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Abstract

Spatially correlated functional data is present in a wide range of environmen-

tal disciplines and, in this context, efficient prediction of curves is a key issue. We

present an approach for spatial prediction based on the functional linear point-wise

model adapted to the case of spatially correlated curves. First, a smoothing process

is applied to the curves by expanding the curves and the functional parameters in

terms of a set of Fourier basis functions. The number of basis functions is chosen

by cross-validation. Then, the spatial prediction of a curve is obtained as a point-

wise linear combination of the smoothed data. The prediction problem is solved by

estimating a linear model of coregionalization to set the spatial dependence among

the fitted coefficients. We extend an optimization criterion used in multivariable

geostatistics to the functional context. The method is illustrated by smoothing and

predicting temperature curves measured at 35 Canadian weather stations.
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1 Introduction

In many fields of environmental sciences such as agronomy, ecology, meteorology

or monitoring of contamination and pollution, the observations consist of samples

of random functions. For example in meteorology when curves of climatological

variables are obtained in weather stations of a country (Ramsay and Silverman,

2005), or when solar radiation is monitored in both space and time over a region, and

smoothing methods are used to fit each time series (Bodas-Salcedo et al., 2003). Since

the beginning of nineties, Functional Data Analysis (FDA) (Ramsay and Dalzell,

1991) is used to model this type of data. From the FDA point of view, each curve

corresponds to one observation, that is, the basic unit of information is the entire

observed function rather than a string of numbers (Ramsay and Silverman, 2001).

Functional versions for many branches of statistics have been given. Examples of

such methods include exploratory analysis (Ramsay and Silverman, 2005), analysis

of variance (Cuevas et al., 2004; Delicado, 2007), regression (Cardot et al., 1999,

2007), non-parametric methods (Ferraty and Vieu, 2006) or multivariate techniques

(Ferraty and Vieu, 2003). An overview of statistical methods for analyzing functional

data are shown in Ramsay and Silverman (2005) and recent developments in this

field are given in special issues of several journals (González-Manteiga and View,

2007; Valderrama, 2007).

The standard statistical techniques for modeling functional data are focused on

independent functions. However, in several disciplines of applied sciences there ex-

ists an increasing interest for modeling correlated functional data: it is the case

when samples of functions are observed over a discrete set of time points (temporally
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correlated functional data) or when these functions are observed in different sites

of a region (spatially correlated functional data). In these cases the methodologies

above mentioned could not be appropriate as they do not incorporate the depen-

dence among functions into the analysis. For this reason some statistical methods

for modeling correlated variables such as time series (Box and Jenkins, 1976) or

geostatistical analysis (Cressie, 1993) have been adapted to the functional context.

An example of modeling temporally correlated functional data is shown in Ruiz-

Medina et al. (2007). These authors consider an autoregressive Hilbertian model of

order one to represent the dynamic of a sequence of functional data. For spatially

correlated functional data, Yamanishi and Tanaka (2003) develop a regression model

that enables studying the relation among variables over time and space combining

both geographically weighted regression (Brunsdon et al., 1998) and functional mul-

tiple regression (Ramsay and Silverman, 2005). Baladandayuthapani et al. (2008)

show an alternative for analyzing an experimental design with a spatially corre-

lated functional response. They both use a hierarchical model and a Bayesian ap-

proach. Contributions of Yamanishi and Tanaka (2003) and Baladandayuthapani

et al. (2008) give the possibility of including spatial dependence among curves into

the standard functional analysis, such as functional multiple regression and func-

tional analysis of variance.

