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Abstract, We review some of the main applications of the renormalization-group
technique in condensed matter physics. The first relevant example is the description of
critical phenomena. Here perturbation theory is affected by singularities, which are a
consequence of the long-ranged character of the dominant fluctuations when approach-
ing criticality. The use of renormalization group allows to sum up these singularities
into a power-law behavior of the physical quantities, which is experimentally observed
near a continuous phase transition. The second example is provided by the description
of the physical properties of interacting Fermi and Bose systems. Here perturbation
theory is affected by infrared divergences within stable liquid phases, due to the pres-
ence of massless excitations, in reduced dimensionality. However, the condition of
stability of the system implies exact cancellations among the singular contributions,
controlled by additional Ward identities, which must be considered besides the stan-
dard Ward identities related to the conservation of the total particle and spin density.
The combined use of renormalization group and these new Ward identities allows for
the closure of the renormalization-group equations, leading to the description of the
asymptotic behavior of the system at low energies.

I INTRODUCTION

The main tool for the investigation of the properties of interacting systems is
an expansion in powers of coupling constants about some non-interacting refer-
ence system, which is exactly soluble. Unfortunately, too many interesting results
lie beyond any finite power expansion. This becomes dramatically evident if the
physical problem is such that the individual terms of the expansion become very
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large. Nevertheless, perturbation expansions do not lose their usefulness, and the
renormalization-group (RG) approach has been devised to deal with cases where the
individual contributions of the naive perturbative expansion are formally divergent
[1-3].

In these notes we discuss some applications of RG in condensed-matter physics.
The first, most well-known, is the RG approach to second-order (continuous) phase
transitions and the related critical phenomena [4-8]. In this case the divergences
which affect perturbation theory are a manifestation of approaching criticaiity,
where the most relevant fluctuations in the system become long-ranged [9-11].

The prototype model of an interacting system at a temperature T is the ^4

model, described by the effective Hamiltonian in d spatial dimensions

T

which is made dimensionless by the inclusion of the factor 1/T in the definition
(we measure the temperature in energetic units). The part which is quadratic in
the classical field (p is the free (exactly soluble) part, and the interaction term is
wc^4. In the theory of critical phenomena the thermal average of the field (p specifies
the order parameter (p [12] which characterizes the ordered (less symmetric) phase,
and the parameter t provides a measure of the distance from criticaiity, e.g., t =
T — TCJ where Tc is the critical (phase-transition) temperature. The dimensionless
coupling constant which appears in the perturbative expansion is w/|t|e/2, where
e = 4 — d. It is then evident that the dimensionless coupling constant diverges when
the phase transition is approached (t —*> 0), for d < 4 (e > 0). The RG successfully
deals with this singular perturbation theory, and allows for a resummation of the
singularities into the experimentally observed power-law behavior of the physical
quantities, like the order parameter (p ~ \t\&, the susceptibility x — l^l"7? which
measures the response of the order parameter to an external field linearly coupled
(i.e., thermodynamically conjugated) to it, and the specific heat C ~ \t\~a.

A different, and more recent, application of RG deals with cases when pertur-
bation theory is singular within stable phases (far from phase transitions) as for
example in;
1) Interacting Fermi systems for d = 1, the paradigm of which is described by
the so-called Luttinger model [13]. Here the lowest-order correction to the bare
coupling constant is logarithmically divergent, despite the fact that the system
is not at criticaiity. This divergence leads to a power-law behavior of the wave-
function renormalization factor, which vanishes when approaching the Fermi level,
leading to the suppression of the low-laying single-particle excitations.
2) Interacting Bose systems in the broken-symmetry phase, i.e., in the presence
of the Bose-Einstein condensate. The lowest-order correction to the single-particle
propagator has a singular contribution in d < 3. In this case, as we shall see, the
presence of the condensate changes the dimensional analysis and infrared singu-
larities affect perturbation theory, due to the Goldstone mode associated with the
broken continuous symmetry.
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Both systems are, however, stable liquid phases, in which physical responses like
X, K (compressibility), (7, must be finite. The stability must then imply the exact
cancellation of singularities at any order in perturbation theory. These cancellations
are controlled by additional symmetries, and hence new Ward identities, which must
be considered besides the standard Ward identities related to the conservation of
the total particle and spin density.

In general, the use of Ward identities simplifies the structure of the underlying
RG. The main advantages of their use can be summarized as follows:
i) Ward identities provide constraints on the renormalization parameters. As a
textbook example let us recall the quantum theory of electrodynamics. Denoting
by Z%, Z3, and Zfl the renormalization parameters of the electron propagator,
the photon propagator, and the electron-photon vertex, respectively, the charge
renormalization is given by e2

R = e 2 Z 2 2 Z $ l Z f f The U(l) electromagnetic gauge
transformations read

Av -» Av + dva , ^ -> ipeiea ~ (1 + iea),
where Av is the photon field, ?p is the fermion field, and dva is an infinitesimal gauge
field. However, the renormalized fermion field is I/JR = ^f1Z^>i and hence the changes
under a gauge transformation are related by dipR = ^/Z^6ip. Using dip = itpea and
8ipR = iipRGRaRi one finds CRC^R = ea, and, since aR = y^^a, gauge invariance
implies Z\ = Z2j thus reducing the required renormalization parameters.
if) Ward identities simplify the identification of the proper running variables (effec-
tive coupling constants) and the connection with physical quantities. For example,
in interacting disordered electron systems the scattering amplitudes are dynami-
cally dressed by disorder. The required renormalization parameters (of the related
field-theoretical description based on the non-linear a-model) are identified in terms
of physical quantities of the Fermi-liquid theory via gauge invariance applied to the
specific dynamical skeleton structure of the response functions. The resulting scale-
dependent Landau parameters in x, K^ C describe various universality classes of the
metal-insulator transition besides the Anderson localization [14]. In particular, the
possibility arises for a non-Fermi-liquid metallic phase in d = 2, as opposed to the
insulating behavior of the non-interacting system [15].
Hi) Additional Ward identities related to specific symmetries control the exact
cancellation of singularities in the response functions within stable phases. For
example, the low-energy properties of interacting ferrnions in d = 1 are highly
constrained by additional conservation laws. In the presence of forward scattering,
charge and spin are conserved separately at each Fermi point +fcj? and — kp* As a
consequence, we have new relations between different skeleton structures that allow
for the closure of the hierarchical equations, leading to the solution of the model
[16].

The combination of the three procedures indicated above will be used to describe
the asymptotic (low-energy) behavior of:
1) The Luttinger liquid in d = 1 [16-18], and the crossover to Fermi liquid in d > I
[19,20];
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2) The non-Fermi-liquid phase in d > 1 induced by singular scattering [21-23].
3) The Bose liquid in the presence of condensate [24].

The program of these notes is the following: In Sec. II the Landau theory
of second-order phase transition and critical phenomena is briefly reviewed. Its
range of validity is expressed by means of the Ginzburg criterion and, by simple
dimensional analysis, it is shown that going beyond the Gaussian approximation
within a perturbative expansion leads to the appearance of infrared singularities in
d < 4 .

The first attempt to reach the fluctuation domain is described by introducing the
crucial concepts of universality and scaling. According to the block-variable idea
proposed by Kadanoff [11,25] (see also Ref. [7]), the difficult problem of dealing
with a huge number of degrees of freedom strongly correlated within a distance of
the order of the correlation length £, which diverges at critical!ty, is reduced to the
determination of the critical indices of few relevant physical quantities. The gradual
elimination of the irrelevant degrees of freedom, while describing the approach
to criticality and the emergence of the scaling behavior, entails universality, i.e.,
independence of the microscopic (irrelevant) details.

Moreover, the scaling property allows to relate different critical exponents in
such a way that only two of them are independent. The corresponding relations
are known as scaling laws.

The theoretical framework of the idea of universality is presented in Sec. Ill,
where the RG approach is sketched. After listing the general properties of a
RG transformation, we present three different implementations of the RG idea;
the Kadanoff block-variable transformation in real space; the Wilson RG trans-
formation in momentum space; the field-theoretic RG approach. The first two
implementations are the direct mathematical formulation of the hypothesis that
the elimination of the short-distance (large-momentum) degrees of freedom can
be translated into a proper rescaling of all the physical quantities. Scaling is ob-
tained asymptotically, after an infinite number of iterations of the RG transfor-
mations is performed and a fixed point of the transformation is reached. Within
the field-theoretic approach, the RG transformations act multiplicatively on the
renormalized relevant quantities while changing the effective coupling, whose value
is considered as irrelevant, and the evolution under renormalization is such that the
physics is left unchanged. Therefore, the field-theoretic RG implements the other
universality concept that one can change irrelevant variables (namely the coupling
constant, which is the first irrelevant variable), provided the relevant fields are
suitably rescaled.

After the three implementations of RG are briefly described, we use the Wilson
RG approach to study critical phenomena near four dimensions. We show that
below four dimensions there is the non-trivial Wilson-Fisher fixed point, which
moves away from the Gaussian fixed point (stable for d > 4) by increasing the
parameter e = 4 — d. All the corresponding anomalous (with respect to the Landau
values) critical exponents can be computed in power-series of the small parameter
e and we give the first-order corrections.
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In Sec. IV the low-energy behavior of some interacting fermion systems is inves-
tigated. They can be classified in terms of a small number of universality classes,
which can be understood in terms of the Wilson RG, that selects few types of
relevant scattering processes at small energies (near the Fermi surface).

We present a detailed analysis of interacting Fermi systems with strong forward
scattering. In particular, by means of the RG ideas, we first recall that, when
specific conditions on the initial coupling constants hold, the g-ology model, which
is usually introduced to describe the various dominant interactions in these systems,
reduces to the Luttinger model. In this model only forward scattering is present.
As a consequence, in addition to the total charge (spin), also the charge (spin)
associated with the left- and right-moving particles is conserved separately at each
Fermi point. Additional Ward identities then follow, which allow to obtain the
exact asymptotic behavior of the Luttinger liquid [16].

Once the Luttinger-liquid solution is obtained from the Luttinger model, we
discuss its extension to d > 1. This is done in Sec. V, where we describe a first
attempt to extend the non-Fermi-liquid behavior to d > 1 by adding a small inter-
chain hopping tj_ within a system of parallel chains [26-29]. The RG analysis shows
that t± is a relevant perturbation which drives the system away from the Luttinger-
liquid fixed point, towards strong coupling. Thus the strongly anisotropic multi-
chain approach is not appropriate to determine at which dimension the Luttinger
liquid turns into a Fermi liquid. To this purpose we present a generalization of
the Ward-identity method previously discussed, and control the evolution of the
system via Ward identities to any order in perturbation theory. We illustrate the
dimensional crossover from Luttinger liquid to Fermi liquid as d > 1 in systems
with short-range forward interaction forces [19,20]. Then, we show how the same
results can be obtained, both for d = 1 and d = 2, within the framework of the
bosonization technique [30-36].

Finally, Within the framework of the perturbative RG, we analyze a model of
fermions interacting through a singular potential [21-23], which leads to non-Fermi-
liquid behavior in d > 1.

In Sec. VI we discuss interacting Bose systems in the presence of the Bose-
Einstein condensate. We show that the presence of the condensate changes the
dimensional analysis of the problem, and infrared singularities affect perturbation
theory in d < 3, due to the soft Goldstone mode associated with the broken contin-
uous symmetry. As anticipated above, one is able to control the exact cancellation
of the singularities in all the physical quantities via Ward identities, and describe
the asymptotic (low-energy) properties of the model [24]. We show that, although
the resulting low-laying modes are always sound excitations, characteristic of the
superfluid, the linear (sound-like) spectrum is realized in a completely different
way in d < 3, where the RG fixed point is nontrivial, and in d > 3, where the
Bogoliubov mean-field theory is correct.

In these notes we do not intend to be comprehensive, and we only refer to papers
directly considered while lecturing.
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II CRITICAL PHENOMENA

A Landau Theory

In second-order phase transitions the symmetry of the high-temperature phase
is usually higher than that of the low-temperature phase. Although there are
noticeable cases in which the opposite is true, we assume for the sake of definiteness
that the low-temperature phase is the ordered (less symmetric) one. To characterize
the symmetry change between the two phases, Landau introduced the concept of
order parameter [12], which we indicate with (p throughout the paper, (p is defined
as the thermal average of a suitable field (p which is chosen in such a way that:
1) (p ̂  0 below the critical temperature Tc and (p = 0 above it;
2) (p is a continuous function of the temperature T.

For example, in a ferromagnet (p is the thermal average of the local magnetic
moment in the sample.

Usually, the order parameter is linearly coupled to an external field h (although
there are cases in which the field coupled to the order parameter cannot be realized
experimentally). Assuming that (p is constant throughout the system, the free
energy F(t = T — TC) h) is such that

1 OF

where V is the volume of the system. It is customary to introduce the ther-
rnodynamic potential F(i, y>), which is defined via the Legendre transformation
F(t, (p) = F(t, h(t, (p)) + Vh(t, (p)(pj where h is expressed as a function of t and (p
by inverting Eq. (1). Then F is such that

Near the critical temperature, the properties 1) and 2) ensure that (p is small
and hence Landau assumed that F(t, (p) could be expanded in power series of y>,
taking F = Vg^, with

9L(t, <p) = gn(t) + a(%2 + b(t)<p* + . . . , (2)

where gn is the thermodynamic potential per unit volume in the normal (symmet-
ric) phase and we are neglecting spatial fluctuations, assuming that (p is uniform
throughout the system. The absence of odd powers of (p is related to the assump-
tion that the underlying symmetry is such that (p and — (p correspond to the same
phase (in the absence of the external field h) . Terms with powers higher than cp4

are neglected within the Landau theory, since they are small for t -^ 0, and the
phenomenology of the phase transition is qualitatively accounted for by the mini-
mal model, Eq. (2). We point out that the expansion of g^ in powers of the order
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parameter and the absence of thermal fluctuations are the main assumptions of the
Landau theory.

