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Abstract

The interannual variability of the tropical Indian Ocean sea surface temper-

ature (SST) is studied with observational data and a hierarchy of coupled

general circulation models (CGCMs). Special attention is given to the ques-

tion whether an oscillatory dipole mode exists in the tropical Indian Ocean

region with centers east and west of 80�E. Our observational analyses indi-

cate that dipole-like variability can be explained as an oscillatory mode only

in the context of ENSO (El Ni~no/Southern Oscillation).

A dipole-like structure in the SST anomalies independent of ENSO was

found also. Our series of coupled model experiments shows that ocean dy-

namics is not important to this type of dipole-like SST variability. It is forced

by surface heat 
ux anomalies that are integrated by the thermal inertia of

the oceanic mixed layer, which reddens the SST spectrum.
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1 Introduction

Since the interannual variability in the tropical Indian Ocean sea surface

temperature (SST) is much weaker than that in the Paci�c, it did not re-

ceive so much attention and is less well understood than the variability in

the Paci�c. The latter is dominated by the El Ni~no/Southern Oscillation

(ENSO) phenomenon. Although ENSO originates in the tropical Paci�c, it

a�ects the global climate. Several investigations have suggested that ENSO

also in
uences the Indian Ocean in di�erent ways (Latif and Barnett, 1995;

Tourre and White, 1997; Chambers et al., 1999; Venzke et al., 2000; Meyers,

1996). Other studies have suggested that a signi�cant fraction of the SST

variability is related to ENSO but that there are other factors that are also

important in determining the SST anomalies (SSTA) (Reverdin et. al, 1986:

Murtugudde, 1999). Recently, Saji et al. (1999) and Webster et al. (1999)

have proposed the existence of a coupled ocean-atmosphere mode that origi-

nates in the Indian Ocean climate system, which has characteristic seasonal

phase locking and may induce anomalous rainfall over eastern Africa and

Indonesia. Furthermore, it is argued that the mode is independent of ENSO.

The mode is referred to as the \Dipole Mode (DM)". The DM spatial struc-

ture they proposed is characterized by SSTAs of one sign in the southeastern

tropical Indian Ocean (SETIO: 90�E - 110�E, 10�S - 0�) and SSTAs of the

opposite sign in the western tropical Indian Ocean (WTIO: 50�E - 70�E, 10�S

- 10�N).

Here we investigate the interannual variability in the tropical Indian

Ocean SST and its relationship to ENSO in more detail. SST observations

and results from a series of coupled model integrations are used. We ap-

ply correlation analyses using area-averaged anomalies and the technique of

Principal Oscillation Patterns (POPs) to remove the ENSO signal. POP

analysis is designed to extract the characteristic space-time variations within

a complex multi-dimensional system (Hasselmann, 1988; von Storch et al.,
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1988; Xu and von Storch, 1990). We show that an oscillatory dipole-like

structure like the one proposed by Saji et al. (1999) exists only as part of

the ENSO cycle. There exists, however, dipole-like variability in the Indian

Ocean independent of ENSO, but this type of variability is driven by the

atmosphere.

The paper is organized as follows. The results of the analyses of the

observed SSTs are presented in the section 2. We describe the results of the

coupled model simulations in section 3. We present our major conclusions in

section 4.

2 SST observations

We use the monthly SST dataset from the Hadley Center for Climate Pre-

diction and Research (Folland et al. 1999). Although the dataset covers the

period 1870- 1998, we analyzed only the period 1949 to 1998 which is com-

monly believed to be the most reliable period. The SSTAs were calculated by

subtracting the mean annual cycle. We consider the region 40�E to 60�W and

30�S to 30�N, which corresponds to the tropical Indian and Paci�c Oceans.

To perform the correlations between global and box-averaged SSTAs we al-

ways used mean seasonal values. We also performed a POP analysis based

on monthly values in order to identify the ENSO-related SST variability and

to remove it from the full dataset.