When the objective is to perform spatial prediction of functional data several ap-

proaches based on kriging and cokriging predictors have been considered. Goulard

and Voltz (1993) is a pioneer work in this context. They propose three geostatis-

tical approaches to predict curves: a curve kriging approach and two multivariate

approaches based on cokriging on either discrete data or on coefficients of the para-

metric models that have been fitted to the observed curves. Giraldo et al. (2007)

give a non-parametric approach to solve the first approach considered by Goulard

and Voltz (1993). The predictor in the first proposal of Goulard and Voltz (1993)

as well as that considered by Giraldo et al. (2007) has the same form as the classical
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ordinary kriging predictor but considering curves instead of one-dimensional data,

that is, each curve is weighted by an scalar parameter. In this paper we consider the

problem of spatial prediction of functional data by weighting each observed curve by

a functional parameter. This approach was mentioned in Goulard and Voltz (1993)

but was not developed there. The modeling approach we present is a hybrid be-

tween ordinary kriging and the functional linear concurrent (point-wise) model such

as shown in Ramsay and Silverman (2005). We propose a solution based on basis

functions. The curves as well as the functional parameters are expanded in terms of

a set of basis functions. Thus, the problem turns into estimating the coefficients of

these basis functions for each functional parameter. In order to give a solution, we

use a linear model of coregionalization for estimating the covariances among coeffi-

cients of each curve. An essential step in our proposal is to choose the number of

basis functions. We consider here two alternative criteria based on cross-validation

analysis and the minimum sum of squared errors (SSE).

The plan of the paper is as follows. Section 2 presents the data set to be analyzed.

Section 3 introduces the predictor and the parameter estimation. Application of the

proposed methodology to the data set considered is given in Section 4. The paper

ends with a brief discussion and suggestions for further research.

2 Data set: Canadian temperature

Spatial prediction of meteorological data is an important input for many types of

models including hydrological or those of regeneration, growth, and mortality of

forest ecosystem. In particular, the modeling of spatially correlated temperature

data is of interest, among others, for predicting microclimate conditions in moun-

tainous terrain, resource management, calibration of satellite sensors or for studying

the “greenhouse effect”. Many methods have been developed and used for doing

spatial prediction of temperatures. However, at our best knowledge all of these

ignore its functional character. Here we use a well-known meteorological data set
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Figure 1: Averages (over 30 years) of daily temperature curves (right panel) observed at

35 Canadian weather stations (left panel).

in FDA consisting of daily temperature and precipitation measurements recorded

at 35 weather stations of Canada (Ramsay and Dalzell, 1991; Ramsay and Sil-

verman, 2005). These authors use Fourier basis functions for constructing curves

from discrete data. They apply functional principal components and functional

linear models to describe the modes of variability in temperature curves, and for

establishing the influence of temperature on precipitation. We specifically use the

temperature values of this data set to provide an applied context for our proposal.

In particular we analyze information of daily temperature averaged over the years

1960 to 1994 (February 29th combined with February 28th) (Figure 1, right panel).

The data for each station were obtained from Ramsay and Silverman’s home page

(http://www.functionaldata.org/). The geographical coordinates of weather sta-

tions (Figure 1, left panel) were obtained from the Meteorological Service of Canada

(http://www.climate.weatheroffice.ec.gc.ca/climateData/).
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3 Point-wise kriging for curves

In this section we introduce some notation and assumptions, and present the mod-

eling scheme including the predictor proposed and the minimization criterion con-

sidered. We also provide a method for estimating the parameters of the model.

3.1 Notation and assumptions

Let
{
χs(t), t ∈ T, s ∈ D ⊂ Rd

}
be a random function defined on some compact set

T of R. Assume we observe a sample of curves χsi(t), for t ∈ T and si ∈ D, i =

1, · · · , n. It is usually assumed that these curves belong to a separable Hilbert space

H of square integrable functions defined on T . We assume for each t ∈ T that we

have a second-order stationary and isotropic random process, that is, the mean and

variance functions are constant and the covariance depends only on the distance

among sampling sites. Formally, we assume that:

• E(χs(t)) = m(t), for all t ∈ T, s ∈ D.

• Cov(χsi
(t), χsj

(u)) = C(h; t, u), si, sj ∈ D, t, u ∈ T , h = ‖si − sj‖. If t = u,

Cov(χsi
(t), χsj

(t)) = C(h; t).

