate some of the characteristics of interaction testing with PRS, 352 

we conducted a second simulation study constructing PRS from simulated SNP-level data for 353 

different underlying genetic architectures (Supplemental Methods and Table S9). First, we note that 354 

the discovery results are typically based on a discovery sample with an unknown mixture of 355 

individuals unexposed (CT=0) and individuals exposed to childhood trauma (CT=1). When assuming 356 

qualitative genome-wide interaction with different directions of SNP effects in exposed and 357 

unexposed individuals (explaining the same proportion of variance in both groups), the discovery 358 

GWAS would mainly tag the effects in unexposed individuals that form the majority of the discovery 359 

sample. Consequently, negative interaction between PRS and CT would be detected under this 360 

scenario. Second and contrary, for quantitative interaction a positive interaction effect may be 361 

expected when SNPs would explain more variance in exposed individuals.  362 

 To conclude, no overall evidence was found for interaction between PRS and CT. Previously 363 

found interaction effects (27, 28) were no longer significant when applying more powerful discovery 364 

results. This study provides a cautionary tale for interaction analyses with PRS: it emphasizes the 365 

need to meta-analyze results across different cohorts to obtain external validity. The quest 366 

continues to clarify the nature of the heterogeneity of MDD, but the present study has shown that 367 

the heterogeneity is unlikely to be attributable to moderation of genome-wide genetic effects by CT. 368 

Future research may focus on interaction effects between CT and individual SNPs. We hereby call for 369 

large GWAS cohorts to assess CT in a uniform manner to facilitate such research in the years the 370 

come.  371 

  372 
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Legend to Table 1 612 

Information is displayed for the cohorts that assessed childhood trauma with the Childhood Trauma 613 

Questionnaire (CTQ) covering the 5 domains of sexual abuse, physical abuse, emotional abuse, physical neglect 614 

and emotional neglect in a dichotomous 5-domain indicator (exposed versus unexposed) and continuous 615 

measure (ranging from 25-125). For the dichotomous CT measure, the proportion of exposed individuals is 616 

presented in cases, controls, and in terms of the full population (Pop) assuming a population prevalence of 617 

MDD of 15% with twice the prevalence in females (20%) as in males (10%), as well as the odds ratio (OR) of 618 

exposed versus unexposed to develop MDD. For the continuous CT measure, the means are displayed in the 619 

original scale, and the odds ratio for MDD was assessed for the CTQ measure scaled to variance 1, and can 620 

thus be interpreted as increased odds per standard deviation (SD) increase in childhood trauma. The ORs were 621 

estimated with logistic regression including sex as covariate. The ORs in the Total sample were estimated with 622 

random effect meta-analysis. 623 

 624 

Legend to Figure 1. 625 

Forest plot of impact on major depressive disorder of the continuous childhood trauma (CT) score 626 

covering the 5 domains of sexual abuse, physical abuse, emotional abuse, emotional neglect, and 627 

physical neglect. The odds ratio (OR) represents one standard deviation increased in CT. SHIP-O, 628 

SHIP-T and QIMR are community studies with MDD cases and screened controls defined from 629 

responses to self-report questionnaires, whilst the other studies recruit MDD cases from in- or out-630 

patient clinics and recruit screened controls with both cases and controls completing the same 631 

childhood trauma questionnaires. 632 

 633 

Legend to Table 2 634 

The impact on major depressive disorder (MDD) is displayed for polygenic risk scores (PRS) and their 635 

interaction with the 5-domain continuous childhood trauma (CT) measure including sexual abuse, physical 636 

abuse, emotional abuse, physical neglect and emotional neglect. The impact of the PRS is presented as the 637 

odds ratio (OR) from logistic regression corrected for sex and three principal components, as well as with the 638 

variance explained by the PRS on the liability scale. Interaction of PRS with CT (PRSxCT) was assessed as 639 

departure from multiplicativity with logistic regression while additionally correcting for the main effects of PRS 640 

and CT. Interaction as departure from additivity was expressed as the relative excess risks due to interaction 641 

(RERI) estimated as described in the main text, and their 95% confidence intervals (CI) were estimated with 642 

bootstrapping with 10,000 iterations. The PRS were based on discovery GWAS results from MDD, 643 

schizophrenia (SCZ) and bipolar disorder (BIP). Results in the Total sample were based on random-effect meta-644 

analysis of the effects in the individual cohorts. 645 

 646 

Legend to Table 3 647 
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The impact on major depressive disorder (MDD) is displayed for polygenic risk scores (PRS) and their 648 

interaction with the childhood trauma (CT) dichotomous indicator covering sexual abuse and physical abuse 649 

(broad definition). The prevalence of CT is presented in MDD cases, controls, and in terms of the full 650 

population (Pop) assuming a population prevalence of MDD of 15% with twice the prevalence in females (20%) 651 

as in males (10%). The impact of the PRS and CT is presented as the odds ratio (OR) from logistic regression 652 

corrected for sex and three principal components, as well as with the variance explained by the PRS on the 653 

liability scale. Interaction of PRS with CT (PRSxCT) was assessed as departure from multiplicativity with logistic 654 

regression while additionally correcting for the main effects of PRS and CT. The PRS were based on discovery 655 

GWAS results from MDD including all SNPs, i.e. with significance threshold p<1. 656 

 657 
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Table 1. Number of depression cases and controls and the 5-domain childhood trauma (CT) measure. 

        Dichotomous CT indicator   Continuous CT measure 

 

N 

 

Proportion of CT 

  

Mean (SD) 

 Cohort Case Control 

 

Case Control Pop OR (p-value) 

 

Case Control OR (p-value) 

Male and female 

COFAMS 56 22 

 

0.70 0.23 0.30 7.22 (8.6e-04) 

 

54.7 (21.4) 33.2 (11.6) 5.60 (1.2e-03) 

NESDA 1143 272 

 

0.53 0.21 0.26 4.18 (6.9e-19) 

 

43.0 (14.6) 33.6 (9.1) 3.29 (3.4e-21) 

RADIANT UK 269 267 

 

0.62 0.18 0.24 7.60 (1.1e-22) 

 

46.4 (16.2) 32.7 (8.8) 4.08 (7.4e-21) 

SHIP-0 340 993 

 

0.36 0.23 0.25 1.94 (1.1e-06) 

 

37.4 (12.3) 33.0 (8.4) 1.52 (7.4e-11) 

SHIP-TREND 149 448   0.28 0.15 0.17 2.43 (1.5e-04)   36.9 (14.2) 31.6 (7.3) 1.72 (2.4e-07) 

Total 1957 2002 

 

0.50 0.21 0.25 3.80 (3.0e-06) 

 

42.4 (15.1) 32.7 (8.4) 2.62 (1.4e-05) 

Male only 

COFAMS 20 12 

 

0.55 0.25 0.28 3.67 (1.1e-01) 

 

50.2 (19.9) 34.8 (14.5) 2.94 (4.4e-02) 

NESDA 357 111 

 

0.53 0.19 0.22 4.70 (5.4e-09) 

 

42.0 (13.5) 33.4 (9.1) 3.17 (3.4e-09) 

RADIANT UK 73 109 

 

0.62 0.18 0.23 7.42 (7.8e-09) 

 

45.5 (14.5) 33.2 (9.1) 3.43 (4.4e-08) 

SHIP-0 112 562 

 

0.39 0.25 0.26 1.95 (1.8e-03) 

 

37.0 (9.1) 33.2 (7.8) 1.48 (1.8e-05) 

SHIP-TREND 44 246   0.27 0.18 0.19 1.71 (1.5e-01)   35.7 (10.9) 32.3 (7.5) 1.42 (1.3e-02) 

Total 606 1040 

 

0.49 0.22 0.25 3.30 (8.7e-05) 

 

41.3 (13.4) 33.0 (8.2) 2.18 (1.1e-04) 

Female only 

COFAMS 36 10 

 

0.78 0.20 0.32 14.0 (2.9e-03) 

 

57.2 (22.0) 31.4 (7.0) 18.44 (2.2e-02) 

NESDA 786 161 

 

0.53 0.23 0.29 3.90 (2.1e-11) 

 

43.5 (15.1) 33.7 (9.0) 3.30 (1.5e-13) 

RADIANT UK 196 158 

 

0.61 0.17 0.26 7.70 (2.4e-15) 

 

46.8 (16.8) 32.3 (8.6) 4.41 (3.0e-14) 

SHIP-0 228 431 

 

0.35 0.22 0.24 1.94 (1.7e-04) 

 

37.5 (13.6) 32.6 (9.0) 1.57 (5.5e-07) 

SHIP-TREND 105 202   0.29 0.11 0.15 3.10 (2.6e-04)   37.4 (15.4) 30.7 (6.9) 2.04 (1.2e-05) 

