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Abstract  30 

Aerial imagery is regularly used by crop researchers, growers and farmers to monitor crops during the 31 

growing season. To extract meaningful phenotypic information from large-scale aerial images collected 32 

from the field, high-throughput phenotypic analysis solutions are required, which not only produce 33 

high-quality measures of key crop traits, but also support professionals to make prompt and reliable 34 

crop management decisions. Here, we report AirSurf, an automated and open-source analytic platform 35 

that combines modern computer vision, up-to-date machine learning, and modular software engineering 36 

in order to measure yield-related phenotypes from ultra-large aerial imagery. To quantify millions of 37 

in-field lettuces  acquired by fixed-wing light aircrafts equipped with a normalized difference vegetation 38 

index (NDVI) sensors, we customised AirSurf by embedding a deep-learning classifier trained with 39 

over 100,000 labelled lettuce signals. The tailored platform, AirSurf-Lettuce, is capable of scoring and 40 

categorising iceberg lettuces with high accuracy (>98%). Furthermore, novel analysis functions have 41 

been developed to map lettuce size distribution across the field, based on which associated global 42 

positioning system (GPS) tagged harvest regions have been identified to enable growers and farmers to 43 

conduct ultra-scale aerial phenotyping as well as precision agricultural practises to improve actual yield 44 

and crop marketability before the harvest.  45 
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Introduction 50 

   As an important source of vitamins, minerals, and trace elements, leaf vegetables play crucial roles in 51 

human nutrition1. Lettuce (Lactuca sativa L.), one of the most popular staple vegetable foods, has a 52 

wide range of tastes and textures cultivated for diverse customer needs2. Recent research also indicates 53 

that lettuce consumption has positive effects on the reduction of cardiovascular disease and chronic 54 

conditions due to its rich nutrients such as vitamin A, Beta-carotene, folate, and iron content3. While 55 

lettuce is an important and nutritional crop, fluctuating environments can increase the fragility of its 56 

production4. For example, the bad weather in Spain in early 2017 has led to retail prices of lettuce 57 

products nearly tripled in UK supermarkets5. Severe weather not only causes supply shortage, but also 58 

affects crop quality. According to previous studies on lettuce growth and development6,7, young plants 59 

at newly planted phase (i.e. from cotyledons unfolded to three true leaves stage) require cool and damp 60 

weather after the transplantation from the greenhouse to the field, whereas lettuce leaves can rapidly 61 

become bitter and inedible if the growth is accelerated by high ambient temperature at the head maturity 62 

phase (i.e. the stage before flowering). Because of the dynamic nature of lettuce production, the actual 63 

yield of lettuces in commercial operations is only around 70-80% of the planted quantity8. Hence, to 64 

ensure the consistency of supply and quality, it is important for growers and farmers to closely monitor 65 

their crops during key growth stages, so that prompt and reliable crop management decisions can be 66 

made under changeable agricultural conditions9. 67 

   Aerial field phenotyping has become a popular approach for monitoring crops in recent years. Because 68 

it can acquire a large number of crop imagery in field experiments using visible, thermal, and multi-69 

spectrum sensors, it has been widely applied to breeding, farming and crop research10. To ensure high-70 

quality aerial image acquisition, the flight route and altitude need to be pre-determined together with 71 

the selection of appropriate imaging sensors11. For example, for physiological traits such as vegetative 72 

greenness and canopy structure, a high-definition RGB camera is sufficient; however, many vegetation 73 

indices rely on multi- and hyper-spectral imaging sensors to assess important traits such as biomass, 74 

stress level, and yield potential12. Recently, with the development of image stitching algorithms and 75 

orthomosaic generation methods, very detailed crop images can be collected by unmanned aerial 76 
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vehicles (UAVs) and fixed-wing light aircrafts, which enables high-quality field phenotyping and high-77 

throughput phenotypic analysis13.  78 

   To extract meaningful phenotypic information from large-scale image datasets, a variety of computer 79 

vision14, machine learning (ML), and deep learning (DL) approaches15 have been utilised. In recent 80 

years, much attention has been paid to ML/DL techniques, based on which computational algorithms 81 

and models were built to accomplish tasks such as vision-based feature selection, image object 82 

classification, and pattern prediction16–18. With adequate training data, suitable learning algorithms, and 83 

well-defined predictive outcomes, the integration of computer vision, ML/DL, and newly emerged 84 

analytic solutions (e.g. distributed computing) could lead to a step change for plant phenomics research 85 

in the near future19.   86 

   In this article, we present a new analytic platform called AirSurf developed for ultra-scale aerial 87 

phenotyping and yield-related phenotypic analysis. The software platform is open-source and combines 88 

normalized difference vegetation index (NDVI) aerial imagery for data collection, computer vision for 89 

image processing, deep learning (i.e. convolutional neural networks, CNNs) for crop counting, and 90 

supervised machine learning for quality assessment. AirSurf was customised for commercial lettuce 91 

production so that it could be used to analyse millions of lettuces across the field. We call the tailored 92 

software platform “AirSurf-Lettuce” (AirSurf-L), which embeds a CNN model trained with over 93 