• 1
2V(χsi

(t) − χsj
(u)) = γ(h; t, u), si, sj ∈ D, t, u ∈ T , h = ‖si − sj‖. If t = u,

1
2V(χsi

(t) − χsj
(t)) = γ(h; t).

The function γ(h; t), as a function of h, is called variogram of χ(t). We propose to

use a family of point-wise linear predictors for χs0
(t), t ∈ T , given by

χ̂s0
(t) =

n∑
i=1

λi(t)χsi
(t), λ1(t), . . . , λn(t) : T → R, (1)

that was previously mentioned in Goulard and Voltz (1993) without further de-

velopment. For each t ∈ T , the predictor (1) has the same expression as an or-

dinary kriging predictor. In the rest of the paper this predictor is called point-

wise linear predictor for functional data (PWKFD). This modeling approach is
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coherent with the functional linear concurrent model (FLCM) (Hastie and Tib-

shirani, 1993; Ramsay and Silverman, 2005) in which the influence of each covari-

ate on the response is simultaneous or point-wise. FLCM is defined as Y (t) =

α(t) + β1(t)X1(t) + · · · + βq(t)Xq(t) + ε(t). In this model the response Y (t) and

each covariate Xj(t), j = 1, · · · , q, are functions of the same argument and Xj(t)

only influences Y (t) through its value at time t (Ramsay and Silverman, 2005). Es-

timation of functional parameters α(t), βj(t), j = 1, · · · , q, is carried out by solving

Min
α(·),...,βq(·)

E‖Ŷ (t) − Y (t)‖2 (Ramsay and Silverman, 2005). In our context the co-

variates are the observed curves at n sites of a region and the functional response is

an unobserved function on an unsampled location. Consequently, our optimization

problem is Min
λ1(·),...,λn(·)

E‖χ̂s0
(t)−χs0

(t)‖2 or equivalently, by using Fubini’s Theorem,

Min
λ1(·),...,λn(·)

∫
T

E
(
χ̂s0

(t) − χs0
(t)
)2

dt.

If we consider the stationarity assumptions above given, the problem becomes

Min
λ1(·),...,λn(·)

∫
T

V
(
χ̂s0

(t) − χs0
(t)
)
dt. (2)

In a classical univariate geostatistical setting we assume that the observations

are realizations of a random field
{
Z(s) : s ∈ D, D ∈ Rd

}
. The kriging predictor is

defined as
∑n

i=1 λiZ(si), and the best linear unbiased predictor (BLUP) is obtained

by minimizing σ2
s0

= V (Ẑ(si)−Z(si)) subject to
∑n

i=1 λi = 1. On the other hand in

multivariable geostatistics (Myers, 1982; Ver Hoef and Cressie, 1993; Wackernagel,

1995) the data consist of {Z(s1), · · · ,Z(sn)}, that is, we have observations of a spa-

tial vector-valued process {Z(s) : s ∈ D}, where Z(s) ∈ Rm and D ∈ Rd. In this

context V (Ẑ(s0)−Z(s0)) is a matrix, and the BLUP of m variables on an unsampled

location s0 can be obtained by minimizing σ2
s0

=
∑m

i=1 V
(
Ẑi(s0) − Zi(s0)

)
subject

to constraints that guarantee unbiasedness conditions, that is, minimizing the trace

of the mean-squared prediction error matrix subject to some restrictions given by

the unbiasedness condition (Myers, 1982). The optimization problem given in (2)
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is an extension of the minimization criterion given by Myers (1982) to the func-

tional context, by replacing the summation by an integral and the random vectors

[Z1(s0), · · · , Zm(s0)] and [Ẑ1(s0), · · · , Ẑm(s0)] by the functional variables χ(t) and

χ̂(t), respectively, with t ∈ T . The predictor (1) is unbiased if E(χ̂s0
(t)) = m(t),

for all t ∈ T , that is, if
∑n

i=1 λi(t) = 1 for all t ∈ T . Consequently, in order to find

the BLUP, the n functional parameters in the predictor proposed are given by the

solution of the following optimization problem

Min
λ1(·),...,λn(·)

