Analytical approach to particle dissolution in a

finite medium

F.J. Vermolen, P. van Mourik, and S. van der Zwaag

Animportant part in the total production process of extrudable aluminium alloys is the homogenisation treatment of the as cast
billets before hot extrusion. During this homogenisation treatment several microstructural changes take place. The most
important changes are the dissolution of the precipitates formed during solidification and the homogeneous redistribution of
alloying elements. Modelling of the particle dissolution in simple binary systems has recently been achieved by Tundal and Ryum
using a numerical model. In their model a moving interface between the particle and the aluminium rich matrix was taken into
account as well as the finite size of the cell in which the particles dissolve. Furthermore, conditions of local equilibrium at the
particle/matrix interface were assumed at all stages of the dissolution process. This was a significant improvement to earlier
analytical models in which the interface was assumed to be stationary. The present work describes the development of a
semianalytical model for the dissolution of spherical particles in finite media also assuming a moving boundary. The results of the
present semianalytical model are compared to those of the numerical model. A fairly good agreement was obtained for most
conditions. At long dissolution times the predictions of the two models deviate due to a simplifying assumption used in the

analytical model.
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List of symbols

A, Fourier constant with index n
B, normalisation constant with index n
atomic fraction of element B as a function of
time and space
¢™ solid solubility of element B in A at the initial
temperature
c*®  solid solubility of element B in A
cP*  atomic fraction of element B in the particle
¢’ average concentration of element B
atomic fraction of element B relative to the
solid solubility at the homogenisation
temperature
D diffusion coefficient of element B in A, m?>s~
L average interparticle distance, m
M, molar mass of A, kg
My molar mass of element B, kg
n index
r distance from the particle centre, m
R(t) particle radius as a function of time, m
cell radius, i.e. half the distance between two
centres of particles, m
R, initial particle radius, m
t annealing time, s
Tys dissolution temperature, K
eutectic temperature, K
initial temperature, K
o, eigenvalue, following [rom boundary conditions
with index n
B. eigenvalue, following from boundary conditions
with index n
0, eigenfunction with index n
1, eigenvalue, following [rom boundary conditions
with index n
Ps Py densities (Kg mm™3) of elements A, B
pa(ry eigenfunction with index n

1

Introduction

The microstructure of cast aluminium alloys contains many
inhomogeneities, such as intermetallic compounds and

precipitates, making the material unsuitable for hot
deformation. Homogenisation, by annealing at the temper-
ature of maximal solid solubility, transforms the micro-
structure of cast alloys into a more appropriate form for
hot deformation. During homogenisation, three processes
can occur: the dissolution of precipitates; the precipitation
of the alloying elements that were in supersaturation after
solidification; and the phase transformation of (intermetallic)
compounds. The characteristic alloying elements are largely
present as precipitates. Homogenisation results in a more
uniform distribution of the alloying elements via the
dissolution of precipitates and/or intermetallic compounds.
Hence, particle dissolution is a very important part in the
homogenisation process.

To describe particle dissolution several physical models
have been developed, incorporating the effects of long
distance diffusion!? and non-equilibrium conditions at the
interface.? The long distance diffusion models imply that the
reaction at the particle/matrix interface proceeds infinitely
fast. Therefore, these models provide an upper boundary for
the dissolution kinetics. Whelan! considered particles dis-
solving in an infinite medium using the stationary interface
approximation. Tundal and Ryum? considered the effects of
a finite cell size on the dissolution kinetics. Their numerical
solution also took the interface mobility into account. In
their numerical model the interface was mobile but assumed
to be stationary during each time step in the calculations.
Using the same set of boundary conditions an analytical
approach for this problem is presented in the present paper.
The results of this analytical approach are compared with
the results obtained by Tundal and Ryum.

Model

The mode] considers a binary alloy with limited solubility
of B atoms in the A rich phase (see Fig. 1). For alloys with
an average composition ¢, which are in the two phase
region at the starting temperature T, the system is
assumed to consist of equally sized spherical particles of
composition ¢?* in an A rich matrix of uniform composition
¢™. Upon raising the temperature to the homogenisation
temperature Tj;, the solubility of the A rich phase increases
and the particle starts to dissolve. At all times the matrix
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1 aspherical particle in spherical cell; b schematic phase
diagram for system A-B: see list of symbols for term
definitions

composition at the interface equals the solubility ¢, i.e.
local equilibrium is imposed. The solubility at the homo-
genisation temperature is defined as ¢*/*.