Total 1351 962   0.50 0.19 0.25 4.03 (2.5e-06)   42.8 (15.8) 32.3 (8.6) 2.74 (3.6e-05) 
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Table 2. Impact on major depressive disorder of polygenic risk scores and their interaction with the 5-domain childhood trauma (CT) continuous measure of sexual 

abuse, physical abuse, emotional abuse, physical neglect and emotional neglect 

        Impact on MDD 

N PRS PRSxCT 

Discovery Case Control   OR P R2 (SE, %)   OR P   RERI (95% CI) 

COFAMS 

MDD p<1 56 22 1.41 (0.82:2.49) 0.212 3.13 (4.61) 0.38 (0.08:1.74) 0.201 -2.07 (NA-NA) 

SCZ p<0.05 56 22 1.18 (0.59:2.33) 0.623 0.54 (1.95) 0.01 (0.00:0.37) 0.030 -62.80 (NA-NA) 

BIP p<0.5 56 22 0.85 (0.44:1.58) 0.612 0.44 (1.77) 0.13 (0.01:0.96) 0.076 -2.46 (NA-NA) 

NESDA 

MDD p<1 1143 272 1.24 (1.08:1.42) 0.002 1.33 (0.84) 1.08 (0.83:1.39) 0.556 1.06 (-1.07:10.48) 

SCZ p<0.05 1143 272 1.25 (1.07:1.46) 0.006 1.02 (0.74) 0.91 (0.68:1.22) 0.510 0.39 (-1.18:8.78) 

BIP p<0.5 1143 272 1.14 (1.00:1.31) 0.049 0.53 (0.53) 1.19 (0.92:1.52) 0.182 1.97 (-0.28:17.61) 

RADIANT UK 

MDD p<1 269 267 1.64 (1.35:2.00) 6.8e-07 5.90 (2.19) 0.93 (0.66:1.31) 0.670 4.42 (-1.78:178.22) 

SCZ p<0.05 269 267 1.61 (1.31:2.01) 1.3e-05 4.44 (1.92) 0.90 (0.62:1.30) 0.581 9.87 (-0.43:275.79) 

BIP p<0.5 269 267 1.19 (1.00:1.43) 0.053 0.85 (0.86) 1.02 (0.75:1.38) 0.920 4.25 (-0.95:137.22) 

SHIP-0 

MDD p<1 340 993 1.30 (1.14:1.48) 1.0e-04 1.81 (0.91) 1.02 (0.89:1.18) 0.737 0.52 (-0.18:2.86) 

SCZ p<0.05 340 993 1.05 (0.91:1.22) 0.470 0.06 (0.17) 0.95 (0.83:1.10) 0.497 -0.22 (-0.97:0.60) 

BIP p<0.5 340 993 0.95 (0.84:1.09) 0.477 0.06 (0.16) 0.92 (0.81:1.05) 0.230 -0.12 (-0.89:0.96) 

SHIP-TREND 

MDD p<1 149 448 1.33 (1.09:1.63) 0.005 2.10 (1.47) 1.28 (0.96:1.72) 0.103 0.22 (-0.50:1.43) 

SCZ p<0.05 149 448 1.10 (0.89:1.37) 0.379 0.20 (0.46) 0.90 (0.71:1.15) 0.404 -0.09 (-1.09:1.62) 

BIP p<0.5 149 448 1.20 (0.99:1.46) 0.071 0.86 (0.95) 1.05 (0.85:1.32) 0.659 0.07 (-0.75:1.51) 

Total 

MDD p<0.01 1957 2002 1.22 (1.08:1.37) 0.001 0.58 (0.26) 1.02 (0.89:1.17) 0.790 -0.17 (-2.86:10.25) 

MDD p<0.05 1957 2002 1.29 (1.14:1.45) 4.0e-05 1.08 (0.36) 0.98 (0.79:1.22) 0.846 0.27 (-2.46:15.37) 

MDD p<0.1 1957 2002 1.34 (1.18:1.53) 1.0e-05 1.49 (0.42) 1.01 (0.84:1.22) 0.910 0.51 (-2.02:15.72) 

MDD p<0.5 1957 2002 1.35 (1.22:1.48) 2.2e-09 1.70 (0.45) 1.03 (0.86:1.23) 0.755 0.84 (-0.52:22.18) 

MDD p<1 1957 2002   1.34 (1.23:1.47) 5.1e-11 1.71 (0.45)   1.05 (0.91:1.20) 0.519   0.83 (-0.62:18.03) 

SCZ p<0.05 1957 2002 1.22 (1.04:1.43) 0.013 0.57 (0.26) 0.91 (0.79:1.04) 0.172 -0.15 (-2.87:11.06) 

BIP p<0.5 1957 2002   1.10 (0.98:1.23) 0.114 0.16 (0.14)   1.00 (0.85:1.18) 0.997   0.39 (-1.13:20.78) 
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Table 3. Proportion exposed to childhood trauma (CT) measured as either sexual or physical abuse, and its interaction with polygenic risk scores (PRS with SNP 

threshold p<1) in predicting major depressive disorder (MDD) 

                Impact on MDD 

 

N 

 

Proportion exposed to 

CT 

 

CT 

 

PRS 

 

PRSxCT 

Cohorts Case Control   Case Control Pop   OR P 

 

OR P R2 (SE, %)   OR P 

COFAMS 56 22 

 

0.43 0.27 0.30 

 

1.85 0.268 

 

1.41 (0.82:2.49) 0.212 3.13 (4.61) 

 

0.51 (0.21:1.05) 0.088 

DGN 461 458 

 

0.40 0.20 0.22 

 

2.49 1.9e-09 

 

1.30 (1.13:1.50) 2.5e-04 1.77 (0.94) 

 

1.06 (0.91:1.22) 0.465 

NESDA 1133 271 

 

0.32 0.11 0.14 

 

3.83 8.3e-11 

 

1.24 (1.09:1.43) 0.002 1.36 (0.85) 

 

1.06 (0.87:1.28) 0.587 

QIMR_3 186 55 

 

0.44 0.18 0.22 

 

3.66 7.0e-04 

 

1.07 (0.79:1.46) 0.670 0.13 (0.60) 

 

0.82 (0.52:1.25) 0.355 

QIMR_3_M7 126 29 

 

0.48 0.31 0.34 

 

2.10 0.092 

 

1.16 (0.75:1.80) 0.494 0.66 (1.80) 

 

0.83 (0.49:1.40) 0.496 

QIMR_6 121 107 

 

0.38 0.23 0.29 

 

2.05 0.016 

 

0.90 (0.67:1.19) 0.452 0.30 (0.78) 

 

0.87 (0.61:1.22) 0.418 

QIMR_C 180 46 

 

0.40 0.33 0.33 

 

1.36 0.387 

 

0.83 (0.58:1.17) 0.297 0.92 (1.70) 

 

0.89 (0.60:1.30) 0.564 

RADIANT UK 262 263 

 

0.42 0.15 0.19 

 

4.33 1.5e-11 

 

1.61 (1.33:1.97) 2.1e-06 5.46 (2.14) 

 

1.04 (0.83:1.30) 0.761 

SHIP_0 352 1042 

 

0.22 0.12 0.14 

 

2.10 6.0e-06 

 

1.31 (1.15:1.49) 4.2e-05 1.95 (0.93) 

 

0.97 (0.86:1.10) 0.606 

SHIP-TREND 147 448   0.20 0.08 0.10   2.77 2.0e-04   1.34 (1.09:1.64) 0.005 2.14 (1.50)   1.08 (0.88:1.35) 0.460 

Total 3024 2741   0.35 0.14 0.17   2.63 3.5e-18   1.24 (1.12:1.37) 3.6e-05 1.18 (0.31)   1.00 (0.93:1.07) 0.894 
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COFAMS

NESDA

RADIANT UK

SHIP−0

SHIP−TREND

Total

Cases

56

1143

269

340

149

1957

Controls

22

272

267

993

448

2002

OR

5.60

3.29

4.08

1.52

1.72

2.62
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Dichotomous	Childhood	Trauma	Questionnaire	(CTQ)	score	

The	CTQ	covers	 the	 five	domains	of	 sexual	 abuse	 (SA),	physical	 abuse	 (PA),	emotional	abuse	 (EA),	

emotional	neglect	(EN),	and	physical	neglect	(PN).	Each	domain	is	assessed	by	five	questions	(scored	

1	to	5)	resulting	in	a	domain	score	ranging	from	5	to	25.	Per	domain,	cutoffs	were	applied	to	define	a	

narrow	 definition	 of	 childhood	 trauma	 separating	 no	 or	 mild	 trauma	 from	 moderate	 or	 severe	

trauma,	based	on	cut-offs	 for	moderate/severe	of	>	7	(SA),	>	9	(PA),	>	12	(EA),	>	14	(EN),	>	9	(PN)	

respectively.	These	cut-offs	are	based	on	 the	CTQ	manual.	From	this,	an	overall	dichotomous	CTQ	

indicator	was	constructed	to	separate	trauma	in	any	of	the	five	domains	(1)	from	trauma	in	none	of	

the	domains	(0).	

