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Abstract

On the basis of the explicit formulae for the action of the unitary group of exponentials
corresponding to almost solvable extensions of a given closed symmetric operator with
equal deficiency indices, we derive a new representation for the scattering matrix for pairs
of such extensions. We use this representation to explicitly recover the coupling constants
in the inverse scattering problem for a finite non-compact quantum graph with δ-type
vertex conditions.

1. Introduction

Over the last eighty years or so, the subject of the mathematical analysis of waves in-
teracting with obstacles and structures (“scattering theory”) has served as one of the most
impressive examples of bridging abstract mathematics and physics applications, which in
turn motivated the development of new mathematical techniques. The pioneering works
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problems
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of von Neumann [57], [58] and his contemporaries during 1930–1950, on the mathematical
foundations of quantum mechanics, fuelled the interest of mathematical analysts to for-
mulating and addressing the problems of direct and inverse wave scattering in a rigorous
way.

The foundations of the modern mathematical scattering theory were laid by Friedrichs,
Kato and Rosenblum [28, 59, 60, 22] and subsequently by Birman and Krĕın [7], Birman
[6], Kato and Kuroda [29] and Pearson [51]. For a detailed exposition of this subject, see
[52, 66]. A parallel approach, which provides a connection to the theory of dissipative
operators, was developed by Lax and Phillips [40], who analysed the direct scattering
problem for a wide class of linear operators in the Hilbert space, including those associated
with the multi-dimensional acoustic problem outside an obstacle, using the language of
group theory (and, indeed, thereby developing the semigroup methods in operator theory).
The associated techniques were also termed “resonance scattering” by Lax and Phillips.

By virtue of the underlying dissipative framework, the above activity set the stage for
the applications of non-selfadjoint techniques, such as the functional model for contractions
and dissipative operators by Szökefalvi-Nagy and Foiaş [56], which showed the special rôle
in it of the characteristic function of Livšic [42] and allowed Pavlov [50] to construct a
spectral form of the functional model for dissipative operators. The connection between
this work and the concepts of scattering theory was uncovered by the famous theorem
of Adamyan and Arov [1]. In a closely related development, Adamyan and Pavlov [2]
established a description for the scattering matrix of a pair of self-adjoint extensions of a
symmetric operator (densely or non-densely defined) with finite equal deficiency indices.

Further, Naboko [45] advanced the research initiated by Pavlov, Adamyan and Arov
in two directions. Firstly, he generalised Pavlov’s construction of the functional model in
its spectral form to the case of non-dissipative operators, and secondly, he established its
applicability to the scattering theory for pairs of non-selfadjoint operators. In particular,
he provided explicit formulae for the wave operators and scattering matrices of a pair of (in
general, non-selfadjoint) operators in the functional model setting. It is remarkable that
in this work of Naboko the difference between the so-called stationary and non-stationary
scattering approaches disappears.

Our first aim in the present work is to discuss an extension of the approach of Naboko
[45], which was formulated for additive perturbations of self-adjoint operators, to the case
of both self-adjoint and non-self-adjoint extensions of symmetric operators. Our strategy is
based on a version of the functional model of Pavlov and Naboko as developed by Ryzhov
[54]. The work [54] stopped short of proving the crucial, from the scattering point of view,
theorem on “smooth” vectors and therefore was unable to extend Naboko’s results on the
scattering theory to the setting of (in general, non-selfadjoint) extensions of symmetric
operators.

Our second aim is, using the above construction, to provide an explicit solution to an
open problem of inverse scattering on a finite non-compact quantum graph, namely, the
problem of determining matching conditions at the graph vertices. The uniqueness part of
this problem has been treated in a preprint by Kostrykin and Schrader [33]. There is also
substantial literature on scattering for vector Schrödinger operators on a half-line with
matrix potentials, which corresponds to the particular case of a star-graph. Among the
latest works on this subject we point out [63], [64], see also references therein, in which
scattering is treated in the case of most general matching conditions at the vertex.
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The mentioned problem on quantum graphs is a natural generalisation of the classical
problem of inverse scattering on the infinite and semi-infinite line, which was solved using
the classical integral-operator techniques by Borg [9, 10], Levinson [41], Krein [36, 37, 38],
Gel’fand and Levitan [23], Marchenko [43], Faddeev [20, 21], Deift and Trubowitz [13].
This body of work has also included the solution to the inverse spectral problem, i.e. the
problem of determining the potential in the Schrödinger equation from the spectral data.
The inverse scattering problem in these works is reduced to the analysis of the inverse
problem based on the Weyl-Titchmarsh m-coefficient, and our analysis below benefits
from a reduction of the same kind.

In the operator-theoretic context, the m-coefficient is generalised to both the classical
Dirichlet-to-Neumann map (in the PDE setting), and to the so-called M -operator, which
takes the form of the Weyl-Titchmarsh M -matrix in the case of quantum graphs and,
more generally, symmetric operators with finite deficiency indices. This generalisation has
been exploited extensively in the study of operators, self-adjoint and non-selfadjoint alike,
through the works of Krein’s school in Ukraine on the theory of boundary triples and the
associated M -operators (Gorbachuk and Gorbachuk [25], Kochubei [31, 32], Derkach and
Malamud [15]). In our view, the theory of boundary triples is convenient for the study of
quantum graphs, when it can also be viewed as a version of the celebrated Birman-Krěın-
Vǐsik theory [5, 35, 62].

Quantum graphs, i.e. metric graphs with ordinary differential operators acting on the
edges subject to some “coupling” conditions at the graph vertices, see e.g. [4] are known to
combine one-dimensional and multidimensional features. Assuming that the graph topol-
ogy and the lengths of the edges are known, for the operator of second differentiation on
all graph edges and δ-type conditions at all graph vertices (see Section 7 for precise defini-
tions), in the present paper we determine the coupling constants at all vertices of a finite
graph from the knowledge of its scattering matrix. Our approach to the above problem
uses as a starting point the strategy of the work [54] mentioned above, which derived the
functional model for dissipative restrictions of “maximal” operators, i.e. the adjoints of
symmetric densely-defined operators with equal deficiency indices. The functional-model
approach allows us to obtain a new formula for the wave operators for any pair of such
restrictions, in terms of the M -operator for an appropriate boundary triple on the graph.
This formula, in turn, implies an expression for the scattering operator and its spectral
representation (“scattering matrix”). The obtained formula is given explicitly in terms
of the coupling constants at the graph vertices, which allows us to carry out the inverse
procedure of recovering these constants from the knowledge of the scattering matrix. Our
approach is a development of the idea of Ershova et al. [16, 17, 18], who studied the inverse
spectral problem and the inverse topology problem for quantum graphs using boundary
triples and M -operators.

The paper is organised as follows. In Section 2 we recall the key points of the theory
of boundary triples for extensions of symmetric operators with equal deficiency indices
and introduce the associated M -operators, following mainly [15] and [54]. In Section 3
we provide several observations that motivate the strategy of our analysis. In Section
4 we recall the functional model for the above family of extensions and characterise the
absolutely continuous subspace of Aκ as the closure of the set of “smooth” vectors in
the model Hilbert space. On the basis of this characterisation, in Section 5 we define
the wave operators for a pair from the family {Aκ} and demonstrate their completeness
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property. This, in combination with the functional model, allows us to obtain formulae
for the scattering operator of the pair (cf. [3]). In Section 6 we describe a convenient rep-
resentation of the scattering operator, namely the “scattering matrix”, which is explicitly
written in terms of the M -operator, analogous to the classical notion of the scattering
matrix. All material up to this point is applicable to a general class of operators subject
to the assumptions discussed in Section 2. In Section 7 we recall the concept of a quantum
graph and discuss the implications of the preceding theory for the associated scattering
operator for the pair (Aκ, A0), where κ is the parametrising operator as before, now writ-
ten in terms of the “coupling” constants at the graph vertices and A0 = Aκ|κ=0 is the
“unperturbed” operator with Kirchhoff vertex conditions. Finally, in Section 8 we solve
the inverse scattering problem for a graph with δ-type couplings at the vertices, using the
formulae for the scattering matrix in terms of the M -matrix of the graph.

