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We review an approach to separatrix chaos that has allowed us to solve some significant problems by: (i)

finding analytically the maximum width of the chaotic layer, a problem that lay unsolved for 40 years, and
showing that the maximum may be much larger than had previously been assumed; (ii) describing the drastic
facilitation of the onset of global chaos between neighbouring separatrices, a phenomenon discovered 8 years
ago.

1. Introduction

In this section, we first introduce the concept of separatrix chaos and demonstrate that it constitutes

the seed of any chaos in time-periodically perturbed 1D Hamiltonian systems. We then describe some

of the problems that stimulated the development of our new approach to separatrix chaos and, finally,

explain why it is difficult to use earlier approaches to solve these and related problems.

1.1. Separatrix chaos

Hamiltonian dynamics is described by equations of the type:

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H

∂qi
, (1)

i = 1, 2, 3, ... H ≡ H(q1, q2, ..., p1, p2, ..., t).

The simplest case is a one-dimensional (1D) Hamiltonian H = H(q, p), where H is an integral of

motion (the energy E) and any finite motion is periodic in time:

q(t+ T ) = q(t), p(t+ T ) = p(t), T ≡ T (E), ω ≡ 2π

T
≡ ω(E). (2)
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Fig. 1. Pendulum: (a) potential, (b) separatrix in the phase plane.

An important notion is that of a separatrix. Suppose the phase space of the system possesses a

saddle, i.e. an unstable stationary point of the hyperbolic type, which two trajectories approach and

from which two trajectories depart, exponentially slowly. These four trajectories form the separatrix.

As the energy approaches that of the separatrix Es, the period of oscillation logarithmically diverges:

ω−1(E) ∝ T (E) ∝ ln(1/|E − Es|), E ≈ Es. (3)

The separatrix typically separates trajectories of different topology. An archetypal example is a pen-

dulum (Fig. 1): H = p2/2 + U(q), where U(q) = − cos(q).

For higher-dimensional Hamiltonians, the motion is typically much more complicated. In this re-

view, we consider the simplest case: D= 3
2 , i.e. a 1D Hamiltonian with a time-dependent perturbation.

Moreover, we restrict ourselves to the most characteristic case – a weak time-periodic perturbation.

In the 1950s and 60s, Kolmogorov, Arnold and Moser developed a theory (KAM-theory) which says

that a majority of perturbed trajectories remain regular: invariant tori are slightly deformed rather

than destroyed i.e. the perturbation does not modify the topology of a trajectory in a stroboscopic

Poincaré section [1].

However there are two characteristic regions where the KAM theory is inapplicable, so that some of

the corresponding trajectories are irregular. The first one relates to the separatrix of the unperturbed

system. Due to the divergence of T (E), even a small change of energy caused by the perturbation

results in a strong change of the system coordinate after a given interval of time. This causes the

separatrix to be replaced by a chaotic layer (Fig. 2), where regions of regular and irregular motion are

mixed in a complicated manner. The chaotic layer is a very complicated object: it has been studied in

hundreds of papers, starting from [2] in 1967.

The second region where the motion may be irregular relates to resonances i.e. to regions where

E ≈ E(n), nω(E(n)) = ωf , n = 1, 2, 3, ... (4)

The slow dynamics of the deviation of action from that at the resonance energy, and of the related

slow angle, are governed by the auxiliary (or nonlinear resonance) Hamiltonian, which is typically

taken as being pendulum-like [3]. The phase plane of this auxiliary Hamiltonian necessarily possesses a

separatrix, but the fast oscillations (neglected in a leading-order analysis of the slow dynamics) destroy

it, replacing it with a narrow chaotic layer.

Thus, separatrix chaos plays a key role in the onset of any chaos in a time-periodically perturbed

Hamiltonian system.

1.2. Stimulating problems

The development of our approach was stimulated in particular by the following open questions con-

cerning separatrix chaos:
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Fig. 2. Stroboscopic Poincare section for the Hamiltonian H = p2/2− cos(q) + 0.01q cos(t).