100,000 labelled lettuce signals to measure lettuce heads and their plantation layouts using ultra-large 94 

NDVI images. After scoring lettuce, unsupervised ML algorithms were used to classify lettuce heads 95 

into three size categories (i.e. small, medium and large) to assess lettuce quality. To connect phenotypic 96 

analysis with marketability and crop management decisions, a novel function has been developed in 97 

AirSurf-L to associate global positioning system (GPS) coordinates in a given field with lettuce size 98 

distribution, based on which efficient harvesting strategies could be formed to increase marketable 99 

yield. .  100 

 101 
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Materials and methods 102 

NDVI aerial imaging and experimental fields 103 

   NDVI correlates well with leaf area index and biomass20 and hence was chosen for yield-related field 104 

phenotyping. The imaging sensor used is an industrial standard camera as previously described21. The 105 

aerial imaging was carried out by a 'Sky Arrow' light aircraft, the lightest weight class (Very Light 106 

Aircraft, VLA) of any commercial aircraft, which let the pilot to fly with very little fuel, less than an 107 

average farm vehicle. Using VLA at 1000 feet (around 305 metres) in the sky, vast areas can be covered 108 

at a flight speed of 180-200 km/hour, during which the NDVI sensor can gather ultra-scale crop imagery 109 

to cover four or five fields in a single flight.  110 

   The ultra-large aerial NDVI imagery was acquired routinely (i.e. four-five times per season) by G’s 111 

Growers, the second largest vegetable grower in the UK. The flying route and the imaging protocol 112 

were designed to facilitate cross-site crop assessment and yield prediction (Fig. 1A). In this study, we 113 

used a series of collected ultra-large NDVI images (1.5-2GB per image) at 3cm ground sample distance 114 

(GSD) spatial resolution, for iceberg lettuces at H1 and H2 stages (i.e. moderate compact and crushable 115 

head), before lettuce leaves were largely overlapped. Experimental fields in the study were all located 116 

near Ely, Cambridgeshire UK, ranging from 10 to 20 hectares, with between 800,000 and 1.6 million 117 

lettuce heads in a single field. One field (Field A) planted with around 1 million lettuce heads was used 118 

to explain the analysis workflow and associated algorithms of AirSurf-L in the following sections (Fig. 119 

1B). A high-level manual yield counting was conducted by G’s growers’ field specialists during the 120 

harvest, which was used to verify and improve the platform. Lettuces in subsections randomly selected 121 

from Field A were scored manually by laboratory technicians and then used as training datasets for the 122 

deep learning model.   123 

 124 
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 125 

Figure 1: Ultra-scale NDVI aerial imaging accomplished routinely through a fixed-wing light aircraft 126 

operated by G’s Growers.  127 

(A) The flying route and aerial imaging were designed to facilitate cross-site crop layout assessment and yield 128 

prediction. (B) A series of ultra-large NDVI images at 3cm GSD spatial resolution were acquired to record 0.8-129 

1.6 million lettuce heads per field, at H1 and H2 stages. 130 

 131 

Data construction for training and testing 132 

   To generate sound datasets for ML-based image analysis, we randomly selected 60 patches of the 133 

field of varying sizes, each containing between 300 and 1,000 lettuce heads. We then manually labelled 134 

each lettuce in the selected patches with a red dot (Supplementary Fig. 1). Each labelled lettuce, i.e. a 135 

red dot, is identified by a 20x20 pixel bounding box representing a single lettuce head. We then used 136 

these bounding boxes, as well as images that did not correspond to a lettuce head, to train a CNN 137 

classifier to recognise and separate potential lettuces in the plantation field. The pixels contained within 138 

a bounding box were also used for defining lettuce size. A training dataset with over 100,000 20x20 139 

pixel labelled bounding boxes has been created, amongst which 50% are lettuces and the remaining are 140 

background signals such as soil, edges of the field, and other non-lettuce objects. Following a standard 141 