	

Childhood	trauma	in	DGN	and	QIMR	

In	 the	 Depression	 Gene	 Network	 (DGN)	 cohort,	 sexual	 abuse	 was	 assessed	 with	 two	 questions:	

“Someone	 touched	parts	of	 your	body	 in	a	 sexual	way,	or	had	you	 touch	parts	of	 the	person	 in	a	

sexual	way”;	and	“Someone	had	or	attempted	to	have	oral	sex,	anal	sex,	or	sexual	intercourse	with	

you”.	 Physical	 abuse	 in	 DGN	 was	 also	 assessed	 with	 two	 questions:	 “Someone	 outside	 your	

household	physically	attacked	or	assaulted	you,	threatened	you	with	a	weapon	or	held	you	captive”;	

and	“Your	mother,	 father	or	another	adult	household	member	hurt	you	on	purpose	 (for	example,	

beat,	choked,	kicked,	cut	or	burned	you)”.	The	narrow	definition	was	defined	as	at	least	one	of	four	

questions	 occurring	 frequently	 versus	 sometimes,	 rarely	 or	 never,	 and	 the	 broad	 definition	 as	 at	

least	one	of	four	questions	occurring	frequently	or	sometimes	versus	rarely	or	never.	For	data	from	

the	 Queensland	 Institute	 of	 Medical	 Research	 (QIMR),	 two	 instruments	 were	 used	 to	 assess	

childhood	 trauma	before	 the	age	of	18.	Most	QIMR	 individuals	were	assessed	with	an	 instrument	

covering	 sexual	 abuse:	 touching	 your	 sexual	 parts,	 you	 touching	 their	 sexual	 parts,	 or	 sexual	

intercourse	 (SA	assessed	with	one	question	 for	 family	members	and	one	question	 for	non-family);	

and	 physical	 abuse:	 being	 punished	 by	 hitting	 (one	 question),	 hurting	 from	 punishment	 next	 day	

(one	question),	being	physically	injured	on	purpose	(one	question).	The	other	QIMR	individuals	(on	

the	 QIMR_3	 genotype-batch	 labeled	 as	 M7)	 were	 assessed	 with	 a	 questionnaire	 covering	 sexual	

abuse	as	 the	occurrence	of:	exposure	 to	 sexual	organs,	exposure	 to	masturbation,	being	 touched,	

attempt	to	have	sex,	and	have	sex	(SA	specified	in	16	separate	questions);	and	for	physical	abuse	the	

occurrence	 of:	 being	 hit,	 kicked,	 choked,	 throttled	 or	 locked	 in	 by	 either	 father,	 father-figure,	

mother,	or	mother-figure	(PA	specified	 in	13	separate	questions).	For	QIMR	the	narrow	and	broad	

definitions	 were	 defined	 as	 above,	 except	 for	 physical	 abuse	 from	 the	 second	 questionnaire	

(QIMR_3_M7)	that	didn’t	distinguish	between	occurring	“frequently”	and	“sometimes”	resulting	 in	

converging	of	the	narrow	and	broad	definitions.	For	the	analyses,	we	applied	the	broad	definition.	
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Simulation	study	1:	impact	of	gene-environment	correlation	in	tests	for	GxE-interaction	

Tests	 of	 genotype	 by	 environment	 interaction	 are	 known	 to	 be	 scale	 dependent.	 In	 a	 linear	

regression	model,	where	a	continuous	phenotype	is	regressed	on	a	measured	genetic	variant	(e.g.	a	

candidate	 gene)	 and	 a	measured	 exposure,	 non-normality	 of	 the	 phenotypic	 distribution	 can	 give	

rise	 to	 spurious	 interaction	 effects.	We	 considered	 this	 issue	 given	 logistic	 regression	 of	 a	 binary	

phenotype	by	means	of	a	small	simulation	study.	We	generated	phenotypic	data	based	on	12	binary	

symptoms,	which	were	related	to	an	underlying	normally	distributed	depression	liability	by	a	Rasch	

model	 (1).	 The	 parameters	 of	 the	 Rasch	model	 were	 chosen	 so	 that	 the	 distribution	 of	 the	 sum	

scores	based	on	the	12	symptoms	was	highly	skewed.	We	dichotomized	the	sum	score	of	these	12	

symptoms	 to	 arrive	 at	 the	 binary	 phenotype	 with	 a	 prevalence	 of	 .20.	 The	 underlying	 normally	

distributed	 depression	 liability	 was	 subject	 to	 main	 effects	 of	 genes	 (A;	 explaining	 38.8%	 of	 the	

liability	 variance)	 and	 the	 main	 effects	 of	 a	 given	 exposure	 (explaining	 11.1%).	 There	 was	 no	

interaction	effect	 (AxE).	We	considered	 the	 type	 I	error	 rate	!	of	 the	 interaction	effect,	where	we	
regressed	the	binary	phenotype	on	A,	the	dichotomized	exposure	variable	(E;	prevalence	.10)	and	on	

the	interaction	AxE.	We	set	the	nominal	!	at	 .05.	We	varied	the	correlation	between	the	exposure	

and	the	genetic	variable.	Based	on	10,000	replications,	we	observed	an	inflated	type	I	error	rate	of	

the	 interaction	 effect	 as	 a	 function	 of	 the	 correlation	 between	 the	 genetic	 variable	 and	 the	

exposure.	However,	this	inflation	was	relatively	small.	The	observed	type	I	error	rate	was	.046	(zero	

correlation),	.056	(correlation	.15)	and	.0752	(correlation	.30).	Note	that	.056	and	.0752	both	deviate	

significantly	 from	 the	 nominal	 value	 of	 .5	 (p=.003	 and	 p<.0001,	 respectively).	 So	 in	 this	 scenario,	

which	is	based	on	the	NESDA	and	Radiant-UK	data,	we	note	that	we	expect	some	type	I	error	rate	

inflation.	However,	we	conclude	that	the	type	I	error	rate	inflation	in	test	of	GxE	in	the	present	set-

up	is	small	and	does	not	render	the	test	useless.	Specifically,	in	the	NESDA	and	Radiant-UK	data	the	

correlation	between	the	genetic	variable	(polygenic	risk	score)	and	the	exposure	(childhood	trauma)	

is	likely	to	be	very	low	(Table	S5).	
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Simulation	study	2	

The	aim	of	 this	 simulation	study	 is	 to	aid	 interpretation	of	 interaction	analyses	with	polygenic	 risk	

score	(PRS)	by	simulating	different	underlying	genetic	architectures.	

	

Liability	 threshold	 model	 and	 the	 impact	 of	 childhood	 trauma	 (CT)	 on	 major	 depressive	 disorder	

(MDD)	

Simulation	is	based	on	the	liability-threshold	model,	which	can	be	modeled	as	MDD	underpinned	by	

an	 unobserved	 liability,	 !!"" ,	 where	 individuals	 are	 affected	 when	 liability	 exceeds	 disease	

threshold,	!!"".	The	liability	is	assumed	to	be	normally	distributed	and	scaled	to	a	population	mean	

of	0	and	variance	of	1	(which	defines	!!""	given	the	prevalence	of	MDD	!!""),	and	to	result	from	

independent	 normally	 distributed	 environmental	 (!!"")	 and	 genetic	 effects	 (!!"")	 with	!!"! =
!!"" + !!"",	 where	!"#(!!"")/!"#(!!"") = !"#(!!"") = ℎ!,!""! ,	 the	 heritability	 of	 MDD	 on	

the	 liability	 scale.	 Here,	 we	 subdivide	 the	 environmental	 effects	 as	 !!"" = !"!"#$"!"%& !"#$% +
!!"#$%&'(,!"!.	We	assume	that	!"!"#$%&$' !"#$% 	is	represented	by	a	dichotomous	measure	that	labels	

individuals	as	exposed	 (1)	or	unexposed	 (0)	with	an	odd	 ratio	 for	MDD	of	exposed	of	!"!".	 For	a	
prevalence	 of	 MDD	 of	!!"" = 0.15 ,	 prevalence	 of	 CT	 of	!!" = 0.25 	and	 !"!" = 3.2 ,	 the	
!"!"#$%&$' !"#$% 	can	be	transformed	to	!"!"#$"!"%& !"#$% 	as	–0.16	(unexposed)	and	0.47	(exposed),	and	

explains	 7.4%	 of	 variation	 on	 the	 liability	 scale	 (Appendix	 A).	 Assuming	 a	 heritability	 of	 MDD	 of	