Assuming a uniform spatial distribution of particles, the
average interparticle distance L can be used to calculate
the radius of the equivalent spherical cell in which the
particle dissolves

31/3
Rcr:(@)L.....A.......([)

Assuming that the total amount of B atoms in each
equivalent cell is constant, the net transfer of B atoms
" between the cells can be excluded. This implies
éC-(-Iic’—t—)=0..............(2)
or
To obtain a homogeneous boundary condition at the
interface, it is convenient to substitute C(r, £) = c(r, t) — c*".
This substitution will not change equation (1). During
dissolution B atoms migrate from the interface. It is
assumed that there is no diffusion inside the particle. To
maintain the atomic fraction just outside the dissolving
particle at ¢*#, the interface reaction has to proceed
infinitely fast. Hence, the rate of dissolution is completely
determined by the long range diffusion of B atoms in the
A rich phase. Application of Fick’s second law for a
spherical geometry with axial symmetry yields

oCt ) [0°Cat) 2 0Ck1)
o1 ‘D[ a Ty o

VR<r<R,Vt=0

where D is the diffusion coefficient of B in A and the value
of D is assumed to be independent of composition. The
initial boundary value problem, stated by equations (1),
(2), and (3), has a solution, il and only if C(r, ) has at least
a continuous second derivative with respect to r at the
interval R <r <R, and a continuous first derivative with
respect to t for all t > 0. Moreover, it can be proven that
the solution of equation (3) is unique.* As the number of
B atoms in the cell is constant, it can be derived that

. (3)

dR(t)= D P im oC(r t) (4)
dt P e PA My day O

MB MA
Yt=0

where p, and pg are the densities of element A and B
respectively and M, and My are the molar masses of
elements A and B.

From equation (4) it follows that the value of d¢(R, t)/dr
determines the value of dR(t)/dt. Apparently, the gradient
of the composition of B atoms present in the immediate
vicinity of the dissolving particle governs the rate of the
interface velocity dR(¢f)/dt. The initial boundary value
problem combined with equation (5) falls into the class of
Stefan problems.’ To solve equation (3), solutions of the
form C(r,t) = p(r)0(r) are sought. Subsequent substitution
into equation (4) and devision by DC(r, t) yields

2
Do~ e D

Since the left and middle sides of equation (5) are functions
of t and r respectively, the constant —12 has been
introduced. The constant has to be negative to obtain a
non-trivial solution. From equation (5) two ordinary
differential equations are obtained

0°()+ 22DO() =0 . (6a)

o2+ Ppy=0 . . . . . . . . (6b)
with respective solutions

Ot)=Aexp(—DA%t)y . . . . . . . . . . . (T3

p=Br tcos(lr—a) . . . . . . . . . . (7b)

where 4 and B are integration constants and « and A are
eigenvalues. If the interface is assumed to be instantaneously
stationary, it follows from substitution of C(r, t) = p{r)6(t)
into the boundary conditions given by equations (1) and
(2) that

p(R)=0 . . . . . . . . . . . . . . . (8)
BRI _o . (8b
dr

Substitution of equation (7b) into the boundary conditions
(see equation (8)) yields for sets of 1 and o

lanan=§(2n+1) N
fan(A, R, — o) = — — (9b)
an(A, R, — )= IR
VneZ

From equation (9) the constants A, and «, can be
determined, For each n, there is a [unction p,(r) (see
equation (7b)) satisfying equations (6b) and (8b). The linear
combination of the set {p,(r)} satisfies equations (6b) and
(8b). Thus, for the concentration as a function of time and
distance from the particle centre, it follows

s cos{d,r —
o= Y [A,,Bnexp(—agm)—(—;—i'ﬁ} (10)
The constants A, and B, have to be determined.

Multiplication of equation (6b) by r?, yields for each p(r)

d (7,2 dpa(r)

dr dr

™ .