2. Extension theory and boundary triples

Let H be a separable Hilbert space and denote by 〈·, ·〉 the inner product in this space,
which we consider to be antilinear in the second argument. Let A be a closed symmetric
operator densely defined in H, i.e. A ⊂ A∗, with domain dom(A) ⊂ H. For such operators,
all points in the lower and upper half-planes are of regular type with deficiency indices

n±(A) := dim(H	 ran(A− zI)) = dim(ker(A∗ − zI)) , z ∈ C± .

If A = A∗ then A is referred to as self-adjoint. A closed operator L is said to be completely
non-selfadjoint if there is no subspace reducing L such that the restriction of L to this
subspace is self-adjoint. In this work we consider extensions of a given closed symmetric
operator A with equal deficiency indices, i. e. n−(A) = n+(A), and use the theory of
boundary triples.

In view of the importance of dissipative operators within the present work, we briefly
recall that a densely defined operator L in H is called dissipative if

Im 〈Lf, f〉 ≥ 0 ∀f ∈ dom(L). (2.1)

For a dissipative operator L, the lower half-plane is contained in the set of points of regular
type, i.e.

C− ⊂ {z ∈ C : ∃C > 0 ∀f ∈ dom(L) ‖(L− zI)f‖ ≥ C ‖f‖} .

A dissipative operator L is called maximal if C− is actually contained in its resolvent set
ρ(L) := {z ∈ C : (L − zI)−1 ∈ B(H)}. (B(H) denotes the space of bounded operators
defined on the whole Hilbert space H). Clearly, a maximal dissipative operator is closed.

We next describe the boundary triple approach to the extension theory of symmetric
operators with equal deficiency indices (see in [14] a review of the subject). This approach
is particularly useful in the study of self-adjoint extensions of differential operators of
second order.

Definition 1. For a closed symmetric operator A with equal deficiency indices, consider
the linear mappings Γ1 : dom(A∗) → K, Γ0 : dom(A∗) → K, where K is an auxiliary
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separable Hilbert space, such that

(1) 〈A∗f, g〉H − 〈f,A
∗g〉H = 〈Γ1f,Γ0g〉K − 〈Γ0f,Γ1g〉K ; (2.2)

(2) The mapping dom(A∗) 3 f 7→

(
Γ1f

Γ0f

)
∈ K ⊕K is surjective.

Then the triple (K,Γ1,Γ0) is said to be a boundary triple for A∗.

In this work we consider almost solvable extensions AB for which there exists a triple
(K,Γ1,Γ0) and B ∈ B(K) such that

f ∈ dom(AB) ⇐⇒ Γ1f = BΓ0f . (2.3)

The following assertions, written in slightly different terms, can be found in [31, Thm. 2]
and [26, Chap. 3 Sec. 1.4] (see also [30, Thm. 2.3], [54, Thm. 1.1], and [55, Sec. 14] for a
closer formulation). We compile them in the next proposition for easy reference.

Proposition 2.1. Let A be a closed symmetric operator with equal deficiency indices and
let (K,Γ1,Γ0) be a the boundary triple for A∗. Assume that AB is an almost solvable
extension. Then the following statements hold:

1. f ∈ dom(A) if and only if Γ1f = Γ0f = 0.

2. AB is maximal, i. e., ρ(AB) 6= ∅.

3. A∗B = AB∗ .

4. AB is dissipative if and only if B is dissipative.

5. AB is self-adjoint if and only if B is self-adjoint.

Definition 2. The function M : C− ∪ C+ → B(H) such that

M(z)Γ0f = Γ1f ∀f ∈ ker(A∗ − zI)

is the Weyl function of the boundary triple (K,Γ1,Γ0) for A∗, where A is assumed to be
as in Proposition 2.1.

The Weyl function defined above has the following properties [15].

Proposition 2.2. Let M be a Weyl function of the boundary triple (K,Γ1,Γ0) for A∗,
where A is a closed symmetric operator with equal deficiency indices. Then the following
statements hold:

1. M : C \ R→ B(K) .

2. M is a B(K)-valued double-sided R-function [27], that is,

M(z)∗ = M(z) and Im(z) Im
(
M(z)

)
> 0 for z ∈ C \ R .

3. The spectrum of AB coincides with the set of points z0 ∈ C such that (M − B)−1

does not admit analytic continuation into z0.
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We next lay out the notation for some of the main objects in our analysis. In the
auxiliary Hilbert space K, choose a bounded positive self-adjoint operator α so that the
operator

Bκ :=
ακα

2
(2.4)

belongs to B(K), where κ is a bounded operator1 in K. In what follows, we deal with
almost solvable extensions of a given symmetric operator A that are generated by Bκ
via (2.3). It is always assumed that the deficiency indices of A are equal and that some
boundary triple (K,Γ1,Γ0) for A∗ is fixed. In order to streamline the formulae, we write

Aκ := ABκ . (2.5)

Here κ should be understood as a parameter for a family of almost solvable extensions
of A. Note that if κ is self-adjoint then so is Bκ and, hence by Proposition 2.1(5), Aκ is
self-adjoint. Note also that AiI is maximal dissipative, again by Proposition 2.1.

Definition 3. The characteristic function of the operator AiI is the operator-valued func-
tion S on C+ given by

S(z) := I + iα
(
B∗iI −M(z)

)−1
α, z ∈ C+. (2.6)

Remark 1. The function S is analytic in C+ and, for each z ∈ C+, the mapping S(z) :
K → K is a contraction. Therefore, S has nontangential limits almost everywhere on the
real line in the strong topology [56], which we henceforth denote by S(k), k ∈ R.

Remark 2. When α =
√

2I, which is the case of our application to finite quantum graphs,
a straightforward calculation yields that S(z) is the Cayley transform of M(z), i.e.

S(z) =
(
M(z)− iI

)(
M(z) + iI

)−1
. (2.7)

3. General remarks on our approach

Our approach to mathematical scattering theory for extensions of closed symmetric
operators (direct and inverse) will be based on the functional model for a family of almost
solvable extensions of the given minimal symmetric operator. Our choice of this method
is based on the following considerations:

1) We would like to consider scattering problems where at least one of the two operators
of the pair is non-selfadjoint. In contrast, the classical scattering results only pertain to
pairs of self-adjoint operators: even the definition of exp(iLt) in the case of non-selfadjoint
L needs to be clarified. While there are various ways to construct functional calculus for
non-uniformly bounded groups, say the Riesz-Dunford calculus, the most attractive of
them for us is via developing a functional model where the exponent is represented by an
operator of multiplication on a linear set dense in the absolutely continuous subspace of its
generator. The “symmetric Pavlov model” [50], which we describe in Section 4, provides
such an approach.

1Clearly, the assumption that ker(α) = {0} is without loss of generality, by a suitable modification of
κ if necessary.
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2) Naboko [45] has shown how to construct mathematical scattering for a class of
non-selfadjoint operators in the “additive” case L = A + iV, where A, V are self-adjoint
operators. This kind of method offers some advantages in comparison with other tech-
niques: a) the difference between stationary and non-stationary theories disappears, in the
sense that the same construction yields explicit expressions for both; b) the scattering op-
erator is represented in a concise form, which, in particular, immediately yields a formula
for the spectral representation in the eigenfunction basis of the unperturbed self-adjoint
operator (“scattering matrix”).

3) It has to be pointed out that the seemingly non-selfadjoint approach due to Naboko
contains the self-adjoint setting as its particular case, and when applied this way it yields
all the classical results (e.g. Pearson Theorem, Birman-Krein-Kuroda Theorem, as well as
their generalisations). In this self-adjoint setting this approach proves to be consistent with
the “smooth” scattering theory (see [66]). As in the case of the latter, the principal rôle
in Naboko’s construction is played by a linear dense subset of the absolutely continuous
subspace (“smooth” vectors), which in the self-adjoint case is described by the so-called
Rosenblum Lemma [60]. In the non-self-adjoint case the corresponding linear dense subset
is identified by the property that the resolvent acts on it as the resolvent of the operator of
multiplication in the symmetric Pavlov representation, cf. (4.9). This, in turn, facilitates
the derivation of explicit formulae for wave operators on these dense sets of smooth vectors.
The construction of the wave operators is then completed by passing to a closure.

