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Notation 
CFRP Carbon fibre reinforced polymer reinforcement, 

DSP design and safety philosophy, 

FMH Failure mode hierarchy, 

FRP Fibre reinforced polymer reinforcement, 

GFRP Glass fibre reinforced polymer reinforcement, 

RC Reinforced concrete, 

RCM Resistance-capacity margin between two failure modes, 

CCj    Concrete cost for each design configuration, j, 

CTj Total cost of construction for a design configuration j, 

CFj Cost of failure for a design configuration j, 

CRj     Reinforcement cost for each design configuration j, 

CTj Total cost of construction for a design configuration j, 

EFRP Young’s modulus for FRP reinforcement, 

Mj Metric function for a design configuration j, 

Pf Notional structural reliability level (taken as the probability of failure), 

Pfj Pf determined for each design configuration, 

PVL-ratio Ratio of permanent to variable load,  

T Average measure of closeness, 

Xi Primary design parameter, 

ds Integration parameter, 

fi frequency of occurrence of a design parameter i, 

fc Concrete cylinder compressive strength, 

xi Secondary design parameter,   

fFRP Tensile strength of FRP reinforcement, 

γFRP-L   Material partial safety factor for longitudinal FRP reinforcement, 

γFRP-T   Material partial safety factor for transverse FRP reinforcement, 

εc  Concrete strain developed in the RC beam, 

µfcu Mean value of concrete cube compressive strength,  

µflexure Mean flexural resistance-capacity,  

µshear Mean shear resistance-capacity, 

ρ Ratio of longitudinal reinforcement,  

i Subscript for design parameter, 

k Subscript for characteristic value. 
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Innovations in concrete construction can be held back by the inability of codes of practice to 

accommodate new materials. The current design and safety philosophy (DSP) of reinforced 

concrete relies heavily on the properties of steel reinforcement. The need to embrace new 

materials, such as fibre reinforced polymer (FRP) reinforcement, led to an in-depth 

examination of the DSP of European concrete codes of practice and resulted in a new 

philosophy, presented in this paper. The basis of the new philosophy remains the limit-state 

design and achievement of target notional structural reliability levels, but aims at the 

attainment of a desired failure-mode-hierarchy. The implementation of the philosophy, through 

a proposed framework, utilises the concept of average measure of closeness for the 

determination of appropriate material partial safety factors. An example of the application of 

the proposed framework is presented for FRP reinforcement. 

Synopsis 

 

Codes of practice based on the limit-state design approach1 (safety level  one of structural 

reliability theory) are currently used to design reinforced concrete (RC) structures. However, 

when novel techniques and innovative materials, such as FRP reinforcement2, are developed, 

these codes of practice are often unable to allow their use in the design of structural elements. 

Consequently, new codes of practice and design guidelines are often developed specifically to 

accommodate such innovations. The development and statutory acceptance of new codes of 

practice is a lengthy process, and restraints the widespread use of innovations in construction. 

Introduction 

 

The inability of concrete codes of practice to adopt construction innovation is deep routed and 

arises from the code’s DSP. The current DSP aims to achieve a ductile flexural failure through 

yielding of the flexural reinforcement. It is implicit in the code of practice that, through the use 

of partial safety factors, the notional structural reliability (Pf) of RC elements will satisfy 

predefined target levels.  

 

Research3 into the DSP of the British (BS81104) and European (Eurocode-25) concrete codes 

of practice, demonstrated that design based on balanced RC sections achieves its objectives and 

leads to safe structures. However, it was found that this principle may occasionally result in RC 

elements that exhibit a brittle flexural behaviour, especially when using the new partial safety 

factor (1.05) adopted for steel reinforcement by BS8110 in 1997.  
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Results of the research also showed that the resistance-capacity margins (expressed as the ratio 

RCM), such as the one between the flexural and shear failure modes (equation 1, exemplified 

in figure 1), are not uniform for all flexural elements and hence, this can result in uneconomic 

structures. It was found that the flexural and shear resistance-capacities of RC elements depend 

on the value of concrete compressive strength (fc) and ratio of longitudinal reinforcement (ρ). 