) + 222 p, (1) =0
The combination of equations (8) and (10) falls into the
class of the Sturm-Liouville systems®? with eigenvalues
A, and o, (as given in equation (9)). Multiplication of
equation (11) for two different values of n, 7, and j with
p;(r) and p;(r) respectively, subtraction and integration over
the interval R <r < R, reveals that the set of functions
{p(r)} are orthogonal with respect to 1% Substitution of
t =0, the initial situation, into equation (10}, yields
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= 3 Ay palr) . (12)

It is convenient to determine the coefﬁcients B, such that
the lunctions p(r) are orthonormal, that 1s

R
J 12 Py (1) pim (1) dr =
R

in which &, represents the Kronecker delta, because
each (piecewise) continuous function can be decomposed
into an infinite linear combination of orthonormal eigen-
functions. Then, from the orthonormality of the set of
functions {p(r)} and equation (12), the coefficients A, are
determined by

RG

Anz(c‘“—c“//*).[ rpaydr ... . ... (13)

R

Evaluation of the integral and substitution of equation (9)
into equation (13), yields for the coeflicients 4,

R
An=(c’/”—c’“)BnT(—1)“ e € £))]
The orthonormality of the functions p(r) requires for the
coeflicients B,

2 "
= - N &)
B cos*(A, R, — &) (15)

An(Re—R)— LR,
Combination of equations (10), (13), and (14), using the
backward substitution ¢(r, t)=C(,t) +c¥f, and some
elementary algebra yield
AR(cMP — o™ w

e(r t) = B _(C__.._._c_._) X Z
n= —ao
{(— 1)*(1 4+ AZRZ) cos(A,r — o, ) exp(— A2 Dt)

AR~ R)(1 + 2R3 = R.]

r

(16)

Substitution of equation (16) into equation (4) yields the
following equation for the interface velocity

dR(t, o 203 auns 32
RO_ _opr 3 { (1+ 2 Rs) exp(— £.D1)
de noze L[(R.—R)(1+ A2R%)—R,]
(172)
in which k is defined as
Cllﬂ_cm
¢ (17b)

Py Mo i iy
My pa

As far as is known, equation (17) is the first semianalytical
equation to describe the dissolution with equilibrium at
the particle’s interface in a finite cell with radius R, with
w0 > R, > Ry. According to equation (17), the kinetics of
dissolution dR{t)/dr depend on ¥, ¢#2 and ¢™, and the
long distance volume diffusion coefficient. The factor on
the right hand side of the summation symbol results from
the geometrical and physical constraints: dissolving has to
take place in a finite space while fulfilling the law of mass
conservation, ie. the amount of B atoms in the cell remains
constant during dissolution. Furthermore, it follows that
for increasing annealing time ¢, |dR?(f)/dt| decreases
continuously and uniformly, implying that for very small
dissolution times [dR?(t)/d¢| is maximal, as can be expected
intuitively. It can be shown that for ¢[0, the value
of dR*(t)/dt and dR(t)/dt does not depend on R, (see
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2 Values of normalised particle area {R?/R32) as function
of normalised dissolution time (2kDt/R2) with k=001
for various values of b where k and b are defined by
equations (17bj and (19} respectively: thick lines
indicate results of semianalytical model; thin lines
indicate corresponding results of Tundal and Ryum
approach

Appendix). Clearly, in the first stages of homogenisation,
the dissolution proceeds as if the cell size were infinite.
Since the eigenvalues A, and o, are taken for a constant
position of the given boundary condition at the interface,
the eigenvalues have to be calculated for each value of
R(t). From this, it is obvious that if the eigenvalues are
known, equation (17) can only be solved numerically.
Combination of both parts of equation (9) yields

-|-tan[ﬁ(2n+1)+/1n(Rc—R)}=O L. (18)

AR, 2

From equation (18) the eigenvalues A, can be calculated
for each value of R by the Newton-Raphson zero point
iteration method” with an accuracy only limited by
computer capacity. Subsequent substitution into equa-
tion (9) yields the eigenvalues o,. By substitution of
the eigenvalues into equation (17), the interface velocity
dR(t)/dt can be calculated. The value of R can be obtained
by numerical integration of equation (17) applying a
Runge-Kutta method.®

Results and discussion

The dissolution of the spherical particle has been calculated
for a number of different starting conditions characterised
by the parameter k, which is a measure for the concentration
difference between interface and matrix, see equation (17b),
and b, which is a measure of the possibility of full particle
dissolution at infinite annealing times and which is
defined as

c®—cm

- (19)
The normalised particle area R?*/R3 is plotted in Figs. 2
and 3 as a function of the normalised dissolution time
2kDt/R3 for various values of b for k=001 and k=025
respectively, The results of the calculations based on the
analytical solution are indicated by the thick lines. The
figures show that the dissolution rate has a maximal value
at r =0 and that the dissolution rate decreases continuously
during the dissolution process. The decrease in dissolution
rate is due to the finite dimensions of the cell in which the
particle dissolves. In the case of particle dissolution in an
infinite cell with a stationary concentration profile a linear
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3 Values of R?/R% as function of 2kDt/R% with k=025
for various values of b: thick lines indicate results
of semianalytical model; thin lines indicate corres-
ponding results of Tundal and Ryum approach

dependence between the particle area and the dissolution
time exists.