ℎ!,!""! = 0.35,	the	variance	explained	by	the	residual	environmental	effects	!!"#$%&'(,!""	follows	as	
57.6%	 (assuming	 that	!"!"#$"!"%& !"#$%,	!!"#$%&'(,!"",	 and	 	!!""	are	 all	 independent).	 For	Model	 1,	

we	consider	CT	as	part	of	the	environmental	effects	on	MDD,	but	we	note	that	CT	has	been	found	to	

be	heritable	itself	(2);	the	consequences	of	which	will	be	discussed	later.	In	Model	1,	we	will,	further,	

assume	that	 the	genetic	and	 residual	environmental	effects	are	equal	 in	 those	exposed	and	 those	

unexposed	to	CT,	which	can	thus	be	thought	of	as	a	“pure	additive”	model	on	the	 liability	scale	of	

!"!"#$"!"%& !"#$%,	!!"#$%&'(,!!!,	and		!!""	(i.e.	no	GxE-interaction).	After	describing	simulation	of	SNP	

data,	we	will	 discuss	 decreasing	 the	 correlation	 of	 SNP-effects	 between	 those	 exposed	 and	 those	

unexposed	to	CT	(Model	2),	increasing	a	genetic	contribution	to	CT	through	introducing	a	heritability	

for	CT	(Model	3),	increasing	magnitude	of	SNP-effects	on	MDD	in	those	exposed	compared	to	those	

unexposed	to	CT	(Model	4),	and	decreasing	magnitude	of	residual	environmental	effects	on	MDD	in	

those	exposed	compared	to	those	unexposed	to	CT	(Model	5).	

	

Simulation	of	SNP	data	and	genetic	effects	

We	simulated	individuals	in	a	population	one-by-one	until	a	total	of	9,000	cases	and	9,000	controls	

were	obtained,	 from	which	10,000	were	used	as	discovery	and	8,000	as	 target	 set.	 Therefore,	we	
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first	simulated	the	SNPs	following	the	method	of	Golan	et	al	(3),	and	subsequently	modeled	CT	and	

MDD.	Briefly,	the	properties	of	10,000	SNPs	in	full	linkage	equilibrium	were	first	defined	by	drawing	

their	 minor	 allele	 frequencies	 (MAF)	 from	 the	 uniform	 distribution	 from	 0.05	 to	 0.5,	 and	 a	

proportion	 of	 30%	 of	 these	 SNPs	were	 set	 to	 have	 an	 effect	 on	MDD	with	 effects	 drawn	 from	 a	

normal	distribution	with	 variance	ℎ!,!""! /3,000	while	 the	effects	of	 the	other	 SNPs	were	 set	 at	 0.	
With	these	SNP	effects,	an	individual	!	was	simulated	by	first	drawing	its	allele	count	(!!";	0,1	or	2)	
with	 probabilities	 of	(1 −!"#!)!,	2(1 −!"#!)!"#! ,	 and	!"#!! 	respectively	 for	 all	 SNP	!,	 and,	
second,	 defining	 its	 genetic	 effects	 as	!(!)!"" = !""!#$!(!!" − 2!"#!)/(2(1 −!"#!)!"#!)! .	

Childhood	 trauma	status	of	 individual	!	was	assigned	with	probability	!!",	 and	 transformed	 to	 the	

liability	 scale	!"(!)!"#$"!"%& !"#$% 	as	 described	 in	 Appendix	 A.	 The	 residual	 environmental	 effect	

!(!)!"#$%&'(,!"" 	was	 drawn	 from	 a	 normal	 distribution	 with	 variance	

1 − ℎ!,!""! − !"#(!"!"#$"!"%& !"#$%),	so	that	the	liability	of	individual	!	followed	as	! ! = !(!)!"" +
!"(!)!"#$"!"%& !"#$% + !(!)!"#$%&'(,!"" .	 Individual	 ! 	was	 deemed	 affected	 with	 MDD	 when	 ! ! >
!!""	and	 non	 affected	 otherwise,	 where	 disease	 threshold	!!""	was	 defined	 such	 that	!!"" =
! ! > !!""  !~!(0,1)).	 This	 procedure	 was	 repeated	 until	 a	 total	 of	 9,000	 cases	 and	 9,000	
controls	 were	 obtained.	 Subsequently,	 a	 genome-wide	 association	 study	 (GWAS)	 was	 conducted	

with	 PLINK	 on	 5,000	 cases	 and	 5,000	 controls	 (4),	 the	 results	 of	 which	 were	 used	 to	 prepare	

polygenic	 risk	 scores	 in	 the	 target	 set	 of	 the	 other	 4,000	 cases	 and	 4,000	 controls.	 For	 every	

parameterization,	the	simulation	was	repeated	10	times.	

	

Simulation	-	Model	1	

For	the	base	assumption	of	the	genetic	architecture	we	assumed	a	prevalence	of	MDD	of	!!"" =
0.15,	a	heritability	of	MDD	of	ℎ!,!""! = 0.35,	a	prevalence	of	CT	of	!!" = 0.25,	no	impact	of	SNPs	in	

CT	(ℎ!,!"! = 0),	and	odds	ratio	for	MDD	in	those	exposed	to	childhood	trauma	of	!" = 3.2,	and	pure	
additivity	on	the	liability	scale	(identical	genetic	and	residual	environmental	effects	in	those	exposed	

and	those	unexposed	to	childhood	trauma).		

	

Simulation	-	Model	2	

A	clear	case	of	GxE	interaction	would	be	when	the	individual	SNP-effects	on	MDD	in	those	exposed	

would	differ	from	the	effects	in	those	unexposed,	i.e.	when		

!! = !"# !""!#$!"# ! | !"!!, !""!#$!"# ! | !"!! = 0 	for	 the	 3,000	 effective	 SNPs.	 To	 model	 this	

scenario,	 we	 further	 assumed	 that	 the	 effects	 are	 on	 the	 same	 3,000	 SNPs	 and	 the	 variance	

explained	is	constant,	that	is	!"# !""!#$!"# ! | !"!!) = !"#(!""!#$!"# ! | !"!! = 0.35.	
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Simulation	-	Model	3	

For	 the	Models	1,	2,	4	and	5	we	have	assumed	that	CT	 is	purely	environmental,	but	heritability	of	

childhood	trauma	has	been	estimated	at	around	0.5	(2).	Therefore,	an	impact	of	SNPs	effects	on	CT	

is	considered	here.	For	this,	we	assume	that	CT	is	a	“disease	trait”	 itself	with	underlying	liability	as	

described	above	for	MDD	(not	suggesting	that	children	are	to	blame	for	the	trauma	they	experience,	

rather	 we	 hypothesize	 that	 heritability	 arises	 from	 transmitted	 alleles	 that	 affect	 personality	

characteristics	 in	 parents).	 Nevertheless,	 we	 drew	 SNP-effects	 for	 CT	 from	 a	 random	 normal	

distribution	 with	 variance	ℎ!,!"! = 0.5	and	 environmental	 effects	 from	 a	 normal	 distribution	 with	

variance	1 − ℎ!,!"! 	to	 construct	 a	 liability	 of	 CT	!!",	 and	 individuals	 were	 deemed	 exposed	 to	 CT	

when	!!" ! > !!" 	with	the	threshold	defined	such	that	!!" = ! ! > !!"   !~!(0,1)).	The	effects	
were	 assigned	 to	 the	 same	 3,000	 SNPs	 impacting	MDD,	 but	 drawn	 from	 an	 independent	 normal	

distribution.	Given	the	CT	status	thus	simulated,	MDD	was	derived	as	described	above.		

	

Simulation	-	Model	4	

Another	way	 to	 think	 about	GxE	 interaction	 is	 that	 environmental	 stress	might	potentiate	 genetic	

effects.	 This	was	modeled	by	 setting	 a	proportion	of	 genetic	 effects	 on	MDD	 in	 those	exposed	 to	

those	 unexposed	 to	 CT	 as	 !"# !""!#$!"# ! | !"!!)/!"#(!""!#$!"# ! | !"!! = 3 	while	 keeping	
!"# !""!#$!"# ! | !"!!, !""!#$!"# ! | !"!! = 1.	The	variances	of	SNP-effects	where	chosen	 in	such	
way	that	the	variance	of	genetic	effects	in	the	full	population	were	fixed	at	0.35,	while	the	residual	

environmental	 effects	 had	 the	 same	 variance	 in	 those	 exposed	 and	 those	 unexposed	 to	 CT	

(Appendix	B).	