∫
T

V
(
χ̂s0

(t) − χs0
(t)
)
dt, s.t.

n∑
i=1

λi(t) = 1, for all t ∈ T. (3)

3.2 A solution based on basis functions

We assume that each observed function can be expressed in terms of K basis func-

tions by

χsi
(t) =

K∑
l=1

ailBl(t) = aT
i B(t), i = 1, · · · , n. (4)

Taking into account that χsi
(t), i = 1, · · · , n, are random functions with spatial

dependence, we assume that the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1K

a21 a22 · · · a2K

...
...

. . .
...

an1 an2 · · · anK

⎞
⎟⎟⎟⎟⎟⎟⎠

= (α1, · · · , αK)(n×K)

forms a K multivariable random field with E(αi) = υi(n×1) and covariance matrix

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Σ11 Σ12 · · · Σ1K

Σ21 Σ22 · · · Σ2K

...
...

. . .
...

ΣK1 ΣK2 · · · ΣKK

⎞
⎟⎟⎟⎟⎟⎟⎠

(K×n)×(K×n)

(5)
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where Σij = C(αi, αj)(n×n). The coefficients aij are assumed a realization of the

spatial random field αj , j = 1, · · · , K. We propose to use multivariable geostatistics

(Wackernagel, 1995) and specifically a linear model of coregionalization (LMC) for

estimating the matrix (5). In order to establish the unbiasedness condition and

for carrying out the parameter estimation in (1) we further expand each functional

parameter λi(t) by

λi(t) =
K∑

l=1

bilBl(t) = bT
i B(t). (6)

Therefore, using (4) and (6) the predictor in equation (1) is given by

χ̂s0
(t) =

n∑
i=1

bT
i B(t)aT

i B(t) (7)

=
n∑

i=1

bT
i B(t)BT (t)ai.

Using (6) and by expanding the constant function 1 by means of
∑K

l=1 clBl(t) =

cT B(t) = 1, the unbiasedness constraint can be expressed as

n∑
i=1

bT
i B(t) = cT B(t), ∀ t, ⇔

n∑
i=1

bi = c,

or more specifically by

n∑
i=1

bi1 = c1, · · · ,

n∑
i=1

biK = cK . (8)
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Developing the variance in the objective function (3) we have

V
(
χ̂s0

(t) − χs0
(t)
)

= V
(
χ̂s0

(t)
)

+ V
(
χs0

(t)
)− 2C(χ̂s0

(t), χs0
(t))

= V

(
n∑

i=1

bT
i B(t)BT (t)ai

)
+ BT (t)V (a0)B(t)

− 2
n∑

i=1

bT
i B(t)BT (t)C(ai, a0)B(t)

=
n∑

i=1

bT
i B(t)BT (t)V (ai)B(t)BT (t)bi

+ 2
∑
i<j

bT
i B(t)BT (t)C(ai, aj)B(t)BT (t)bj

+ BT (t)V (a0)B(t)

− 2
n∑

i=1

bT
i B(t)BT (t)C(a0, ai)B(t). (9)

In equation (9), for i < j, i, j = 0, 1, · · · , n, we have

V (ai) =

⎛
⎜⎜⎜⎜⎜⎜⎝

var(ai1) cov(ai1, ai2) · · · cov(ai1, aiK)

cov(ai2, ai1) var(ai2) · · · cov(ai2, aiK)
...

...
. . .

...

cov(aiK , ai1) cov(aiK , ai2) · · · var(aiK)

⎞
⎟⎟⎟⎟⎟⎟⎠

(K×K)

and

C(ai, aj) =

⎛
⎜⎜⎜⎜⎜⎜⎝

cov(ai1, aj1) cov(ai1, aj2) · · · cov(ai1, ajK)

cov(ai2, aj1) cov(ai2, aj2) · · · cov(ai2, ajK)
...

...
. . .