In what follows we briefly describe the approach introduced above and the results
obtained on this way, essentially building up on the earlier results pertaining to the analysis
of non-self-adjoint extensions, due to Ryzhov. These allow us to generalise Naboko’s
construction of wave operators and scattering matrices to the case studied in the present
paper. In order to deal with the family of extensions {Aκ} of the operator A (where
the parameter κ is itself an operator, see notation immediately following Proposition
2.2), we first construct a functional model of its particular dissipative extension. This is
done following the Pavlov-Naboko procedure, which in turn stems from Sz.-Nagy-Foiaş
functional model. This allows us to obtain a simple model for the whole family {Aκ},
in particular yielding a possibility to apply it to the scattering theory for certain pairs
of operators in {Aκ}, including both the cases when these operators are self-adjoint and
non-selfadjoint. In view of transparency, we try to reduce the technicalities to the bare
minimum, at the same time pointing out that the corresponding complete proofs of the
necessary statements can be found in [12].

4. Functional model

Following [45], we introduce a Hilbert space serving as a functional model for the family
of operators Aκ. This functional model was constructed for completely non-selfadjoint
maximal dissipative operators in [50, 48, 49] and further developed in [45]. Next we
recall some related necessary information. In what follows, in various formulae, we use
the subscript “±” to indicate two different versions of the same formula in which the
subscripts “+” and “−” are taken individually.

A K-valued function f, analytic on C±, is said to be in the Hardy class H2
±(K) if (cf.
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[53, Sec. 4.8])

sup
y>0

∫
R

∥∥f(x± iy)
∥∥2
Kdx < +∞.

Whenever f ∈ H2
±(K), the left-hand side of the above inequality defines ‖f‖2H2

±(K)
. We use

the notation H2
+ and H2

− for the usual Hardy spaces of C-valued functions. Any element
in the Hardy spaces H2

±(K) can be associated with its boundary values in the topology of
K, which exist almost everywhere on the real line. The spaces of boundary functions of
H2
±(K) are denoted by Ĥ2

±(K), and they are subspaces of L2(R,K) [53, Sec. 4.8, Thm. B]).
By the Paley-Wiener theorem [53, Sec. 4.8, Thm. E]), these subspaces are the orthogonal
complements of each other (i.e., L2(R,K) = Ĥ2

+(K)⊕ Ĥ2
−(K)).

As mentioned above, the characteristic function S has non-tangential limits almost
everywhere on the real line in the strong topology. Thus, for a two-component vector
function

(
g̃
g

)
taking values in K ⊕K, one can consider the integral∫

R

〈(
I S∗(s)

S(s) I

)(
g̃(s)

g(s)

)
,

(
g̃(s)

g(s)

)〉
K⊕K

ds, (4.1)

which is always nonnegative, due to the contractive properties of S. The space

H := L2

(
K ⊕K;

(
I S∗

S I

))
(4.2)

is the completion of the linear set of two-component vector functions
(
g̃
g

)
: R → K ⊕ K

in the norm (4.1), factored with respect to vectors of zero norm. Naturally, not every
element of the set can be identified with a pair

(
g̃
g

)
of two independent functions. Still, in

what follows we keep the notation
(
g̃
g

)
for the elements of this space.

Another consequence of the contractive properties of the characteristic function S is
that for g̃, g ∈ L2(R,K) one has

∥∥∥∥(g̃g
)∥∥∥∥

H

≥

‖g̃ + S∗g‖L2(R,K) ,

‖Sg̃ + g‖L2(R,K) .

Thus, for every Cauchy sequence {
(
g̃n
gn

)
}∞n=1, with respect to the H-topology, such that

g̃n, gn ∈ L2(R,K) for all n ∈ N, the limits of g̃n + S∗gn and Sg̃n + gn exists in L2(R,K),
so that the objects g̃ + S∗g and Sg̃ + g can always be treated as L2(R,K) functions.

Furthermore, consider the orthogonal subspaces of H

D− :=

(
0

Ĥ2
−(K)

)
, D+ :=

(
Ĥ2

+(K)

0

)
, (4.3)

and define the space K := H 	 (D− ⊕ D+), which is characterised as follows, see e.g.
[48, 49]:

K =

{(
g̃
g

)
∈ H : g̃ + S∗g ∈ Ĥ2

−(K) , Sg̃ + g ∈ Ĥ2
+(K)

}
. (4.4)
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The orthogonal projection PK onto the subspace K is given by (see e.g. [44])

PK

(
g̃
g

)
=

(
g̃ − P+(g̃ + S∗g)

g − P−(S g̃ + g)

)
, (4.5)

where P± are the orthogonal Riesz projections in L2(K) onto Ĥ2
±(K).

A completely non-selfadjoint dissipative operator admits [56] a self-adjoint dilation.
The dilation A = A∗ of the operator AiI is constructed following Pavlov’s procedure
[48, 50, 49]: it is defined in the Hilbert space H = L2(R−,K)⊕H⊕ L2(R+,K), so that

PH(A− zI)−1 �H= (AiI − zI)−1 , z ∈ C−.

As in the case of additive non-selfadjoint perturbations [45], Ryzhov established in [54,
Thm. 2.3] that H serves as the functional model for the dilation A i.e. there exists an
isometry Φ : H→ H such that A is transformed into the operator of multiplication by the
independent variable: Φ(A− zI)−1 = (· − z)−1Φ . Furthermore, under this isometry

Φ �H H = K

unitarily, where H is understood as being embedded in H in the natural way, i.e.

H 3 h 7→ 0⊕ h⊕ 0 ∈ H.

In what follows we keep the label Φ for the restriction Φ �H, in hope that it does not lead
to confusion.

Following the ideas of Naboko, in the functional model space H consider two subspaces

Nκ
± :=

{(
g̃

g

)
∈ H : P±

(
χ+
κ (g̃ + S∗g) + χ−κ (Sg̃ + g)

)
= 0

}
, (4.6)

where

χ±κ :=
I ± iκ

2
.

These subspaces have a characterisation in terms of the resolvent of the operator Aκ,
whose proof, see [12], follows the approach of [45, Thm. 4].

Theorem 4.1 ([12]). The following characterisation holds:

Nκ
± =

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C±

}
. (4.7)

Consider also the counterparts of Nκ
± in the original Hilbert space H :

Ñκ
± := Φ∗PKNκ

± , (4.8)

which are linear sets albeit not necessarily subspaces. In a way similar to [45], we define
the set

Ñκ
e := Ñκ

+ ∩ Ñκ
−

of so-called smooth vectors and its closure Nκ
e := clos(Ñκ

e ). This proves to be suitable for
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the description of the absolutely continuous subspace and, therefore, for the construction
of the wave operators.

Definition 4. For a symmetric operator A, in the case of a non-selfadjoint extension Aκ
the absolutely continuous subspace Hac(Aκ) is defined by the formula Hac(Aκ) = Nκ

e .

The next statement, the proof of which is given in [12], motivates the above definition.

Theorem 4.2 (Self-adjoint case, see [12]). Assume that κ = κ∗ (equivalently, Aκ = A∗κ)
and let αΓ0(Aκ − zI)−1 be a Hilbert-Schmidt operator for at least one point z ∈ ρ(Aκ). If
A is completely non-selfadjoint, then Nκ

e = Hac(Aκ).

Definition 4 follows in the footsteps of the corresponding definition by Naboko [45] in
the case of additive perturbations. In particular, an argument similar to [45, Corollary 1]
shows that for the functional model image of Ñκ

e the following representation holds:

ΦÑκ
e =

{
PK

(
g̃

g

)
:(

g̃

g

)
∈ H satisfies Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
∀ z ∈ C− ∪ C+

}
. (4.9)

(Note that the inclusion of the right-hand side of (4.9) into ΦÑκ
e follows immediately from

Theorem 4.1.) Further, we arrive at an equivalent description (cf. (4.6)):

ΦÑκ
e =

{
PK

(
g̃

g

)
:

(
g̃

g

)
∈ H satisfies χ+

κ (g̃ + S∗g) + χ−κ (Sg̃ + g) = 0

}
. (4.10)

The representations (4.9), (4.10) illustrate the rôle of the subspace of smooth vectors as
the subspace in whose image under the isometry Φ the operator Aκ acts as multiplication
by the independent variable. This property is crucial in the derivation of the formulae for
wave operators of pairs from the family {Aκ}, which we present in the next section and
which are subsequently used in the solution of the inverse problem for quantum graphs in
Sections 7, 8.