1. How can one describe theoretically the maximal (over the perturbation frequency) width of

the separatrix chaotic layer? Neither physicists [4] nor mathematicians [5] had cracked this

problem during the 40 years following the pioneering work by Zaslavsky and Filonenko [6].

2. How can one describe theoretically the involvement of resonant motion in separatrix chaos?

This problem became topical with the work of Shevchenko in 1998 [7] although it had been

implicit since much earlier [3].

We now describe these problems in more detail. The chaotic layer’s energy width depends on the ratio

ωf between the perturbation frequency and frequency of small oscillations of the unperturbed system.

The three characteristic ranges of ωf are –

(i) ωf ≫ 1: the width is exponentially small [4, 5].

(ii) ωf → 0: in the adiabatic limit, the width is typicallya small [9,10], namely of the order of the

perturbation amplitude h.

(iii) ωf ∼ 1: for the intermediate range qualitative estimates [4, 5] suggested a width of ∼ h. The

range of moderately small frequencies remained almost unexplored (perhaps because it was

assumed to be uninteresting), with one exception [7] where it was considered heuristically.

Thus, most theoretical estimates suggested that the maximum should occur at ωf ∼ 1 where it would

have a value of order h.

However, numerical studies (e.g. [7]) revealed a different picture: typically, many peaks were seen in

the range ωf . 1, with heights substantially exceeding h, suggesting that high peaks actually represent

the dominant feature of the dependence of the layer width on the perturbation frequency. The authors

of the numerical studies intuitively associated them with nonlinear resonances and an approximate

heuristic theory was developed [7] to estimate their positions and maxima. But the mechanism of the

involvement of nonlinear resonances in separatrix chaos remained unclear, and a consistent theory of

the peaks and a general analysis were lacking.

1.3. Earlier approaches

Of the many criteria for chaos, two of those most widely used are:

1. The existence of a positive Lyapunov exponent [11], implying exponential growth in some

direction in the separation between initially close trajectories, leading in turn to irregular

transport.

aIn ac-driven spatially periodic systems, the upper energy in the layer diverges as ωf → 0 [8]. We do not consider this
case. For such models, we consider only the lower energy in the layer.
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2. Destruction of invariant tori (KAM-theory) [4, 5], leading in particular to the replacement in

the Poincaré section of regular trajectories (lines i.e. 1D objects) by layers (2D objects) where

regions with regular and irregular dynamics are mixed in a complicated manner.

Usually, however, Lyapunov exponents have to be found numerically, it being hard to calculate them

analytically [11]; and KAM-theory is difficult to apply in the relevant ranges of parameters, where

resonances play a crucial role [1, 12].

2. Our approach to separatrix chaos

2.1. Our initial tool: the separatrix map

The separatrix map was introduced in [6] and rederived rigorously in [13]. As an illustration, consider

as an example the ac-driven double-well potential system:

H = H0 − hq cos(ωf t), H0 = p2/2 + U(q), U(q) = −q2 + q4. (5)

For the sake of convenience, we refer to H0(q, p) ≡ E as the “energy”. Differentiating E with respect to

time and using the Hamiltonian equations, we obtain dE/dt = h cos(ωf t) dq/dt ∝ dq/dt. Thus, energy

changes relatively fast only when the velocity dq/dt is relatively large. If E is close to the barrier value,

then the system spends most of its time near the saddle, where the velocity is near zero, i.e. short

pulses of significant velocity are separated by long intervals at almost zero velocity. The duration of

a long interval is related to the period of the unperturbed system with the energy possessed by the

perturbed system during the interval.

Introducing the angle of the perturbation φ ≡ ωf t and the sign of the velocity σ, one can map

E and σ at the beginning of a given pulse, and φ in its middle, onto their values in the next pulse:

(Ei, φi, σi) → (Ei+1, φi+1, σi+1). This map is called the separatrix map (SM). For our model, it is

Ei+1 = Ei + σihϵ sin(φi), (6)

φi+1 = φi +
ωfπ(3− sign(Ei+1 − Es))

2ω(Ei+1)
,

σi+1 = σi sign(Es − Ei+1),

where the Melnikov integral ϵ ≡ ϵ(ωf ) ∼ 1 for the relevant range of ωf [4, 11].