...

cov(aiK , aj1) cov(aiK , aj2) · · · cov(aiK , ajK)

⎞
⎟⎟⎟⎟⎟⎟⎠

(K×K)

If we define

Qi =
∫

T

(
B(t)BT (t)V (ai)B(t)BT (t)

)
dt,

Qij =
∫

T

(
B(t)BT (t)C(ai, aj)B(t)BT (t)

)
dt,

D =
∫

T
BT (t)V (a0)B(t)dt,
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and

Ji =
∫

T

(
B(t)BT (t)C(a0, ai)B(t)

)
dt,

and by considering K Lagrange multipliers mT = (m1, · · · , mK), the objective func-

tion (3) can be expressed as

min
b1,...,bn,m

n∑
i=1

bT
i Qibi + 2

∑
i<j

bT
i Qijbj + D − 2

n∑
i=1

bT
i Ji + 2mT

(
n∑

i=1

bi − c

)
. (10)

Taking β =
(
bT

1 , · · · ,bT
n ,mT

)T
(K(n+1)×1)

, the expression (10) is given by

Min
β

βTQβ + D − 2βTJ (11)

where

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1 Q12 · · · Q1n I

Q21 Q2 · · · Q2n I
...

...
. . .

...
...

Qn1 Qn2 · · · Qn I

I I · · · I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1

J2

...

Jn

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The identity matrix in (12) is of order K. Minimizing equation (11) with respect to

β we obtain

2Qβ − 2J = 0 ⇒ Qβ = J ⇒ β̂ = Q−1J. (13)

In practice, we start estimating both a LMC for the multivariable random field

A = (α1, · · · , αK) and the matrix in equation (5). Subsequently, we can calculate

the matrices Q and J in equation (12). Replacing these matrices in equation (13)

we can estimate bi, i = 1, · · · , n and consequently the functional parameters given

in (6). On the other hand, a plug-in estimation of the integrated prediction variance

σ2
s0

=
∫
T V

(
χ̂s0

(t) − χs0
(t)
)
dt is given by

σ̂2
s0

= β̂
T
Qβ̂ + D − 2β̂

T
J, (14)
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where the matrix D is calculated by using V̂ (a0), which is obtained from the fitted

LMC. The integrated prediction variance σ̂2
s0

is a measure of the uncertainty in the

prediction of a whole curve. Based on the estimated parameters and using equation

(9), a point-wise prediction variance function can also be estimated.

3.3 Choosing the number of basis functions

Let us assume that functions χsi(t), i = 1, · · · , n, defined on T have been observed at

points t1, · · · , tM and we want to approximate them through a basis functions. We

thus should choose an appropriate order of expansion K, taking into account that on

one hand, a large K causes overfitting and on the other hand, if we take K too small

we may miss important aspects of the function that we are estimating (Ramsay and

Silverman, 2005). Two procedures based on cross-validation analysis are considered

in this paper. The first one uses a classical non-parametric cross-validation analysis,

and the second one takes into account the cross-validation predictions obtained by

PWKFD.

A simple way of establishing an appropriate K is calculating the cross-validation

SSE in a classical non-parametric sense. Let χ̃
(j)
si (tj) be the estimated function at tj

by means of equation (4) when the datum χsi(tj) has been temporarily suppressed

from the sample. Then for each K, the cross-validation SSE is calculated by

SSENP =
n∑

i=1

SSENP (i) =
n∑

i=1

M∑
j=1

(χ̃(j)
si

(tj) − χsi(tj))
2. (15)

The strategy is to add basis functions until SSENP decreases substantially. We shall

call this method non-parametric cross-validation.

In the context of spatially correlated functional data, when we use a basis function

to fit a sample of a function χsi(t), the goal is not to predict new values of this

particular function, but to predict a whole function χs0
(t) at an unvisited site s0.