5. Wave and scattering operators

The results discussed above allow us to calculate the wave operators for any pair
Aκ1 , Aκ2 , where Aκ1 and Aκ2 are operators in the class introduced in Section 2. For
simplicity, and bearing in mind the application of the abstract construction to the problem
described in Sections 7 and 8, in what follows we set κ2 = 0 and write κ instead of κ1.
Note that A0 is a self-adjoint operator, which is convenient for presentation purposes.

We begin by recalling the model representation for the function exp(iAκt), t ∈ R, of the
operator Aκ, evaluated on the set of smooth vectors Ñκ

e , as well as a proposition describing
such vectors in Ñκ

e and Ñ0
e that the difference between their respective dynamics vanishes

as t→ −∞.
Proposition 5.1. ([45, Prop. 2]) For all t ∈ R and all

(
g̃
g

)
such that Φ∗PK

(
g̃
g

)
∈ Ñκ

e one
has

Φ exp(iAκt)Φ
∗PK

(
g̃

g

)
= PK exp(ikt)

(
g̃

g

)
.
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Proposition 5.2. ([45, Section 4]) If Φ∗PK
(
g̃
g

)
∈ Ñκ

e and Φ∗PK
(
g̃′

g

)
∈ Ñ0

e (with the same

element2 g), then∥∥∥∥exp(−iAκt)Φ
∗PK

(
g̃

g

)
− exp(−iA0t)Φ

∗PK

(
g̃′

g

)∥∥∥∥
H

−−−−→
t→−∞

0.

It follows from Proposition 5.2 that whenever Φ∗PK
(
g̃
g

)
∈ Ñκ

e and Φ∗PK
(
g̃′

g

)
∈ Ñ0

e

(with the same second component g), one formally has

lim
t→−∞

eiA0te−iAκtΦ∗PK

(
g̃

g

)
= Φ∗PK

(
g̃′

g

)
= Φ∗PK

(
−(I + S)−1(I + S∗)g

g

)
,

where in the last equality we use the inclusion Φ∗PK
(
g̃′

g

)
∈ Ñ0

e , which by (4.10) yields

g̃′ + S∗g + Sg̃′ + g = 0.
In what follows we use the standard definition of wave operators, see e.g. [28], allowing

the operator Aκ to be non-selfadjoint:

W±(A0, Aκ) := s-lim
t→±∞

eiA0te−iAκtPκ
ac, W±(Aκ, A0) := s-lim

t→±∞
eiAκte−iA0tP 0

ac. (5.1)

In the above formulae, we denote by Pκ
ac, P

0
ac the projections onto the absolutely continuous

subspace of Aκ, see Definition 4, and the absolutely continuous subspace of the self-adjoint
operator A0, respectively.

It follows that for Φ∗PK
(
g̃
g

)
∈ Ñκ

e one has

W−(A0, Aκ)Φ∗PK

(
g̃

g

)
= Φ∗PK

(
−(I + S)−1(I + S∗)g

g

)
. (5.2)

One argues in a similar way in the case of the wave operator W+(A0, Aκ), as well as in
the case of the wave operators W±(Aκ, A0), which we define by∥∥∥∥e−iAκtW±(Aκ, A0)Φ

∗PK

(
g̃

g

)
− e−iA0tΦ∗PK

(
g̃

g

)∥∥∥∥
H

−−−−→
t→±∞

0, Φ∗PK

(
g̃

g

)
∈ Ñ0

e .

Theorem 5.3 ([12]). Let A be a closed, symmetric, completely non-selfadjoint operator
with equal deficiency indices and consider its extension Aκ, as described in Section 2,
under the assumption that Aκ has at least one regular point in C+ and in C−. If S − I
is compact in C+, then the wave operators W±(A0, Aκ) exist on dense sets in Nκ

e and for
all Φ∗PK

(
g̃
g

)
∈ Ñκ

e one has (5.2) and

W+(A0, Aκ)Φ∗PK

(
g̃

g

)
= Φ∗PK

(
g̃

−(I + S∗)−1(I + S)g̃

)
. (5.3)

Similarly, the wave operators and W±(Aκ, A0) exist on dense sets in Hac(A0) and for all

2Despite the fact that
(
g̃
g

)
∈ H is nothing but a symbol, still g̃ and g can be identified with vectors in

certain L2(K) spaces with operators “weights”, see details below in Section 6. Further, we recall that even
then for

(
g̃
g

)
∈ H, the components g̃ and g are not, in general, independent of each other.

11



Φ∗PK
(
g̃
g

)
∈ Ñ0

e one has

W−(Aκ, A0)Φ
∗PK

(
g̃

g

)
= Φ∗PK

(
−
(
I + χ−κ (S − I)

)−1(
I + χ+

κ (S∗ − I)
)
g

g

)
, (5.4)

W+(Aκ, A0)Φ
∗PK

(
g̃

g

)
= Φ∗PK

(
g̃

−
(
I + χ+

κ (S∗ − I)
)−1(

I + χ−κ (S − I)
)
g̃

)
, (5.5)

The ranges of W±(A0, Aκ) and W±(Aκ, A0) are dense in Hac(A0) and Nκ
e , respectively.3

Sketch of the proof. In order to rigorously justify the above formal derivation of (5.2)–
(5.5), i.e. in order to prove the existence and completeness of the wave operators, one
needs to show that the right-hand sides of the formulae (5.2)–(5.5) make sense on dense
subsets of the corresponding absolutely continuous subspaces. Noting that (5.2)–(5.5)
have the form identical to the expressions for wave operators derived in [45, Section 4],
[47], this justification is an appropriate modification of the argument of [47].

Indeed, consider the formula (5.2). Here one needs to attribute a correct sense to
the expression (I + S(k))−1 a.e. on the real line. Let S(z) − I satisfy the assumption
of the theorem. Then, using the strategy of [47], one has non-tangential boundedness of
(I + S(z))−1 for almost all points of the real line. On the other hand, the latter inverse
can be computed in C+: (

I + S(z)
)−1

=
1

2

(
I + iαM(z)−1α/2

)
.

It follows from the analytic properties of M(z) that the inverse (I + S(z))−1 exists ev-
erywhere in the upper half-plane. Thus, [47] yields that (I + S(z))−1 is R-a.e. nontan-
gentially bounded and it admits measurable non-tangential limits in the strong operator
topology almost everywhere on R. As it is easily seen, these limits must then coincide
with (I + S(k))−1 for almost all k ∈ R.

The presented argument allows one to verify the correctness of the formula (5.2).
Indeed, consider 1n(k), the indicator of the set {k ∈ R : ‖(I + S(k))−1‖ ≤ n}. Clearly,
1n(k) → 1 as n → ∞ for almost all k ∈ R. Next, suppose that PK(g̃, g) ∈ Ñκ

e . Then
PK1n(g̃, g) is also a smooth vector and(

−(I + S)−11n(I + S∗)g

1ng

)
∈ H.

It follows, by the Lebesgue dominated convergence theorem, that the set of vectors
PK1n(g̃, g) is dense in Nκ

e .
The remaining three wave operators are treated in a similar way, see the complete

details in [12]. Finally, the density of the range of the four wave operators follows from
the density of their domains, by a standard inversion argument, see e.g. [66].

3In the case when Aκ is self-adjoint, or, in general, the named wave operators are bounded, the claims of
the theorem are equivalent (by the classical Banach-Steinhaus theorem) to the statement of the existence
and completeness of the wave operators for the pair A0, Aκ . Sufficient conditions of boundedness of these
wave operators are contained in e.g. [45, Section 4], [47] and references therein.
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Remark 3 ([12]). 1. The condition of the above theorem that S(z) − I is compact in
C+ is satisfied [24, 12], as long as the scalar function ‖αM(z)−1α‖Sp is nontangentially
bounded almost everywhere on the real line for some p < ∞, where Sp, p ∈ (0,∞], are
the standard Schatten – von Neumann classes of compact operators.

2. An alternative sufficient condition is the condition α ∈ S2 (and therefore Bκ ∈ S1),
or, more generally, αM(z)−1α ∈ S1, see [46] for details.