CNN segmentation approach22, we designed a non-overlapping sliding window function to go through 142 

the whole field to separate foreground and background signals, splitting lettuce and non-lettuce objects. 143 
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Training and testing datasets are equally balanced. Validation sets are used alongside training sets to 144 

verify the performance of the model, which also prevent overfitting in model training and allow us to 145 

fine-tune hyperparameters of different learning layers23. 146 

   147 

The analysis workflow of AirSurf-Lettuce 148 

   The analysis of yield-related phenotypes was based on NDVI signals of iceberg lettuces across the 149 

field. Figure 2 shows a high-level analysis workflow of AirSurf-L, which consists of five steps: data 150 

input, image calibration and pre-processing, ML-based traits analyses, results visualisation, and 151 

quantifications of yield-related phenotypes. Step 1 accepts raw NDVI images as gray-level imagery 152 

datasets. As pixels with extremely high NDVI signals usually have overflowed intensity values (i.e. 153 

black pixels in Fig. 2A), a pre-processing step (Step 2) is designed to calibrate raw NDVI images, so 154 

that intensity distribution can be normalised to correct overflowing pixels. At this step, an algorithm 155 

called contrast limited adaptive histogram equalization (CLAHE)24 is applied to increase the contrast 156 

between the foreground (i.e. lettuces) and background (e.g. soils) in a given NDVI image (Fig. 2B). 157 

Supplementary File S1 provides pseudo code and explanations of the image calibration and pre-158 

processing step to ensure high-quality inputs of the learning model. 159 

 160 

 161 
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Figure 2: A high-level analysis workflow of AirSurf-Lettuce.  162 

(A) Step 1 accepts raw NDVI images as input imagery data (pixels with extremely high NDVI signals are 163 

overflowed). (B) Step 2 pre-processes the raw NDVI images to calibrate intensity distribution and correct 164 

overflowing pixels. (C&D) Step 3 carries out ML-based traits analyses to quantify lettuce number and classify 165 

head size in a given NDVI image. (E) Steps 4&5 visualise and export statistics of the traits analyses detection, 166 

including yield-related phenotypes such as lettuce counting, size distribution, and harvest regions, and associated 167 

GPS coordinates. 168 

 169 

   Step 3 carries out ML-based traits analyses that quantify lettuce number (Fig. 2C), as well as classify 170 

head size (Fig. 2D). It includes six steps: removing noise signals, partitioning a given image into 171 

sections (250 x 250 pixels) for local analysis, producing a sliding window (20 x 20 pixels) to traverse 172 

within a sectioned image, using non-max suppression to detect lettuces, and classifying recognised 173 

lettuces into three size categorises (i.e. small, medium and large). The analysis result is visualised in 174 

Step 4, where lettuce counting, size distribution map, and GPS-tagged harvest regions are saved as a 175 

series of processed images (Fig. 2E). At the final step (Step 5), statistics of yield-related traits are 176 

exported to a comma-separated values (CSV) file, including lettuce counts per field, lettuce size 177 

distribution, lettuce number and size measures within GPS grids, harvest regions, and associated GPS 178 

coordinates (Supplementary File S2). To enable users to carry out the above analysis workflow easily, 179 

a graphical user interface (GUI) software application has been developed.  180 

 181 

AirSurf-Lettuce GUI 182 

   The GUI of AirSurf-L (Fig. 3) was developed using the native python GUI package, Tkinter25, which 183 

allows the software application to be executed on different operating systems such as Windows and 184 

Mac OS (note: we only provided a packaged .exe executable file on the GitHub). Following the systems 185 

design described previously26, the GUI uses an easy-to-follow approach to implement the phenotypic 186 

analysis workflow. The GUI window is divided into two parts: input section and display section. In the 187 

input section (dash rectangle coloured red in Fig. 3), a user needs to firstly load an NDVI image, which 188 

will be displayed instantaneously in the display section (dash rectangle coloured green), the original 189 
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tab. Secondly, the user needs to enter GPS coordinates of the field (i.e. the top left corner of the input 190 

image, which can be retrieved from the metadata or Google Maps). Thirdly, the user is required to 191 

define the rotation value of the input image in degrees in comparison with the north geographical 192 

direction, so that GPS calculation can be standardised. Then, the user needs to tell the software whether 193 

the input image contains overflown NDVI signals; if so, an extra calibration process will be triggered 194 

(Fig. 2, Step 2). Finally, after entering a small number of inputs, the user can click the Start button to 195 

initiate the analysis workflow.  196 

 197 

Figure 3: Two sections designed in the AirSurf-Lettuce GUI.  198 

(A) A processed image after pre-processing and calibration (in the normalised tab). (B)  A processed image after 199 

lettuce counting (in the counts tab). (C) A processed image after lettuce size categorisation (in the size distribution 200 

tab). (D) A processed image after identifying harvest regions and commuting GPS coordinates (in the harvest 201 

regions tab). 202 

 203 

   The GUI software follows each step in the workflow to conduct the automated phenotypic analysis. 204 