Therefore another alternative for choosing the number of basis functions is taking

into account the cross-validation prediction errors obtained with a specific predictor
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of functional data. We call this procedure functional cross-validation. We perform a

leaving-one-out cross-validation analysis where each data location is removed from

the data set, and a smoothed function at this location is predicted using both the

remaining smoothed functions and the PWKFD predictor (7). Now for each K we

calculate the SSE by

SSEF =
n∑

i=1

SSEF (i) =
n∑

i=1

M∑
j=1

(χ̂(i)
si

(tj) − χsi(tj))
2 (16)

where χ̂
(i)
i (tj) is the PWKFD prediction on si evaluated at tj , j = 1, · · · , M , by

leaving the site si temporarily out of the sample. Again, we add basis functions

until SSEF decreases considerably. Once the value of K is selected, we perform

spatial prediction by PWKFD at unvisited sites.

4 Application: Spatial prediction of Canadian

temperature curves

In this section we illustrate our approach by using the Canadian temperature data set

described in Section 2. We initially select an appropriate number of basis functions.

In a second stage we perform prediction at an unvisited site using the proposed

predictor and describe the results from a practical point of view. Finally, we compare

our results with those obtained with the predictor proposed by Giraldo et al. (2007).

This comparison is given in terms of SSEF values resulting from functional cross-

validation analysis.

When data are periodic, Fourier basis with an even number of basis functions is

the most appropriate choice (Ramsay and Silverman, 2005). A Fourier basis with

65 basis functions is the most frequently used to expand the Canadian temperature

data (Ramsay and Silverman, 2005). We use the criteria described in the previous

section for exploring the number of functions that could be used for smoothing the

observed discrete data set. Although we can expand in terms of a Fourier basis with
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an infinite number of sinusoids, we take as limit 365 because this is the number

of discrete data for each site in our data set. Frequencies greater than 365 in this

case will distort the signal. This is known as the problem of aliasing (Lfeachor

and Jervis, 1993). Figure 2 shows the relation between K and SSENP obtained by

non-parametric (left panel) and SSEF obtained by functional (right panel) cross-

validation. We can observe that in both cases the SSE values decrease significantly

until the number of basis functions is around 50. Then the rate of decreasing is

small. For instance, SSENP decreases 57 % when K is between 5 and 55, whereas

this percentage is 69 % for K varying between 5 and 245 (the minimum SSENP

attained). In the same sense SSEF decreases 5.2 % for K in the interval 5-55, and

6.8 % for K varying between 5 and 365. In summary, SSE values indicate that there

is not advantage in using a value of K much larger than 55. As mentioned before,

Ramsay and Silverman (2005) use 65 Fourier basis functions for smoothing the data

set here considered. Our results also suggest that this number of basis functions

could be appropriate. In consequence a pragmatic choice of K is 65. Therefore in

the following we assume that the data to be analyzed correspond to the temperatures

curves obtained after smoothing each discrete data set by means of a Fourier basis

with 65 functions.

Initially PWKFD was used to predict a temperature curve at an unvisited site

with coordinates −114.5813 (eastings) and 55.73 (northings). This site corresponds

to Slave Lake station (Figure 1). In a first stage of the analysis, and using the li-

brary gstat of R language (Pebesma, 2004), a LMC was fitted to the multivariable

random field A = (α1, · · · , α65) composed by the coefficients of the Fourier basis

used for smoothing each observed sample. We assume stationarity for each process

αj , j = 1, · · · , 65. All single (direct) variograms and cross-variograms were modeled

as linear combination of nugget and exponential models. Based on the fitted LMC,

the matrices Q and J given in (12) were estimated and used to solve the system (13)

to finally find bi and the functional parameters λi(t), i = 1, · · · , n. Figure 3 (left
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Figure 2: Sum squared errors obtained by non-parametric cross-validation (SSENP , left

panel) and functional cross-validation (SSEF , right panel).

panel) shows a plot of the estimated functional parameters. We note that an esti-

mated functional parameter is much greater than the others (functional parameter

with values around 0.6). This corresponds to Edmonton, the closest station to Slave

Lake (Figure 1). Other stations near to Slave Lake, and therefore with influence on

the prediction, are Yellowknife (weights around 0.2, Figure 3), Uranium City and Pr