Furthermore, both figures show that for values of b <1,
the particle dissolves completely, as is to be expected. The
dissolution time increases rapidly when b approaches 1.
For values of b> 1 the particle dissolution is incomplete
but the final state is obtained after a relatively short
annealing time. The final particle size depends on b.
Comparison of the curves of Figs. 2 and 3 shows that the
dissolution kinetics do not vary strongly with k when
plotted against the normalised time 2Dkt/R3. Of course,
when plotted against the time ¢ the dissolution rate will
accelerate with increasing k value or increasing concen-
tration gradient.

The dissolution kinetics predicted by the semianalytical
approach have been compared to those predicted using the
numerical approach for particle dissolution as developed
by Tundal and Ryum.? The results of these calculations,
using the same set of k and b values as for the calculations
with the analytical model, are also shown in Figs. 2 and 3
respectively. The results of the numerical model are
indicated by the thin lines. For small dissolution times both
dissolution rates coincide, However, for larger dissolution
times it can be seen that the analytical approach and the
numerical deviate. The deviations between the analytical
and numerical approach are caused by the assumption
underlying equation (12). This can be explained as follows:
for each iteration step in the calculation the position of the
interface, ie. the boundary condition, changes. Formally, a
new boundary value problem should be introduced at each
time step, in which the initial condition is not given by
c¢™— ¥ but by the concentration profile during the last
iteration step. This means that equation (12) has to be
changed to

el t)— P = i Anpalt)

n= -

. (20)

where A, represents the integration coefficients at the time
t + timestep. From this and the orthonormality it follows
that the coefficients A, can be determined by

Ay =

JRC [e(r, 1) — ¢ ]pa(r)r? dr - (21)

R
Such a modification would result in a significant extension
of the computation time. However, equations (12) and (13)
provide a good approximation as long as the concentration
profile in the A rich phase has not changed significantly.
This effect of the deviation of the concentration profile

becomes more important as the dissolution proceeds
and the concentration profile changes. In the numerical
approach for each time step, the concentration profile from
the last iteration is used as the initial condition for the new
boundary value problem as introduced by the movement
of the interface position. The time at which the concen-
tration profile changes significantly becomes smaller as the
ratio between the initial particle size and the cell size
becomes smaller. That is the reason why for large b values
the deviation between the dissolution rates, as predicted by .
the analytical approach and the numerical approach, starts
earlier. The dissolution times predicted by the analytical
approach are most accurate for small b values.

Conclusions

A semianalytical model has been derived for the dissolution
of spherical particles in finite media assuming that long
distance diffusion is the only rate limiting step. The model
allows the prediction of the dissolution kinelics as a
function of the initial concentration differences between
particle and matrix and the interface concentration during
dissolution, The model is applicable to the case of complete
dissolution and to the case ol incomplete dissolution. The
predictions of the dissolution kinetics by the analytical
model in its present form correspond well with those of a
more complex numerical model, provided that the final
concentration in the matrix does not differ significantly
from the initial concentration profile.

Appendix

At =0, the concentration profile can be written as

e, t =0)= M —(cP* — c™u(r — R) . (22)
VOLKr<R,
with
1vz20
u(t) =
0vr<0

Differentiation of equation (22) and using

u(t)= fr

with §(0) the unit pulse [unction, yields for the concentration
gradient at t=0

o(0) do

de(nt=0
—C('T—) = —(c"® — ¢™)3(r — R) . (23)
Substitution of equation (23) into equation (4)
dR(t=0 Ml am
(=0)_ ___¢7=c"  pPa (24)
de Pi Bilo Pa a/p MA
— e —
My My

Equation (24) shows that the initial interface velocity
dR(t=0)/dt is independent of the cell size, as can be
expected intuitively.
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