3. Following from the analysis above, the existence and completeness of the wave
operators for the par Aκ, A0 is closely linked to the condition of α having a “relative
Hilbert-Schmidt property” with respect to M(z). Recalling that Bκ = ακα/2, this is
not always feasible to expect. Nevertheless, by appropriately modifying the boundary
triple, the situation can often be rectified. For example, if Cκ = C0 + ακα/2, where
C0 and κ are bounded and α ∈ S2, replaces the operator Bκ in (2.4), then one “shifts”
the boundary triple: Γ̂0 = Γ0, Γ̂1 = Γ1 − C0Γ0. One thus obtains that in the new triple
(K, Γ̂0, Γ̂1) the operator Aκ coincides with the extension corresponding to the boundary
operator Bκ = ακα/2, whereas the Weyl-Titchmarsh function M(z) undergoes a shift to
the function M(z) − C0. The proof of Theorem 6.1 remains intact, while Part 2 of this
remark yields that the condition α(M(z) − C0)

−1α ∈ S1 guarantees the existence and
completeness of the wave operators for the pair AC0 , ACκ . The fact that the operator A0

here is replaced by the operator AC0 reflects the standard argument that the complete
scattering theory for a pair of operators requires that the operators forming this pair are
“close enough” to each other.

The scattering operator Σ for the pair Aκ, A0 is defined by

Σ = W−1+ (Aκ, A0)W−(Aκ, A0).

The formulae (5.2)–(5.5) lead (see (cf. [45])) to the following formula for the action of Σ
in the model representation:

ΦΣΦ∗PK

(
g̃

g

)
= PK

(
−(I + χ−κ (S − I))−1(I + χ+

κ (S∗ − I))g

(I + S∗)−1(I + S)(I + χ−κ (S − I))−1(I + χ+
κ (S∗ − I))g

)
, (5.6)

whenever Φ∗PK
(
g̃
g

)
∈ Ñ0

e . This representation holds on a dense linear set in Ñ0
e within

the conditions of Theorem 5.3, which guarantees that all the objects on the right-hand
side of the formula (5.6) are correctly defined.

6. Spectral representation for the absolutely continuous part of A0

The identity ∥∥∥∥PK(g̃g
)∥∥∥∥2

H

=
〈
(I − S∗S)g̃, g̃

〉
∀PK

(
g̃

g

)
∈ Ñ0

e ,

which is derived in the same way as in [45, Section 7] for all PK
(
g̃
g

)
∈ Ñ0

e , which is
equivalent to the condition (g̃ + S∗g) + (Sg̃ + g) = 0, see (4.10), allows us to consider the
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isometry F : ΦÑ0
e 7→ L2(K; I − S∗S) defined by

FPK

(
g̃

g

)
= g̃. (6.1)

Here L2(K; I − S∗S) is the Hilbert space of K-valued functions on R square summable
with the matrix “weight” I − S∗S, cf. (4.2). Similarly, the formula

F∗PK

(
g̃

g

)
= g

defines an isometry F∗ from ΦÑ0
e to L2(K; I − SS∗).

Proposition 6.1 ([12]). Suppose that the assumptions of Theorem 5.3 hold. Then the
ranges of the operators F and F∗ are dense in the spaces L2(K; I−S∗S) and L2(K; I−SS∗),
respectively.

The above statement immediately implies the next result, which allows us to obtain
the required spectral representation.

Theorem 6.2. The operator F, respectively F∗, admits an extension to the unitary map-
ping between ΦN0

e and L2(K; I − S∗S), respectively L2(K; I − SS∗).

It follows that the operator (A0 − z)−1 considered on Ñ0
e acts as the multiplication

by (k − z)−1, k ∈ R, both in L2(K; I − S∗S) and L2(K; I − SS∗). In particular, if
one considers the absolutely continuous “part” of the operator A0, namely the operator

A
(e)
0 := A0|N0

e
, then FΦA

(e)
0 Φ∗F ∗ and F∗ΦA

(e)
0 Φ∗F ∗∗ are the operators of multiplication by

the independent variable in the spaces L2(K; I − S∗S) and L2(K; I − SS∗), respectively.
In order to obtain a spectral representation from the above result, we need to di-

agonalise the weights in the definitions of the above L2-spaces. This diagonalisation is
straightforward when α =

√
2I. (This choice of α satisfies the conditions of Theorem 5.3

e.g. when the boundary space K is finite-dimensional, which is the case we deal with in the
application discussed in Sections 7, 8. The corresponding diagonalisation in the general
setting will be treated elsewhere.) In this particular case one has (cf. (2.7))

S = (M − iI)(M + iI)−1, (6.2)

and consequently

I − S∗S = −2i(M∗ − iI)−1(M −M∗)(M + iI)−1, (6.3)

I − SS∗ = 2i(M + iI)−1(M∗ −M)(M∗ − iI)−1.

Introducing the unitary transformations

G : L2(K; I − S∗S) 7→ L2
(
K;−2i(M −M∗)

)
, (6.4)

G∗ : L2(K; I − SS∗) 7→ L2
(
K;−2i(M −M∗)

)
(6.5)

by the formulae g 7→ (M + iI)−1g and g 7→ (M∗ − iI)−1g respectively, one arrives at

the fact that GFΦA
(e)
0 Φ∗F ∗G∗ and G∗F∗ΦA

(e)
0 Φ∗F ∗∗G

∗
∗ are the operators of multiplication
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by the independent variable in the space L2(K;−2i(M −M∗)). We show next that this
amounts to the spectral representation in particular in the case of (non-compact) quantum
graphs.

7. Quantum graphs and their scattering matrices

The result of the previous section only pertains to the absolutely continuous part
of the self-adjoint operator A0, unlike e.g. the passage to the classical von Neumann
direct integral, under which the whole of the self-adjoint operator gets mapped to the
multiplication operator in a weighted L2-space (see e.g. [8, Chapter 7]). Nevertheless, it
proves useful in scattering theory, since it yields an explicit expression for the scattering
matrix Σ̂ for the pair Aκ, A0, which is the image of the scattering operator Σ in the
spectral representation of the operator A0. Namely, we prove the following statement.

Theorem 7.1. The following formula holds:

Σ̂ = GFΣ(GF )∗ = (M − κ)−1(M∗ − κ)(M∗)−1M, (7.1)

where the right-hand side represents the operator of multiplication by the corresponding
function.

Proof. Using the definition (6.1) of the isometry F along with the relationship (4.10)
between g̃ and g whenever PK

(
g̃
g

)
∈ ΦÑκ

e with κ = 0, we obtain from (5.6):

FΣF ∗ =
(
I + χ−κ (S − I)

)−1(
I + χ+

κ (S∗ − I)
)
(I + S∗)−1(I + S), (7.2)

where the right-hand side represents the operator of multiplication by the corresponding
function.

Furthermore, substituting the expression (2.6) for S in terms of M implies that FΣF ∗

is the operator of multiplication by

(M + iI)(M − κ)−1(M∗ − κ)(M∗)−1M(M + iI)

in the space L2(K; I − S∗S). Using (6.3), we now obtain the following identity for all
f, g ∈ L2(K; I − S∗S) :

〈FΣF ∗f, g〉L2(K;I−S∗S) =
〈
(I − S∗S)(M + iI)(M −κ)−1(M∗ −κ)(M∗)−1M(M + iI)f, g

〉
=
〈
−2i(M∗−iI)−1(M−M∗)(M+iI)−1(M+iI)(M−κ)−1(M∗−κ)(M∗)−1M(M+iI)f, g

〉
=
〈
−2i(M −M∗)(M − κ)−1(M∗ − κ)(M∗)−1M(M + iI)f, (M + iI)g

〉
,

which is equivalent to (7.1), in view of the definition of the operator G.

In applications to quantum graphs it may turn out that the operator weight −2i(M −
M∗) (see (6.4), (6.5)) is degenerate: more precisely, M(s) − M(s)∗ = 2i

√
sPe, s ∈ R,

where Pe is the orthogonal projection onto the subspace of K corresponding to the set
of “external” vertices of the graph, i.e. those vertices to which semi-infinite edges are
attached. Next, we describe the notation pertaining to the quantum graph setting.
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Remark 4. From this point on, for simplicity of presentation we consider the case of a
finite non-compact quantum graph, when the deficiency indices are finite. However, our
approach allows us to consider the general setting of infinite deficiency indices, which in
the quantum graph setting leads to an infinite graph. In particular, on could consider the
case of an infinite compact part of the graph.