	

Simulation	-	Model	5	

A	hypothetical	 scenario	 could	be	 that	environmental	 risk	 factors	 for	MDD	 (such	as	 socioeconomic	

status	 and	 life-stress	 in	 adulthood)	 cluster	 in	 those	 exposed	 to	 CT;	 the	 link	 between	 these	

environmental	 risk	 factors	would	 be	 captured	 in	 estimates	 of	 the	OR	 of	 CT,	 but	 could	 in	 addition	

result	 in	 less	 residual	 environmental	 variation	 in	 those	 exposed	 compared	 to	 those	 unexposed	 to	

childhood	 trauma.	 We	 modeled	 this	 as	 !"# !!"#$%&'(,!""|!"!!)/!"#(!!"#$%&'(,!""|!"!! = 1/
3 while	 assuming	 constant	 genetic	 effects	 in	 those	 exposed	 and	 those	 unexposed	 to	 CT,	

!""!#$!"# ! | !"!!=!""!#$!"# ! | !"!!	(Appendix	C).	

	

Appendix	A.	Transformation	of	OR	to	liability	scale	

To	transform	the	!"	from	CT	on	MDD	to	the	liability	scale	the	approach	of	Witte	et	al	was	applied	

(5).	Therefore,	the	!"	(set	at	3.2)	was	first	transformed	to	the	!!	(2.6)	and	consequently	to	the	risk	
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on	 MDD	 in	 exposed	 (!" = 1 with	 MDD	 proportion	0.28)	 and	 unexposed	 (!" = 0	with	 MDD	 in	

proportion	0.11)	 assuming	 a	 population	 prevalence	 of	!!"" = 0.15	and	!!" = 0.25.	 The	 liability	
disease	 threshold	 for	 MDD	 in	 the	 full	 population	 was	 found	 as	!!"",!"## !"!#$%&'"( = Φ!! 1 −
!!"" = Φ!! 1 − 0.15 = 1.0364.	 First	 assuming	 a	 liability	 variance	 of	 1	 in	 both	 exposed	 and	

unexposed,	 the	 threshold	 in	 exposed	 was	 found	 as	!!""|!"!! = !!! 1 − 0.28 = 0.589	and	 in	
unexposed	 as	!!""|!"!! = Φ!! 1 − 0.11 = 1.241.	 In	 line	with	Witte	 et	 al,	 the	mean	 liability	 in	

exposed	 was	 found	 at	!!|!"!! = !!"",!"## !"!#$%&'"( − !!""|!"!!and	 in	 unexposed	 at	!!|!"!! =
!!"",!"## !"!#$%&'"( − !!""|!"!!,	 allowing	 to	 merge	 exposed	 and	 unexposed	 while	 ensuring	 the	

disease	 risks	 of	0.28	and	0.11	respectively.	 However,	 because	 the	 variance	 in	 both	 exposed	 and	
unexposed	was	assumed	to	equal	1,	the	merged	sample	had	a	variance	larger	than	1	introduced	by	

the	variance	of	CT	and	a	mean	slightly	different	from	zero.	To	ease	modeling	of	genetic	effects,	we	

rescaled	 to	mean	 of	 zero	 and	 variance	 one,	 also	 correcting	 the	 disease	 threshold	 in	 this	manner.	

With	this,	a	model	was	derived	transposing	CT	status	of	exposed	and	unexposed	to	the	liability	scale,	

while	the	overall	variance	of	liability	was	set	at	1,	and	mean	at	0,	as	usual.		

	

Appendix	B.	Modeling	increased	magnitude	of	SNP-effects	in	CT=1	compared	to	CT=0	

When	 aiming	 to	 model	 increased	 variance	 of	 SNP	 effects	 in	 those	 exposed	 compared	 to	 those	

unexposed	 to	 CT,	 arbitrary	 choices	 have	 to	 be	made	 about	 the	 residual	 environmental	 effects	 in	

exposed	and	unexposed,	and	 the	variance	of	 liability,	genetic	effects	and	environmental	effects	 in	

the	 overall	 population.	We	 choose	 to	 fix	 the	 full	 population	 variance	 of	 liability	 at	 1,	 variance	 of	

genetic	 effects	 at	ℎ!,!""! = 0.35,	 and	 variance	 of	 environmental	 effects	 at	1 − ℎ!,!""! = 0.65	(the	
latter	including	both	the	variance	of	!"!"#$"!"%&	as	well	as	residual	environmental	effects).	To	obtain	

e.g.	a	variance	of	genetic	effects	in	exposed	three	times	the	variance	of	genetic	effects	in	unexposed	

!"# !""!#$!"# ! | !"!!)/!"#(!""!#$!"# ! | !"!! = 3 ,	the	variance	of	genetic	effects	followed	as	

!"# !""!#$!"# ! | !"!! = 0.56 	and	 !"# !""!#$!"# ! | !"!! = 0.28 	thereby	 ensuring	 that	 the	

variance	of	genetic	effect	in	the	full	population	equals	!"# !""!#$!"# ! =	
0.25!!""!#$!"# ! | !"!!

! + 0.75!!""!#$!"# ! | !"!!
! − (0.2!!""!#$!"# ! | !"!! + 0.8!!!!"#$!"# ! | !"!!)! =

0.25 0.56 + 0! + 0.75 0.28 + 0! − 0 = 035.	 We	 choose	 to	 fix	 the	 residual	 variance	 in	 both	

exposed	 and	unexposed	 first	 at	!"#(!!"#$%&'(|!"!!) = !"#(!!"#$%&'(|!"!!) = 0.65,	 and	 the	overall	
variance	of	liability	was	thus	larger	in	exposed	than	in	unexposed.	As	a	result,	the	sums	in	Appendix	

A	were	 slightly	 adjusted	 as	 the	 variance	 and	mean	 of	 the	merged	 sample	 differed	 slightly	 to	 the	

above,	and	therefore	correction	to	obtain	variance	of	1	and	mean	of	zero	in	the	full	population	also	

differed.		
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Appendix	C.	Decreased	environmental	variation	in	individuals	exposed	to	CT	

When	 aiming	 to	 model	 a	 smaller	 variance	 of	 residual	 environmental	 effects	 in	 those	 exposed	

compared	to	those	unexposed	to	CT,	several	model	choices	have	again	to	be	made.	We	chose	to	fix	

the	 full	 population	 variance	 of	 liability	 at	 1,	 variance	 of	 genetic	 effects	 at	ℎ!,!""! = 0.35	equal	 in	
exposed	 and	 unexposed,	 and	 variance	 of	 environmental	 effects	 at	1 − ℎ!,!!!! = 0.35	(the	 latter	
including	both	the	variance	of	!"!"#$"!"%&	as	well	as	residual	environmental	effects).		
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Figure	S1.	Distribution	of	the	5-domain	continuous	childhood	trauma	measure	 	

COFAMS

Controls
Cases

25 50 75 100 125

NESDA

Controls
Cases

25 50 75 100 125

Radiant_UK

Controls
Cases

25 50 75 100 125

SHIP_0

Controls
Cases

25 50 75 100 125

SHIP_T

Controls
Cases

25 50 75 100 125

overall

Controls
Cases

25 50 75 100 125



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Peyrot	et	al.	 	 Supplement	

15 

Table	S1.	Demographic	information	for	contributing	cohorts	of	major	depressive	disorder	cases	and	
unaffected	controls	

		 		 N	 		
N	with	CT	
information	 		 Demographics	

Cohort	 Country	 Cases	 Controls	 		 Cases	 Controls	 		 Mean	age	 %	female	
COFAMS	 Australia	 120	 126	

	
56	 22	

	
38.2	 0.59	

DGN	 USA	 463	 459	
	

461	 458	
	

	-	 0.70	
NESDA	 Netherlands	 1493	 1603	

	
1133	 271	

	
42.9	 0.67	

QIMR	(3	sub	cohorts)	 Australia	 1902	 1660	
	

613	 237	
	

36.3	 0.64	
RADIANT	UK	 UK	 1859	 1519	

	
262	 264	

	
46.0	 0.66	

SHIP	(2	sub	cohorts)	 Germany	 515	 1529	 		 499	 1490	 		 53.6	 0.50	
CT=childhood	trauma	

	

	

	

Table	S2.	Correlation	of	childhood	trauma	domains	(N=3850)	
		 EA	 PA	 SA	 EN	 PN	 SUM	
Childhood	Trauma	Questionnaire	subscales	(continuous	measures)		
Emotional	Abuse	(EA)	 1	 0.596	 0.387	 0.609	 0.481	 0.803	
Physical	Abuse	(PA)	 0.596	 1	 0.387	 0.413	 0.410	 0.681	
Sexual	Abuse	(SA)	 0.387	 0.387	 1	 0.246	 0.285	 0.539	
Emotional	Neglect	(EN)	 0.609	 0.413	 0.246	 1	 0.632	 0.805	
Physical	Neglect	(PN)	 0.481	 0.410	 0.285	 0.632	 1	 0.728	
Sum	score	(SUM)	 0.803	 0.681	 0.539	 0.805	 0.728	 1	
Dichotomous	indicator	of	sexual	or	physical	abuse		
SA/PA	(dichotomous)	 0.367	 0.542	 0.754	 0.203	 0.201	 0.497	
The	 Pearson	 correlation	 coefficients	 (all	 p-value<2e-16)	 are	 displayed	 between	 the	 five	 domains	 of	 the	