The order parameter can be generalized to be a vector with n components, such
that (p2 = Z)J|Li $. In the case of a ferromagnet, n = I corresponds to the easy-axis
ferromagnet, with up or down ordering along a preferential axis. The cases n = 2
and n = 3 correspond to the easy-plane and isotropic ferromagnet, respectively.

The t dependence of (p is obtained by imposing that the system is in thermal
equilibrium, or, equivalently, by minimizing g^ with respect to (p (in the absence
of an external field coupled to (p):

0 t > 0 5

t < 0.
QyL
~dp

The stability of the above solution requires a(t)/t > 0 and 6(0) > 0. Assuming a
and 6 to be regular analytic functions of t, to the lowest order in t <C Tc we can
write a(t) ~ Atj with A > 0, and b(t) ~ 6(0) = 6 > 0. Taking into account the
t dependence of a(t) we get the critical exponent f3 of the Landau theory, which
controls how the order parameter ^0 ~ l^ vanishes as the critical temperature is
approached,

~~ * /» = !.
In the presence of a uniform external field h coupled to (p the equilibrium condi-

tion dgL/d(p\9=(p = h yields

2a(t)(p + 46(t)(^3 - h = 0. (4)

The susceptibility x = [df/9h]h=o is obtained from Eq. (4) by taking the derivative
with respect to h and letting h = 0 at the end. The critical exponents 7,7'
are defined through the power-law behavior of the susceptibility near the critical
temperature, x ~ ^~T/

5 f°r ^ > 0, and x ~ (~^)~7
3 f°r ^ < 0. The direct calculation

within the Landau theory gives
1

rw £

where Eq. (3) has been used, and we see that 7 = 7' = !. The positivity of
ensures in both cases thermodynamic stability.

The critical exponent 6 is defined through the power-law behavior (p(t = 0)
on the critical isotherm. Within the Landau theory a(t = 0) = 0 on the critical
isotherm, and hence, from Eq. (4),
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Another physical quantity which exhibits a power-law behavior near criticality
is the specific heat C. The Landau theory gives

C(T) = -T = -T-[aVl + b^} + Cn(T),

where Cn(T) is the specific heat in the normal phase. C is discontinuous at Tc, and
namely

lim C(T) = Cn, lim C(T) = Cn + ̂ , (5)
T-»T+ T->T~ 2®

where Cn = (7n(Tc), and Cn(T) is assumed continuous at T = Tc. This implies that
the exponents a, a1 defined by

!

ra' t > o,
(-*)-<* t < 0,

are both vanishing within the Landau theory. We point out that a vanishing ex-
ponent may indicate a discontinuity (as in the Landau theory), or a logarithmic
singularity. Experimentally, the exponents a, a' are found either positive (in the
case of a divergent specific heat), or negative (in the case of a finite specific heat,
with a cusp at the phase transition).

B Fluctuations and the Ginzburg Criterion

The spatial variation of the order parameter, either due to fluctuations, or to a
local external field, cannot be neglected, i.e., (p = c^(r), although in general the
uniform configuration is energetically favored in the absence of a local external
field. This corresponds to the fact that an additional term of the form c(V^)2,
with c > 0, appears in g^ Eq. (2), such that F = / g^ddr. Higher-order derivatives
of (p(r) are usually neglected, assuming slowly varying fluctuations.

In the presence of a non-homogeneous external field h(r) the equilibrium condi-
tion is written as a functional derivative and reads 5T/6<p(r) = ?i(r), i.e.,

For an infinitesimal field variation $/i(r), cp(r) = cpo+^(r)5 and the above equation
becomes

2a<fy?(r) + 12b^2
06ip(r) - 2eV%(r) = 6h(r), (6)

to first order in 6<p(r) and 6h(r). A relation between 5<p and 5h at zero field is
expressed in terms of the two-point order-parameter correlation function /p(r, r') =

}5 via the linear-response theory

r'fv(r, r')^(r') + O(5h2).

10
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According to Eq, (6)

1 1 dV[2a +

or in Fourier space1

The Fourier- transformed correlation function /^(q) is the thermal average of
|(f^(q)|25 where $^(q) = Je~*q"r(^(r)ddr. From the above equation we get the
correlation function in the so-called Gaussian approximation

, (7)

where £ is the correlation length, i.e., the characteristic length scale for the decay
of spatial correlations of the order parameter. In this approximation, £2 = 2cx*
Since a ~ t and y?o ~ |t|1//2

5 the correlation length diverges approaching the critical
temperature as

and hence within the Landau theory v = i/ = 1/2, where v and i/ are defined by

t > 0,
-t)-" t < 0,

for t -> 0. Evidently 2i/ = 7.
The correlation function behaves like

in real space, or

in momentum space. The extrapolation at Tc of the structure factor measured in
neutron scattering experiments on ferromagnets, leads to /^(q) ~ 1/lql2"77 with a
small (^ 10~2) correcting critical index rj. In the Gaussian approximation rj = 0.

We conclude this section by deriving the criterion of applicability of the Landau
theory. The results presented in Sec. II A neglected thermal fluctuations and

Here we are assuming translational and rotational invariance at h = 0, in such a way that

11
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therefore they are plausible results only if the fluctuations of the order parameter
within a volume of linear size £ are much smaller than the Landau value, i.e..

or
,d-4£d~4 > const =^ td~4 < const. (8)

This is known as the Ginzburg criterion. Eq. (8) is always satisfied in d > 4 if t is
sufficiently small, i.e., for T close enough to Tc. On the other hand, when d < 4 the
critical point t = 0 cannot be reached within the Landau theory. Here the dominant
contribution comes from the fluctuations and the corresponding region is called the
fluctuation region, or critical region. We point out that, for the Landau theory to
be valid for d < 4, the temperature must be outside the fluctuation region, but not
too far from the critical point, since the Landau expansion in Eq. (2) is justified
only if |t| < Tc.

The relevance of fluctuations for d < 4 is witnessed by the fact that the measured
physical quantities, although following a power-law behavior, have critical indices
different from those found within the Landau theory, which are reported in Tab.
1. In particular the measured indices, as well as the indices obtained either by the
exact solution, or by numerical simulation of various models, depend on the space
dimensionality d, as well as on the number of components of the order parameter
7i, as it is shown in Tab. 2, where the indices for the Ising model in d = 2 are
obtained from the exact solution [37], and the indices for d = 3, reported from Ref.
[38] as an example, were obtained as the average of the best available numerical
estimates (see also Ref. [39]). On the other hand, the experimental critical indices
display a large degree of universality, in so far as they are the same for completely
different physical systems, provided d, n, and any other underlying symmetry of
the system are the same2. They do not depend on the range of the interaction
forces (provided it is finite), on the crystal structure, on the specific values of the
coupling constants, as far as these do not change the symmetry of the problem.
For instance, as it has been verified by numerical calculations [39], the model for
ferromagnetic ordering described by the classical Heisenberg Hamiltonian H =
~T,ij(JxSiXSjX + JySiySjy + JzSizSjz), where Sia is the a component of the spin
vector at the site i of a given lattice, and i, j are neighboring sites, has the same
exponents as the Ising model (n = 1) for all Jx > J y j J z > 0, i.e., for an easy-axis
ferromagnet, the same exponents as the xy model (n = 2) for all Jx = Jy > Jz > 0.
The isotropic (Heisenberg) case corresponds Jx = Jy = Jz > 0, and the critical
indices do not depend on the strength of the coupling constant.

2^ For instance, the exponents measured in liquids at their critical point are ft = 0,321 -=- 0,328,
7 = 1.23 -=-1.28, v = 0.61 -=- 0.65 [38], which compare well with the indices of the d = 3, n = 1
Ising universality class, reported in Tab, 2. See, e.g., Ref. [8] for a detailed list of the values of
the critical indices in various physical systems.

12
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TABLE 1. In the first column we summarize the critical (power-law) behavior
of the various thermodynamic quantities. The second column shows the values
of the critical exponents according to the Landau theory.

Critical Laws as t, h — > 0

C(fc = o)~W-OvO,

rt* = o)~ (-*)*, / ? > o
X(fc = 0) ~ |t|-(T.T'), 7, V > 0

^ = 0)~M/ ' , * > 1

Landau Critical Exponents

a = a' = 0

0=1/2

7 = 7' = 1

5=3

!/ = !/ = 1/2

With respect to universality, the Landau theory is too universal, as it yields
critical indices which do not depend on d and n, and their values, different from
those measured experimentally, are determined only by the expansion (2) of the
thermodynamic potential in terms of the order parameter.

C Dimensional Analysis

Tab. 1 shows the values of the critical exponents calculated in the mean-field
Landau theory. The Ginzburg criterion ensures that above the critical dimension
d = 4 they are exact. What can we say when d < 4? To give an answer to this
question, we have to find a new scheme which improves the idea that the ther-
modynamic potential is expanded in series of the order parameter, as fluctuations
must be taken into account. However, the idea that the underlying symmetry plays
a relevant role in selecting the starting model, which originally guided Landau in
writing Eq. (2), is sound. Moreover, the phenomenology suggests that the power-
law behavior of the physical quantities, and the self-similarity properties entailing
universality, which are related to the divergence of the correlation length at criti-
cality, must survive in the new reduction scheme, leading to the effective model for
a system near criticality.

The functional-integral formulation of specific models (e.g., the Ising model, see
Ref. [40]), as well as the physical idea that the microscopic details are irrelevant,
and that there must exist a coarse-graining procedure which allows to eliminate the
microscopic (fastly thermalizing) degrees of freedom for a given configuration of
the slowly fluctuating field 0 [7], suggest that, near the critical point, the partition
function Z is written as a functional integral over 0, Z = f D(pe~H^^T . The

13
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TABLE 2. Dependence of the critical indices on the space dimensionality d, and on the
number of components of the order parameter n.

Index

a, a'

P

7,7'

5

i]

i/, i/

d = 2, n=l

(king)

0

1/8

7/4

15

1/4

1

d = 3, n = l

(Ising)

0.110

0.325

1.240

4.82

0.03

0.630

d = 3, n = 2

(zy)

-0.007

0.346

1.316

4.80

0.03

0.669

d = 3, n = 3

(Heisenberg)

-0.115

0.365

1.387

4.80

0.03

0.705

simplest form of a coarse-grained Hamiltonian is

(9)

where 0(r) is a continuous scalar field, which can be generalized to a n-component
multiplet (0i,..., 0n), with 02 = E?=i 0f-

The order parameter (p is the thermal average of (p. The absence of terms with
powers of (p larger than 4, and of spatial derivatives higher than the second is
assumed here, and finds a justification only within the dimensional analysis and
the RG approach. Within the Landau theory the model Eq. (9) is the minimal
model which produces the phase transition and the critical exponents. The Landau
theory corresponds to compute Z by evaluating Hefi at the functional extremal, i.e.,
for (p = (p. The Gaussian approximation includes the effect of the fluctuation in
an approximate manner, by expanding the integrand in Eq, (9) up to quadratic
terms in the fluctuation 6$ = (p — (p, giving rise to the expression (7) for the
order-parameter correlation function.

The question we want to address in this section is: Is it possible to improve the
Landau theory beyond the Gaussian approximation?

Let XQQ be the physical dimension of the quantity Q in units of the inverse length.
Since H^/T is a dimensionless quantity we derive from Eq. (9)

d-2 (10)

14
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where XQ
C = 0 has been assumed. Using the above relations one can express the

effective Hamiltonian H^/T in terms of dimensionless quantities only3. Let us
define

2-d „ 1 d-460 = a 2

and let us assume, for the sake of simplicity, that t > 0 and h = Q. Then

1 tfeff = 1 #0 + ̂ int - / d*x[(W)2 + tf] +b0/ dd^,

where lfint takes into account the interaction between the fluctuations. The value
c = 1 has been chosen without loss of generality, by a redefinition of p. If 60 — 0
the Gaussian approximation is exact. In general 60 ̂  0. The case 60 «C 1 is a good
starting point for perturbation theory. Nevertheless, we recall that bQ = a^b and
a ~ t = T — Tc. Therefore, when t —> 0 and d < 4, 60 — » oc and perturbation theory
becomes inappropriate. On the other hand, when d > 4, 60 — > 0 for t — »• 0 and the
Landau mean-field theory becomes more and more accurate when approaching the
critical point.

We observe that the dimensional analysis is very powerful. It predicts not only
the correct critical dimension d = 4, but also the Landau critical indices of Tab.
1. Indeed, by definition, /^(|r|) has the same dimension of (p2: x® = d — 2,
At the critical point /p(|r|) ~ |r|~^~2+7^5 and hence TJ = 0. Analogously, since
£ ~ \j\fa ~ \t\~1^ ', we deduce v = 1/2. It is not hard to see that the dimensional
analysis cannot predict values for the critical exponents different from the ones
assigned by the Landau theory. At a first sight the critical index (3 seems to be
not reproducible by simple dimensional analysis. Indeed, x^ = (d — 2)/2 and a~t
so that one could say (p ~ |t|(d~2)/4 and (3 ̂  1/2 when d ^ 4. The problem can
be solved by noting that the value of the order parameter within the mean-field
theory is (p ~ (a/6)1/2. Therefore, one should write

^ t ,
)/4

which yields the correct result. We shall see later that, above the critical dimension
d = 4, 6 is a "dangerous" parameter and we have to pay attention in calculating
physical relations near criticality.

As a matter of fact, the critical exponents within the Landau theory are too
universal, and do not depend on the dimensionality d and on the number of com-
ponents n of the order parameter. As we anticipated above, this is a consequence
of the fact that the Landau theory incorrectly assumes that the thermodynarnic
potential can be expanded in powers of the order parameter4, and neglects the

3) ^g following procedure is not necessary, but it allows to immediately identify the proper
dimensionless coupling const ant, without computing Feynman diagrams.
4^ The expansion in powers of the field (p in Eq. (9) can be justified a posteriori via scaling for
3 < d < 4. By no means it is correct in the thermodynamic potentials.
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effect of strong fluctuations, which for d < 4 become more and more relevant when
the critical point is approached. Once these are taken into account in a proper way,
one may expect that the bare physical dimensions x° are corrected, and that these
corrections crucially depend on d and n.