In what follows, we denote by G = G(E , σ) a finite metric graph, i.e. a collection
of a finite non-empty set E of compact or semi-infinite intervals ej = [x2j−1, x2j ] (for
semi-infinite intervals we set x2j = +∞), j = 1, 2, . . . , n, which we refer to as edges,
and of a partition σ of the set of endpoints V := {xk : 1 ≤ k ≤ 2n, xk < +∞} into
N equivalence classes Vm, m = 1, 2, . . . , N, which we call vertices: V =

⋃N
m=1 Vm. The

degree, or valence, deg(Vm) of the vertex Vm is defined as the number of elements in Vm,
i.e. card(Vm). Further, we partition the set V into the two non-overlapping sets of internal
V(i) and external V(e) vertices, where a vertex V is classed as internal if it is incident to
no non-compact edge and external otherwise. Similarly, we partition the set of edges
E = E(i) ∪ E(e), into the collection of compact (E(i)) and non-compact (E(e)) edges. We
assume for simplicity that the number of non-compact edges incident to any graph vertex
is not greater than one.

For a finite metric graph G, we consider the Hilbert spaces L2(G) :=
⊕n

j=1 L
2(ej) and

W 2,2(G) :=
⊕n

j=1W
2,2(ej). (Notice that these spaces do not feel the graph connectivity,

as each of them is the same for different graphs with the same number of edges of the
same lengths.) Further, for a function f ∈ W 2,2(G), we define the normal derivative at
each vertex along each of the adjacent edges, as follows:

∂nf(xj) :=

{
f ′(xj), if xj is the left endpoint of the edge,

−f ′(xj), if xj is the right endpoint of the edge.
(7.3)

In the case of semi-infinite edges we only apply this definition at the left endpoint of the
edge.

Definition 5. For f ∈ W 2,2(G) and am ∈ C (below referred to as the “coupling con-
stant”), the condition of continuity of the function f through the vertex Vm (i.e. f(xj) =
f(xk) if xj , xk ∈ Vm) together with the condition∑

xj∈Vm

∂nf(xj) = amf(Vm)

is called the δ-type matching at the vertex Vm.

Remark 5. Note that the δ-type matching condition in a particular case when am = 0
reduces to the standard Kirchhoff matching condition at the vertex Vm, see e.g. [4].

Definition 6. The quantum graph Laplacian Aa, a := (a1, ..., aN ), on a graph G with
δ-type matching conditions is the operator of minus second derivative −d2/dx2 in the
Hilbert space L2(G) on the domain of functions that belong to the Sobolev space W 2,2(G)
and satisfy the δ-type matching conditions at every vertex Vm, m = 1, 2, . . . , N. The
Schrödinger operator on the same graph is defined likewise on the same domain in the
case of summable edge potentials (cf. [16]).
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If all coupling constants am, m = 1, . . . , N , are real, it is shown that the operator Aa is a
proper self-adjoint extension (see (2.3)) of a closed symmetric operator A in L2(G) [19, 34].
Note that, without loss of generality, each edge ej of the graph G can be considered to be
an interval [0, lj ], where lj := x2j − x2j−1, j = 1, . . . , n is the length of the corresponding
edge. Throughout the present paper we will therefore only consider this situation.

In [16], the following result is obtained for the case of finite compact metric graphs.

Proposition 7.2 ([16]). Let G be a finite compact metric graph with δ-type coupling at all
vertices. There exists a closed densely defined symmetric operator A and a boundary triple
such that the operator Aa is an almost solvable extension of A, for which the parametrising
matrix κ (see (2.3)) is given by κ = diag{a1, . . . , aN}, whereas the Weyl function is an
N ×N matrix with elements

mjk(z) =


−
√
z

( ∑
ep∈Ek

cot
√
zlp − 2

∑
ep∈Lk

tan

√
zlp
2

)
, j = k,

√
z
∑

ep∈Cjk

1

sin
√
zlp

, j 6= k; Vj , Vk adjacent,

0, j 6= k; Vj , Vk non-adjacent.

(7.4)
Here the branch of the square root is chosen so that =

√
z ≥ 0, lp is the length of the edge

ep, Ek is the set of non-loop graph edges incident to the vertex Vk, Lk is the set of loops
at the vertex Vk, and Cjk is the set of graph edges connecting vertices Vj and Vk.

It is easily seen that the rationale of [16] is applicable to the situation of non-compact
metric graphs. Indeed, denote by G(i) the compact part of the graph G, i.e. the graph
G with all the non-compact edges removed. Proposition 7.2 yields an expression for the
Weyl function M (i) pertaining to the graph G(i). A simple calculation then implies the
following representation for the M -matrix pertaining to the original graph G.

Lemma 7.3. The matrix functions M, M (i) described above are related by the formula

M(z) = M (i)(z) + i
√
zPe, z ∈ C+, (7.5)

where Pe is the orthogonal projection in the boundary space K onto the set of external

vertices V
(e)
G , i.e. the matrix Pe such that (Pe)ij = 1 if i = j, Vi ∈ V (e)

G , and (Pe)ij = 0
otherwise.

Proof. Note first that Weyl function of the graph G for the triple described in Proposition
7.2 coincides with the sum of the matrices Mj(z), j = 1, 2, . . . , n, that are obtained by the
formulae

Γ1f = Mj(z)Γ0f, f ∈ ker(A∗ − zI), f ≡ 0 on G \ ej .

In order words, the matrix functions Mj describe the Dirichlet-to-Neumann mappings for
the data supported on each individual edge ej , j = 1, 2, . . . , n, where A is as in Proposition
7.2.

Furthermore, functions f ∈ ker(A∗ − zI) that vanish on all edges of the graph G but
one non-compact edge e∞, satisfy

−f ′′(x) = zf(x), x ∈ [0,+∞), f ∈W 2,2(0,+∞), (7.6)
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where we identify e∞ and the semi-infinite line [0,+∞), as well as f and its restriction to
e∞. Next, all non-trivial solutions to (7.6) have the form

f(x) = f(0) exp(i
√
zx), x ∈ [0,+∞), f(0) 6= 0,

for which the value of the co-derivative (7.3) at x = 0 is clearly given by ∂nf(0) = i
√
zf(0).

Therefore, the corresponding (additive) contribution to the M -matrix, see Definition 2,
is given by the matrix all of whose elements except the diagonal element corresponding
to the vertex from which e∞ emanates are zero, while the only non-zero element equals
(f(0))−1∂nf(0) = i

√
z. Repeating this argument for all non-compact edges of G and using

the additivity property for the M -matrix discussed above yields the claim.

The formula (7.5) leads to M(s) −M∗(s) = 2i
√
sPe a.e. s ∈ R, and the expression

(7.1) for Σ̂ leads to the classical scattering matrix Σ̂e(k) of the pair of operators A0 (which
is the Laplacian on the graph G with standard Kirchhoff matching at all the vertices) and
Aκ, where κ = κ = diag{a1, . . . , aN} :

Σ̂e(s) = Pe(M(s)− κ)−1(M(s)∗ − κ)(M(s)∗)−1M(s)Pe, s ∈ R, (7.7)

which acts as the operator of multiplication in the space L2(PeK; 4
√
sds).

Remark 6. In the more common approach to the construction of scattering matrices,
based on comparing the asymptotic expansions of solutions to spectral equations, see e.g.
[21], one obtains Σ̂e as the scattering matrix. Our approach yields an explicit factorisation
of Σ̂e into expressions involving the matrices M and κ only, sandwiched between two
projections. (Recall that M and κ contain the information about the geometry of the
graph and the coupling constants, respectively.) From the same formula (7.7), it is obvious
that without the factorisation the pieces of information pertaining to the geometry of the
graph and the coupling constants at the vertices are present in the final answer in an
entangled form.

Remark 7. The concrete choice of boundary triple in accordance with Proposition 7.2
leads to the fact that the “unperturbed” operator A0 is fixed as the Laplacian on the graph
with Kirchhoff matching conditions at the vertices. On the other hand, in applications
it may be more convenient to consider a formulation where the operator A0 corresponds
to some other matching conditions, which would motivate another choice of the triple.
This is readily facilitated by the analysis carried out in the preceding sections, cf. Part
3 of Remark 3. In particular, we point out that the formula (7.2) is written in a triple-
independent way.

We reiterate that the analysis above pertains not only to the cases when the cou-
pling constants are real, leading to self-adjoint operators Aa, but also to the case of
non-selfadjoint extensions, cf. Theorem 5.3.