In particular, the mean flexural resistance-capacity increases proportionally with ρ, whereas the 

mean shear resistance-capacity increases at a lower rate. Thus, the RCMs increase as ρ 

decreases. The results also indicated that there is a small possibility of shear failure occurring 

prior to flexure.  

flexure

shear
shearflex μ

μ
RCM =−  (1) 

 

The above research also confirmed that the application of these codes of practice will, in 

general, satisfy the target Pf of 7x10-5, adopted by Eurocode-16 for the design working life of a 

structure. However, it was shown that the structural reliability of flexural elements varies, as Pf 

is not only affected by the values adopted for load and partial safety factors, but it is also 

influenced by other design parameters. Primarily, Pf is affected by the ratio of permanent to 

variable load, improving as this ratio increases. In addition, ρ and fc influence the flexural and 

shear Pf due to the effect of these parameters on the flexural and shear resistance-capacities. 

This indicates that uniform structural reliability can not be attained for all types of structures 

(e.g. buildings and bridges) and failure modes (limit states), unless limits are imposed on the 

most influential design parameters. Some reliability differentiation may be desirable for 

important structures, such as bridges and nuclear installations, and for undesirable failure 

modes (e.g. shear and bond).     

 

A thorough consideration of the above issues has led to the development of a new DSP as a 

result of the need to develop new design guidelines for FRP RC elements. The basis of the 

philosophy remains the limit-state design approach, but it requires the attainment of a desired 

failure-mode-hierarchy (FMH) with the target Pf and RCMs being satisfied. After introducing 

the work on the DSP of FRP RC design guidelines, the paper presents a framework, based on 

the new DSP, that can be used to develop a general concrete code of practice. The second part 

of the paper gives an example of the application of the framework that leads to the 

determination of short-term partial safety factors (γFRP) for the design of FRP RC elements. 
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The determined γFRP are used for the design of FRP RC beams. The implications of the 

proposed DSP for designers, code-developers and manufacturers of FRP reinforcement are 

discussed at the end. 

 

Over the last decade, a number of design guidelines have been developed specifically for FRP 

RC structures. The majority of them, like the European7 guideline, are primarily based on 

modifications of concrete codes of practice. As a result, these guidelines do not have an 

identifiable DSP. Examination8,9 of the DSP of the European design guideline led to the 

general conclusion that the design of FRP RC elements can not be based on the philosophy 

developed  for steel RC elements. The main findings are summarised below. 

Work on design guidelines for FRP RC structures  

• For normal-strength concrete, the tensile strength of longitudinal FRP reinforcement is not 

fully utilised and hence, concrete crushing is the most probable type of flexural failure. 

• The use of partial safety factors for longitudinal reinforcement (γFRP-L) may not be essential 

for the design of FRP RC beams, if the type of flexural failure intended at design is due to 

concrete crushing.  

• The assumption that the use of a specific value of γFRP-L would always lead to the desired 

type of flexural failure is not valid for all design configurations, especially for the large 

values of γFRP-L. 

• The effect of ρ and fc on the flexural and shear Pf and on RCM is influenced by the type of 

failure for which the flexural design is performed.  

• The ratio of permanent to variable load (PVL-ratio) has the greatest effect on Pf and thus, 

different partial safety factors could be used for different types of structures 

 

The new DSP is still based on the limit-state design approach1 and achievement of target Pf, 

but it aims at the attainment of a desired FMH and target RCMs. One of the main features of 

the philosophy is the differentiation of structural reliability for each type of structure covered 

by the code of practice. The philosophy can be utilised to develop new design guidelines for 

new materials that can be incorporated in a general concrete code of practice.  

Proposed design and safety philosophy: 
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Design framework based on new DSP 

The framework illustrated below (Fig. 2) is proposed for the implementation of the new DSP. 

This framework is proposed to be adopted as part of the overall code-development process 

presented by Nowak and Lind10. 

 

The first step (1.1) is carried out as part of the general definition of the scope and data space of 

the code of practice. In addition to defining the structural materials, types, elements and 

structural functions covered by the code of practice, this step involves the definition of all 

possible failure modes that can be predicted for each design configuration within the data 

space.  