George (values around 0.1, Figure 3). The curves corresponding to the sites furthest

from Slave Lake receive almost a weight of zero (Figure 3, left panel). This result

is coherent with the kriging philosophy, that is, sites closer to the prediction loca-

tion have greater influence than others more far apart. The sum of the estimated

functional parameters is equal to 1 for all t (Figure 3). With this result we verify

graphically that the system (8) guarantees the unbiasedness constraint. A plot of the

temperature prediction at Slave Lake is shown also in Figure 3 (right panel). It is re-

markable that the predicted curve shows a seasonal behavior similar to the smoothed

curves. In addition, predicted values are consistent with real values recorded for this
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Figure 3: Estimated functional parameters (left, dark lines), sum of functional estimated

parameters (left, dotted line), smoothed temperature curves (right, clear lines), temper-

ature prediction function at Slave Lake (right, dark line) and real temperature values at

Slave Lake (right, circles).

weather station (http://www.climate.weatheroffice.ec.gc.ca/climateData/).

To verify the goodness-of-fit of the proposed predictor, we use the functional

cross-validation results obtained with 65 Fourier basis functions. Each individual

smoothed curve χsi(t), i = 1, · · · , 35, was temporarily removed, and further pre-

dicted from the remaining ones by means of PWKFD. A comparison between pre-

dicted and smoothed curves (Figures 3 and 4) shows that the predictions have the

same temporal behavior that the smoothed curves. Note also that the latter curves

have less variance, in particular in wintertime (where the Canadian weather is more

variable, Figure 4). This is not surprising, since on one hand, kriging is itself a

smoothing method and on the other hand, the data set includes weather stations

with very different temperatures (Figure 1). For instance, Resolute and Iqaluit in

the Arctic (Figure 1) as well as Inuvik in the northwest (200 kilometers from Arctic
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Figure 4: Right panel: Point-wise kriging predictions based on cross-validation. Left panel:

Cross-validation residuals (clear lines), residual mean (dark line) and residual standard

deviation (dashed line) for the Canadian temperature data set.

circle) with very cold winters and short summers are significantly different from other

stations as Victoria, Vancouver or Prince Rupert in the southwest of the country

(Figure 1) which have a temperate climate with mild winters and summers.

Figure 4 (right panel) shows cross-validation residuals. The predictions are plau-

sible in a high proportion of sites (those having residuals around zero). However

there are some stations with large positive or negative residual curves. This is

due to the fact that the temperature curves at Resolute, Inuvik, Iqaluit, Dawson,

Churchill, Prince Rupert and St Johns are not well predicted because they have

extreme temperature values, and are spatially very separated from the remaining

ones (Figure 1). As a example of this phenomenon, we can compare predictions for

Bagottville, Edmonton, Resolute and Prince Rupert stations (Figure 5). We observe

a good fit for Bagottville and Edmonton which are close to other weather stations

(Figure 1), whereas for Resolute, the farthest station considered in our data set, and
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for Prince Rupert with an oceanic climate, the difference between smoothed and

predicted curves is greater than 10 degrees Celsius several days or months of the

year.

Following with the cross-validation residual analysis, we note in Figure 4 (right

panel) that, although there are outliers, the residual mean indicates that the predic-

tions are unbiased (mean around zero). We can also observe that the variation on

the prediction is lower in the summer (days 100 and 300) than in the winter (Figure

4, right panel) as a consequence of the reasons above mentioned.

Cross-validation prediction variances were estimated by using equation (14). As

in multivariable kriging, this statistic depends only on estimations of simple (direct)

and cross-covariances, that is, depends on the distance between the prediction site

and the sampling locations, and does not take into account the observed values. The

further the prediction site, the greater the prediction variance. This result is clearly

highlighted in the map of prediction variances (Figure 6) which shows that weather

stations located in the Arctic or in the northwest have greater variances. This result

should be interpreted carefully because two close stations could have very different

climatic conditions, but this result will not be reflected on the prediction variance.