D Universality Principle

The first breakthrough in understanding the physics near the critical point came
from the universality principle [11,25]: provided the proper choice of the relevant
variables is made, say the field h conjugate to the order parameter and the deviation
t from the critical temperature, we can safely change the other variables, as long as
they do not assume a value which changes the symmetry of the problem, leaving
the physics unchanged. Said in other words, systems which differ only in irrelevant
variables share the same critical behavior.

Let {d} be the parameters specifying the details of the interaction. Then, the
critical behavior of two systems differing only in the values of the £'s is the same
(similarity property) . The universality principle establishes a one-to-one correspon-
dence between the quantities of two similar systems. In formulae

(11)

where F/T = — In Z is the dimensionless free energy, tf and hr are the rescaled
values of the relevant quantities t and h, and {£*}, {^} are the irrelevant parameters
entering in the Hamiltonian of the two systems, A and B are two functions of the
irrelevant variables only. We remark that the relations (11) are written for the most
singular part of the corresponding functions.

F is the generating functional of connected correlation functions

In particular y?(r) = /^(r), and /^(r = FI - r2) =
We can also express the universality principle by eliminating the "field" variables

in terms of the "density" variables. This is done by Legendre-transforming the
dimensionless free energy F/T and yields the thermodynamic potential

= F(t, h(t, <p; {£}); (Ci» + ddr h(t, ̂

which generates the Ti-point vertex functions
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In particular r^(r) = ft(r). The Fourier transform of F^(ri,r2) is
[/^(q)]"1, where we have factorized a 5 function in momentum space, which imple-
ments momentum conservation when F^ depends only on ?\ — T^. The universality
principle now reads

h(t, w {&}) = ,*({&}, {G})h(t, v'; {</}), (12)

Eqs. (11) and (12) are the formal content of the idea of irrelevant and relevant
variables.

E Scaling Hypothesis

One step further in building a theoretical framework for critical phenomena was
the phenomenological scaling theory [9-11,25,41].

On the basis that the correlation length £ diverges for T — > Tc, Kadanoff assumed
the length scale as one of the irrelevant details: whatever is the length scale we
choose, near criticality the system appears the same. Two obvious relevant fields
are t and ft, which drive the system out of, or toward criticality.

Let us measure all the physical quantities in terms of the inverse lattice spacing
A;

where x® = #°, since a = At and we can take x^ = 0 without loss of generality.
The scaling hypothesis states that if FA -^ TA/S, where s is the scaling parameter,
it is possible to rescale t^ h^ <p\ and all the irrelevant parameters &,A in such
a way that, sufficiently near criticality, the most singular parts of all the physical
relations do not change, i.e., the physical content, as far as the critical behavior is
concerned, remains unchanged. In other words, there must be scaling dimensions
xt, x^i Xhj x^ in the transformations

such that the s factor disappears everywhere when FA —> FA/S. It is worth to note
that the scaling dimensions x are a priori different from the bare dimensions x°.

We can easy identify the parameter xt. Near criticality £A ~ I^A!"" and the
rescaling implies £A — ̂  CA/S = CA/S and t& — > t&/8 = t&sxt. Therefore

* '

11
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Analogously, we can identify the parameter x<p. At criticality /^A = {^A^A}
|rA|~^d~2+^. The requirement of invariance under a scaling transformation yields

Moreover, since for any couple of conjugate variables (like (p and h) the sum of the
two scaling dimensions is equal to the space dimension d we have xv + Xh = d, i.e.,

d + 2-7]
xh = —— —— -. (14)

While all the irrelevant parameters of the theory should asymptotically disappear,
the two phenornenological parameters xt and XH (or or^), related to the relevant
variables, are identified in terms of the physical indices v and r/.

The difference between the scaling dimension x and the bare dimension x° is
called the anomalous dimension. For instance, xv — x° = rj/2.

F Scaling Laws

The scaling hypothesis is a very powerful tool to generate: i) general homoge-
neous expressions for the physical quantities, and ii) exact relations between the
critical indices. Below, we show that a, /?, 7, £, 77, and v are related by 4 scaling
laws: only two critical exponents are independent5, which correspond to the two
parameters xt and Xh introduced in the phenomenological theory.

Let us denote with a bar the thermodynamic potentials expressed in terms of
dirnensionless quantities. The scaling hypothesis on the dimensionless free energy
per unit volume F = F/VT reads

which is a generalized homogeneity condition. A possible solution for this functional
equation is6

* A < O . (16)

The crossover index ̂  = x^/Xt = vx^ distinguishes between relevant and irrel-
evant variables:

5^ The generalized homogeneity relation (15) does not distinguish between the two limits from
above and from below the critical temperature, therefore 7 = 7', a = a', and i/ = j/.
^ Depending on the sign of t^ we have in principle two different solutions for a given choice of
the variable to put in front of /. In the following we work with t& < 0 without loss of generality
since the critical exponents do not depend on from where we approach the critical point.
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i) If (f>i < 0, d disappears as t —» 0 and is thus irrelevant. The corresponding
variable has no critical fluctuations.

ii)]f<f>i>Q,£i is relevant. When \t\^> £$ * the system behaves as if approaching
criticality with d = 0, However, by further reducing t, the crossover region ̂  ~ |t|^
is reached. The scaling dependence on t is violated and the behavior of the system
is controlled by the non vanishing relevant variables when \t\ <C y •

Hi) If fa = 0 the corresponding variable is called marginal. Here we may have
an apparent violation of universality with critical indices depending continuously
on a parameter [42].

Assuming t and h as the only relevant variables, all the (Js disappear from the
equations when s —> oc, or t& —»• 0. The thermodynamic potential, the order param-
eter, and the correlation function become homogeneous functions of the variables
t, h (and r, or q) with the appropriate degree of homogeneity. This implication
has been tested in several systems [43],

We now proceed to derive the four scaling relations. If

f(hA = 0; {Ci,A/|tA|**/a5t} -> 0) ̂  0, ±00

when £A —» 0, the most singular part of the specific heat is given by

Comparing this result with C ~ \t\\ a we get the first scaling law

I i/d = 2 - q. I (18)

The power-law behavior of the order parameter in zero external field can be
obtained from Eq. (16) together with the relation (p& ~ —(dF/dhA_)hA=Q*

v(d-xh)
i

apart from a finite multiplicative constant. By definition of the index /?, (p& ~ \t&f.
Therefore

i/(2 - 77) = 2 - a - 2/?, (19)

where Eqs. (13), (14) and (18) have been used.
Analogously, we obtain a scaling law involving the critical exponent 7. Indeed,

from Eq. (16) we have

and using Eq. (14) together with the previous two scaling laws and the definition
^A ~ |£A|~T> one obtains
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a + 2/3 + 7 = 2. (20)

The last scaling law can be derived as follows. Let us corne back to Eq. (15) and
write the solution in the equivalent form

hA > 0.

Assuming f(t\ = 0; {d.A/h^ X h } —> 0) ̂  0, ±oc when h\ —> 0, we get the power-
law behavior of the order parameter on the critical isotherm

(21)

The exponent of h& in Eq. (21) is exactly 1/6 and the fourth scaling law reads

(22)

where Eq. (14) and the previous scaling laws have been used.
Taking the mean-field values of the critical exponents from Tab. 1, the last

three scaling laws, Eqs. (19), (20) and (22), are satisfied. What about Eq. (18)?
We observe that, among the four scaling laws, Eq. (18) is the only one in which
the space dimensionality d appears explicitly. Since v and a do not depend on
d at mean-field level, Eq. (18) is violated for the mean-field exponents if d ^ 4.
Nevertheless, v = 1/2 and a = 0 are the right values when d > 4. How to solve this
paradox? In d > 4 there is a dangerous irrelevant parameter among the (?s, i.e.,
the interaction strength b. Let us consider Eq. (17) once more; from the explicit
solution of the Ginzburg-Landau model we have C ~ 1/6. According to the scaling
relation

\tA 0; &b/xt ' * *

However, the explicit expression (5) for the specific heat in the Landau theory has
the irrelevant variable 6 in the denominator, and therefore / m; b\/t^ , . . .J does
not behave as a constant for £A —> 0, as it is required to derive the scaling relation
(18). Taking into account the extra power of t& coming from / via the dependence
on 6, we get C ~ \t^\v^Xb^~2, Moreover, the vanishing of the anomalous dimensions
in d > 4 implies x& = x^ = 4 — d and hence Eq. (18) becomes 4i/ = 2 — a. We
conclude that the correct scaling law is
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We can now express all the indices in terms of v and rj:

a = 2 — z/min(<i, 4),

r min(d, 4) + 2 - \
o = —. , , ,v—^—

where rj = 0 and i/ = 1/2 for d > 4.
For d = 3, the scaling properties are well satisfied by the experimental values of

the critical indices, and for d = 2 by the exact solution of models, e.g., the Ising
model (see Tab. 2). We have therefore to provide a microscopic foundation to this
phenomenological theory.

Ill RENORMALIZATION GROUP

A Introduction

As discussed in Sec. II, the phenomenological theory of critical phenomena finds
a sound basis in the logical sequence of universality, scaling, relevant and irrelevant
variables [10,11,25,41].

The difficult problem of a large number of degrees of freedom strongly corre-
lated within the coherence distance £ which diverges at criticality, is thereby in
principle reduced to the determination of the homogeneous form of the relevant
response functions, and the evaluation of few critical indices. Once the mechanism
which controls the approach to the scaling behavior of the relevant quantities is
understood, universality follows immediately.

In order to give a basic microscopic foundation to universality and to the scaling
theory, an exact transformation is needed to reproduce the scaling transformation
asymptotically near the critical point.

Alongside with the scaling theory, the field-theoretic approach was introduced
into this problem simultaneously in the USSR and in Italy. In 1969 it was noticed
[44] that the field-theoretic RG equations [1,2], generalize the universality relations
in the sense that they relate one model system to another by varying the coupling
and suitably rescaling the other variables and the correlation functions. Under the
assumption that the coupling disappears from the equations near to the critical
point, the homogeneous form of the static order-parameter correlation function is
obtained and a microscopic definition of the critical indices is given [44-46].

Migdal [47] and Poljakov [48] started from a detailed analysis of the diagrammatic
structure of the correlation functions rather than from global conditions such as the
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RG equations, and, using Ward identities, tried to build an ad hoc renormalization
procedure7.

The scaling picture had then been given a theoretical basis and the RG appeared
as the right tool to investigate the scaling behavior of the correlation functions.
Nevertheless, the mechanism by which the memory of the original coupling disap-
pears from the RG equations via the fixed point of the transformation was not yet
made explicit since no way to make reliable calculations of the critical indices was
found.

Wilson [3] gave a great contribution to the understanding of the physics underly-
ing the RG procedure and proposed a simple mathematical realization of the other
very physical idea of KadanofFs universality of grouping together degrees of free-
dom associated with larger and larger cells. He proposed a procedure of elimination
of the short-wavelength fluctuations, with momenta between the upper momentum
cutoff A and A/s, and a suitable rescaling of the resulting variables. The mecha-
nism of disappearance of the original coupling constants was then clarified and the
calculation of the critical indices was performed via the numerical evaluation of the
resulting recurrence equations. As an alternative scheme to evaluate the critical
indices, the e expansion (e = 4 — d) of the transformation around four dimensions
was also proposed by Wilson and Fisher [50] (see Section HID).

After Wilson's great advances, it was not difficult to develop the analogous mech-
anism for the field-theoretic RG also, by realizing the crucial role played by the
dimension of the coupling constant in a field-theory model for a correct description
of critical phenomena [51]. For a c^4 model, this was actually noticed in the classical
limit of an interacting Bose gas, studied via the Matsubara technique for the corre-
lation functions. The theory was then completed [52,53] within the field-theoretic
RG approach (including the Callan-Symanzik equation) by the introduction of the
thermodynamic potential as the generating functional of the relevant correlation
functions, which permitted the discussion of the thermodynamic scaling.

Few theories have been supported by so many successes, nevertheless a certain
knowledge of the fundamental symmetries inherent to the problem, in particular
of the order parameter, has to be assumed in order to make the proper choice of
the basic variables on which to operate the transformation (i.e., the partial trace
over the degrees of freedom associated with the short-range behavior in the Wilson
scheme, and the renormalization of the relevant fields in the field-theoretic RG).

One must therefore translate a given problem in terms of an effective Hamilto-
nian expressed through physically significant variables. This effective model should
account for a qualitative thermodynamic description of the system at mean-field
level. This is then assumed as the zeroth approximation suitable for the appli-
cation of the RG transformation. A bad choice of the starting point and of the
corresponding group transformation may lead to unphysical results [54].

Most of the so-called complex problems in statistical mechanics are those for

7^ This approach was later developed into the skeleton expansion method for a practical calcula-
tion of the critical indices [49].
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which it is difficult to identify the relevant physical quantities, and in particular,
a suitable parameter to write an effective action and the corresponding mean-
field theory. In this section, as a matter of an introduction, we deal with the
simplest case of critical phenomena, where the starting mean-field theory is well
characterized. For instance, in the case of an ordinary magnetic critical point, the
spontaneous magnetization (the order parameter cp), the deviation from the critical
temperature t, and the coupling constant 6, are considered as the basic variables.
Three coefficients are therefore present in the RG equations for the thermodynamic
potential. One of these, the coupling constant, will assume an asymptotic value by
iterating the RG transformations towards the fixed point. The corresponding scale-
invariant theory is fully determined by the remaining two coefficients evaluated at
the fixed-point value of the coupling constant, thus yielding two independent critical
indices.

Of course different aspects of critical phenomena and more involved scaling the-
ories manifest themselves when further symmetries derived from the phenomeno-
logical analysis are taken into account.

In the remaining part of this section we closely follow Refs. [7,55,56].
In Sec. Ill B we summarize the general requirements that a "good" group trans-

formation has to satisfy in order to describe the physics of critical phenomena.
Then, in Section III C we describe the Kadanoff-Wilson transformation. In Section
III D we apply the Kadanoff-Wilson transformation to study the critical phenomena
near d = 4. Finally, in Section III E we review the field-theoretic RG approach.