 

In the second step (1.2), the primary failure modes are evaluated for each structural element to 

be covered by the code of practice. This involves the classification of each failure mode in 

terms of the type of failure it represents and the seriousness of the structural damage sustained 

due to the occurrence of failure.  

 

The selection of the primary failure modes is followed by the criteria for the formulation of 

FMHs for each type of element (step 1.3). A FMH should account for all the primary failure 

modes. The sequence of the failure modes in the hierarchy should follow the degree of 

undesirability of each failure mode. Thus, the most favourable failure mode is placed at the top 

of the hierarchy, whereas the least favourable one is placed at the bottom of the hierarchy. For 

example, Fig. 3 shows the FMH for an RC beam where the flexural failure is more desirable 

and bond failure is least desirable. 

 

Once the criteria to establish FMHs for the entire data space are established, rules for 

establishing appropriate RCMs between each critical failure mode  are specified (step 1.4). 

This step is performed for all FMHs. In the example of Fig. 3, a lower RCM was chosen for the 

shear-bond than for the flexure-shear failure mode. Although, the definition of appropriate 

RCMs is likely to be heavily influenced by the relative cost of the excess resistance-capacity, it 

is logical to assume that a substantial RCM will be required between the most favourable 

failure mode and the least favourable one in the hierarchy.  

 

The last step (1.5) in the procedure involves the definition of a target Pf, which can be 

determined by considering social, economic and socio-economic constraints that are relevant to 
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structures. Alternatively, the target Pf can be determined by calibration to existing design 

practices and experience.  

 

Application of framework to specific materials 

The proposed framework, if adopted by codes of practice, could enable (through the following 

procedure) the determination of appropriate partial safety factors for specific new reinforcing 

materials, as illustrated in Fig. 4.  

 

The first step (2.1) in the procedure involves the definition of appropriate FMHs and RCMs for 

each type of structural elements using the specific reinforcing materials. At this step, 

appropriate models are developed to predict the elements’ resistance-capacity for each failure-

mode (contained in the selected FMHs).   

 

In step 2.2, different design configurations are chosen for each type of element from the entire 

data space of the code, and their structural reliability is probabilistically assessed for the failure 

modes contained in each FMH. This is performed for different partial safety factors. Each 

design configuration is checked to establish whether it satisfies the target RCMs and Pf.  

 

Based on the above, a set of partial safety factors is determined for each FMH (step 2.3) by 

utilising the concept of average measure of closeness between the code and the target Pf, as 

presented by Nowak and Lind10. The objective of this concept is to optimise the structural 

design by comparing the structural reliability with the corresponding expected total cost of 

construction.  

 

It must be emphasised that, to attain the desired RCMs, it may be necessary to impose limits on 

the design parameters considered by each limit-state prediction model. This would result in the 

attainment of the chosen FMH and the satisfaction of the target Pf. Since the new philosophy 

aims at the differentiation of structural reliability for various types of structures, individual 

partial safety factors should be specified for each type of structure (e.g. buildings, bridges) 

covered by the code of practice.  

 

The validity of the proposed framework needs to be demonstrated for a number of structural 

elements (e.g. beams, columns, walls) and reinforcing materials (e.g. steel, FRP and stainless 

Application of framework for CFRP and GFRP reinforcement:  
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steel). For simplicity, in the current study, the framework is demonstrated only for the case of 

concrete beams, reinforced with either carbon (CFRP) or glass (GFRP) FRP reinforcement 

(both longitudinal and transverse). As in the previous section, the first stage involves the 

establishment of the design framework. The second stage deals with the determination of 

partial safety factors for the selected reinforcing materials.  

 

Establishment of design framework 

The first step (1.1) in this procedure involves the definition of all possible failure modes for 

each type of element covered by the code of practice. The following failure modes are defined 

as possible for the ultimate limit-state design of CFRP and GFRP RC beams. 

1.A Flexure due to concrete crushing. 

1.B Flexure due to fracture of longitudinal FRP reinforcement. 

2.A Shear due to fracture (or lack) of transverse FRP reinforcement.  

2.B Shear due to concrete failure. 

3.A Torsion 

4.A Bond due to splitting. 

4.B Bond due to splicing. 

4.C Bond due to anchorage. 