There are both heuristic [4, 11] and rigorous [5] criteria for the onset of chaos but almost all of

them miss the relevant range of moderately small ωf . The one exception [7] appreciated the role of

nonlinear resonances, but the resultant calculations led to values of the maxima that were quantitatively

incorrect in the asymptotic h → 0 limit. The nature of the connections between nonlinear resonances

and separatrix chaos remained unclear as did also the question of the generality of the results.

Our new approach [14–16] has allowed us to solve consistently both these and some related problems.

2.2. Basic elements of the approach

2.2.1. Decorrelation of angle

If the system gets onto the separatrix at the (i+1)th step i.e. Ei+1 = Es, then the change in angle at

this step, φi+1 − φi, diverges due to the divergence of ω−1(Ei+1) (see Eq. (3)). This decorrelation of

angle leads, in turn, to a decorrelation of the energy since Ei+1 −Ei ∝ sin(φi) while sin(φi) may take

any value between ±1. Similarly, σ is also decorrelated. Obviously, if all variables of the map change

randomly at some step, such a trajectory cannot be regular. Thus, a decorrelation of all variables at

some step of an area-preserving map is a sufficient condition for chaos in the map; in the SM, such

a decorrelation is provided by the decorrelation of angle. We hope and surmise that such a condition

can be shown to satisfy earlier definitions of chaos, in particular the existence of a positive Lyapunov

exponent.
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2.2.2. Involvement of a resonant motion into the separatrix chaos

It might at first appear that a resonant dynamics is impossible near the separatrix because of the

divergence of dω/dE ∝ 1/|E − Es|, given that resonant dynamics requires an approximate constancy

of ω(E). Paradoxically, however, it is possible due to the slowness of the logarithmic divergence: if x

is small, then ln(1/x) remains almost constant even at a rather large variation of x.

The energy at some step of the chaotic trajectory takes the value Es: En = Es, while φn and σn

may be arbitrary. Consider changes of energy at the next step which have one and the same sign: let it

be positive for example. Then En+1−Es ∼ h| sin(φn)|. The properties of the logarithmic function mean

that ω(En+1) ≃ ω(Es + h) for almost all values of φn (except in the near multiples of π). Moreover,

ω(E) remains approximately constant for rather large further variation of E − Es of the same sign.

Thus, if ωf ≈ ω(Es + h), a resonant dynamics should be relevant.

By reducing the discrete map equations to the differential equations of motion for the resonance

Hamiltonian, we were able to prove the above intuitive ideas explicitly within the relevant range of

energies.

2.2.3. Resonant dynamics near the separatrix

The conventional approximation by which resonant dynamics is described by an auxiliary pendulum-

like (Chirikov) Hamiltonian [3, 4, 7, 11] is valid only if |dω/dE| is approximately constant within the

relevant range of energy. This is not the case near the separatrix, where |dω/dE| ∝ 1/|E − Es| varies
rapidly. We have developed the first analytic description of the resonant dynamics near the separatrix.

From the quantitative point of view, this part of our approach is of particular importance because

resonant dynamics provides the leading term of our asymptotic theory describing the boundaries of

the chaotic layers and related quantities in the relevant range of the perturbation frequency.

3. Application to the single-separatrix layer

As an illustrative example, we use the paradigmatic case of an ac-driven pendulum H = p2/2−cos(q)+

hq cos(ωf t), comparing numerical results with earlier estimates and with our theory. Consider the

deviation of the lowest energy in the layer El from the separatrix value Es. Fig. 3 presents numerical

calculations of the deviation ∆E(−) ≡ (Es − El) normalized by the perturbation amplitude, as a

function of frequency, for different values of h. One can see a clear growth of the maximum as h

decreases. The inset compares these results with earlier estimates, with which they clearly disagree.

In contrast, our asymptotic theory [15] fits the numerical data well, as shown in Fig. 4: the paper also

classified all systems in the context of the functional dependence of the width on h and considered

characteristic examples. Note also that our theory describes well, not only the width of the layer, but

also its boundaries in the Poincaré section.