Childhood	Trauma	Questionnaire	 (CTQ)	by	applying	 the	 residuals	of	 linear	 regression	of	 the	domains	on	sex	

and	 cohort	 (COFAMS,	NESDA,	 Radiant-UK,	 SHIP).	 It	 can	 be	 seen	 that	 sexual	 abuse	 is	 slightly	 less	 correlated	

than	the	other	domains,	and	that	there	seems	no	clear	distinction	between	the	abuse	and	neglect	domains.	In	

addition,	 the	 Spearman's	 rho	 correlation	 coefficient	 is	 displayed	of	 the	CTQ	domains	with	 the	dichotomous	

indicator	of	sexual	abuse	and/or	physical	abuse	(SA/PA)	that	was	available	for	two	additional	cohorts.	
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Table	S3.	Number	of	overlapping	SNPs	between	cohorts	for	GRM-based	analyses	
		 COFAMS	 DGN	 NESDA	 QIMR_3	 QIMR_6	 QIMR_C	 RAD.	UK	 SHIP-0	 SHIP-T	
COFAMS	 771,120	 	-	 	-	 	-	 	-	 	-	 	-	 	-	 	-	
DGN	 741,245	 1,051,603	 	-	 	-	 	-	 	-	 	-	 	-	 	-	
NESDA	 675,669	 851,244	 924,741	 	-	 	-	 	-	 	-	 	-	 	-	
QIMR_3	 626,026	 775,291	 702,250	 821,960	 	-	 	-	 	-	 	-	 	-	
QIMR_6	 716,604	 930,576	 822,954	 803,446	 1,000,453	 	-	 	-	 	-	 	-	
QIMR_C	 711,902	 746,328	 683,496	 635,209	 724,195	 772,404	 	-	 	-	 	-	
RAD.	UK	 729,795	 954,007	 840,621	 811,506	 983,793	 736,767	 1,028,612	 	-	 	-	
SHIP-0	 706,975	 905,732	 907,329	 737,015	 871,372	 713,690	 890,930	 992,050	 	-	
SHIP-T	 762,091	 1,037,269	 903,725	 809,699	 981,370	 765,093	 1,008,254	 967,781	 1,131,800	
	

	

Table	S4.	Impact	of	CTQ	subdomain	continuous	measures	on	MDD	
		 Mean	(SD)	 		
Subset	 Cases	 Controls	 OR	(p-value)	
Emotional	Abuse	
Male	&	Female	 9.3	(4.8)	 6.2	(2.3)	 2.40	(1.1e-06)	
Male	 8.5	(4.2)	 6.0	(2.0)	 2.01	(7.1e-05)	
Female	 	9.6	(5.0)	 6.3	(2.5)	 2.46	(2.1e-07)	
Physical	Abuse	
Male	&	Female	 6.3	(2.8)	 5.6	(1.6)	 1.51	(4.6e-05)	
Male	 6.3	(2.6)	 5.7	(1.6)	 1.41	(1.1e-04)	
Female	 6.2	(2.9)	 5.5	(1.5)	 1.51	(8.8e-05)	
Sexual	Abuse	
Male	&	Female	 6.3	(3.4)	 5.2	(1.3)	 1.64	(1.6e-03)	
Male	 5.8	(2.3)	 5.1	(0.9)	 1.25	(3.4e-03)	
Female	 6.5	(3.8)	 5.3	(1.7)	 1.95	(2.9e-03)	
Emotional	Neglect	
Male	&	Female	 12.6	(5.4)	 8.9	(4.0)	 2.08	(8.4e-06)	
Male	 12.6	(5.2)	 9.2	(4.1)	 1.87	(2.8e-04)	
Female	 12.5	(5.4)	 8.6	(3.9)	 2.14	(4.7e-06)	
Physical	Neglect	
Male	&	Female	 7.8	(3.0)	 6.8	(2.4)	 1.75	(8.4e-05)	
Male	 7.9	(2.9)	 7.0	(2.5)	 1.54	(2.9e-04)	
Female	 7.8	(3.1)	 6.6	(2.3)	 1.79	(9.3e-04)	
Overall	CTQ	score	
Male	&	Female	 42.4	(15.1)	 32.7	(8.4)	 2.62	(1.4e-05)	
Male	 41.3	(13.4)	 33.0	(8.2)	 2.18	(1.1e-04)	
Female	 42.8	(15.8)	 32.3	(8.6)	 2.74	(3.6e-05)	
CTQ	=	Childhood	Trauma	Questionnaire;	MDD	=	major	 depressive	disorder;	OR	=	odds	 ratio;	 SD	=	 standard	

deviation	
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Table	S5.	Impact	of	polygenic	risk	score	(based	on	MDD	discovery	p<1)	on	childhood	trauma	(i.e.	gene-environment	correlation)	

		 		 		 		 Impact	of	PRS	on	CT	in	 		

Approximation	of	full	population		
by	100	times	sampling	
case/control=0.15/0.85	

	
N	

	
All	

	
Case	only	

	
Control	only	

	
Beta	of	regression	

	
Correlation	

Cohort	 Case	 Control	
	

Beta	 P	
	

Beta	 P	
	

Beta	 P	 		 Mean	 SE	 		 Mean	 SE	
Continuous	CTQ	measure	covering	five	domains	(linear	regression)	 		 		 		 		 		 		
COFAMS	 56	 22	

	
1.68	 0.507	

	
-0.52	 0.871	

	
2.03	 0.426	

	
	-	 	-	

	
	-	 	-	

NESDA	 1143	 272	
	

1.10	 0.004	
	

1.03	 0.020	
	

-0.19	 0.742	
	

0.21	 0.040	
	

0.02	 0.003	
RADIANT	UK	 269	 267	

	
1.34	 0.041	

	
-0.51	 0.640	

	
0.01	 0.988	

	
0.68	 0.033	

	
0.06	 0.003	

SHIP-0	 340	 993	
	

0.15	 0.580	
	

-0.08	 0.905	
	

-0.08	 0.761	
	

0.07	 0.009	
	

0.01	 0.001	
SHIP-TREND	 149	 448	 		 1.17	 0.004	 		 3.21	 0.007	 		 0.15	 0.682	 		 0.79	 0.018	 		 0.09	 0.002	
Total	 1957	 2002	

	
0.84	 0.004	

	
0.76	 0.186	

	
-0.01	 0.975	

	
0.37	 0.010	

	
0.04	 0.001	

Dichotomous	measure	covering	sexual	and	physical	abuse	(logistic	regression)	
COFAMS	 56	 22	

	
-0.04	 0.859	

	
-0.37	 0.233	

	
0.71	 0.269	

	
	-	 	-	

	
	-	 	-	

DGN	 461	 458	
	

0.11	 0.143	
	

0.11	 0.256	
	

-0.02	 0.866	
	

0.04	 0.005	
	

0.03	 0.002	
NESDA	 1133	 271	

	
0.16	 0.010	

	
0.13	 0.048	

	
0.03	 0.876	

	
0.13	 0.009	

	
0.02	 0.003	

QIMR_3	 186	 55	
	

0.10	 0.462	
	

0.02	 0.876	
	

0.36	 0.266	
	

	-	 	-	
	

	-	 	-	
QIMR_3_M7	 126	 29	

	
0.14	 0.423	

	
0.13	 0.505	

	
0.20	 0.672	

	
	-	 	-	

	
	-	 	-	

QIMR_6	 121	 107	
	

-0.10	 0.547	
	

-0.21	 0.358	
	

0.11	 0.670	
	

0.03	 0.007	
	

-0.04	 0.004	
QIMR_C	 180	 46	

	
-0.06	 0.675	

	
-0.07	 0.656	

	
0.01	 0.972	

	
	-	 	-	

	
	-	 	-	

RADIANT	UK	 262	 263	
	

0.16	 0.119	
	

0.02	 0.912	
	

0.01	 0.963	
	

0.11	 0.007	
	

0.03	 0.003	
SHIP-0	 352	 1042	

	
0.09	 0.240	

	
-0.04	 0.781	

	
0.10	 0.290	

	
0.10	 0.003	

	
0.03	 0.001	

SHIP-TREND	 147	 448	 		 0.22	 0.105	 		 0.26	 0.235	 		 0.12	 0.500	 		 0.19	 0.005	 		 0.02	 0.001	
Total	 3024	 2741	 		 0.11	 5.4e-04	 		 0.07	 0.108	 		 0.07	 0.197	 		 0.10	 0.002	 		 0.02	 0.001	
The	 impact	of	the	polygenic	risk	scores	(PRS)	 (based	on	major	depressive	disorder	[MDD]	discovery	results	p<1)	on	childhood	trauma	(CT)	 is	displayed	 in	all	 individuals,	