 

The definition of the possible failure modes is followed by the identification of the primary 

modes and classification according to their seriousness (step 1.2). Flexural failure due to 

reinforcement fracture is unlikely due to the unrealistically low ρ needed to achieve it. The 

most likely type of flexural failure to be sustained by FRP RC beams is concrete crushing. 

Shear failure due to concrete failure is only likely in un-reinforced or over-reinforced in shear 

RC beams. Both situations are normally covered by using lower and upper limits for transverse 

reinforcement. Hence, the most likely shear failure mode is failure due to fracture of the 

transverse reinforcement. Since torsional stresses are normally small in RC beams, this mode is 

not considered in this study. Bond failure may be desirable, if a pseudo-ductile bond behaviour 

can be ensured, however this is not the case for the reinforcing bars under examination. 

Though the bond characteristics of FRP re-bars are generally good11, the models for design are 

still being developed and as a result, this mode of failure is not considered in the present study.  

Flexural failure due to concrete crushing and shear failure due to fracture of transverse 

reinforcement are therefore selected as the primary modes of failure.  
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The establishment of criteria for the formulation of the desired FMHs is the next step (1.3) in 

the procedure. Both primary modes of failure selected are brittle in nature, even though the 

flexural mode dissipates some inelastic energy through concrete. From the two modes, the 

flexural mode has the most reliable prediction models and as result, is selected as the 

predominant mode of failure for design purposes.  

 

The formulation of the FMH is followed by the definition of target values for the RCMs (step 

1.4). It must be emphasised that such targets have never been discussed by code developers, 

standardisation committees and researchers. Therefore, the RCMs, evaluated for steel RC 

beams in previous studies3,8 are presumed to be sufficient. Similarly, the value of 7 10-5 (set as 

a target Pf by Eurocode-16) is considered to be appropriate.  

 

Determination of appropriate γFRP   

The establishment of the design framework is followed by the determination of appropriate 

short-term partial safety factors for the chosen materials. Table 1 summarises the tensile 

strength and Young’s Modulus of the CFRP and GFRP reinforcement used in this study, which 

was developed during the Eurocrete project12,13. 

 

The first step (2.1) in this procedure, which has to be followed for any new material, involves 

the definition of appropriate FMHs and RCMs for the FRP RC beams. A single FMH is 

adopted here, since only two primary failure modes are considered, one of which has already 

been selected as the most desirable mode of failure. Hence, flexural failure due to concrete 

crushing is located at the top of the hierarchy and is followed by shear failure due to fracture of 

the transverse FRP reinforcement. In the general code development stage, it was decided to 

adopt target RCMs that reflect the current steel RC practice  and hence,  the average value of 

1.4 is adopted as target for the flexure-shear RCM. In addition, the resistance-capacity 

prediction models9,14, developed as part of the ConFibreCrete15 research network and outlined 

in Appendix A, are adopted in the present study.  

 

The next step (2.2) is to perform structural reliability analyses to determine the flexural Pf, 

shear Pf and flexural-shear RCMs for the values of γFRP tabulated in Table 2. The values for the 

γFRP-L and partial safety factor for transverse reinforcement (γFRP-T) were selected by 

considering the findings of previous investigations8. The assessment was carried out for 48 

different design configurations (presented in Neocleous8). The analyses were performed by 
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utilising the Monte-Carlo16 Simulation method in conjunction with the Latin-Hypercube17 and 

Conditional-Expectation16 variance reduction techniques.  

 

Results obtained for the flexural Pf indicated that, for the selected γFRP-L, the target Pf was 

attained by all design configurations.  Whereas in the case of shear Pf (Fig. 5 and 6), the target 

Pf was achieved by all design configurations, only if the value of γCFRP-T and γGFRP-T was 1.8 

and 2 respectively.  

 

The RCMs obtained for each γFRP-T are shown in figure 7 and 8 for CFRP and GFRP RC beams 

respectively. The target value of 1.4 was attained by all design configurations only if the values 

of γCFRP-T and γGFRP-T were 1.8 and 2, respectively. It is noted that the value chosen for γFRP-L 

does not affect the flexure-shear RCMs, as the design aimed to achieve flexural failure due to 

concrete crushing.   