As an example in this sense we can observe that Pr Rupert (Figure 6) has a small

prediction variance (compared with Resolute, Inuvik or Iqaulit) because it is close

to Victoria, Vancouver or Pr George. However, the temperature curve is not well

predicted in this site (Figure 5) due to the fact that Pr George has significantly

different temperature values. In any case, the cross-validation results show that the

predictions by PWKFD are close to the smoothed curves and therefore this method

can be considered a valid technique for performing spatial prediction of functional

data.

A particular case of the predictor (1) is obtained by considering λi(t) = λi for all

i = 1, · · · , n, that is, by carrying out spatial prediction of functional data by means

of the predictor
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Figure 5: Temperature curves (observed, smoothed and predicted by point-wise kriging)

at four Canadian weather stations.
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Figure 6: Point-wise kriging prediction variances of cross-validation analysis. Circle size

is proportional to the prediction variance.

χ̂s0
(t) =

n∑
i=1

λiχsi
(t), λ1, . . . , λn ∈ R. (17)

This predictor was initially considered by Goulard and Voltz (1993) and more

recently by Giraldo et al. (2007) which named this method as ordinary kriging for

function-valued spatial data (OKFD). We use the Canadian data set analyzed in this

section for comparing OKFD and PWKFD, in terms of graphical outputs and SSEF

values. The SSEF values for OKFD were also calculated with 65 basis functions.

Table 1 summarizes the comparative cross-validation SSEF results.

The predictions at Slave Lake (Figures 3 and 7) as well as the predictions by

functional cross-validation (Figures 4 and 7) obtained with the two predictors are

graphically similar. However, the sum of SSEF values (Table 1) indicates that

PWKFD has better performance. A detailed analysis of the summary statistics

given in Table 1 shows that PWKFD is better than OKFD, in particular when we

perform prediction at the farthest stations. We note that there are small differences

between the two methods in terms of minimum or median values. This indicates that

both methods have a similar performance on well-predicted stations as Edmonton

or Bagottville. The differences between these methods are essentially due to their

performance on stations as Resolute, Inuvik or Iqaluit. With both methods the
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Figure 7: Prediction on Slave Lake (left panel) and cross-validation predictions (right

panel) by means of OKFD.

greatest SSEF value corresponds to Resolute station. According to the maximum

SSEF values (Table 1) we have much less error on the prediction in this site by

using PWKFD. An analogous result is achieved at other further stations as Inuvik

or Iqaluit.

5 Conclusions and further research

We have shown a kriging methodology for functional data. We have considered basis

expansion as a way to represent the observed functions. A minimization criterion

given in multivariable geostatistics has been adapted to the functional context. Our

approach was applied to a climatological data set. The cross-validations results

show a good performance of the proposed predictor, and indicate from a descriptive

point of view that this one can be taken as a valid method for modeling spatially

correlated functional data. In addition, the predictor proposed performed better
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Table 1: Summary statistics of cross-validation SSEF (i), i = 1, · · · , 35, values. OKFD: Ordinary

kriging for function-valued spatial data; PWKFD: Point-wise kriging for functional data.

Statistic OKFD PWKFD

Minimum 135.1 154.7

Median 586.6 597.8

Mean 5004.0 3033.0

Maximum 91806.8 32770.0

Standard deviation 15536 6173

Sum 175140 106155

than the based on ordinary kriging for function-valued spatial data.

There is still a long way of research necessary for spatial prediction of functional

data. More complex procedures can be considered by replacing functional parame-

ters (λi(t), t ∈ T ), by double indexed functional parameters (λi(s, t), s, t ∈ T ) which

would be an extension from multivariable geostatistics to functional geostatistics.

Some preliminary works for this approach are showed in Giraldo et al. (2008) and

Nerini and Monestiez (2008). Models for doing spatial prediction based on informa-

tion of several functional variables, that is, two or more functional variables observed

at each sampling location could also be considered. Further attention should be given

to the use of other basis system to get functional data from discrete observations.
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