When a step is accomplished, an associated processed image will be displayed in the display section, 205 
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showing the result of the intermediate result of the analysis. Four processed images will be presented: 206 

a pre-processed and calibrated image (Fig. 3A, in the normalised tab), an image after lettuce scoring 207 

(Fig. 3B, in the counts tab), an image after size categorisation (Fig. 3C, in the size distribution tab), and 208 

a processed image after identifying harvest regions and their associated GPS coordinates (Fig. 3D, in 209 

the harvest regions tab). All processed images are saved in a result folder, along with a CSV file that 210 

contains trait analysis results (Supplementary File S2).   211 

 212 

Neural network architecture 213 

   Similar to AlexNet27, a CNN-based learning architecture was established using the labelled datasets. 214 

Figure 4A demonstrates the architecture of the CNN model, including (1) a convolutional (Conv2D) 215 

layer with 32 filters and a 3x3 kernel, with a rectified linear unit (ReLU) as the activation function, and 216 

batch normalisation to accelerate the learning process to enable higher learning rates28; (2) the same 217 

block is then repeated together with a max pooling layer to down-sample input using a 2x2 kernel based 218 

on the assumption that useful input features could be contained in sub-regions; (3) after that, a second 219 

convolutional block is constructed, consisting of a Conv2D layer with 64 filters, a 3x3 kernel, a ReLU 220 

activation, and batch normalisation; (4) finally, this block is repeated, followed by another max pooling 221 

layer (with a 2x2 kernel) to complete the learning procedure. After the convolutional layers, layers are 222 

connected to a fully connected layer of size 512, which is followed by a dropout layer with a 50% 223 

chance. To complete the learning architecture, a binary output generates the probability of whether a 224 

given bounding box (20x20 pixels) contains a lettuce signal. If the probability equals or is close to 1.0 225 

(i.e. 100%), it indicates that it is highly likely that the bounding box contains a complete lettuce head 226 

(Fig. 4B). The above architecture is commonly applied to vision-based object detection problems29.  227 

The training and validation accuracy and loss curves are reported in Figure 4C, showing that the model 228 

converges in only 10 epochs. More importantly, to avoid overfitting, the stopping criterion was designed 229 

to guarantee the validation accuracy is higher than the training accuracy, ensuring the generalisation of 230 

the learning model. To avoid the overfitting issue of our model, the labelled data was also divided 231 

equally into train and validation sets, when training the model. 232 
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 233 

Figure 4: A CNN-based learning architecture established for lettuce counting.  234 

(A) The architecture of the trained CNN model, which generates a binary output representing the probability of 235 

whether a yellow bounding box contains a lettuce signal. (B) If the probability is close to 1.0, it indicates that it 236 

is highly likely that the bounding box encloses a lettuce. (C) The training and validation accuracy and loss curves 237 

of the model. 238 

 239 

   The architecture is shallower than AlexNet and other modern deep learning architectures for a number 240 

of reasons: (1) the size of our dataset is relatively small for establishing very deep learning networks; 241 

(2) our target is a binary classification problem (i.e. whether or not a given bounding box contains a 242 

whole lettuce head), opposing to ImageNet classification tasks; (3) larger and deeper neural networks 243 

require more time to train, which can be slower to execute and not feasible for prompt decision making 244 

requirements in precision agriculture. 245 

 246 

Size categorisation algorithm 247 

   After AirSurf-L identifies bounding boxes containing lettuce heads, we employed an unsupervised 248 

ML approach to categorise lettuce into three sizes: small, medium and large. The algorithm can be 249 

easily changed to classify more size categories, if required. Pixels in the bounding box region are 250 

extracted and then NDVI values of all the pixels are put into bins. The histogram included 10 bins that 251 

spread across the NDVI value range (0-255). We included two important aspects when categorising 252 
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lettuce sizes: (1) lower NDVI surrounding values do not determine the lettuce size; (2) higher NDVI 253 

values are more important in indicating the size. As such, a geometric pattern of NDVI values for each 254 

bin was created, i.e. 64, 128, 160, 192, 208, 224, 232, 240, 244, 248, 250, 252, 253, and 254. With these 255 

cut-off values, most of the background pixels were captured in the first two bins, along with increasing 256 

weight when the values approach 255.  257 

   Having transformed the pixel regions into a series of bins, we were able to compare regions and 258 

cluster them into three size groups using k-means clustering with k set to three. Then, clustering results 259 

are sorted through calculating the dot product between the weight vector and the cluster count vector 260 

(based on bins). These sorted values determine which clustering result corresponds to which size, which 261 

are then applied to each lettuce detected in the field. Three colours are used to indicate size categories: 262 

blue for small, green for medium, and red for large (Fig. 3C).  263 

 264 

Results 265 

Counting lettuces with a CNN classifier 266 

   After a CNN classifier was trained and the phenotypic analysis algorithms were implemented in the 267 