 

Τhe use of γFRP-L also does not influence the flexural Pf (provided that flexural failure occurs 

due to concrete crushing). Therefore, it may be possible to eliminate th e u se of γFRP-L and 

incorporate the uncertainties relevant to the longitudinal FRP reinforcement in the partial safety 

factor (γc) adopted for fc. However, this will require the modification of γc used currently in 

flexural limit state design. Since, the long-term mechanical behaviour of FRP reinforcement is 

not fully understood, it is not prudent to abolish the use of γFRP-L based on existing knowledge. 

To be conservative, it is decided to use the values of γFRP-L currently examined (1.15 and 1.3 

for CFRP and GFRP reinforcement respectively) for short-term loading conditions, since they 

reflect uncertainties in material characterisation. A limit is also imposed on ρ (equation 2) to 

eliminate the possibility of flexural failure occurring due to reinforcement fracture.   

)ε
E
f(f

 ε 8) (f 0.81    ρ
c

kFRP

FRPk
kFPR

cck
min

+

+
=  (2) 

 

The concept of average measure of closeness10 (expressed in terms of structural utility), T 

(equation 3), is utilised to select appropriate values for γFRP-T. The selection criteria comprise 

the attainment of the target RCMs and Pf and minimisation of the resulting cost of 

construction. To perform such an assessment, it is necessary to estimate the demand function, 

Dfj, for each configuration. Dfj is expressed as the product of the frequency of occurrence 

estimated for each of the main design parameters, considered by each configuration (equation 
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4). The main design parameters are ρ, fc and PVL-ratio. The values of the frequency of 

occurrence, estimated for each of these variables, are summarised in Table 3.     

∫= sf dMDT  (3) 

ρ
Q
Gfcj

k

k
f f fD f =  (4) 

 

The metric function, Mj, for each design configuration is taken as the total cost of construction, 

CTj (equation 5). The CTj and initial cost of construction for each design configuration, CIj, are 

determined by equations 6 and 7, respectively. The cost of failure for each design 

configuration, CFj, (such as  the cost of loss of use and cost of fatalities) is determined by 

considering a number of scenarios as indicated in Table 4. Table 5 shows the unit prices 

adopted for the cost of concrete and cost of CFRP and GFRP reinforcement. It is noted that the 

same prices are used for longitudinal and transverse reinforcement.  

jTj CM =  (5) 

jjFjIjT CCC fP+=  (6) 

jj RCjI CCC +=  (7) 

   

The values of T obtained for the shear failure mode (Tables 6 and 7) indicated that T increases 

slightly with the value of γFRP-T. This is due to the increase in the CRj for transverse 

reinforcement; more transverse reinforcement is required as γFRP-T increases. Furthermore, the 

results of the cost-optimisation indicate that, for the small values of γFRP-Τ, the average measure 

of closeness increases significantly, as CFj becomes relatively large. This is due to the increased 

influence of Pf on CTj. It is also observed that the shear average measure of closeness is 

significantly higher for PVL-ratio equal to 1. This is due to the relatively longer beam spans 

used for this particular PVL-ratio.  

 

It was decided to select the highest value of γFRP-T considered in the assessment (table 8), as the 

application of these values seemed to be the most economical (for scenarios 5 and 6) and it also 

satisfied both the target  RCMs and Pf.  
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Design example 

The γFRP, recommended for load ratio equal to 0.5, are utilised for the limit state design and 

structural reliability assessment of two FRP RC beams (Fig. 9) that were tested during the 

Eurocrete project12,13 and failed in flexure due to concrete crushing. This is to verify that the 

application of the chosen γFRP leads to the desired FMH and satisfies the target Pf and RCMs. 

The material properties of the beams are tabulated in Table 1 and the stress-strain models 

adopted for concrete compressive strength and FRP reinforcement are illustrated in Fig. A.1 

and A.2 (Appendix A).The average concrete cube compressive strength of the beams is shown 

in Fig. 9.  

 

Table 9 summarises the results obtained from the design and the structural reliability 

assessment of the two beams. It is clear that the application of the proposed γFPR leads to the 

desired FMH, since the shear resistance-capacity is higher than the flexural resistance-capacity. 