B General Properties of a Group Transformation

Let H be a preassigned space of Hamiltonians H specified by a given set {^j} of
parameters and Rs be a RG transformation depending on a parameter s and acting
on H EH. Then the following properties must be satisfied [57]:

a) The transformed Hamiltonian H1 belongs to the preassigned space

RS(H) = H1 e H,

or, denoting with { -̂} the parameters of Hf, ^ = f8,i({lJ>j}). In principle the
preassigned space must be larger than the subspace of the initial Hamiltonian,
since new coupling constants are generated by the RG procedure. However, most
of the coupling constants (the irrelevant ones) are subsequently washed away by
the RG flow, so that transient variables are only important in determining the
approach (and the corrections) to scaling,

6) Composition law. Since we are going to interpret the parameter s as a change
in the length scale (scaling factor), the subsequent application of two RG transfor-
mations with parameters s and sf must infact coincide with a single transformation
with parameter ss', i.e.,

(23)
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c) Invariance of the thermo dynamic potentials

F[RS(H)] =

To ensure an invariant critical behavior it is sufficient that this equality holds for
the most singular part of the thermodynamic potentials.

d) Smoothness (or analyticity) postulate. Let H+rdH be a Hamiltonian "close"
to H for r «C 1, i.e., if {p>rj} are the parameters specifying H + rdH, then 5p,j =
P'rj — f^j ~ O(r). We assume that

RS(H + rSff) = R,(H) + rLs(H)6H, (24)

where Ls is a linear operator which depends on H. This amounts to say that
spurious (unphysical) singularities are not introduced by the transformation. In
terms of the parameters of the Hamiltonian, Eq. (24) is equivalent to

e) The RG transformation must be constructed to extract the dominant large-
distance behavior of the system near criticality. Associated with a given RG trans-
formation there must be a set of fixed points H * E H defined by RS(H*) = H*. Two
trivial examples of fixed points are found when the system is completely ordered
(T = 0) or completely disordered (T = oc): in both cases a RG transformation
should leave the system unchanged. These are the low-temperature and high-
temperature fixed points respectively. Any system out of criticality is attracted by
one of them , depending on whether T < Tc or T > Tc respectively. At criticality
£ = oo, and it remains infinite under any finite number of RG transformations.
The corresponding fixed point is a critical fixed point. When the transient behav-
ior disappears, as we shall see, scaling is achieved. In the following we assume
that there is at least one non-trivial fixed-point Hamiltonian H* for an interacting
system, separating the two non-critical regions. Then, if {^} are the parameters
specifying JJ*, they are such that

From the composition law, Eq. (23), and the smoothness postulate, Eq. (24),
we have

RS(RS'(H + rdH)) = RSS,(H + rtH) = RSS,(H] + rL,

or

RS(RS'(H + r5H}) = RS(RS,(H)
= RSS,(H) + rLs(R,(H))Ls,(H}5H,
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and hence, in general LSS>(H) = LS(RS'(H))LS>(H), and only at a fixed point the
composition law for the linearized transformation simplifies as

Let us assume that LS(H*) is diagonalizable and indicate with {A*} its eigenvalues.
Eq. (25) implies

\* _ Qxi / _ i 9AI — o , I — i, £, . . . i

and xi are the scaling indices (or scaling dimensions), when s is identified with
the change of the length scale. They are an intrinsic property of the fixed-point
Hamiltonian H*. The Hamiltonians which flow to the same fixed point under the
RG transformations belong to the domain of attraction of H* , and lead therefore to
the same scaling indices. Universality amounts then to say that all the Hamiltonians
within the same domain of attraction share the same critical behavior.

We denote by h* the eigenvectors of LS(H*) which correspond to the eigenvalues
A*. We can use the eigenvectors to expand any perturbation of the fixed-point
Hamiltonian

rY.sXlfLihl (26)
i i

From Eq. (26) we read
fti = sXlfii*

The {fa} are combination of the original {6jj,j} and are named linear scaling fields
[58]. If xi > 0 and the corresponding fti ^ 0 the RG transformations drive the
system away from H*, eventually moving it toward another fixed point. The eigen-
vectors with positive scaling dimensions define the directions of escape from the
critical surface and are relevant fields. On the other hand, the eigenvectors with
negative scaling dimensions define the tangent plane to the critical surface at JJ*5

and correspond to the irrelevant variables. They determine the transient behavior
of the system, when approaching criticality.

C Kadanoff- Wilson Transformation

In Sec. IIIB we have listed the general properties of a RG transformation. Here,
we explicitly build up two examples of a RG transformation. The first one is concep-
tually simpler and follows the block- variable idea put forward phenomenologically
by Kadanoff [11]. It deals with transformations in real (configuration) space, which
correspond to grouping variables belonging to a cell of size s [55,57,59,60]. The
second is due to Wilson [3,5], and deals with transformations in momentum space.
Although the main ingredient is again the elimination of degrees of freedom at short
distance, it is of much simpler implementation.
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1 Transformation in Configuration Space
Let us consider a statistical system defined by a given probability distribution

where fa is a continuous random variable defined on the site i of a d-dimensional
lattice (as it is customary, the temperature has been absorbed in the parameters of
the dimensionless Hamiltonian If), the order parameter being the thermal average
of (p over the distribution P, (p = {^}p.

If A"1 is the original lattice spacing, we construct a new lattice with lattice
spacing sA"1 as follows. If j labels the position of the center of the cell with sd

points ^, the block variables are defined as

where Cj is the cell centered at j. Before we can compare the new probability
distribution P89 associated with the block variables, with P, we have to measure all
the physical quantities in units of the new lattice spacing sA"1. In order to obtain
a non-trivial asymptotic probability distribution8 we also need to rescale the field
variable while measuring the distances in the new units: j — »• j/s => <f>j —>
<pysx<p = <f>j/8. The exponent xv coincides with the scaling index, as we show in
the following. The probability distribution for the block variables is

] IP <f*l. - E Vi - (27)

We define a new Hamiltonian Hs such that Ps = e~Hs~Fs , and the transformation
associated to the probability distribution corresponds to a transformation Rs acting
on H G Hj Hs = R8(H), which is defined modulo a constant term that we can fix
putting H8[{<pj/s = 0}] = 0, and associating the part not containing the field (p to

2 Scaling
We have seen that for a given Hamiltonian H e W, the RG transformation R3

generates a new Hamiltonian H s € H with the same large-distance properties.
Let us make this statement more precise in the case of the two-point correlation

^ In Sec. Ill C 3 we shall see that also in the trivial case of non-correlated, identically distributed,
random variables one has to properly rescale the field to avoid a totally flat or extremely peaked
asymptotic probability distribution.
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function, showing how the correlation function for H is related to the one for H3
We have

<f>i/s ~ s d+av Y< & Vj/Wj'l*

In the last equality we made explicit the fact that all the sites i within a given cell
j can be labelled with j provided \j — f

In particular, taking the limit s

sA"1. Thus

,-**], fv[\q\s,R.(H)] = s

• oo, and assuming R8(H)

f^, H}.

• JJ*, we get

for* -H. oo.

Since s must disappear in the right-hand side of the equation, /^[|r|/s,!P] ~
/VJ[l,lf*](s/|r|)2x¥'. Provided /^[l,^*] is finite, we obtain the asymptotic scaling
behavior

1 _ 1 _ d-2 + ri
Jv(\r\) ~ |r|2av ~ |r|(d-2+»7)/2 ^ ^ ~ 2

The Hamiltonian U* corresponds to the asymptotic distribution P^ ~ e~H*.
In this case the Hamiltonian H describes a critical system. The susceptibility x
is proportional to /^(q = 0), Since /^(q) ^ |q|2ar^~d, with d — 2x^ = 7/z/, x ig

infinite, and the system is critical, only if x^ < d/2 (7 > 0), i.e., rj < 2. If ̂  = d/2
(77 = 2) the susceptibility is finite and the system is not critical. In this case, when
s —xx> and the block variable becomes extensive, its variance is proportional to sd

and diverges, unless the variable itself is normalized as

3 Probabilistic Considerations

In general, let {&} be a set of random independent variables, identically dis-
tributed with zero average and finite variance [7,59]

i) = 05 {&&/) = feo-2.

Then, construct a block of N variables (£>N = Y$L\ & (with JV ^ sd in the previous
example), whose variance is
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(28)

and the fluctuations satisfy the standard square-root law -\/(^}/N ~ l/^/N, Since
the variance of (pN increases linearly with JV", the variance of the normalized variable
(p/^/N is finite, i.e., it has a well defined asymptotic probability distribution and if
we take N = sd we read the non-critical index x^ = d/2, as anticipated above. This
result should not be a surprise. Indeed, the distribution for the sum -7= Y^=\ Pi of
independent variables tends to a Gaussian distribution when N —»• oo according to
the central limit theorem.

If the variables are not independent, Eq. (28) becomes

l) ~ NX for AT -+ oo,
W iif 1=0

where in the last step we made use of translational invariance and of the expression
of the susceptibility as the Fourier transform of the correlation function at |q| =
0. If the system is not critical, the finite susceptibility x replaces the variance
<j2 and the square-root law for the fluctuations is still valid. This means that,
although there are correlations in the system, these are short-ranged, so that one
can always find independent subsystems (block variables), and the central limit
theorem follows. In this case, the only scaling dimension giving a well-defined
asymptotic probability distribution is x^ = d/2 as in the case of independent
variables. On the other hand, if the system is critical the correlations are long-
ranged and

with 2d — 2xp > dj i.e., x^ < d/2. The square-root law is no longer valid and the
variables are strongly correlated. The correct normalization of the block variables
still guarantees the existence of a well-defined asymptotic probability distribution,
but we do not expect it to have in general a simple Gaussian form. The choice of
the proper normalization of the block variables is related to the choice of the correct
asymptotic behavior of the correlation function of the order parameter, which is
the procedure used by Wilson to select the proper fixed point [50].

4 Transformation in Momentum Space

Although intuitively simple, the idea of constructing block variables encounters
several technical difficulties when it is applied in practice. First of all, the integral in
Eq. (27) is involved, and cannot be worked out analytically in all the relevant cases.
Secondly, ad ioc decimation procedures which have been proposed to circumvent
the problem of directly calculating the integral in Eq. (27), sometimes are very
successful, but sometimes lead to contradictory results, and in the worst cases, to
a change of class (or to spurious classes) of universality under RG transformation.
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The above problems are partially avoided by a technically simpler realization of the
physical idea that short-distance degrees of freedom should be eliminated, which
relies on the momentum-space formulation proposed by Wilson. We first introduce
the Fourier transform for the random variables (p^

E e-ik'r^, ft = E eik'^k, (29)

where r» is the vector position of the site i and N is the number of lattice sites
(N —> oo in the thermodynamic limit). Then we realize that the short-distance
details of a given configuration {c^} are related to the large-momentum components
of the Fourier transform (p^. The elimination of the irrelevant degrees of freedom in
real space, for 0 < |r| < sA"1, can be reformulated as the elimination of the large-
momentum components of fa, for A/s < |q| < A. The RG-transformed probability
distribution is

' - r „ 1 \11 dtpk P[{<AJ1 (30)J.J. ' I ^ f J J I

where the inverse lattice spacing A acts as an ultraviolet cutoff for momentum
integrals, and we have taken into account Eq. (29) to find the proper rescaling
for the Fourier mode fa. As before, xv is a parameter of the Wilson transforma-
tion, introduced to obtain a non-trivial fixed-point distribution. Like Eq. (27),
Eq. (30) induces a transformation Rs on the space H. Even if the two trans-
formations are technically different, both of them lead to a transformation for the
correlation function which, asymptotically near the fixed point, reduces to a scaling
transformation.

D Critical Phenomena near d = 4: e Expansion

In this section we sketch a systematic procedure to take intro account the inter-
action among the fluctuations, and apply the concepts discussed so far to study
the critical phenomena near d = 4, following Ref. [7]. We use the Wilson ap-
proach in momentum space, with ^[{0}] ~ e~H^, applied to the simplest form
of a coarse-grained Landau-Wilson dimensionless Hamiltonian, Eq. (9), which we
rewrite as

f
-h<f>], (31)

where, as it is customary, tg and u are now used instead of a and 6.
As already noted, the thermodynamic potential of a system described by the

Hamiltonian in Eq. (31) coincides with the Landau form, Eq. (2), if the partition
function is evaluated in the saddle-point approximation. In momentum space, H[<£>]
can be written as
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£———*i' \f* ll'~1""""""""""' I T ^

|k|<A ^

where L is the linear size of the system and C^Q is the zero mode of the field variable
<p.

The idea which supports the simple form (31) is that near criticality the mi-
croscopic details are not relevant, which means that only the most slowly varying
contribution of the spatial fluctuations ~ (V(^)2

5 should be considered. As far as
the absence of powers of the field (p larger than the fourth is concerned, the idea
is that, even if these interactions are generated in the intermediate steps of the
coarse-graining procedure, they are washed out by the RG flow when approaching
criticality, since the corresponding coupling constants have negative bare dimen-
sions near d = 4, and are thus irrelevant in the RG sense. This is also true for terms
containing powers of the spatial derivatives higher than the second. In principle,
one can add to the above Hamiltonian (31) terms of the form Un,m / ddr(Vm(p)n

with integers n and m. For the specific case under consideration

to 5 W350 = 05 W4?o = W, W251 = C. (33)

According to our convention, c is dimensionless; hence, the bare dimension of the
parameter un,m in unit of the inverse length is

<m = d-nm-£(d-2) . (34)

It is a simple matter to verify that for the parameters in Eq. (33) we get the values
in Eq. (10). The interaction parameter un,o has positive bare dimension when
d < 2n/(n — 2). Thus all un$ with n > 4 are irrelevant for 3 < d < 4. Moreover,
at fixed d, x^m < x°j0, i.e., terms with gradients are more irrelevant than terms
without gradients for a given n. This analysis can be corrected by the presence of
the anomalous index r/, which, however, is experimentally small (~ 10~2).