AirSurf-L, we used the software to recognise and classify lettuce signals in ultra-large NDVI images. 268 

Initially, a broad range of sizes and orientations of lettuces with varying intensities were captured; 269 

however, the software failed to recognise lettuces in very bright regions and overly count lettuces in 270 

very dark regions (Fig. 5A), e.g. around 50,000 lettuces were wrongly detected in a one-million-head 271 

field (5% counting error). We found that this problem was caused by the trained CNN classifier, because 272 

a lettuce head is extremely tiny in an orthomosaic image (e.g. 11,330x6,600 pixels for a 7-hectare field 273 

when GSD is 3cm, which contains over half million lettuces) under extreme lighting conditions. To 274 

resolve this issue, we have designed a two-step solution: (1) sectioning the whole image into many 275 

250x250 pixels sub-images, and (2) using a fix-sized bounding-box (20x20 pixels) as a sliding window 276 

(with a stepping parameter of 5 pixels to reduce the sliding calculation) to prune the detected lettuce 277 

objects in each 250x250 sub-image.  278 
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 279 

Figure 5: The improved results of the CNN model and the size classification of lettuce heads.  280 

(A) Wrongly detected lettuces in very bright regions and overly counted lettuces in very dark regions, in a one-281 

million-head field. (B) Enhanced training datasets to retrain the model using the online-learning approach, which 282 

led to much better detection results. (C) A predefined colour code (small is coloured blue, medium is coloured 283 

green, and large is coloured red) is assigned to each recognised lettuce head across the field.    284 

 285 

   Another reason that caused the detection is due to overlapped lettuces as overlapped lettuces could be 286 

detected repeatedly by the CNN classifier in a sub-image. Hence, we employed a non-maximum 287 

suppression (NMS) algorithm30 to rectify the detection result. NMS uses probabilities to order the 288 

detected lettuce objects. After the 20x20 sliding window is performed and many small patches have 289 

been identified, the NMS algorithm computes an overlap coefficient to determine how to retain these 290 

patches. As lettuces are relatively well-spaced in the field, patches (i.e. bounding boxes) enclosing a 291 

complete lettuce signal are retained, whereas partially covered signals will be removed. To select the 292 

best overlap parameter computed by the NMS, a gradient descent method is formulated and explained 293 

in Supplementary File S3.  294 

 295 
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Improved CNN classifier and the size categorisation 296 

   Besides the improved computer vision approach, we also enhanced the training datasets by manually 297 

labelling an additional 500 lettuce signals within very bright or very dark regions. Then, newly labelled 298 

data was inserted into the training datasets to retrain the model through the online-learning approach31. 299 

The improved CNN model (see GitHub repository and Supplementary File S4) was tested on different 300 

experimental fields again and has dramatically enhanced the detection result (Fig. 5B).   301 

   Identified lettuces are individually analysed to determine their associated size category. The size 302 

classification is based on intensity and contrast values enclosed by the 20x20 bounding boxes, which is 303 

computed using the dot product of the histogram of pixel intensities and a weighted vector towards 304 

more pixel-based contrast values. The assumption of this design is that higher NDVI signals likely 305 

correlate with higher vegetation indices and hence bigger lettuce heads. The categorisation result of all 306 

lettuce heads is clustered into three size groups. Each lettuce is then coloured with a predefined colour 307 

code (i.e. small is blue, medium is green, and large is red, see Fig. 5C).    308 

 309 

A GPS-tagged harvest map 310 

   The final phase of the phenotypic analysis is to define harvest regions based on different sizes of 311 

lettuces. Using the size distribution map (Fig. 6A), the field is firstly segmented into many small grids 312 

based on the optimal GPS resolution determined by the altitude of the aerial imagery (i.e. 3cm GSD, in 313 

our case) as well as the size of the harvester machinery used by the grower. After dividing the field into 314 

thousands of grids (Fig. 6B), GPS coordinates of each grid are computed and each grid is then coloured 315 

with the most representative size category. By combining all coloured grids, a GPS-tagged harvest map 316 

is produced, representing harvest regions of the whole field (Fig. 6C). The harvest map can be used for 317 

designing harvesting strategies such as guiding a harvester to collect desired sized lettuces or arranging 318 

logistics based on the lettuce number and associated size counting. To facilitate precision agricultural 319 

practices, a result file (Supplementary File S2) is generated by AirSurf-L at the end of the analysis, 320 

containing information of each harvest grid, the associated GPS coordinates, lettuce size and number 321 
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counting in each grid. To satisfy different needs for dissimilar requirements, the size of GPS-based 322 

harvest grids can be modified manually in the software.   323 

 324 

Figure 6: A GPS-based harvest map based on lettuce size classification.  325 

(A) A colour-coded lettuce size distribution map (small is coloured blue, medium is coloured green, and large is 326 

coloured red). (B) The field is segmented into thousands of grids based on the optimal GPS resolution and the 327 

size of the harvester machinery. (C) Grids are coloured with the most representative lettuce size category across 328 

the image, representing harvest regions of the whole field. 329 

 330 

3D visualisation for the harvesting strategy 331 

   Figure 7 uses Python-based 3D Matplotlib library32 to show the GPS-tagged harvest map. When 332 