In addition, it is observed that the target RCMs are satisfied. It must be noted that there is a 

good correlation, in particular for beam CB17, between the flexural resistance-capacity and the 

experimental resistance-capacity. The values obtained for the flexural and shear Pf indicate that 

the Pft of 7 10-05 is satisfied for both failure modes.  

 

A new design and safety philosophy for reinforced concrete structures has been developed. A 

design framework, based on the new philosophy, is proposed for adoption during the 

development of a general concrete code of practice. The implications of the new design and 

safety philosophy for code developers and manufacturers of construction materials are quite 

significant.  

Discussion and conclusions  

 

A comprehensive application of the proposed philosophy would require the analysis of a 

greater amount of failure modes than considered here and hence, it is necessary that reliable 

resistance-capacity prediction models are developed for each failure mode under consideration. 

Furthermore, the concept of the failure-mode-hierarchy would minimise the necessity of 

developing additional design guidelines and codes of practice each time a construction 

innovation becomes available. 
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Since innovation in the field of FRP reinforcement is expected to continue, it is believed that 

the values of the partial safety factor of FRP reinforcement (adopted for each failure-mode-

hierarchy) should be provided by the FRP manufacturers according to the proposed framework 

and be subjected to appropriate independent verification. The manufacturers should provide the 

code developers with material characteristics and any information that is essential for the 

development of any failure-mode-hierarchy. 

 

The effectiveness of the proposed framework was demonstrated successfully for the case of 

concrete beams reinforced with carbon and glass FRP reinforcement. 
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Appendix A – Models for resistance-capacity of FRP RC beams  

The model adopted for the calculation of the flexural (moment) resistance-capacity of FRP RC 

beams is based on the design rules of Eurocode-25, and hence the same assumptions apply for 

the current model. The compression strength of FRP reinforcement is also ignored due to the 

anisotropic nature of the reinforcement8. Since the failure of FRP RC beams is brittle, the  

model is modified accordingly and the calculations are based on the control of the strain in the 

FRP reinforcement18. The following algorithm is applied for the evaluation of the moment 

resistance-capacity. Fig. A.1 and A.2 shows the stress-strain models adopted for concrete  

compressive strength and FRP reinforcement, respectively. It is noted that the concrete model 

is based on the model adopted by Eurocode-2 for design purposes.   

A.1 Flexural failure mode 

 

Initially the effective depth of the RC is calculated based on an assumed bar diameter. Then, it 

is assumed that flexural failure occurs due to concrete crushing. Assuming that the concrete 

compressive strain at failure, εc, is equal to 0.0035, the design concrete compressive force, FCd, 

is derived (equation A.1.1). Since Eurocode 2 is the basis for the design rules, a specially 

derived equation8 is used to determine the mean stress factor, 

0.01ε 464.79ε 68711α c
2
c ++−= , which is used in the simplified stress block for concrete. 

FCd = 
c

ck b x f
γ

α
 (A.1.1) 

Where x is the neutral axis depth, fck is the characteristic compressive strength, b is the width 

of the section and γc is the partial safety factor adopted by Eurocode-2 for the concrete 

compressive strength. 

 

Since it is assumed that failure occurs due to concrete crushing, the actual stress in the 

reinforcement (equation A.1.2) is deemed to be less than the design stress (equation A.1.3) at 
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which fracture of the reinforcement occurs. The design force of the reinforcement is derived 

based on this assumption (equation A.1.4).  

fFRP = εFRP EFRP (A.1.2) 

fFRPd =
FRP

FRPk

γ
f  (A.1.3) 

FSd = FRPFRPFRPFRPFRP E ε Af A =  (A.1.4) 

 

Where εFRP is the actual strain developed in FRP reinforcement, EFRP and  fFRPk and AFRP are the 

characteristic tensile strength, Youngs’ modulus and area of longitudinal FRP reinforcement, 

respectively. γFRP is the partial safety factor adopted for longitudinal FRP reinforcement. By 

considering a simple strain diagram, the neutral axis depth is calculated by equation A.1.5 (εc is 

the concrete compressive strain and d is the effective depth of the reinforced concrete section): 

x = 
cFRP

c

εε
d ε
+

 (A.1.5) 