The (p* model, Eq, (32), is then a good starting point as long as we work with
3 < d < 4.

Following the Wilson procedure, the renormalized Hamiltonian is given by

(35)

where Eq. (30) and the relation d/2 — x^ = 1 — 77/2 have been used.

1 Gaussian Fixed Points
In the simplest case u = 0 the elimination of the large-k degrees of freedom can

be performed exactly, and the integral in Eq. (35) gives
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(36)
^ '

|q|<A

where h = Q has been considered for simplicity. If the summation over k would
extend from zero to A, Eq. (36) would give the free energy of the Gaussian model,
with the complete description of the system. Nevertheless, we consider here the RG
approach to show how the formal apparatus works in this simple, exactly soluble,
case. The renormalized parameters are

ts = s2~%, cs = s'^c, us = u = 0,

so that three fixed points are possible:
A) 7] = 0 and t0 = 0, for any c > 0. The constraints h = t0 = 0 define the critical

surface in d > 4 (see below). Since xv = (d — 2)/2 < d/2 the block variables are
strongly correlated (via the gradient term). This fixed point is a critical (Gaussian)
fixed point with rj = 0, if = 1/2, and all the critical indices are those derived in the
context of the Landau theory, with no anomalous dimensions.

B-C) j] = 2 and c* = 0 for any t0- In this case, since x<p = d/2, the central limit
theorem holds and the fluctuations of the block variables obey the square-root law.
In particular, for to > 0 (T > Tc) each block variable has an independent Gaussian
distribution and we get the high-temperature fixed point. For t0 < 0 (T < Tc)
we need a small u > 0 to stabilize the system (otherwise large values of the block
variables are energetically favored). The asymptotic probability distribution is still
normal and the associated fixed point is the low-temperature one.

2 Wilson-Fisher Fixed Point
The Gaussian fixed point A is stable for d > 4 and describes the correct critical

behavior, whereas it is unstable for u ^ 0 in d < 4. This can be easily seen
by computing how the u parameter renormalizes to lowest order in perturbation
theory, and linearizing the transformation around the fixed point. Let

H* = cfddrV, 6H =

be the fixed-point Hamiltonian and the perturbation respectively. It is convenient
to write the field variable (p as

where
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are the fast and slow modes, respectively. Then,

i-6H+ ...1 .
J

When re-exponentiated, the expansion in powers of 6H gives rise to a cumulant
expansion for the renormalized Hamiltonian

•*[0<] + (SH)(ast - -[<(£tf)2}(ast - <«f)LJ + • • • ) , . . . . . (37)

where

(A)fast =

defines the average of a functional A [92] with respect to the fast modes c^>.
To first order in 6H, we read from Eq. (37) the linearized RG transformation.

The proper normalization for the block variables is still rj = 0, since at this order
there are no corrections to c, but now t8 receives a contribution coming from the
interaction between the fluctuations and us has a sd factor coming from the inte-
gration over the configuration variable and s~4xv = s4~2d coming from the rescaling
of the fields. The RG equations become

2 r / i M _ 2-
L V sd~2J\

with e = 4—d A(n, d) is a constant, which conies out from the explicit evaluation of
the cumulant (6H}fBSt and depends on c, on the number n of components of the field
variable (p (n = 1 in the Ising case), and on the spatial dimensionality d. Eq. (38)
shows that, for d < 4, u grows under the action of the RG transformation and the
Gaussian fixed point is unstable with respect to a new direction introduced by the
interaction (besides the t direction). On the other hand, if d > 4, u is irrelevant and
the Gaussian fixed point describes the critical behavior of the originally interacting
system. This result can be interpreted as the RG version of the Ginzburg criterion.

Considering e as a small positive parameter, we can ask if the slow running away
of us can be compensated by the non-linear terms, giving rise to a new fixed point
with t*, u* ~ e. Indeed, it can be shown that the contribution to the renormalization
of the coupling u coming from the quadratic terms in 5H in Eq. (37), starting at
d — 4 and considering terms up to O(e2), yields

us = s€u[l — g(n^d= 4)wlns],
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where g(n^d) is a positive constant for d = 4 (e = 0), which comes out from the
evaluation of the cumulants (WI2}fast — ($-H}fast- It is worth to note that the only
true perturbative parameter here is e: as e —> 0 the Wilson-Fisher fixed point
continuously moves toward the Gaussian fixed point, ending on it when e = 0.
Therefore, to get a meaningful expansion from the cumulant expansion in Eq.
(37), we have to group those terms of the same order in e. This is what is called
the e expansion (and it can be shown that it is equivalent to a loop expansion).

The RG flow equation in differential form, up to O(e2), reads
fit i8

 s-g(n,d=4)u2
s. (39)d In s ' s

From Eq. (39) we see that, besides the unstable Gaussian fixed point u* = 0, we
have a new fixed point u* = e/g > 0. Then, from the first equation in (38), we find
t* = —A(n, d = 4)w*, i.e., £*, w* ~ e.

The linearization of Eq. (39) with respect to this new fixed point yields

(40)
dins

with us = w* + Aws. Hence, Aws = s~€Aw, and the non-trivial Wilson- Fisher fixed
point is stable for d < 4. Universality is recovered since, along the critical line
t = 0, the initial coupling constant is driven to the fixed point u* by the RG flow,
and the deviation Aus from it is irrelevant9. This is the subtle way in which the
original coupling constant disappears for d < 4.

As far as ts = t* + Ats is concerned, the linearization of the RG equation [evalu-
ated up to O(e2), which gives the critical indices to O(e)], around the Wilson-Fisher
fixed point yields

- [2 - cB(n, d = 4)] At, + C(c5 n, e) Aw5, (41)
dins

with B(n, d = 4) = (n + 2)/(n + 8), as obtained through the explicit evaluation
of the integrals coming from the cumulant expansion. The coefficient C does not
need to be evaluated to obtain the critical indices at this order. Indeed, Eqs. (40)-
(41) constitute a system of linear differential equations which can be solved by
diagonalizing the associated 2 x 2 matrix of the coefficients in the right-hand sides.
However, since the 2 x 2 matrix has a zero off-diagonal element, its eigenvalues
can be directly read off the diagonal elements, and give the scale dimensions at the
Wilson-Fisher fixed point

e,

9^ u is relevant with respect to the Gaussian fixed point. Its presence leads to the non-Gaussian
fixed point, for which Aw is irrelevant. A further condition to enforce criticality is necessary if
we want the Gaussian fixed point to maintain its effectiveness at d < 4. The additional condition
enforces a critical behavior related to the so-called tricritical point [58].
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The eigenvector which corresponds to x\ , is a linear combination of t and u which
defines the critical line for d < 4. Whereas for d > 4 the Wilson-Fisher is unphysical
(u* < 0), for d < 4 we have only one relevant perturbation at h = 0, since x2 < 0. It
is therefore the non-trivial, critical fixed point at small e. x2 controls the approach
to the fixed point of the first irrelevant variable Aw. Now the critical indices depend
both on n and d (through e). The critical index v coincides with the reciprocal of
the scale dimension of the relevant perturbation

to O(e). For instance, when n = 1 (Ising model) v = 1/2 + e/12, which is different
from the Landau value and in better agreement with numerical and experimental
results. Since at order e the index rj is still zero (it is of order e2), two indices are
known, and the other indices can be calculated to order e by means of the scaling
laws.

To conclude this section, we point out that the solution of the RG equations
corresponds to the exponentiation of the logarithmic singularities which affect per-
turbation theory (i.e., the curnulant expansion) near d = 4. Indeed, the explicit
evaluation of a cumulant gives a contribution 1 — ̂ Btln s for Ats, and we can ap-
proximate this expression for small e as exp(— | Be Ins) = s~B^2, which gives the
correction to \jv obtained by solving Eq. (41).

E Field-Theoretic Approach

A different technical support to the evaluation of the critical indices and of the ap-
proach to the scaling behavior of a critical system is provided by the field-theoretic
RG approach [6,40].

The idea is to start with a field theory described by the coarse-grained Hamilto-
nian (31). We are taking advantage of the previous discussion of the dimension x^m
of the coefficient of the generalized Landau Hamiltonian, and we limit ourselves to
consider the Hamiltonian (31) with c = 1 and a momentum cutoff A for 3 < d < 4.
For d < 3 further terms should be considered in the Hamiltonian, down to d = 2
where all the un$ terms become relevant. With this precautions taken, the model
we are considering is the (^ field-theoretical model with bare inverse propagator

and a momentum cutoff A. The perturbative structure of the theory in the interac-
tion u takes advantage of the standard procedure based on the Feynman diagrams.
These permit to represent in a graphic fashion the perturbative contributions to
various physical quantities, once the general rules for calculating the analytical
expressions corresponding to the different diagrams have been established. Con-
tinuous lines represent bare propagators [Fg ]"*, whereas empty squares represent
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the bare interaction vertex w, and momentum conservation is understood in each
vertex. The closed continuous lines must be interpreted as integrals over the corre-
sponding momenta, which will therefore explicitly depend on the momentum cutoff
A. The great advantage of using Feynman diagrams is that they allow for imme-
diate resummations of the perturbative series which establish connections between
the various dressed quantities, for instance, the relation which connects the dressed
inverse propagator F^ to the bare inverse propagator FQ (Dyson equation, see
Fig. 1), the bare vertex FQ , and the dressed vertex F^ (Ml square).

There is no simple representation of the dressed vertex F^ in terms of the bare
vertex FQ , and higher-order vertex functions should be introduced in a hierarchy of
linked equations (see Fig. 2). However, we shall not pursue this procedure, which is
not relevant to the purpose of identifying the building blocks of the field-theoretical
RG near criticality, as analyzed in Refs. [47,48].

!-(2) _ ^(2)
r " ro

FIGURE 1. Dyson equation for the inverse propagator ]

r(4) =
FIGURE 2. Diagrams contributing to the dressed vertex F^.

The first evident effect of introducing a non-zero coupling constant u is a shift of
the transition temperature with respect to t0 = 0. The deviation from the critical
temperature will be denoted by t = to — t0,c(w, A). Hereafter we choose to express
F^ in terms of t, which vanishes at the true critical temperature. Perturbation
theory in terms of the bare coupling constant u is ill-defined in d < 4 due to the
infrared divergences which arise when the critical point is approached. We need
a renorrnalized theory, where the renormalized coupling constant remains finite in
the limit t —> 0, i.e., when the square of the inverse coherence length £~2, which
plays the role of the mass of the field ^, vanishes. Therefore we are interested
in a renormalized theory in which the cutoff A is much larger than the mass of
the propagator. As in a traditional renormalization procedure, if we can control
the ultraviolet divergences generated by the momentum integrations, we can take
the limit A —> oo and make the cutoff disappear from the RG equations. Once
the theory is well defined in the limit A —»• oo, it is easy to investigate the infrared
scaling behavior since the parameters of the RG are independent of A. The resulting
scaling theory will also be valid at finite A as long as A » £~1. It can be shown
that whenever the interaction vertices in the diagrammatic language are such that
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^nfm — QJ ^ne theory is ultraviolet renormalizable. For our derivation of the infrared
renormalized theory we shall be guided by physical considerations on the invariance
properties of the diagrammatic equations shown in Figs. (1) and (2), although the
forthcoming analysis can be confirmed by a direct calculation of the corresponding
Feynman diagrams.

In constructing the RG transformation, the relevant variables which enter in the
description of the system are t and h (or its conjugate variable ^). As we have
seen previously, another quantity which is needed to describe the approach to the
fixed point is the first irrelevant coupling, related to u. We are therefore led to
find a transformation of these variables via the introduction of the standard wave
function c^5 mass t, and vertex u renormalizations, multiplicatively implemented
by the parameters Z^ Ztj ZUJ and the corresponding correlation functions. Let us
examine the separate invariance property under each renormalization:
Under a wave-function renormalization

$ -*• Z~l/2<p, u -»• Z^u

Under a mass renormalization

t -> Z-lt, jt

Under a vertex renormalization

u -> Z~lu, ju -> Zuju;

with
r(4)

where the diagrammatic expansion for jt is shown in Fig. 3.

= o

FIGURE 3. Diagrammatic expansion for 7$ (full dot). Each empty dot represents the mass
insertion due to the derivative of F^ (see Fig. 1) with respect to t.

When we make use of the three transformations simultaneously, the new variables
read

$ = Z-l'*<p, tr = Z^lt, u1 = Z%Z-lu.

', t', u') = r(z£V, z~lztt', z-2zuu'),
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with c = 1, it follows that

F and F^ are given by the same expansion as T and F^ provided the correspon-
dence between old and new variables is made. Similarly we define

where i = (p,t,u.
Above we have assumed that each variable is transformed independently from

the others. However we can still use the arbitrariness of the multiplicative factors
in the correlation functions to obtain a one-parameter transformation. This can
be achieved by imposing suitable normalization conditions on the 7*3 at a given
normalization point (hereafter n.p.) specified by an auxiliary variable A with the
dimensions of (length)"1. The normalization condition permits to express the mul-
tiplicative factors Zi in terms of A and only one of the variable 9?,t,w or (f/,tf,uf.
We can therefore change $ rf ,v! by varying A at fixed ^,£,w, or vice versa. Since
we expect $ and tf to be the relevant variables that drive the system towards the
critical point, we can parametrize the transformation in terms of u1 only. This
procedure implements the physical idea that, when the first irrelevant coupling u is
changed, a proper multiplicative rescaling of the relevant variables yields a physical
system which shares the same critical properties with the initial system. Then we
make the following choice:

79? I n.p. = *9 7* I n.p, = -1-5 7«|n,p. ====:: -!•> (4ZJ

where the normalization point is chosen as n.p.= (|k|2 = 0,0' = Q,f = A2;W).
In this way the transformation is multiplicative and linear in the variables (p1 and
t1. Different choices of the normalization point would give different parametriza-
tions of the transformation, without changing the final expression for the critical
exponents. Other parametrizations can be found in Ref. [53]. The asymptotic
equivalence among the different versions of the field-theoretic approach and the
Wilson approach is discussed in Refs. [61,62].