In what follows we often drop the argument s ∈ R of the Weyl function M and the
scattering matrices Σ̂, Σ̂e. Since

(M − κ)−1(M∗ − κ) = I + (M − κ)−1(M∗ −M) = I − 2i
√
s(M − κ)−1Pe (7.8)

and
(M∗)−1M = I + 2i

√
s(M∗)−1Pe,
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a factorisation of Σ̂e into a product of κ−dependent and κ−independent factors (cf. (7.1))
still holds in this case in PeK, namely

Σ̂e =
[
Pe(M − κ)−1(M∗ − κ)Pe

][
Pe(M

∗)−1MPe

]
. (7.9)

8. Inverse scattering problem for graphs with δ-coupling

We will now exploit the above approach in the analysis of the inverse scattering problem
for Laplace operators on finite metric graphs, whereby the scattering matrix Σ̂e(s), defined
by (7.9), is assumed to be known for almost all positive “energies” s ∈ R, along with the
graph G itself. The data to be determined is the set of coupling constants {aj}Nj=1.
For simplicity, in what follows we treat the inverse problem for graphs with real coupling
constants, which corresponds to self-adjoint operators, leaving the non-selfadjont situation
to be addressed elsewhere.

First, given Σ̂e(s) for almost all s > 0, we reconstruct the meromorphic matrix-function
Pe(M

(i)(z) − κ)−1Pe for all complex z, excluding the poles. This is an explicit calcula-
tion based on the second resolvent identity (see e.g. [65, Thm. 5.13]). Namely, almost
everywhere on the positive half-line one has

(M − κ)−1 = (M (i) − κ)−1 − (M − κ)−1(M −M (i))(M (i) − κ)−1

=
[
I − (M − κ)−1(M −M (i))

]
(M (i) − κ)−1,

and hence

Pe(M − κ)−1Pe =
[
Pe − i

√
sPe(M − κ)−1Pe

]
Pe(M

(i) − κ)−1Pe. (8.1)

Further, the first factor on the right-hand side of (8.1) is invertible for almost all s > 0.
Indeed, we note first that Σ̂κ

e := Pe(M(s)−κ)−1(M(s)∗−κ) is unitary in PeK for almost
all s > 0, since

(M − κ)(M∗ − κ)−1(M −M∗)(M − κ)−1(M∗ − κ)

= (M − κ)(M∗ − κ)−1
[
(M − κ)− (M∗ − κ)

]
(M − κ)−1(M∗ − κ)

= (M − κ)− (M∗ − κ) = M −M∗

and M −M∗ = 2i
√
sPe. Now, since

Pe − i
√
sPe(M − κ)−1Pe =

(
I + Σ̂κ

e

)
/2

it suffices to show that −1 is not an eigenvalue of Σ̂κ
e (s) for almost all s > 0. Assume the

opposite, i.e. for some s > 0 one has

(M(s)∗ − κ)−1us = −(M(s)− κ)−1us, us ∈ PeK \ {0}.

A straightforward calculation then yields

(M(s)∗ − κ)−1(M (i)(s)− κ)(M(s)− κ)−1us = 0,
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from where
(M(s)− κ)−1us ∈ ker

(
M (i)(s)− κ

)
.

The latter kernel is non-trivial only at the points s which belong to the (discrete) spectrum
of the Laplacian on the compact part G(i) of the graph G. It follows that (M(s)−κ)−1us
is zero for almost all s > 0, which is a contradiction with us 6= 0.

Note that, for a given graph G, the expression Pe(M − κ)−1Pe is found by combining
(7.8) and (7.9):

Pe(M − κ)−1Pe =
1

2i
√
s

(
Pe − Σ̂e[Pe(M

∗)−1MPe]
−1), (8.2)

where we treat both [Pe(M
∗)−1MPe]

−1 and, as before, Σ̂e as operators in PeK.
It follows from (8.1) and (8.2) that for given M, Σ̂e the expression Pe(M

(i) − κ)−1Pe

is determined uniquely for almost all s > 0 :

Pe(M
(i) − κ)−1Pe =

[
Pe − i

√
sPe(M − κ)−1Pe

]−1
Pe(M − κ)−1Pe

=
1

i
√
s

(
Pe + Σ̂e[Pe(M

∗)−1MPe]
−1)−1(Pe − Σ̂e[Pe(M

∗)−1MPe]
−1)

=
1

i
√
s

(
2
(
Pe + Σ̂e[Pe(M

∗)−1MPe]
−1)−1 − I)Pe. (8.3)

In particular, due to the property of analytic continuation, the expression Pe(M
(i)−κ)−1Pe

is determined uniquely in the whole of C with the exception of a countable set of poles,

which coincides with the set of eigenvalues of the self-adjoint Laplacian A
(i)
κ on the compact

part G(i) of the graph G with matching conditions at the graph vertices given by the matrix
κ, cf. Proposition 7.2.

Definition 7. Given a partition V1 ∪ V2 of the set of graph vertices, for z ∈ C consider
the linear set U(z) of functions that satisfy the differential equation −u′′z = zuz on each
edge, subject to the conditions of continuity at all vertices of the graph and the δ-type
matching conditions at the vertices in the set V2. For each function f ∈ U(z), consider the
vectors

ΓV11 uz :=
{ ∑
xj∈Vm

∂nf(xj)
}
Vm∈V1

, ΓV10 uz :=
{
f(Vm)

}
Vm∈V1 .

The Robin-to-Dirichlet map of the set V1 maps the vector (ΓV11 −κV1ΓV10 )uz to ΓV10 uz, where
κV1 := diag{am : Vm ∈ V1}. (Note that the function uz ∈ U(z) is determined uniquely
by (ΓV11 − κV1ΓV10 )uz for all z ∈ C except a countable set of real points accumulating to
infinity).

Remark 8. The above definition is a natural generalisation of the corresponding defini-
tions of Dirichlet-to-Neumann and Neumann-to-Dirichlet maps pertaining to the graph
boundary, considered in e.g. [4], [39].

We argue that the matrix Pe(M
(i) − κ)−1Pe is the Robin-to-Dirichlet map for the

set V(e). Indeed, assuming φ := Γ1uz − κΓ0uz and φ = Peφ, where the latter condition
ensures the correct δ-type matching on the set V(i), one has Peφ = (M (i) − κ)Γ0uz and
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hence Γ0uz = (M (i) − κ)−1Peφ. Applying Pe to the last identity yields the claim, in
accordance with Definition 7.

We have thus proved the following theorem.

Theorem 8.1. The Robin-to-Dirichlet map for the vertices V(e) is determined uniquely
by the scattering matrix Σ̂e(s), s ∈ R, via the formula (8.3).

The following definition, required for the formulation of the next theorem, is a gener-
alisation of the procedure of graph contraction, well studied in the algebraic graph theory,
see e.g. [61].

Definition 8 (Contraction procedure4 for graphs and associated quantum graph Lapla-
cians). For a given graph G vertices V and W connected by an edge e are “glued” together
to form a new vertex (VW ) of the contracted graph G̃ while simultaneously the edge e
is removed, whereas the rest of the graph remains unchanged. We do allow the situation
of multiple edges, when V and W are connected in G by more than one edge, in which
case all such edges but the edge e become loops of their respective lengths attached to the
vertex (VW ). The corresponding quantum graph Laplacian Aa defined on G is contracted
to the quantum graph Laplacian Ãã by the application of the following rule pertaining to
the coupling constants: a coupling constant at any unaffected vertex remains the same,
whereas the coupling constant at the new vertex (VW ) is set to be the sum of the coupling
constants at V and W. Here it is always assumed that all quantum graph Laplacians are
described by Definition 6.

The matrix κ of the coupling constants is now determined as part of an iterative
procedure based on the following result.

Theorem 8.2. Suppose that the edge lengths of the graph G(i) are rationally independent.
The element5 (1, 1) of the Robin-to-Dirichlet map described above yields the element (1, 1)
of the “contracted” graph G̃(i) obtained from the graph G(i) by removing a non-loop edge e
emanating from V1. The procedure of passing from the graph G(i) to the contracted graph
G̃(i) is given in Definition 8.