 

Then by considering force equilibrium between FCd and FSd, equations A.1.1, A.1.4 and A.1.5 

are solved simultaneously to determine εFRP:   

FRP FRPFRP
c

cFRP

c
ck

Eε A
γ

b 
εε

d ε
f α

=








+

 (A.1.6) 

0
E A γ

ε d b f α
ε εε

FRPFRPc

cck
FRPc

2
FRP =−+  (A.1.7) 

 

Before proceeding into the calculation of the lever arm, z, and design moment resistance, Mu, it 

is checked if εFRP has exceeded the design limit, εFRPd, which is defined by equation A.1.8. 

εFRPd =
FRP

FRPd

E
f  (A.1.8) 

 

If εFRP is greater than εFRPd, then flexural failure occurs due to fracture of the FRP 

reinforcement. In this case, FSd and x are determined from equation A.1.9 and A.1.10 

respectively. FCd is also re-derived (equation A.1.11) by substituting equation A.1.10 to A.1.1. 

The concrete compressive strain is iteratively reduced until the force equilibrium between FCd 

(equation A.1.11) and FSd (equation A.1.9) is satisfied.  
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FSd = FRPdFRP f A  (A.1.9) 

x = 
cFRPd

c

εε
d ε
+

 (A.1.10) 

FCd = 
c

cFRPd

c
ck

γ

b 
εε

d ε
f α 








+

 (A.1.11) 

Using the appropriate value of x, the centroid factor, γ, and the lever arm, z, are then 

determined from equation A.1.12.  

z = d – γ x   where, 0.33ε 17.89ε 1962.6γ c
2
c ++=  (A.1.12) 

 

Finally, Mu is calculated, depending on the mode of flexural failure. If failure occurs due to 

concrete crushing, equation A.1.13 is applied. It should be noted that FCd is determined from 

equation A.1.1. Otherwise, if failure is due to fracture of the re-bar, equation A.1.14 is 

determined by using the appropriate value of FSd. 

Mu = FCd z (A.1.13) 

Mu = FSd z (A.1.14) 

 

The model adopted by Eurocode-25 for the shear resistance-capacity of RC beams is adopted 

for the calculation of the shear resistance-capacity of FRP RC beams. The same assumptions 

and algorithms apply for the case of FRP RC beams. However, the design models are modified 

to account for the unique mechanical properties of FRP reinforcement.  

A.2  Shear failure mode 

 

The modifications, based on the strain approach14, introduce the application of the φ factor, 

which is applied on the concrete shear strength VRd1(FRP) and the shear contribution given by 

transverse FRP reinforcement (equations A.2.1 and A.2.2, respectively). The φ factor is the 

ratio of the maximum allowable strain in the shear FRP reinforcement, εFRPv, to the yield strain 

of steel shear reinforcement, εy. In this study, based on available experimental data for εFRP, a 

value of 1.8 was used for φ.  The φ factor is also applied to modify the strength of the shear 

FRP reinforcement (equation A.2.2). It is noted that VRd1 is calculated according to Eurocode-

2. 
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VRd1(FRP)= VRd1

3
1









 φ

s

FRP

E
E  (A.2.1) 

FRPvFRPv E 0.0025f = φ (A.2.2) 

 

Where Es is the Youngs modulus of steel reinforcement (value used in this study is 200,000 

N/mm2). EFRPv is the Youngs modulus of transverse FRP reinforcement (values used in this 

study are the same as those used for the EFRP of longitudinal reinforcement). 
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Tables 

Table 1 Mechanical properties of CFRP and GFRP reinforcement 

 Tensile Strength (N/mm2) Young’s Modulus (N/mm2) 

 GFRP CFRP GFRP CFRP 

Mean µi 810 1380 45000 115000 

Standard Deviation σi 40.5 69 2250 5750 

Characteristic ik 747 1272 41500 106000 

Tensile strain of CFRP and GFRP reinforcement: 1.2% and 1.8%, respectively 

 