We note that the Z's determined via the Eqs. (42) will depend on the cutoff
A5 but since from now on we deal with renormalized functions only, we omit the
dependence on A. It is therefore useful to introduce the following dimensionless
variables:

t1 $ u'tx_ <px _ 5 Ux _
Xxt Xxf Ax«

where the bare dimensions are x\ = 2, x^ = 1 — e/2, and x®u = e. We also define
the parameters of the transformation leading from a n.p. A to a n.p. A' as

t,A'/A =
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The variables change now according to the following multiplicative rules:

't,A'/A

In this way the correlation functions are multiplicatively related by

|k|2
7t

7« 5 *A 5 9^A5 w A = Z-\,/x% j ~ , t x ' ^ x ^ u x > ( 4 4 )
\ A / ' \ A /

and the thermodynamic functional is invariant

r(tA,^A,uA) = r(tv,^v,«v). (45)
The normalization (42) for ty = 1, |k|2/A/2 = 05^A' = 05 implicitly determines

now the Z's in terms of the correlation functions

A/2

AVA = 7* ( 0, -^V/A^AVA , 05

once the invertibility of the correlation functions with respect to their arguments
is assumed. Indeed, the above equations can be inverted, as it is shown term by
term in perturbation theory, yielding

X1 \ (X1 \ /A'
^A'/A = Zu\—,

\ A

where it is evident that u\ appears as a parameter. Eq. (45) reproduce the scaling
relations asymptotically near to the critical point. Iteration of the transformation
is achieved by changing A into A' = A/s. The group equations (44) and (45), which
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are valid for any k5 y>, t, can be casted in differential form by taking the derivatives
with respect to A' and then setting A' = A.

If we denote by v^\ the variables appearing in (43), we have the following differ-
ential equation:

where

and

d\f/X
dZt

A'=A

A'=A

dzu
0A'/A

dzu
dX'/X

(46)

(47)

(48)

(49)

(50)

On the critical surface t = 0, (p = 0, and from Eqs. (46), (47), and (50) the fixed
point of the transformation is given by

which yields two solutions, the trivial one u* = 0, which corresponds to the Gaus-
sian fixed point, and u* — u*(e) which is defined implicitly through Eq. (50)

A,(«*) = 0 e = 2
dX'/X

9ZU

A'=A;«=«* dX'/X
(51)

A'=A;t*=w*

If we linearize Eqs. (46) around this fixed point, denoting A(w*) = /?*, we see
immediately that

® = xt = -> /?; = ̂  = i-| + |,
where r] = dZ^/d(Xf/X)\x'=x-u=u* is the anomalous dimension of the field. The
critical index for u determines the rate of approach to the fixed point and is given
by

Xqt —— du (52)

When we linearize the transformations (44) at the fixed point, Eqs, (44) and
(45) imply that the correlation functions and the functional F per unit volume are
homogeneous functions with degrees of homogeneity
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d-2/%-2 for %,
d-lffp-K for %
d-4/3* for %,
d for F (per unit volume),

From these, the scaling laws follow naturally.
The effective values of the exponents can be calculated within perturbation the-

ory. At first order in e only the diagram for Zu shown in Fig. 4 enters into Eqs.
(50) and (51). In fact, given the definition of 7^, this diagram is of first order in
u. The first diagram for Z^ (see Fig. 5) is of second order in u and does not enter
in determining the fixed point u* ~ O(e). For the sake of simplicity we discuss the
Ising case n = 1. The explicit evaluation of the diagram in Fig, 4 gives then a
correction to the bare coupling constant WQ, so that, within perturbation theory,
the dressed coupling constant is

. 2 f d4q 1
u = UQ - 36w0 / 77T\ir~u = ^

JA/s<|q|<A (2?r)4 |q|2

where the prefactor 36 comes from the multiplicity of the diagram, and the integral
is evaluated for d = 4 (e = 0), to obtain the leading order in e, since at the fixed
point UQ —> u* ~ e. By definition, the factor in front of UQ in the right-hand side,
with s = X/Xf and UQ — » w, is Z~l (at the lowest order in perturbation theory).
Then, at O(e),

and from Eqs. (50) and (51) e = 9w*/27r2, i.e., u* = 2?r2e/9, which coincides with
the solution of Eq. (39), with the explicit expression g(n = l,d = 4) = 9/2?r2,
Then Eq. (52) gives xu = — e, with u — u* as the first irrelevant variable.

FIGURE 4, Lowest-order diagram contributing to 7^.

FIGURE 5. Lowest-order diagram contributing to Z^.

The anomalous part of xt, equal to xt — 2, is of first order in e and comes from
the 74 correction shown in Fig. 6, whereas the contribution coming from Z^ (see
Fig. 5) is of higher order in e. Calculating the diagram in Fig. 6 we find

t = to - 12toWo / 7^7^ = t0 (l - |̂ |log,) ,*/A/s<|qi<A (27r)4 |q|2 \ 2?r2 /

40

Downloaded 07 Mar 2003 to 130.235.92.220. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



FIGURE 6. Lowest-order diagram contributing to 7$.

where the prefactor 12 conies from the multiplicity of the diagram, and the integral
is evaluated for d = 4 (e = 0), since we are interested in the leading contribution
in e. By definition, the factor in front of t0 in the right-hand side, with s = A/A'
and WQ —^ w, is Z^1 (at the lowest order in perturbation theory). Then, at O(e),

Zt ^ 1 + —^logs,

so that, from Eq. (48) at u — u*, we find xt — x® — 3w*/2?r2 = x\ — e/3, which
coincides with the exponent x\ found in Sec. HID2, for n = 1.

The first contribution to rj is O(e2). Let us indicate with E(q) the diagram for
Zv shown in Fig. 5, with incoming momentum q. Then

E(q) - E(0) = -96W2,

where the prefactor 96 comes from the multiplicity of the diagram, the integral is
evaluated for d = 4 (e = 0), since we are interested in the leading contribution
O(e), the term ~ |q|2 has been considered for |q| <C A, and

(27T)4 |p|2 47T2|r|2

is the Fourier transform of the propagator [F^k)]"1 for t0 = 0 and d = 4. By
definition, the factor in front of |q|2 in Eq. (53), with s = A/A' and UQ —> w, is
Z~l — 1 (at the lowest order in perturbation theory). Then, at the fixed point
u = u*, we obtain

_f_
V f A

and, from Eq. (49) at u = w*, we find rj = e2/54.
The explicit calculation of the Feynman diagrams thus yields exponents which

coincide at O(e) with those obtained within the e expansion discussed in Section
HID 2.

In general, the fixed-point condition (51) implies the scaling index t — 2r] for the
four-point vertex % ~ Z~l and — 77 for 7^ ~ Z"1. In the renormalized coupling
their asymptotic behaviors compensate each other for the anomalous part, and
what is left compensates for the bare dimension e of w. The renormalized coupling
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has in this way a well-defined asymptotic limit. The index rj controlled the suitable
normalization of the block variables in the probabilistic approach, to get a well-
defined asymptotic probability distribution and the fixed point with the proper
behavior of the order-parameter correlation function in the Wilson approach.

IV LUTTINGER LIQUID AND FERMI LIQUID

The low-energy behavior of most interacting electron systems can be classified
in terms of a small number of universality classes. This classification can be under-
stood in terms of Wilson's RG that selects few types of relevant scattering processes
near the Fermi surface [13,20,63,64] and allows to determine the entire low-energy
behavior in terms of a small set of parameters. For pure systems, without sym-
metry breaking, two types of metallic phases are well known: the Luttinger-liquid
phase in d = I [13], and the Fermi-liquid phase in d > I [65]. Concerning sys-
tems with symmetry breaking, two superfluid behaviors are well understood: the
one due to the Bose-Einstein condensation (e.g., 4He, local pairs of fermions, etc.),
and the one related with the coherent superposition of pairs in momentum space
(with a fixed phase of the pair wave function) with strong spatial overlap within
the characteristic spatial extent £o of the pair, as described by the BCS state.

The ratio of the pair size £0 over the mean inter-particle distance kp1 controls
the crossover between these two regimes. The limit ^o/kp1 ^> 1 concerns ordi-
nary superconductors described by the BCS state (£0 — 104A, Tc ~ 10 — 20K). The
limit ^o/kp1 ~ 1 corresponds the Bose-Einstein condensation of tightly bound pairs
which do not overlap with one another (small bipolarons). The high-temperature
superconducting cuprates (HTS) are in the intermediate regime ^kp c± 10, in
which kp is considerably reduced with respect to ordinary superconductors (e.g.,
YBa2Cu3Or has 3 • 1021 charge carriers per cm3) and £0 — 10 — 30^« The great
difficulty in explaining high-temperature superconductivity is that, while ordinary
superconductivity is the result of electron-phonon interaction with a characteristic
energy scale UD <C EFj for HTS the energy scale for superconductivity is compara-
ble with the characteristic electronic energy (i.e., Ep is reduced and Tc increased).
For the ordinary superconductors we can therefore integrate out high-energy pro-
cesses falling in a Landau Fermi-liquid theory characterized by normal-state quasi-
particles plus a small residual attractive interaction. The mean-field analysis of
such an interaction leads to the superconducting instability. Such procedure is
no more applicable to HTS, due to the absence of the separation between the en-
ergy scales. Moreover, the normal state of HTS is not a Fermi liquid [66]. The
HTS are strongly anisotropic and almost two-dimensional, as it is witnessed by
the much smaller value of the electrical resistivity in the direction perpendicular
to the copper-oxygen planes p± with respect to the resistivity within the planes
P\\ (P-L/PH — 10~2 — 10~5), In contrast with the Fermi-liquid behavior, p\\ is linear
in T in a large range of temperatures [67], when the density of charge carriers,
which can be varied by chemical doping, is such that the superconducting critical
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temperature Tc is the highest possible within each family of HTS (optimal doping).
Moreover, below the optimal doping, in the so-called underdoped regime, where the
charge-carrier density is small, the anomalous behavior of the normal state is much
stronger and a pseudogap opens at a doping-dependent temperature T*. Another
evidence for a non-Fermi-liquid behavior comes from the linearity in the quasipar-
ticle inverse scattering time, r^tt ^ (Tj^)j as measured, e.g., in angle-resolved
photoemission spectroscopy [68] by the slow narrowing of the single-particle spec-
tral density as the energy of the quasiparticle peak approaches the Fermi level,
in contrast with the usual Fermi-liquid behavior r~^tt ex (T2,u;2), which can be
deduced by simple phase-space arguments for low-energy scattering processes near
the Fermi surface [65].

A clarification of the properties of the normal phase from which high-temperature
superconductivity emerges, apart from being an interesting problem by itself, would
give also hints on the basic mechanism for the formation of superconductivity.
A relevant question which arises when looking at the properties of the normal
phase of HTS is whether these are characteristic of a new quantum metallic state
or are simply the result of an anomalous scattering mechanism. Experimentally
we observe a continuous gradual change from the underdoped regime, where the
metal is anomalous, to the regime where the doping is larger than the optimal one
(overdoped regime), where the metal seems to be more Fermi-liquid-like.

A perturbative analysis at the lowest orders is not enough. Suggestions for the
anomalous behavior of the normal phase are the breakdown of the Fermi liquid,
as an extension of the Luttinger-liquid behavior for interacting electron systems in
d = 2 [66,69,70] (which is the dimensionality proper of the HTS, due to their strong
anisotropy), or the onset of the marginal Fermi liquid [71], in which quasiparticles
are not well defined, as their inverse lifetime is of the same order as their energy.
A third possibility is that the system is close to an instability, and that the critical
fluctuations couple to the charge carriers and give rise to a singular effective inter-
action which spoils the Fermi-liquid behavior [72]. Critical fluctuations can be due
to a charge instability (phase separation, or incommensurate charge-density wave
[72]), to a magnetic instability [73], or to a combination of the two, with a stripe-
like modulation of the charge and spin density [74]. This last case can result from
the tendency of an antiferromagnetic background to expel charges at low doping
[75], or from an instability of the Fermi liquid towards the formation of a charge
modulation guiding a spin modulation [72], which is reached upon reducing the
density of charge carriers, starting from the markedly metallic overdoped region.

The proposal that the Luttinger-liquid behavior can be extended to a two-
dimensional system stems from the observation that all HTS are insulators in the
absence of charge carriers introduced by chemical doping, and the ground-state is
antiferrornagnetically ordered. Doping an antiferrornagnet results in a frustrated
state where the spin of the charge carriers introduced by doping couple with the
antiferrornagnetically ordered spins localized on the copper ions, disturbing the or-
dered state. This frustrated state, which in d = 1 is characterized by resonating
spin singlets without magnetic long-range order (resonating-valence-bond state)
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with no fermionic low-lying excitations, and decoupled charge and spin collective
excitations, could then extend to d = 2 [69]. The underlying hypothesis is thus
that the doped system never behaves as a Fermi liquid, and, in the absence of
a symmetry breaking, rather reaches a new fixed point, characterized by a non-
Ferrni-liquid behavior. Does this new fixed point exist for d > 1? Can we extend
the Luttinger-liquid behavior to d = 2, as appropriate to the case of the conducting
copper-oxygen planes of HTS? What are the conditions? Before answering these
questions, let us review the main characteristics of a normal Fermi liquid and a
Luttinger liquid. Then we discuss the dimensional crossover from a Luttinger to a
Fermi liquid, as soon as d > 1 [19,20], unless singular long-range forces are present
which may extend the non-Fermi-liquid behavior to a higher dimension [21-23].

Many reviews are available on the topic of fermion systems in d = 1, starting from
the one by Solyorn, which summarizes the understanding of the problem at the end
of 1970s [13]. More recent accounts of the problem can be found in Refs. [29,76],
whereas the case of interacting fermions in the presence of forward scattering is
dealt with in Ref . [20] , and a pedagogical approach to the RG for Fermi systems is
found in Ref. [64]. In these notes we closely follow Refs. [18,20].