2.1 Analysis considering all the seasons

The correlations of the Indo-Paci�c SSTAs with box averaged SSTAs in SE-

TIO and WTIO are shown in Fig. 1. The WTIO box shows signi�cant cor-

relations with equatorial SSTAs in the Paci�c Ocean, but it has no negative

correlation with the anomalies in SETIO (Fig. 1a). The SETIO box does not

show either any signi�cant positive or negative correlation with the SSTAs in
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WTIO, and the correlations with the SSTAs in the Paci�c are smaller. Both

correlation maps (Fig. 1a and 1b) lead to the conclusion that the SSTAs in

SETIO and in WTIO are not signi�cantly negatively correlated with each

other at lag zero, which is consistent with the results of Dommenget and

Latif (2001). Additionally, we performed lagged cross-correlation analyses

between the SSTAs in SETIO and those in WTIO. We found that maxi-

mum cross-correlation (r=0.43) occurs when the SST variations in SETIO

lag those in WTIO by 1 season. Higher correlations are found when the

cross-correlation analysis is performed with respect to the Ni~no3 time series.

We found maximum cross-correlation (r=0.65) when the SSTAs in the west-

ern Indian Ocean lag those of the eastern Paci�c by about 1 season, which

is consistent with the results of Venzke et al. (2000). Maximum cross corre-

lation (r=0.48) is obtained when the SSTAs in the eastern Indian Ocean lag

those of the eastern Paci�c by 2 seasons. This lag of 2 seasons is consistent

with the fact that the SSTAs in SETIO lag those in WTIO by 1 season. At

lag zero, the correlation between WTIO and Ni~no3 time series is positive

and close to the maximum value of about 0.60. It should be noted that al-

though the maximum correlation between the SSTAs in SETIO and Ni~no3

is at lag=1 season, the correlation at lag zero is also positive and relatively

strong.

In summary, the results of the correlation analyses and the cross-correlation

analyses with respect to the SSTA in the eastern Paci�c (Ni~no3) reveal that

the SST variability in the Indian Ocean is strongly remotely forced by the

ENSO phenomenon. Furthermore, a dipole-like mode cannot be identi�ed if

all seasons are considered.

2.2 Seasonal analyses

In the next step, we computed the correlation maps for every season sepa-

rately (like those shown in Fig. 1). No negative correlation was found between

the SSTAs in SETIO and WTIO neither in winter nor in spring (not shown).
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For the boreal summer season, there is a very weak negative correlation be-

tween the SSTAs in the WTIO and those near the western coast of Indonesia

and the north-western coast of Australia (not shown). Some stronger cross

Indian Ocean gradient, however, was found in boreal fall. More importantly,

this is the season when a strong correlation between the surface westerlies

over the equatorial Indian Ocean and the rainfall at the coast of East Africa

can be found (Hastenrath et al, 1993). Accordingly, the boreal fall season

(SON) will be considered in detail.

2.3 Analysis for SON

We turn now to the boreal fall season. The SSTAs in WTIO show negative

correlations with those in the eastern Indian Ocean, but they are restricted

to a small region (Fig. 2a). The SETIO SSTAs do show negative correlations

with those in the central Indian region, which are strongest south of the

equator (Fig. 2b). Both correlation maps, however, show that the SSTAs in

SETIO and in WTIO are not strongly negatively correlated with each other.

Furthermore, the SSTAs in the two boxes, SETIO and WTIO, are strongly

correlated with the SSTAs in the Paci�c. This contradicts the claim of Saji et

al. (1999) that there exists an ENSO-independent dipole mode, with centers

of action in WTIO and SETIO.

Fig. 3 shows the composites for El Ni~no and La Ni~na events. Fig. 3a

shows the composite for the six recent El Ni~no events (1957, 1965, 1972,

1982, 1987 and 1997) and Fig. 3b that for the seven recent La Ni~na events

(1955, 1970, 1971, 1973, 1975, 1985 and 1988). ENSO-related variability in

the Indian Ocean in the boreal fall season looks like a seesaw: for the El Ni~no

events, there are positive SST anomalies in the western region and negative

anomalies in the east. The situation is reversed during La Ni~na conditions,

but the magnitude of the anomalies is smaller in the western region. Figs.

2 and 3 demonstrate clearly that the dipole-like variability in the tropical

Indian Ocean is not independent of the ENSO phenomenon.
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2.4 ENSO-removed analyses

Our analyses may be in
uenced by the presence of the strong ENSO signal.