AirSurf-L reads an NDVI image, it computes the number of lettuce heads and associated size categories 333 

on the image (Fig. 7A). Then, by combining GPS-based field grids with the representative lettuce size 334 

in these grids (Fig. 7B), we produced a Python-based dynamic 3D bar chart script (Supplementary File 335 

S5) to present the lettuce number using the z axis, infield layout (both columns and rows) using both x 336 

and y axes, and the representative lettuce size using the predefined colours (Fig. 7C). Through the 3D 337 

plot, users can zoom into any sub-region of the field to check lettuce number and representative size so 338 

that a precise harvesting strategy can be planned accordingly. The overall lettuce number and size 339 

counting of the experiment field can also be calculated.     340 
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 341 

Figure 7: 3D visualisation of lettuce harvest regions.  342 

(A) AirSurf-L reads an NDVI image and exports a lettuce size distribution map, where small lettuce is coloured 343 

blue, medium size is coloured green, and large lettuce is coloured red. (B) 3D visualising GPS-based field grids 344 

to present representative size categories. (C) A dynamic 3D bar chart is generated to present the relationship 345 

between lettuce number, infield layout, and the representative lettuce size, along with over lettuce number and 346 

size quantification.  347 

 348 

Validation of AirSurf-Lettuce 349 

   To verify AirSurf-L and the soundness the algorithm, we have applied the platform to count and 350 

classify lettuce heads in three unseen experimental fields in Cambridgeshire, UK (Figs. 8A-C). These 351 

fields contain between 700,000 and 1,500,000 lettuces and are located in different sites around the 352 

county. Traits such as the number of lettuces per field quantified by the platform (Fig. 8D) were 353 

compared with industrial estimates, showing a low error in lettuce counting (<5% difference). Besides 354 

the field-level comparison, we also randomly selected different sizes of subsections in an experiment 355 

field to evaluate AirSurf-L. We split these subsections into three sets (i.e. 36 small regions, 21 large 356 

regions, and 57 mixed regions), where the small regions have less than 400 lettuces, the large ones 357 

contain greater than 900 lettuces heads, and mixed regions contain a variety of lettuce heads. After that, 358 

laboratory technicians manually counted lettuce heads within these regions. The correlation between 359 

the manual and automated lettuce counting shows that, for the small regions, the difference between the 360 

human and automatic counting is approximately 2% (R2 = 0.978); for the large regions, the average 361 
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difference is around 0.8% (R2 = 0.988); and for mixed regions, the R2 correlation is over 0.9997. 362 

Supplementary Figure 2 and Supplementary File S6 show the correlations between human and 363 

automatic counting for all three region groups. 364 

 365 

Figure 8: Applying AirSurf-Lettuce to count and classify millions of lettuce heads in three plantation fields 366 

across the Cambridgeshire, UK.  367 

(A-C) AirSurf-Lettuce is applied to count and classify millions of lettuce heads (small is coloured blue, medium 368 

is coloured green, and large is coloured red), in three plantation fields in the Cambridgeshire, UK. (D) The overall 369 

quantification of Lettuce heads and size categories in three fields. 370 

 371 

Discussion  372 

   Traditionally, measuring in-field crops on a large scale is very time-consuming and labour-intensive. 373 

It often requires destructive techniques, potentially error-prone manual counting, or estimates of traits 374 

that are key to yield production or crop quality33. Recent advances in ML/DL  and CV techniques have 375 

led to an explosion of plant phenomics, which has rapidly improved our abilities in mining phenotypic 376 

information from large and complicated phenotyping datasets34. New data-driven analytic approaches 377 

are also changing plant phenomics – collecting big data (i.e. phenotyping) is no longer the bottleneck, 378 

instead how to extract biologically relevant information (i.e. phenotypic analysis) from big data has 379 

become the current challenge35. Hence, along with the development of aerial imaging and remote 380 

sensing technologies, it has become increasingly noticeable that the integration of scalable data 381 
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collection, high-throughput phenotypic analysis, and yield predictive modelling are key to crop research 382 

and precision agriculture36.  383 

   AirSurf-L introduced here has addressed a specific challenge in ultra-scale aerial phenotyping and 384 

precision agricultural management through combining aerial NDVI imagery, CV, ML/DL, software 385 

engineering, with commercial lettuce production. The platform automates the measurement of millions 386 

of lettuces across the field, which allows us to connect research-based phenotypic analysis with real-387 

world agriculture problems. As a cross-disciplinary project, we have chosen an agile R&D method, 388 

because technologies and business requirements were constantly changing in the project. The results 389 

generated by AirSurf-L show a strong correlation between automatic counting and specialist scoring 390 