Table 2 γFRP examined in the structural reliability assessment 

 CFRP reinforcement GFRP reinforcement 

γFRP-L 1.15 1.3 

γFRP-T 1.15, 1.5, 1.8 1.5, 1.75, 2 
 

Table 3 Frequency of occurrence for ρ, fc and PVL-ratio 

ρ  % ρf  fcuk  
N/mm2 

fcukf  
PVL-ratio 









k

k

Q
G

 
k

k

Q
Gf  

0.5 - 1.0 0.25 20 - 30 0.25 0.01 - 0.8 0.3 
1.0 - 1.5 0.25 30 - 40 0.25 0.8 - 1.5 0.5 
1.5 - 2.0 0.25 40 - 50 0.25 1.5 - 2.5 0.2 
2.0 - 3.0 0.25 50 - 60 0.25 - - 

 

Table 4 Scenarios considered for cost of failure 

Scenario 1 2 3 4 5 6 

CFj CIj 3 CIj 10 CIj 100 CIj 1000 CIj 10000 CIj 

 

Table 5 Indicative unit price for ready mix concrete and FRP reinforcement 

Ready Mix Concrete 
£/m3 

CFRP Reinforcing  Bars 
£/m per φ13.5mm 
(per10x4mmlink) 

GFRP Reinforcing Bars 
£/m per φ13.5mm      
(per 10x4mm link)  

55 1.95 0.82 
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Table 6. Cost-optimisation results for CFRP RC beams (shear failure) 

   Average Measure of Closeness for each Scenario, £ 
Load Ratio γCFRP-T Average Pf 1 2 3 4 5 6 

0.5 
1.15 1.7E-05 29.76 29.77 29.79 30.08 32.94 61.59 
1.5 2.3E-06 30.34 30.34 30.34 30.37 30.71 34.03 
1.8 4.4E-07 30.84 30.84 30.84 30.84 30.89 31.39 

1 
1.15 4.1E-05 58.68 58.70 58.76 59.57 67.64 148.31 
1.5 3.7E-06 59.70 59.70 59.71 59.77 60.45 67.24 
1.8 4.0E-07 60.62 60.62 60.62 60.63 60.70 61.39 

2 
1.15 3.5E-05 33.46 33.48 33.54 34.37 42.66 125.54 
1.5 2.1E-06 34.06 34.06 34.07 34.12 34.62 39.67 
1.8 1.5E-07 34.62 34.62 34.62 34.63 34.66 35.03 

 

Table 7. Cost-optimisation results for GFRP RC beams (shear failure) 

   Average Measure of Closeness for each Scenario, £ 
Load Ratio γGFRP-T Average Pf 1 2 3 4 5 6 

0.5 
1.5 5.2E-06 29.97 29.97 29.97 30.05 30.85 38.78 
1.75 1.1E-06 30.35 30.35 30.35 30.36 30.50 31.92 

2 2.3E-07 30.73 30.73 30.73 30.73 30.75 31.00 

1 
1.5 1.4E-05 58.98 58.99 59.01 59.28 61.99 89.02 
1.75 2.0E-06 59.66 59.66 59.67 59.70 60.08 63.84 

2 2.9E-07 60.34 60.34 60.34 60.35 60.40 60.88 

2 
1.5 1.6E-05 33.69 33.69 33.72 34.11 37.97 76.57 

1.75 2.1E-06 34.09 34.09 34.10 34.15 34.66 39.78 
2 2.1E-07 34.50 34.50 34.50 34.51 34.56 35.08 

 

Table 8 γFRP selected for the shear failure mode 
PVL-ratio γCFRP γGFRP 

0.5 1.8 2 

1 1.75 2 

2 1.75 2 
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Table 9 Design results for beams GB9 and CB17 

 GB9 CB17 
Experimental Load, kN 103.6 127.6 
Design Load Fd, kN 63.3 72.5 

Flexural Pf 2.7E-07 1.0E-06 
Flexural resistance-capacity 

Mean value, μflexure, kN 
Design value, kN 

 
100.6 
63.3 

 
127.2 
72.5 

Shear Pf 1.7E-17 7.3E-16 
Shear resistance-capacity 

Mean value, μshear, kN 
Design value, kN 

 
164.5 
65.0 

 
175.4 
72.9 

RCM 1.6 1.4 
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