We therefore repeated the correlation analyses by removing the ENSO signal

prior to the analyses. There is no unique way to do this. Here we subtracted

the leading POP mode from the monthly SSTA. Seasonal mean values were

then computed from the residual dataset.

The POP analysis of the monthly SSTAs revealed one dominant POP pair

(the ENSO mode, not shown) accounting for 26.4% of the total variance. The

rotation period of this POP pair amounts to 42 months, with a decay time

of 10 months. All other POPs were statistically insigni�cant. The dominant

POP pair is clearly associated with ENSO, which can be inferred from the

correlation of the complex coe�cient time series (not shown) with the Ni~no3

(5�S - 5N, 150�W -90�W) SSTA time series. The zero lag correlation of the

real part time series with the Ni~no3 time series amounts to 0.94 and the

4-months lag correlation of the imaginary part time series with the Ni~no3

time series to 0.74. A cross spectral analysis of the two coe�cient time series

(not shown) showed the theoretically expected result that they are highly

coherent (above the 99% signi�cance level) with a phase shift of about -90�

for periods between 20 and 70 months.

2.4.1 Analysis considering all the seasons

The correlations of the Indo-Paci�c SSTAs with the averaged SSTAs in SE-

TIO and WTIO based on seasonal values are shown in Fig. 4. Again (as

shown in Fig. 1 by retaining the full data set), the correlation maps obtained

from the \ENSO-removed" data show that the SSTA in the eastern and

western parts of the Indian Ocean are not signi�cantly correlated with each

other, when we consider all 4 seasons together.
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2.4.2 Analysis for SON

Fig. 5 shows the correlations of the Indo-Paci�c SSTAs with box averaged

SSTAs in SETIO and WTIO for the fall season. A negative correlation

between the SSTAs in SETIO and those in the central (but not western)

Indian Ocean is seen in Fig. 5b. These negative correlations are larger than

those in Fig. 2b and they extend to the north of the equator. In conclusion,

Figs. 2, 4 and 5 show that SSTAs in the eastern and western parts of the

Indian Ocean are not strongly negatively correlated, and that there is a

signi�cant negative correlation between the SSTAs in the eastern and central

parts of the Indian Ocean during the boreal fall season. This anti-correlation

between the eastern and central regions exists also when the ENSO signal is

removed from the data. In the next section we shall discuss the mechanisms

that may explain this dipole-like variability by analyzing a suite of coupled

model simulations.

3 Coupled model simulations

We turn now to the coupled model simulations. We analyzed three di�erent

coupled model runs. The �rst coupled run is an extended range integration

with a coupled ocean-atmosphere general circulation model (GCM). This run

serves as a control integration. The second coupled run is a similar run, but

with the ENSO variability suppressed. The ocean GCM is replaced by a

�xed-depth mixed layer model in the third coupled run. This set of coupled

experiments enables us to investigate the roles of ENSO and ocean dynamics

in the generation of the interannual SST variability of the tropical Indian

Ocean.
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3.1 Fully coupled ocean-atmosphere GCM

To examine the interannual variability independent of ENSO, the subtrac-

tion of the leading POP pair may not be the best method. We therefore an-

alyzed additionally the outputs of two simulations with the ECHO-G model

(Legutke and Voss (1999)). The ECHO-G model has a horizontal resolution

of 2.8 �x 2.8 �. The ocean component uses a higher meridional resolution

of 0.5 �within the region 10�N - 10�S. Here we use the �rst 100 years from

the control run, while the coupled run in which the ENSO variability has

been suppressed (no-ENSO run) has a duration of 40 years. The suppres-

sion of ENSO variability was realized in the coupled model by replacing the

actual SSTs simulated by the ocean component in the tropical Paci�c by

climatology before passing them to the atmosphere model.

Fig. 6 shows the SSTA-correlation maps with the box averaged SST

anomalies in the SETIO and in WTIO regions when all seasons are consid-

ered. Both simulations, the control run (Fig. 6a and 6b) and the no-ENSO

run (Figs. 6c and 6d), show positive correlations almost everywhere in the

Indian Ocean. In particular, as in the observations, there is no negative cor-

relation simulated in the two coupled runs between the western and eastern

Indian Ocean. These model results con�rm our observational results. We

conclude further that our results do not depend on the way of subtracting

the ENSO signal.