A Normal Fermi Liquid

The normal Fermi-liquid theory, which generically applies to liquid 3He and or-
dinary metals in d — 3, relies on the existence of well-defined fermionic low-lying
excitations (quasiparticles). In terms of the RG approach, the corresponding fixed-
point Hamiltonian of quasiparticles in the presence of residual Hartree-like inter-
actions can be obtained by integrating out states far from the Fermi surface via
a Wilson-like approach, and all the momentum-transferring scattering processes in
d > 1 become ineffective. The effective Hamiltonian, representative of a metallic
state (no Cooper instability will be considered here) can be written as

where H0 is the term which describes the metal as a collection of free quasiparticles,
and the term /££/ is the (weak) effective interaction which couples the changes
in the occupation numbers of the quasiparticle states dn^. The presence of the
interaction term leads to the following effects:
i) The various response functions are affected by the interactions via a small set of
parameters (the Landau parameters). The equilibrium properties, modified by the
presence of the Landau parameters, are similar to those of a Fermi gas, i.e., the
specific-heat coefficient 7 = CV/T, the spin susceptibility Xj and the compressibility
K = dn/dfj, are temperature-independent, as long as the temperature is much
smaller than the Fermi temperature.
ii) A finite wave-function normalization Z appears as the residual at the simple
pole of the single-particle Green's function
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— vpkr + i (54)

where kr = |k| — kp. This implies that there still exists a Fermi surface, where
the quasiparticle occupation number in momentum space is discontinuous, n^F-0 —
^kF+o = Z (see Fig. 7). In the Fermi gas Z = 1.
iii) An inverse lifetime of quasiparticles appears, associated with subleading cor-
rections, which vanishes as the square of the deviation of the momentum from the
Fermi momentum or the square of the temperature T

As a consequence, for instance, angle-resolved photoemission experiments should
show a single-particle spectral-density peak narrowing as u2 when |k| —> kp and, at
finite temperature, the resistivity due to electron-electron scattering is p(T) oc T2.

The Fermi-liquid theory breaks down in a variety of ways even in the absence
of symmetry breaking, as for instance in Kondo systems [77], or in electronic sys-
tems near the metal-insulator transition in the presence of strong-disorder [78], In
the following, we discuss how the breakdown of the Fermi liquid occurs in clean
electronic systems in d = 1 .

FIGURE 7. Quasiparticle occupation number in momentum space in a Fermi liquid,
discontinuity marks the Fermi surface.

The

B Luttinger Liquids in d = 1

The breakdown of the Fermi-liquid theory in one-dimensional interacting systems
is witnessed by the presence of logarithmic divergences in the second-order pertur-
bative contribution to the single-particle self-energy and to the four-point vertex
function. The problem of treating these divergences has been first solved by a per-
turbative RG approach [13]. Assuming a scaling ansatz for the vertex functions,
one approaches the Fermi surface by rescaling the fields and the coupling constants.
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Depending on the values of the bare coupling constants, the renorrnalized coupling
constants flow either to strong-coupling, out of the controlled regime, or to the
exactly soluble Luttinger model [33,79]. In the latter case the system is a Luttinger
liquid [13,30-33]. The Luttinger liquid is a normal (non-symmetry-broken) metallic
phase characterized by:
i) A finite renormalization in correlation functions: C^/T, x> ^5 and the weight
of the Drude peak in the optical conductivity are finite. These quantities are all
characterized by changes in the values of the parameters, but not in the form, with
respect to a Fermi liquid;
ii) A vanishing wave-function renormalization Z, which suppresses the discontinuity
of the occupation number in momentum space, leading to an algebraic singularity
with non-universal exponent n^ — n^F ~ — sgn(fcr)|fcr|r?;
iii) A single-particle density of states which vanishes as uf1 at low energy;
iv) The presence of collective charge and spin excitations, which implies the so-
called charge and spin separation, due to the vanishing of the single-particle spectral
density at the Fermi surface, and the consequent suppression of low-lying quasipar-
icle excitations.

Therefore, the collective properties for |q|, u —> 0 are trivial as from the random-
phase approximation (RPA) or the Landau-Boltzmann kinetic equation, whereas
the single-particle properties are anomalous.

In the next sections we explicitly discuss the Luttinger liquid in d = 1.

C The ecology Model

The problem of treating the divergences of an interacting fermion system in
d = I has been first solved by a weak-coupling RG method applied to an effective
low-energy theory known as the "0-ology" model [13]. It is a continuum model
with a linear dispersion relation and two-particle interactions, that incorporates
the generic low-energy dynamics of a one-dimensional Fermi system. It can be
written as H = HQ + JJ/5 where H® describes a linear band limited by a momentum
cutoff A

HO= Y. Z)a^k4,e7(k)a«^(k),
|k|<A aa

where a^a(k) and aa^(k) create and annihilate fermions with spin a close to +fcj?
(a = +) and — fcj? (a = —). We have a boldface notation for the momentum k,
measured relative to ±kp, to distinguish it from the bi-vectors k = (k, a;). VF is the
Fermi velocity. The ultraviolet cutoff of the theory acts also as momentum-transfer
cutoff in the interaction. The interaction Harniltonian Hj is given by

HI = Hl + H2^HB^H4j (55)

where
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F is the volume of the system, which for d = I is equal to the length of the chain,
and

k

(q) = ZX^(k -
(with Of = ±),

where p±j0- are density operators for right- (+) and left- (— ) moving particles.
The interaction Hamiltonian HI describes various scattering processes shown in

Fig. 8: the small-momentum-transfer processes (H% and H%) are expressed in terms
of pa?<7, the back scattering (Hi) and the Umklapp scattering (H%) in terms of pj.
Since the coupling constants may be spin dependent, one writes

where gq and g^± refer to parallel and opposite spins respectively. Owing to momen-
tum conservation, Umklapp processes in J/3 can be relevant only if 4kp is equal to
a reciprocal-lattice vector 2n/a (where a is the lattice spacing), as in the Hubbard
model at half filling.

The ^-ology Hamiltonian is the general outcome of a renormalization procedure,
applied to an interacting one-dimensional model, such as the one-dimensional Hub-
bard model, by integrating out the momentum states far from the Fermi surface
(|k| > A). The model parameters ̂  are related to specific forms of the four-point
vertex of the resulting effective low-energy action [64]. In the case of Coulomb
interactions and for repulsive Hubbard-like systems all the $!s are positive. A non-
linear dispersion of the quasiparticle band and the momentum dependence of the
coupling constants scale to zero under partial RG iteration, with Eq. (55) as a final
result.

The properties of the $-ology model can be extracted from the quantum analog
of the correlation and the vertex functions introduced in Sec. II D, i.e, the Green's
functions defined as ground-state expectation values of the time-ordered operator
products,
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ff,

FIGURE 8. Interaction terms of the 0-ology model; +fej? and — kp indicate the right and left
Fermi points.

(ki t\ ' k; if * . * k;/ t"'...) =

where fla^,^^, and pasC7, are the operators in the Heisenberg representation; r
is the time ordering. The Green's function in the frequency representation will
be denoted by G^n^(kl...; k{...; k f { . . . ) where fe = (ki5c^) and T^^ will de-
note the corresponding vertex functions, i.e., the one-particle irreducible con-
tributions. The Fourier transform of single-particle Green's function G(k5t) =
—i(raasa(k;t)a^cr(k50)} with respect to the time variable, in the noninteracting
case leads to the expression (54) with Z = 1. The function G^^ describes the
charge- and spin-density correlations with small q (i.e., |q| <C kp),

In d = 1 only the existence of the two Fermi points is important, not their dis-
tance in momentum space. Thus the inverse cutoff A"1 is the only length scale
in the g-ology model; A substitutes the natural cutoff given by the Brillouin-zone
boundary or by the non-linear terms in the momentum dependence of band dis-
persion of the underlying microscopic system. Since the inverse cutoff A"1 is the
only length scale, all dimensionless quantities depend only via the ratio p/A on
the momenta p and A. Hence, the infrared limit p —>• 0 is directly related to the
ultraviolet limit A —> oc.

In general, an exact solution giving the expression of the correlation functions in
the 0-ology model is not possible. Perturbation theory with respect to the coupling
constants <& diverges at low energies.

Simple dimensional analysis yields the canonical dimensions in inverse length:
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[H] = 1, [a(k)] = —1/2, and therefore \gi\ = 0, i.e., the coupling constants
are dimensionless. The bare propagator G°(fc) has dimension —1. Each energy-
momentum integration in a Feynman diagram introduces a power 2. Hence power
counting predicts that primitive divergences may occur in F^, F^, F^, and
p(2,i)? j-j^ no^ |n higher-order vertex functions.

A first understanding and successful treatment of these divergences is described
in Ref. [13]. Taking a scaling ansatz for the vertex functions, the low-energy limit
is approached by rescaling fields and coupling constants

r<2«) (. . . , </, A') = zr(3, A'/A)r(2re> (. . . , g, A) ,
where gf = </(#, A'/ A) is the running coupling with flow determined by the behavior
of the (3 function, f3(g) = [%//9(A//A)]A'=A- Depending on the values and on the
signs of the bare coupling constant, or on whether 4fc^ is equal to, or different from,
a reciprocal lattice vector, the renormalized coupling constant may flow to strong
coupling, or reach a fixed point. In the first case (e.g., g$ ^ 0, g\ < 0), the low-
energy Hamiltonian undergoes a dramatic change, with dynamical generation of a
gap in the charge and spin spectrum, while in the latter case (as for g± derived from
repulsive Hubbard-like models with g$ = 0) one reaches a fixed-point Hamiltonian
given by the Luttinger model [30,79], where $2 and $4 only are present. Therefore
the low-energy behavior of a generic one-dimensional fermion system interacting via
repulsive interaction is well described in terms of the Luttinger model Hamiltonian
H = HQ + H2 + H£. As already stated, the Luttinger model is exactly soluble either
by employing Ward identities [16,18,80], or by the bosonization procedure [30-33].
Many features of the Luttinger liquids are already clear within perturbative RG
calculations [13], as, for instance, the anomalous scaling behavior of the single-
particle propagator

G(8v,8k) = 8*-lG(w,k), (56)

where TJ > 0 is a non-universal constant10 which determines the power-law behavior
of the momentum distribution function, to be contrasted with the case of the Fermi
liquid, where 77 = 0. Indeed, as usual, the RG approach leads to a power-law
resummation of the logarithmic singularities which affect the self-energy correction
at second order in perturbation theory. At this order, the critical index

is the anomalous dimension entering the scaling form (56) for the Green's func-
tion G. The exponent ?? also characterizes the momentum distribution function

10) i»he anomalous dimension depends on the value of the coupling constants of the model since
the /? function vanishes identically, owing to the peculiar left and right conservation (see below),
which implies a cancellation of singularities at any order in perturbation theory [17,18].
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rik — — (l/2?r2) X!cF Jdu;ImGacr(k, u;) oc Ik]77, and the single-particle spectral func-
tion D(u) = -(1/2^)^1 dklmGaa(k,u}) ex uA

We explore in the next section the exact solution of the Luttinger model by
exploiting the conservation laws and the related Ward identities, as reviewed in
Refs. [18,20].

D Analysis of the Luttinger Model via Ward Identities

1 Global Charge and Spin Conservation: Ward Identities
In the ecology model the global charge and spin conservation laws give rise to the

Ward identities which yield relations between different correlation functions, and
some information on their asymptotic behavior for small momentum and energy
transfer.

Let us define the left (a = — ) and the right (a = +) charge or spin density
operators

which satisfy the commutation relations [18]

<W£q,-q' aq, (58)

where a — c, s (observe that |q|V727r gives the number of points in the segment
|q|). This non commutativity of the theory is a consequence of the restriction of
the sums in momentum space up to a cutoff A, within the 0-ology model.

The Ward identities come from the continuity equation which is obtained by
calculating the commutator of the $-ology Hamiltonian with the total charge (or
spin) density operator at small q, pa(q) = p+(q) + P_(q)? i.e.,

i ftpfl(q, t) = [pa(q? t\H\ = q<f (q5 <), (59)

where ja is the current operator given by ja(q) = p+(q) — pt(q), va is a coupling-
dependent velocity

va = vF + ±(ga
4-ga

2), (60)

and gfs = \(gi\\ ± §i±)- The physical current operator, Ja = vaja depends only on
the forward scattering because pa(q) commutes with HI and Jf3. Eq. (59) is the
continuity equation corresponding to the conservation of the total charge (or spin),
Our aim is to derive from Eq. (59) the Ward identities for the vertex functions and
the correlation functions, to reduce the number of independent relevant structures
to be considered. We derive, first, the Ward identity for the correlation functions,
J^v(*ljt) = — ̂ {T7'JJ(q, t)j%(— q, 0)}, where the bi- currents j* (JJL = 0, 1), are defined
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by JS (q) = Pa(q) and jf (q) = ja(q). JQO *s ̂ e density-density correlation function
and Jfx is the current-current correlation function. Applying idt to JQV and using
the continuity equation, one obtains

ift JX,(q, * - f ) = -f <«l«0#(q, t)#(-q, 0)} + ±S(t - f )<[#,#]>•

After Fourier-transforming, we obtain the following Ward identity

= -q*,M>7T
(61)

where we have used the commutators (58). This Ward identity puts constrains on
the limiting behavior of charge (a = c) and spin (a = s) correlation functions as
q = (u;,q) —> (0,0). As in Fermi liquids, this limit is not unique, but depends on
the ratio r = |q|/u;. If we define J^0 = J^(q -> 0,r -> 0), and J^?00 = J^(g ->
05r — »• oc), then

T» _ ja — ja _ nJ00,0 — J01,0 — J10,oo — u

•Jll.00 = -2/™°.

The limit |q| — >• 0 at finite u of the density-density correlation function must al-
ways vanish to conserve the total number of particles. The Ward identity (61)
yields no information on JQO.OO and JII,Q- These limits are related to impor-
tant physical quantities in the charge sector: the first one to the compressibility
(K = dn/djji = — JQO,OO) an(i ̂ e second one to the conductivity via the Einstein re-
lation. The total charge (and spin) conservation cannot fully determine the physical
behavior of the system.