MDD	cases	only	and	controls	only	for	the	continuous	Childhood	Trauma	Questionnaire	(CTQ)	measure	covering	five	domains	(applied	in	main	Table	2)	and	the	dichotomous	

measure	covering	sexual	and/or	physical	abuse	(applied	 in	main	Table	3).	However,	the	potential	bias	of	gene-environment	correlation	 in	gene-environment	 interaction	

analyses	 depends	 on	 the	 correlation	 in	 the	 full	 population.	 Therefore,	 cases	 were	 randomly	 sampled	 such	 that	 cases/controls=0.15/0.85	 to	 mimic	 results	 in	 the	 full	

population.	 Sampling	 was	 repeated	 100	 times,	 and	 conducted	 for	 those	 cohorts	 with	 more	 than	 100	 controls	 only.	 The	 Pearson	 correlation	 was	 estimated	 for	 the	

continuous	CTQ	measure,	and	the	Spearman	correlation	for	the	dichotomous	CT	measure,	and	analyses	were	corrected	for	sex	and	three	principal	components.	
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Table	S6.	Interaction-analyses	for	male	and	female	separetely	with	the	PRS	based	on	MDD-PRS	including	all	SNPs	
(discovery	p<1	in	the	sample	of	N=112,268)	
		 		 		 		 Impact	on	MDD	

	
N	

	
PRS	

	
PRSxCT	

Cohort	 Case	 Control	 		 OR	 P	 R2	(SE,	%)	 		 OR	 P	
Male	&	female	(i.e.	results	displayed	in	main	Table	2)	
COFAMS	 56	 22	

	
1.41	(0.82:2.49)	 0.212	 3.13	(4.61)	

	
0.38	(0.08:1.74)	 0.201	

NESDA	 1143	 272	
	

1.24	(1.08:1.42)	 0.002	 1.33	(0.84)	
	

1.08	(0.83:1.39)	 0.556	
Radiant-UK	 269	 267	

	
1.64	(1.35:2.00)	 6.8e-07	 5.90	(2.19)	

	
0.93	(0.66:1.31)	 0.670	

SHIP-0	 340	 993	
	

1.30	(1.14:1.48)	 1.0e-04	 1.81	(0.91)	
	

1.02	(0.89:1.18)	 0.737	
SHIP-T	 149	 448	 		 1.33	(1.09:1.63)	 0.005	 2.10	(1.47)	 		 1.28	(0.96:1.72)	 0.103	
ALL	 1957	 2002	

	
1.34	(1.23:1.47)	 5.1e-11	 1.71	(0.45)	

	
1.05	(0.91:1.20)	 0.519	

Male	only	
COFAMS	 20	 12	

	
1.66	(0.73:4.21)	 0.243	 5.05	(7.95)	

	
0.55	(0.06:4.21)	 0.553	

NESDA	 357	 111	
	

1.23	(0.99:1.54)	 0.061	 1.24	(1.31)	
	

1.13	(0.75:1.70)	 0.565	
Radiant-UK	 73	 109	

	
1.47	(1.06:2.09)	 0.025	 3.58	(3.01)	

	
0.84	(0.47:1.52)	 0.561	

SHIP-0	 112	 562	
	

1.36	(1.10:1.68)	 0.005	 2.59	(1.79)	
	

1.08	(0.90:1.32)	 0.424	
SHIP-T	 44	 246	 		 1.37	(0.98:1.93)	 0.072	 2.57	(2.82)	 		 1.22	(0.83:1.84)	 0.316	
ALL	 606	 1040	

	
1.34	(1.18:1.52)	 8.6e-06	 1.71	(0.72)	

	
1.09	(0.91:1.30)	 0.367	

Female	only	
COFAMS	 36	 10	

	
1.35	(0.65:2.96)	 0.419	 3.02	(6.29)	

	
0.66	(0.05:6.75)	 0.689	

NESDA	 786	 161	
	

1.24	(1.04:1.48)	 0.015	 1.33	(1.08)	
	

1.09	(0.78:1.48)	 0.609	
Radiant-UK	 196	 158	

	
1.72	(1.36:2.20)	 1.0e-05	 7.20	(2.96)	

	
1.01	(0.66:1.56)	 0.970	

SHIP-0	 228	 431	
	

1.26	(1.07:1.50)	 0.006	 1.54	(1.10)	
	

1.01	(0.82:1.26)	 0.912	
SHIP-T	 105	 202	 		 1.35	(1.05:1.74)	 0.020	 2.42	(2.00)	 		 1.36	(0.93:2.21)	 0.161	
ALL	 1351	 962	 		 1.35	(1.21:1.50)	 5.2e-08	 1.93	(0.63)	 		 1.07	(0.90:1.27)	 0.459	
	



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Peyrot	et	al.	 	 Supplement	

19 

Table	S7.	Interaction-analyses	for	the	separate	CT	domains	with	the	MDD-PRS	including	all	SNPs	
(discovery	p<1)	
		 		 		 		 Impact	on	MDD	

	
N	

	
PRS	

	
PRSxCT	

CT	domain	 Case	 Control	 		 OR	 P	 R2	(SE,	%)	 		 OR	 P	
COFAMS	
Sum 56 22 

 
1.41 (0.82:2.49) 0.212 3.13 (4.61) 

 
0.38 (0.08:1.74) 0.201 

EA 56 22 
 

1.41 (0.82:2.49) 0.212 3.13 (4.61) 
 

0.36 (0.07:1.73) 0.187 
PA 56 22 

 
1.41 (0.82:2.49) 0.212 3.13 (4.61) 

 
0.01 (0.00:1.05) 0.102 

SA 56 22 
 

1.41 (0.82:2.49) 0.212 3.13 (4.61) 
 

0.36 (0.01:2.07) 0.369 
EN 56 22 

 
1.41 (0.82:2.49) 0.212 3.13 (4.61) 

 
0.88 (0.30:2.98) 0.820 

PN 56 22 
 

1.41 (0.82:2.49) 0.212 3.13 (4.61) 
 

0.27 (0.04:1.35) 0.132 
NESDA	
Sum 1143 272 

 
1.24 (1.08:1.42) 0.002 1.33 (0.84) 

 
1.08 (0.83:1.39) 0.556 

EA 1125 268 
 

1.22 (1.07:1.41) 0.004 1.17 (0.80) 
 

0.92 (0.72:1.19) 0.547 
PA 1134 271 

 
1.24 (1.08:1.42) 0.002 1.33 (0.84) 

 
0.89 (0.68:1.15) 0.388 

SA 1139 272 
 

1.24 (1.08:1.42) 0.002 1.33 (0.84) 
 

0.89 (0.60:1.33) 0.573 
EN 1118 270 

 
1.24 (1.08:1.42) 0.002 1.32 (0.84) 

 
1.25 (1.04:1.51) 0.019 

PN 1125 272 
 

1.25 (1.09:1.43) 0.002 1.38 (0.86) 
 

1.01 (0.83:1.23) 0.909 
RADIANT	UK	
Sum 269 267 

 
1.64 (1.35:2.00) 6.8e-07 5.90 (2.19) 

 
0.93 (0.66:1.31) 0.670 

EA 266 267 
 

1.64 (1.35:2.01) 7.4e-07 5.89 (2.19) 
 

0.87 (0.65:1.18) 0.350 
PA 263 265 

 
1.63 (1.34:1.99) 1.2e-06 5.72 (2.17) 

 
1.05 (0.75:1.50) 0.771 

SA 264 265 
 

1.64 (1.35:2.00) 9.0e-07 5.84 (2.19) 
 

1.02 (0.73:1.49) 0.923 
EN 260 266 

 
1.64 (1.35:2.01) 8.8e-07 5.89 (2.21) 

 
0.95 (0.72:1.26) 0.720 

PN 261 267 
 

1.65 (1.36:2.02) 5.4e-07 6.10 (2.24) 
 

0.99 (0.76:1.29) 0.935 
SHIP-0	
Sum 340 993 

 
1.30 (1.14:1.48) 1.0e-04 1.81 (0.91) 

 
1.02 (0.89:1.18) 0.737 

EA 353 1039 
 

1.31 (1.15:1.49) 5.0e-05 1.91 (0.92) 
 

1.02 (0.89:1.17) 0.795 
PA 353 1048 

 
1.31 (1.16:1.50) 3.4e-05 2.00 (0.94) 