Proof. Due to the assumption that the edge lengths of the graph G(i) are rationally inde-
pendent, the element (1,1), which we denote by f1, is expressed explicitly as a function of√
z and all the edge lengths lj , j = 1, 2, . . . , n, in particular, of the length of the edge e,

which we assume to be l1 without loss of generality. This is an immediate consequence of
the explicit form of the matrix M (i), see (7.4). Again without loss of generality, we also
assume that the edge e connects the vertices V1 and V2.

Further, consider the expression liml1→0 f1(
√
z; l1, . . . , ln; a). On the one hand, this

limit is known from the explicit expression for f1 mentioned above. On the other hand, f1
is the ratio of the determinant D(1)(

√
z; l1, . . . , ln; a) of the principal minor of the matrix

M (i)(z)− κ obtained by removing its first row and and first column and the determinant
of M (i)(z)− κ itself:

f1(
√
z; l1, . . . , ln; a) =

D(1)(
√
z; l1, . . . , ln; a)

det
(
M (i)(z)− κ

)
4One of the referees pointed out that this procedure is sometimes referred to a “layer peeling”. We

have opted to keep the term “contraction” for it, in line with the terminology of the algebraic literature.
5By renumbering if necessary, this does not lead to loss of generality.
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Next, we multiply by −l1 both the numerator and denominator of this ratio, and pass to
the limit in each of them separately:

lim
l1→0

f1(
√
z; l1, . . . , ln; a) =

lim
l1→0

(−l1)D(1)(
√
z; l1, . . . , ln; a)

lim
l1→0

(−l1)det
(
M (i)(z)− κ

) (8.4)

The numerator of (8.4) is easily computed as the determinant D(2)(z; l1, . . . , ln; a) of the
minor of M (i)(z)− κ obtained by removing its first two rows and first two columns.

As for the denominator of (8.4), we add to the second row of the matrix M (i)(z)−κ its
first row multiplied by cos(

√
zl1), which leaves the determinant unchanged. This operation,

due to the identity

− cot(
√
zl1) cos(

√
zl1) +

1

sin(
√
zl1)

= sin(
√
zl1),

cancels out the singularity of all matrix elements of the second row at the point l1 = 0. We
introduce the factor −l1 (cf. 8.4) into the first row and pass to the limit as l1 → 0. Clearly,
all rows but the first are regular at l1 = 0 and hence converge to their limits as l1 → 0.
Finally, we add to the second column of the limit its first column, which again does not
affect the determinant, and note that the first row of the resulting matrix has one non-zero
element, namely the (1, 1) entry. This procedure reduces the denominator in (8.4) to the
determinant of a matrix of the size reduced by one. As in [17], it is checked that this

determinant is nothing but det(M̃ (i) − κ̃), where M̃ (i) and κ̃ are the Weyl matrix and
the (diagonal) matrix of coupling constants pertaining to the contracted graph G̃(i). This
immediately implies that the ratio obtained as a result of the above procedure coincides
with the entry (1,1) of the matrix (M̃ (i) − κ̃)−1, i.e.

lim
l1→0

f1(
√
z; l1, . . . , ln; a) = f

(1)
1 (
√
z; l2, . . . , ln; ã), (8.5)

where f
(1)
1 is the element (1,1) of the Robin-to-Dirichlet map of the contracted graph G̃(i),

and ã is given by Definition 8.

The main result of this section is the theorem below, which is a corollary of Theorems
8.1 and 8.2. We assume without loss of generality that V1 ∈ V(e) and denote by f1(

√
z) the

(1,1)-entry of the Robin-to-Dirichlet map for the set V(e). We set the following notation.
Fix a spanning tree T (see e.g. [61]) of the graph G(i). We let the vertex V1 to be the
root of T and assume, again without loss of generality, that the number of edges in the
path γm connecting Vm and the root is a non-decreasing function of m. Denote by N (m)

the number of vertices in the path γm, and by
{
l
(m)
k

}
, k = 1, . . . , N (m)− 1, the associated

sequence of lengths of the edges in γm, ordered along the path from the root V1 to Vm.

Note that each of the lengths l
(m)
k is clearly one of the edge lengths lj of the compact part

of the original graph G.

Theorem 8.3. Assume that the graph G is connected and the lengths of its compact
edges are rationally independent. Given the scattering matrix Σ̂e(s), s ∈ R, the Robin-
to-Dirichlet map for the set V(e) and the matrix of coupling constants κ are determined
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constructively in a unique way. Namely, the following formulae hold for l = 1, 2, . . . , N
and determine am, m = 1, . . . , N :

∑
m:Vm∈γl

am = lim
τ→+∞

{
−τ
( ∑
Vm∈γl

deg(Vm)− 2(N (l) − 1)
)
− 1

f
(l)
1 (iτ)

}
,

where
f
(l)
1 (
√
z) := lim

l
(l)

N(l)−1
→0

. . . lim
l
(l)
2 →0

lim
l
(l)
1 →0

f1(
√
z), (8.6)

where in the case l = 1 no limits are taken in (8.6).

Proof. We first apply Theorem 8.1 to determine the Robin-to-Dirichlet map for the vertices
V(e). Next, we notice that the knowledge of the (1,1)-element f1 of the Robin-to-Dirichlet
map for the set V(e), i.e. of the matrix Pe(M

(i) − κ)−1Pe, together with the asymptotic
expansion for M (i)(z) as

√
z → +i∞, yields the element (1,1) of the matrix κ, which is

the coupling constant a1 at the vertex V1, see Proposition 7.2. Indeed, setting
√
z = iτ,

τ → +∞, one has (cf. (7.4))

1

f1
= iτ

(
−
∑
ep∈E1

cot(iτ lp) + 2
∑
ep∈L1

tan
iτ lp

2

)
− a1 + o

(
τ−K

)
(8.7)

= −τ deg(V1)− a1 + o
(
τ−K

)
, τ → +∞ (8.8)

for all K > 0, where the first sum in (8.7) is taken over all non-loop edges ep of G(i)

emanating from the vertex V1 and the second over all loops ep attached to V1. The coupling
constant a1 is then recovered directly from (8.8).

In order to determine the coupling constant a2, we apply Theorem 8.2. In order to do

so we note that the the vertex V2 is connected to V1 by the edge of the length l
(2)
1 and

apply the contraction procedure along this edge. In particular, the formula (8.5), together
with asymptotics (8.8) re-written for the first diagonal element of the contracted graph,
yields the coupling constant pertaining to the vertex Ṽ1 := (V1V2) of the contracted graph,
which, by Theorem 8.2, is equal to a1 + a2 :

a1 + a2 = lim
τ→+∞

{
iτ

(
−
∑
ep∈Ẽ1

cot(iτ lp) + 2
∑
ep∈L̃1

tan
iτ lp

2

)
− 1

f
(1)
1

}

= lim
τ→+∞

{
−τ
(
deg(V1) + deg(V2)− 2

)
− 1

f
(1)
1

}
, (8.9)

where Ẽ1 is the set of all non-loop edges of the contracted graph G̃(i) emanating from the

vertex Ṽ1, L̃1 is the set of loops attached to this same vertex, and f
(1)
1 , explicitly given by

(8.5), is the element (1,1) of the Robin-to-Dirichlet map of the contracted graph. Thus
we recover the value of the coupling constant a2, as a result of consequent evaluations of
indeterminate forms of two different types: “0/0” (see (8.5)) and “∞−∞” (see (8.9)).

Since the graph G is connected, the above procedure is iterated until the only remaining
vertex of the contracted graph is V1, at which point the last coupling constant aN is
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determined. The claim of the theorem follows.

Remark 9. 1. Notice that each step of the above iterative process generates a set of loops,
which is treated according to the formula (8.7). Alternatively, these loops can be discarded
by an elementary recalculation of the corresponding element of the Robin-to-Dirichlet map
in the application of Theorem 8.2.

2. From the proof of Theorem 8.3 it actually follows that the inverse problem of
determining matching conditions based on the Robin-to-Dirichlet map pertaining to any
subset of graph vertices for any finite and compact graph G has a unique and constructive
solution. As in the theorem, the graph is assumed connected and its edge lengths rationally
independent. More than that, for the solution of the named inverse problem it suffices to
know any one diagonal element of the Robin-to-Dirichlet map.
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[35] M. G. Krĕın. Theory of self-adjoint extensions of semi-bounded Hermitian operators
and applications II. (Russian) Mat. Sb. N. S., 21(63):365–404, 1947.
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