4. Application to global chaos between separatrices

If an unperturbed system possesses two or more separatrices, then a sufficiently large periodic pertur-

bation gives rise to dynamic (chaotic) transport connecting neighbouring separatrices, a phenomenon

that is important in many physical applications. Conventionally, the scenario for onset is as follows. For

small perturbation amplitude h, the separatrices are replaced by thin chaotic layers. As the amplitude

grows, the layers widen and, at some critical value hcr, they merge, marking the onset of global chaos.

Typically, hcr is of the order of the difference of energies at the separatrices. However, it was discovered

in 2003 [18] that hcr may be much lower if the perturbation frequency ωf is close to particular values.

We show this using as an example the unperturbed model illustrated in Fig. 5:

H0 = p2/2 + U(q), U(q) = (Φ− sin(q))2/2, Φ = 0.2. (7)
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Fig. 4. Comparison of our theory (solid line) and numerical data (circles): (a) ∆E(−)/h as function of ωf for h = 10−6;

(b) position of the first maximum as function of h; (c) value of the first maximum as function of h.

Fig. 5. (a) Potential of Eq. (7). (b) Separatrices in the phase plane. (c) Oscillation frequency as function of energy.

Fig. 6(a) shows a bifurcation diagram of the system with H = H0 + hq sin(ωf t) in the plane of the

perturbation parameters. The shaded area indicates the parameter range for which global chaos exists.

Its lower boundary, representing the function hcr(ωf ), possesses deep minima (spikes). Their existence

can be explained as follows. The dependence of the eigenfrequency on energy ω(E) (Fig. 5(c)) is very

flat (in the asymptotic limit Φ → 0, it approaches a rectangular shape). If ωf is close to the local

maximum ωm of the function ω(E), then even a weak perturbation remains approximately resonant

with eigenoscillations over almost the whole range of energies between the separatrices, so that resonant

dynamics may be involved in the separatrix chaos related to each of them, thus providing transport

between them. Using our new approach, we developed a consistent asymptotic theory [14] which nicely

describes the spikes over a wide vicinity of their minima (Fig. 6(b)).
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5. Some examples of applications and relevant problems

We can summarise the present status of the new method as follows –

I. The approach itself:

– Evaluates the boundaries of separatrix chaotic layers, including their energy width, for a

diversity of perturbed systems with separatrices.

– Promises to be useful for the analysis of transport within the region of the separatrix

chaos.

II. Results on the thin single-separatrix layer may:

– Be generalized to describe a wide variety of systems with separatrices.

– Provide for a method [15] to facilitate the overlap of resonances of different orders, in

turn facilitating the onset of global chaos.

III. Inter-separatrix transport is likely to be important in, for example:

– Spinning pendula [19] and, in some cases, electron gas in magnetic superlattice [20, 21],

both being descibed by the model (7).

– Partial stochastic webs, arising if the resonance is approximate rather than exact [4]:

there are many separatrices and, the more separatrices are linked by chaotic transport, the

larger the web [22] becomes; it is relevant to quantum electron transport in semiconductor

superlattices in magnetic and electric fields [22,23] when the scattering is very weak.

– Meandering flows [24] e.g. the Gulf Stream [25], where “cross-jet” (inter-separatrix) trans-

port retards transport along the jet.

– Cold atoms in optical lattices [26] can model a variety of potential systems with practically

zero dissipation. So, they could model double- or multi-barrier potentials with barriers of

different heights.

– Billiards, which may possess more than one separatrix [27].

– Plasma physics [28].

6. Conclusions

Our approach to the treatment of separatrix chaos includes three basic elements: a new criterion

for chaos in the separatrix map, i.e. decorrelation of angle; involvement of resonant dynamics into

separatrix chaos, explained by the matching of the separatrix map and continuous resonant dynamics;

explicit analysis of the resonant dynamics near the separatrix. It has enabled us to solve a long-

standing problem related to the maximum width of the separatrix chaotic layer and to describe the

drastic facilitation of the onset of global chaos between separatrices for a characteristic example. There
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are many potential applications of these results.
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