 
1.00 (0.87:1.15) 0.976 

SA 354 1045 
 

1.31 (1.15:1.49) 5.1e-05 1.90 (0.92) 
 

1.07 (0.95:1.24) 0.286 
EN 350 1025 

 
1.31 (1.16:1.50) 3.7e-05 2.00 (0.94) 

 
1.05 (0.92:1.20) 0.497 

PN 351 1030 
 

1.30 (1.15:1.48) 6.0e-05 1.89 (0.92) 
 

1.03 (0.90:1.18) 0.686 
SHIP-TREND	
Sum 149 448 

 
1.33 (1.09:1.63) 0.005 2.10 (1.47) 

 
1.28 (0.96:1.72) 0.103 

EA 148 446 
 

1.33 (1.09:1.63) 0.005 2.06 (1.47) 
 

1.12 (0.87:1.49) 0.426 
PA 146 448 

 
1.34 (1.09:1.64) 0.005 2.12 (1.49) 

 
1.09 (0.89:1.42) 0.463 

SA 149 448 
 

1.33 (1.09:1.63) 0.005 2.10 (1.47) 
 

1.70 (0.77:3.79) 0.166 
EN 149 441 

 
1.34 (1.10:1.64) 0.005 2.14 (1.49) 

 
1.18 (0.94:1.49) 0.166 

PN 147 443 
 

1.33 (1.09:1.63) 0.006 2.06 (1.47) 
 

1.30 (1.02:1.70) 0.044 
ALL	
Sum 1957 2002 

 
1.34 (1.23:1.47) 5.1e-11 1.71 (0.45) 

 
1.05 (0.91:1.20) 0.519 

EA 1948 2042 
 

1.34 (1.22:1.47) 2.5e-10 1.69 (0.44) 
 

0.96 (0.85:1.09) 0.545 
PA 1952 2054 

 
1.34 (1.24:1.46) 1.4e-12 1.74 (0.45) 

 
1.00 (0.89:1.12) 0.947 

SA 1962 2052 
 

1.34 (1.23:1.46) 9.2e-12 1.72 (0.45) 
 

1.05 (0.90:1.21) 0.551 
EN 1933 2024 

 
1.35 (1.24:1.47) 5.2e-12 1.76 (0.46) 

 
1.11 (1.00:1.22) 0.043 

PN 1940 2034   1.35 (1.23:1.47) 3.3e-11 1.76 (0.45)   1.05 (0.93:1.19) 0.441 
Sum	=	sumscore	of	all	five	CT	domains;	EA	=	Emotional	abuse;	PA	=	Physical	Abuse	;	SA	=	Sexual	Abuse	;	EN	=	

Emotional	Neglect	;	PN	=	Physical	Neglect	



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Peyrot	et	al.	 	 Supplement	

20 

	
Table	S8.	Comparing	different	discovery	samples	for	MDD	
		 Effective	N	

discovery	
N	target	 		 Effect	of	PRS	 		 Effect	of	CT	 		 Effect	of	PRSxCT	

Cohort	 Case	 Control	 		 OR	 P	 R2	 		 OR	 P	 		 OR	 P	
MDD	discovery	results	from	PGC,	Decode,	Genscot,	Gera,	iPsych	and	UKB	 		 		 		
COFAMS	 112,268	 56	 22	

	
1.41	(0.82:2.49)	 0.212	 3.13	(4.61)	

	
6.25	 8.0e-04	

	
0.38	(0.08:1.74)	 0.201	

NESDA	 112,268	 1143	 272	
	
1.24	(1.08:1.42)	 0.002	 1.33	(0.84)	

	
3.29	 3.7e-21	

	
1.08	(0.83:1.39)	 0.556	

RADIANT	UK	 112,268	 269	 267	
	
1.64	(1.35:2.00)	 6.8e-07	 5.90	(2.19)	

	
4.03	 3.0e-20	

	
0.93	(0.66:1.31)	 0.670	

SHIP-0	 112,268	 340	 993	
	
1.30	(1.14:1.48)	 1.0e-04	 1.81	(0.91)	

	
1.52	 7.0e-11	

	
1.02	(0.89:1.18)	 0.737	

SHIP-TREND	 112,268	 149	 448	 		 1.33	(1.09:1.63)	 0.005	 2.10	(1.47)	 		 1.71	 3.7e-07	 		 1.28	(0.96:1.72)	 0.103	
Total	 112,268	 1957	 2002	

	
1.34	(1.23:1.47)	 5.1e-11	 1.71	(0.45)	

	
2.53	 1.3e-09	

	
1.05	(0.91:1.20)	 0.519	

MDD	discovery	results	from	PGC	MDD	wave	2	leaving	the	target	cohort	out	 		 		 		
COFAMS	 40,373	 56	 22	

	
1.02	(0.60:1.76)	 0.928	 0.02	(0.36)	

	
6.25	 8.0e-04	

	
0.76	(0.17:3.80)	 0.732	

NESDA	 37,435	 1143	 272	
	
1.23	(1.08:1.41)	 0.002	 1.26	(0.82)	

	
3.29	 3.7e-21	

	
1.38	(1.07:1.76)	 0.011	

RADIANT	UK	 36,909	 269	 267	
	
1.32	(1.10:1.58)	 0.003	 2.07	(1.33)	

	
4.03	 3.0e-20	

	
0.67	(0.51:0.90)	 0.006	

SHIP-0	 39,406	 340	 993	
	
1.08	(0.95:1.22)	 0.246	 0.16	(0.28)	

	
1.52	 7.0e-11	

	
1.03	(0.91:1.17)	 0.628	

SHIP-TREND	 40,084	 149	 448	 		 1.32	(1.08:1.62)	 0.006	 1.98	(1.43)	 		 1.71	 3.7e-07	 		 1.00	(0.79:1.27)	 0.987	
Total	 	-	 1957	 2002	 		 1.20	(1.10:1.31)	 2.8e-05	 0.66	(0.28)	 		 2.53	 1.3e-09	 		 1.00	(0.79:1.26)	 0.972	
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Table	S9.	Polygenic	risk	scores	analyses	with	simulated	data	
		 Mean	polygenic	risk	scores	(SE)	 		 Case-control		

PRS	
difference	

		 PRSxCT		
Interaction-

effect		
	

Cases	
	

Controls	
	 	Cohort	 CT=0	 CT=1	 		 CT=0	 CT=1	 		 CT=0	 CT=1	 		 OR	 P	

Model	1	("additive")	 0.32	(0.007)	 0.17	(0.008)	
	

-0.24	(0.003)	 -0.30	(0.008)	
	

0.57	 0.47	
	
0.91	 0.157	

Model	2	("interaction")	 0.24	(0.006)	 0.03	(0.004)	
	

-0.14	(0.003)	 -0.16	(0.011)	
	

0.38	 0.19	
	
0.83	 0.013	

Model	3	(h2l_CT=0.5)	 0.26	(0.004)	 0.27	(0.005)	
	

-0.29	(0.003)	 -0.18	(0.014)	
	

0.55	 0.45	
	
0.90	 0.185	

Model	4	(increased	G	in	CT=1)	 0.24	(0.007)	 0.24	(0.007)	
	

-0.22	(0.004)	 -0.32	(0.010)	
	

0.46	 0.56	
	
1.15	 0.099	

Model	5	(decreased	E	in	CT=1)	 0.30	(0.005)	 0.27	(0.006)	 		 -0.26	(0.004)	 -0.38	(0.010)	 		 0.55	 0.65	 		 1.16	 0.047	
Simulated	data	of	10,000	SNPs	were	based	on	five	models,	all	assuming	heritability	of	MDD	of	0.35,	prevalence	of	MDD	of	0.15,	prevalence	of	CT	of	0.25	and	an	odds	ratio	

(OR)	of	CT	on	MDD	of	3.2	(see	Supplemental	Methods).	Model	1:	SNP-effects	are	the	same	in	exposed	and	unexposed;	Model	2:	correlation	of	0	between	SNP-effects	in	

exposed	and	unexposed;	Model	3:	SNP-effects	on	MDD	are	the	same	in	exposed	and	unexposed,	heritability	of	CT	of	0.5	(for	Models	1,2,4,	and	5,	heritability	of	CT	was	set	

at	0);	Models	4:	same	direction	of	SNP-effects	in	exposed	and	unexposed	(correlation	of	1),	but	3	times	larger	variance	of	effects	in	exposed	than	unexposed;	Model	5:	SNP-

effects	 the	 same	 in	 exposed	 and	unexposed,	 but	 three	 times	 smaller	 environmental	 variance	 in	 exposed.	 Simulation	was	 repeated	 ten	 times,	 the	means	 of	which	 are	

displayed	with	the	standard	error	(SE)	between	brackets.	
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