(R2 = 0.98). Hence, we are confident that AirSurf-L is capable of assisting fresh vegetable growers and 391 

farmers with their phenotyping needs as well as yield-related trait analysis.  392 

 393 

Commercial impacts 394 

   Commercially, lettuce production offers an attractive economic profitability in comparison to many 395 

other Agri-Food businesses37. To date, lettuce businesses are worth billions of dollars and employ 396 

hundreds of thousands of permanent and seasonal workers globally. European vegetable growers alone 397 

produced 2.95 million tonnes of lettuce (and chicory) in 2016, a total annual value of €2.5 billion38. 398 

Further down the fresh produce supply chain, the planning and efficiency of many essential crop 399 

production activities are largely dependent on crop maturity date and the marketability of crops (i.e. the 400 

crop quality)39. Marketing activities such as logistics, trading, and product marketing need to be 401 

organised several weeks before the harvest; moreover, the booking and reservation of crop distribution, 402 

agricultural equipment, and associated commercial plans with retails also need to be determined 403 

beforehand40. By doing so, crop can be harvested at the right time, with maximised yield41. Our work 404 

contributes directly to lettuce production for improving the actual yield of lettuces and is also capable 405 

of reliably quantifying crop quality (e.g. lettuce size), both of which are key to the success of crop 406 

production, marketing, and supply chain management.   407 

 408 
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Machine learning and computer vision in plant phenomics  409 

  Another aim of this work is to further ML- and CV-based software solutions in plant phenomics. High-410 

throughput plant phenotyping is a fast-growing research domain, covering many disciplines, from plant 411 

breeding, cultivation, remote sensing, to computing sciences42. The modulated software development 412 

allows us to apply different open-source learning architectures43 (e.g. the TensorFlow frameworks) and 413 

CV algorithms44 (e.g. Scikit-Image libraries) to AirSurf-L. Notably, it is worth pointing out that we 414 

have learned a number of lessons when applying ML/DL and CV in phenotypic analysis: (1) learning 415 

algorithms could perform badly if training datasets are not well-labelled and insufficient; (2) although 416 

ML/DL algorithms specialised in segmentation and classification if target objects are well-defined, 417 

there is still a big gap between object recognition and traits analyses; (3) meaningful phenotypic analysis 418 

not only requires sufficient biological understanding to define target traits in a logical manner, but also 419 

needs bespoke algorithms to engineer features so that traits can be soundly quantified. Hence, in plant 420 

phenomics research, biological questions, analytical solutions, and software implimentation need to be 421 

considered collectively in order to address complicated plant phenomics challenges.  422 

 423 

Limitations and further development of the platform 424 

   Besides the convincing phenotypic analysis results presented in this article, there are still limitations 425 

of the platform need to be considered: (1) AirSurf-L has been tested with top-view iceberg lettuces 426 

mainly at H1 and H2 stages, which means that analysis error could increase if there are too many 427 

overlaps between lettuce heads, e.g. from H3 stage onwards. (2) As AirSurf-L has only been tested with 428 

NDVI imagery, it is important to add new functions to the platform to incorporate other vegetation 429 

indices measurements through multi- and hyper-spectrum imaging sensors. (3) As precision agriculture 430 

management decisions are normally based on imagery, soil and climate conditions, AirSurf’s results 431 

will be more reliable, if we could include soil conditions for each harvest region and field-level climate 432 

conditions. So, results can be compared between sites in multiple years. A potential approach is to 433 

incorporate ground-based phenotyping systems such as CropSight45 to feed environment information 434 

to the analysis. (4) The method was tested and validated in lettuce fields in a number of geographic 435 
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locations following a standard aerial imaging procedure, data collected from different sites via varied 436 

aerial imaging strategies (e.g. different angles, altitudes and GSD) could improve the soundness and 437 

compatibility of the platform. (5) Key features were constructed by learning algorithms instead of 438 

engineered, which make learning models vulnerable when facing up to totally undefined datasets. 439 

Hence, ML/DL based phenotypic analysis algorithms need to update with new labelled training data in 440 

order to avoid training issues encountered by us. (6) For a field of approximately one million lettuces, 441 

it takes about four hours to analyse a field on a decent computer (2.5GHz Intel Core i7, 8 GB memory). 442 