Fig. 7 shows the spectra of box-averaged SST anomalies in the SETIO

and WTIO regions for the control and no-ENSO runs. Each spectrum is

tested against the hypothesis that the spectrum is produced by a �rst order

autoregressive process (red noise spectrum) and a 95% con�dence level for

accepting the red noise hypothesis is also shown. For the control run, the

spectra of the two boxes (Figs. 7a and 7b) show enhanced variability for

periods of 5-10 seasons, i. e. about 1-3 years (the coupled model simulates a

quasi-biennial ENSO period). In contrast, the spectra of the no-ENSO run

(Figs. 7c and 7d) are consistent with red noise spectra. This result indicates
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also that a dipole mode that is associated with a speci�c timescale does not

exist.

The correlation maps for fall (SON) are shown in Fig. 8. Both the control

run and the no-ENSO run yield similar correlation maps, with some indica-

tion of dipole-like variability. This means that although ENSO was removed

physically in the no-ENSO run, there is still a mechanism which produces a

dipole-like structure in the SST anomalies in the boreal fall season. The cor-

relation maps for the other seasons (not shown) do not exhibit a dipole-like

structure.

3.2 AGCM coupled to a mixed layer ocean

Is the dipole-like variability in the no-ENSO run a result of ocean dynamics

or of atmospheric forcing? In order to answer this question, we coupled a

mixed layer ocean model with the ECHAM4 atmosphere model (the same

atmosphere model that has been used in the coupled runs discussed above).

The mixed layer model has a constant depth of 50m and does not carry by

de�nition any ocean dynamics. Variations in the surface heat 
ux is the only

mechanism which can produce SST anomalies in such a model.

Correlation analyses of SST anomalies from the mixed layer simulation

are shown in Figs. 9 and 10. Fig. 9 corresponds to the case when all the

seasons are considered and Fig. 10 when only fall (SON) is considered. Both

Fig. 9 and Fig. 10 show some correspondence with the maps derived from

the observations (Figs. 1 and 2), and with those for the coupled runs (Figs.

6 and 8). The spectra of the SST anomalies in the boxes SETIO and WTIO

considering all the seasons are consistent with the red noise assumption (not

shown). It can be concluded from the results of the mixed layer simulation

that an ENSO-independent dipole-like SST anomaly pattern exists in the

boreal fall season, which can be explained by atmospheric forcing. Dynamical

processes in the ocean are not necessary to produce this type of bipolar SST

variability.
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4 Conclusions

Correlation analyses of seasonal SST anomalies from the Hadley Center SST

observations during the period 1949-1998 and from three di�erent coupled

GCM runs show consistent results. The dominant SST variability in the

tropical Indian Ocean is related to ENSO. The ENSO-related SST response

of the Indian Ocean in the fall season is a dipole. However, we do not �nd

evidence for an ENSO-independent oscillatory mode with dipole-like SST

anomalies. Yet, dipole-like variability exists in the tropical Ocean, but this

type of variability is driven by the atmosphere and does not involve ocean

dynamics.

Most studies so far described the ENSO response in the Indian Ocean as

a homogeneous response: During El Ni~no events, the Indian Ocean exhibits

basin wide warm SST anomalies and during La Ni~na conditions, the SST

anomalies are of opposite sign. This is true for some seasons, especially for

the winter season (DJF), but for fall (SON), this is generally not the case.

We found that in the boreal fall season, on average, the ENSO signal can

be seen as a dipole-like pattern: During El Ni~no events, cold anomalies are

observed east of 80�E and warm SST anomalies west of 80�E, during La Ni~na

events, we observe the reverse SST anomaly pattern.

An oscillatory ENSO-independent dipole mode does not exist in the trop-

ical Indian Ocean. This has been validated by simulations with a hierarchy

of coupled models. The only mode-like dipole variability (in the physical

sense that air-sea interactions lead to an oscillation) is associated with the

ENSO phenomenon.

In summary, there is dipole-like variability in the SST of the Indian Ocean.

This variability, however, is either associated with the ENSO phenomenon

or forced stochastically by the atmosphere. A dipole mode independent of

ENSO and originating from air-sea interactions over the Indian Ocean seems

not to exist.
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