Most of the computational time is occupied by the learning model to identify individual lettuces, which 443 

can be improved by parallel computing or GPU (graphic processing unit) processing to speed up the 444 

phenotypic analysis. 445 

 446 

Prospects for crop research and precision agriculture 447 

   Together with recent advances in multi-scale remote sensing and phenotyping data management45–47, 448 

the platform could be relatively easily expanded to incorporate other crop species such as wheat and 449 

rice by retraining the learning models with additional datasets. By doing so, AirSurf could be developed 450 

into a more comprehensive analytic platform that will bring great significance to crop production, 451 

marketable yield, and precision agriculture management for the Agri-Food sector. For example, the 452 

plant density of wheat and rice is closely related to the yield due to its influences on the allocation of 453 

water, light and fertilisers, which cannot be quantified using ground-based RGB imagery48. Hence, 454 

utilising the ultra-scale NDVI aerial imagery and related object recognition methods embedded in 455 

AirSurf-L, it is likely to benefit the assessment of sowing performance, emergence rate, and plant 456 

distribution. Through a multi-scale field phenotyping approach, breeders and crop researchers could 457 

make early predictions of the grain yield of crop genotypes in field experiments. 458 

   From a precision agriculture perspective, monitoring individual plant such as a lettuce head can enable 459 

accurate monitoring of crops during key growth stages across a plantation site. It can provide growers 460 

with the real number of crops in the field, based on which yield for harvest availability can be quantified 461 

instead of estimated. The calculation of in-field crops can also lead to accurate agricultural inputs, 462 
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facilitating automated variable-rate application of fertiliser, weed control, and pesticides through tractor 463 

software system with a more precise crop distribution map49. Furthermore, the close monitoring of key 464 

yield-related traits can be used to guide farmers and growers to reduce variability of agrichemical 465 

applications and irrigation in different fields, increasing harvest yield and better operating profit 466 

margin50. Finally, the AirSurf-L platform utilises existing aerial imagery data routinely performed by 467 

growers, which means that no extra data collection cost is required, which is an important factor for 468 

new Agri-Tech solutions to be adopted by the Agri-Food sector.  469 

 470 

Conclusions 471 

AirSurf-Lettuce automatically measures infield iceberg lettuces using ultra-scale NDVI aerial images, 472 

with a focus on yield-related traits such as lettuce number, size categories, field size distribution, and 473 

GPS-tagged harvest regions. The analysis results are close to the manual counting and can be used to 474 

improve existing in-field crop estimates. By monitoring millions of lettuces in the field, we demonstrate 475 

the significant value of AirSurf-L in ultra-scale field phenotyping, precise harvest strategies, and crop 476 

marketability before the harvest. We believe that our algorithm design, software implementation, the 477 

application of  ML/DL and CV algorithms, and the cross-disciplinary R&D will be highly valuable for 478 

future plant phenomics research that are destined to be more and more challenging. With continuous 479 

development work, we are confident that the platform has great potential to support the Agri-Food 480 

sector with a smart and precise crop surveillance approach of vegetable crops and therefore lead to 481 

better precision agriculture management decisions. 482 

 483 

Availability and requirements  484 

Project name: AirSurf-Lettuce with G’s Growers 485 

Project home page: https://github.com/Crop-Phenomics-Group/Airsurf-Lettuce 486 

Source code: https://github.com/Crop-Phenomics-Group/AirSurf-Lettuce/  487 

GUI software: https://github.com/Crop-Phenomics-Group/AirSurf-Lettuce/releases  488 

Operating system(s): platform independent 489 
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Programming language: Python 3.6 490 

Requirements: Keras, TensorFlow, Skimage, and Numpy. 491 

License: BSD-3-Clause available at https://opensource.org/licenses/BSD-3-Clause 492 

 493 

Abbreviations 494 

Comma-separated values (CSV), computer vision (CV), convolutional neural networks (CNNs), deep 495 

learning (DL), global positioning system (GPS), ground sample distance (GSD), machine learning (ML), 496 

non-maximum suppression algorithm (NMS), normalized difference vegetation index (NDVI), rectified 497 

linear units (ReLU), the United Kingdom (UK), and Unmanned Aerial Vehicles (UAVs). 498 

 499 

Availability of supporting data 500 

The datasets supporting the results presented here is available at https://github.com/Crop-Phenomics-501 

Group/Airsurf-Lettuce/releases. Source code and other supporting data are also openly available in the 502 

GitHub repository. 503 
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Supplementary Figures  635 

Supplementary Figure 1: Manually labelled lettuces in randomly selected patches using red dots. 636 
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 638 

Supplementary Figure 2: The correlation between human counting and AirSurf-L scoring. 639 
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