We now proceed with the vertex functions. The Ward identity for the charge and
spin vertices can be derived from the equation of motion of the Green's function

Fa%(p, ̂ ; q, t) = -{r#(q, t)aa,a(p - q/2, 0<a(P + <lA *0>-

Differentiating F®a.Q with respect to t and using the continuity equation (59), one
obtains

idtF^(Pj t(- q5 1) = ̂ (rqvajaaa^ - S(t - t()([pa, acJ}},
where, for simplicity, we have omitted the dependence on the variables. After
transforming the previous relation to frequency representation, we have

where t% = — 1 if a = s and a =J,5 and e* = +1 otherwise. If we introduce the
vertex function rj^(p, g) = *£^(p, g)|tr = F^aJ[G^(p - q/2)Ga^(p + g/2)],
obtained by truncating the external fermion lines in a diagrammatic representation,
we have the following Ward identity
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g

FIGURE 9. The Dyson equation for Ta.

The vertex functions FJ^ are reducible with respect to cutting single interaction
lines in a diagrammatic representation. The above equations are valid both for left-
and right-moving particles. The skeleton structure of the 0-ology model is obtained
in terms of the irreducible charge and spin vertices, A^jCr;At = (F£>0.;At)WT, with respect
to cutting an interaction line. The vertex A*J(T;M is related to F£>0.;At by the Dyson
equation

which is illustrated diagrammatically in Fig. 9. The coupling constants are given
by flfc = (A + fl£)/2 and fa = (tf - s!)/2. Using the Ward identity for J£, and
r«)(T.M yields

= wA^0(P, g) - tfqA^fo g) + qjftA^fo g)

= wA£)(T.0(p, 5) - vFqA£)<Til(p, q)
(p - g/2) - G-i(p + «/2)], (62)

where we have used the expression (60) for va. Note that the form of this latter
identity is independent of the coupling, i.e., it involves VF instead of va. Total charge
and spin conservation also holds in Fermi liquids, and so do the Ward identities
following from these properties. The Ward identity (62) relates the density and
the current vertex functions to the single-particle Green's function. Its validity is
generic to all systems conserving the total number of particles and, by itself, it is
not enough to solve any model, and in particular the Luttinger model in d = 1.

2 Ward Identities from Left and Right Conservation Laws

In addition to the usual total charge and spin conservation, the discrete struc-
ture of the Fermi surface in d = 1 allows for more stringent conservation laws
when large momentum scattering processes are absent (g\ = g% = 0), i.e., in the
Luttinger model: charge (or spin) near the left and right Fermi points is conserved
separately. This separate conservation guarantees, even in the presence of singu-
larities in perturbation theory, the finiteness of charge- (or spin-) density response
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in normal one-dimensional metals, and the velocities associated to the correspond-
ing currents provide a complete parametrization of the low-energy physics of the
model.

In the Luttinger model, let us consider the charge (or spin) difference operator
Pa(q) = P+fa) ~~ P-C^)- These, hereafter referred to as axial densities, are now
conserved quantities and obey the continuity equation

with the axial current operator given by ja(q) = p+(q) + P°L(^)J where va =
VF + (gl + p?) A. Note that

In complete analogy with the preceding section, we can define the axial corre-
lation functions J^v and the vertices A£><7;/r The continuity equation for the axial
bi-current j£ = (pa^ja) implies the Ward identities analogue to Eqs. (61) and (62),
with va substituted by va and e® by e£)<7 = ae^.

Combining the Ward identities from global and axial conservation laws one com-
pletely determines the correlation functions J^ and J^v in terms of va and va. This
yields an expression of the vertices as functions of the propagator G.

The results concerning physical quantities will be discussed in the next section
where we calculate the density-density correlation function. Before ending this
section, we want to discuss an important consequence of separate charge (and spin)
left and right conservation. In this case the density vertex A£><7;0 and the current
vertex A^50.;1 are simply related

Therefore the Ward identity, Eq. (62), reads

(w - m^q)A°)(T.0 = 4 [G-^(p + g/2) - G~^(p - q/2)] , (63)

which now involves the density vertex only. The density vertex can now be elimi-
nated in favor of the single-particle Green's function.

E The Luttinger Liquid as the Solution of the Luttinger
Model

1 Density-Density Correlation Function

We discuss first the left and right charge-density correlation function. It is defined
by
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We can proceed either by using the Ward identities for C which follow from
right and left conservation laws, or from the Ward identity (63) for the vertex A,
by considering its effect on the polarization bubble. We follow here this second
procedure. C can be expressed in terms of the polarization function 11̂  (q, a;) by
the resummation of the geometric series analytically given by the Dyson equation

Cap(q) = II£0(g)<Ja0 + H^a(g) J^fl&yC^g), (64)
7

where $^+ = gc__ = g\ and g\_ = gc_^ = g%, and we have used the condition
n^_a = 0. The charge polarization bubble can be written in terms of the irreducible
charge-density vertex Ac and of the exact propagator G, as shown in Fig. 10,

^Uo(fc>k + 0; 0)Ga^(k)Ga^(k + q).

IIC contains in principle singular contributions due to vertex and self-energy cor-
rections. However, the Ward identity (63) for Ac implies that

W.L

c><
G0

FIGURE 10. The Dyson equation for IP; Aa represents the bare density vertex (a = c in the
case under discussion).

Integrating over frequencies (remembering that all allowed momenta are re-
stricted by a cutoff, |k|, |k + q| < A) one obtains, for q > 0,

where na^ is the momentum distribution function of the interacting system. Shift-
ing the integration variable in the second term by —q, one obtains the same ex-
pression as for the noninteracting system

54

Downloaded 07 Mar 2003 to 130.235.92.220. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



TTU; -

All vertex and self-energy corrections have cancelled each other, due to the peculiar
conservation laws, and the density-density response is given by the simple RPA
series, with the appropriate coupling constants ($++ = gc__ = g%, $+_ = $1+ = g^),
and with the bare bubble

which correctly vanishes as |q| — » 0, at finite a;,
The density-density response has poles at uj = =bwcq, where uc = (i/^;0)1/2. A

similar result holds also for the correlation function of the spin density with us =
(vsvs}1^. The Luttinger-liquid collective modes are therefore an undamped charge-
density mode (zero sound) and an undamped spin-density mode, with velocity uc

and u3^ respectively. The compressibility K = dn/d/j, = — Cf(|q| — > 0,u; = 0) is
now fully determined

In the same way, the spin susceptibility is derived from the spin-spin correlation
function, and reads

2

By using the generalized Einstein relation one can derive the electrical conduc-
tivity a((J) for the Luttinger liquid. The Drude weight is determined by t;c,

Recr(u;) = 2vc6(u).

Let us finally note that the continuity equations for pa and pa can be combined
into a harmonic-oscillator equation for pa(q,t), i.e.,

describing undamped harmonic oscillations with frequency w°|q|. The low-
temperature specific heat of the Luttinger liquid is therefore given by

- »6 ucus

and is linear in temperature, as in the Fermi liquid, but with different coefficients,
coming from the collective modes rather than from the fermion quasiparticles.
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2 The Single-Particle Green's Function
The most dramatic change of the Luttinger-liquid solution with respect to the

Fermi liquid is in the single-particle Green's function. It can be calculated in the
bosonization approach [31,33]. We use here the Ward identity (63), derived in
Sec. IV D via the separate charge and spin conservation at each Fermi point. The
Ward identities obtained from the continuity equation associated to these conser-
vation laws give a complete system of equations for any correlation function, and
in particular we have discussed the explicit calculation of the density-density cor-
relation function. The same results are implied by another important property
of the Luttinger model, the loop cancellation (see, e.g., Ref. [20]). For small mo-
mentum transfer Feynman diagrams involving ferinion loops with more than two
insertions cancel each other. This cancellation has been first exploited for the
Luttinger model in Ref. [16]. As a consequence of loop cancellation, the effective
interaction (including polarization) and response functions for small q are given
by the RPA resummation. Indeed, in general, the bubbles shown in Fig. 11 must
be dressed by the self-energy and vertex corrections, however, as we have shown
for the density-density correlation function, only the bare bubble remains. Indeed,
these corrections involve fermion loops with more than two insertions, and must
therefore cancel each other for small q and cutoff A, at least at leading order in
these small parameters.

D g

FIGURE 11. The effective interaction D.

The effective interaction D for small q is obtained by resummation of the dia-
grams illustrated in Fig. 11:

with f£ = gf, g™'_a = gf, and Waa given by Eq. (65).
The effective interaction (for a = a') D(q) contains all the information of the

charge and spin collective modes via their velocities uaj and can be cast in the form

n/ N / N v- \(*-rf)(ua-vF) T]a(ua + vF)}D(q) = (u — avpajTr > - —— —^ ———— - + J—^ ———— - , (66)W l } - - 5 { }
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where ?f = (Ka - 2 + l/Ka)/^ and Ka =
Once D is known, since the density vertex can be eliminated via the Ward identity

(63) 5 the Dyson equation for the single-particle propagator (Fig. 12) becomes a
closed equation for G [16]

f(u - avFp)G(p) = l + i J
dqdu/ D(p-q)G(q)
-^4 ———— , qj ; v4?r2 u — w1 — avp(p - q)

The solution of the above integral equation can be obtained by transforming it to
real space and time in the form

where L(r,t) is the Fourier transform of iD(q)[u — avpQ + iO+sgn(u;)]~2, and
G0(r,t) = (l/27r)[|r| - vFt + iO+sgn^)]"1. Using the expression (66) for D, L(r,t)
behaves logarithmically in |r and t. The logarithmic expression appears at the ex-
ponent in the expression for G, giving rise to a power-law behavior with anomalous
exponents depending on $2 and $4 via va and va. For large r| and/or large t, one
thus finds [13]

| - uat

where A is the momentum-transfer cutoff, and rf = rf + rjs.

G,

FIGURE 12. Dyson equation relating the dressed and bare fermion propagators (?, and GO, the
effective interaction D, and the irreducible vertex A°.

In conclusion, in d = 1, all the scattering processes with small momentum transfer
are marginal and the corresponding Luttinger model has been solved exactly via
the Ward identities which, in addition to the total charge and spin conservation,
specify the separate left and right conservation at each Fermi point. Due to this
additional Ward identities, no sign of the infrared divergences is left in the response
functions, giving rise to finite compressibility, spin susceptibility, Drude peak in the
conductivity, and a linear-in-T specific heat.

The main anomalies appear in the single-particle propagator, with a power-law
behavior and a vanishing wave-function renormalization Z when approaching the
Fermi points. The single-particle propagation is realized in a complex way, with
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velocities related to charge and spin collective modes and with vanishing low-energy
spectral weight. The wave-function renornialization is the only true renormalization
left, after the Ward identities have been applied.

We have not dealt with the properties of the charge and spin collective modes,
and of the singlet and superconducting fluctuations, for momenta close to 2k p.
For the sake of completeness we recall [13] that the corresponding correlation func-
tions are characterized by a power-law long-distance (and long-time-interval) decay.
The exponents of the power-law behavior can be expressed through Kc and Ks.
These power-law behviors translate into a power-law dependence on T at finite
temperature. Therefore, the Luttinger liquids are "critical" systems, although a
symmetry breaking is forbidden by the one-dimensional character of the fluctua-
tions. Predominantly repulsive ($2 > 0) or attractive (g% < 0) Luttinger liquids
have thus a tendency towards a spin- (charge-) density-wave, or triplet- (singlet-)
superconducting instability, respectively.

V NON-FERMI-LIQUID BEHAVIOR IN HIGHER
DIMENSIONS AND SINGULAR INTERACTIONS

The attempt to describe the anomalous properties of the normal phase of HTS has
motivated a search for metallic non-Fermi-liquid phases in d > 1, and in particular
in d = 2 [69,71]. In this section we address the issue of non-Fermi-liquid metals
in d > 1, emphasizing in particular the role of Ward identities. The problem of
finding metallic non-Fermi-liquid fixed points can be addressed in various ways: i)
by considering a system of chains coupled by an inter chain-hopping t± much smaller
than the intrachain hopping [26-28]; ii) by formally taking an isotropic system in
dimension 1 < d < 25 d being an arbitrary real number, and trying to extend the
solution for d = 1 to d > 1 [19,20]; iii) by considering singular interactions and
long-range forces [21-23].

A Multichain Model

In view of explaining the anomalous normal state of the HTS, an important ques-
tion is the possible extension of the Luttinger liquid to higher dimensions. As a first
attempt to study the evolution of the Luttinger liquid with increasing dimensional-
ity a system of Luttinger chains coupled by a tj_ interchain hopping was considered
[27]. The expectation was that by first solving the problem of strong correlation
in reduced dimensionality, and then introducing a weak interchain hopping as a
perturbation, a Luttinger-liquid-like behavior would persist down to temperatures
(or to energies, at T = 0) of the order of a renormalized t±<t±.

The transverse hopping in the y direction, treated as a perturbation with respect
to the Luttinger-liquid solution, can be written in a mixed real-momentum-space
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representation as

kx,<r

where cltkx(T(ci,kxo) creates (annihilates) an electron with spin orientation a on the
chain I with momentum kx along the chain. The linear response of the momentum
distribution function n\^ to a transverse-hopping perturbation is

-i r([nha(t)JH±]}dt=-4t±cos(ky) f°° lm[G(kXJt)G(kx,-t)}dt,
Jo Jo

where G is the exact propagator of a one-dimensional Luttinger liquid with mo-
mentum distribution n^ = UkF — Asgn.(\kx — fcp)!!^! — kp ??. Therefore

6n(kx,ky) ~ t±co8(ky)\\kx - kpf^j rj < 1,
i.e., t£~t±\\kx\-kF\*-1. (67)

As shown in Eq. (67), t± is a relevant perturbation if 77 < 1 (in the repulsive
Hubbard model 77 < 1/8), in the sense that it drives the system away from the
Luttinger-liquid fixed point, independently of the value of the interaction which
leads to the Luttinger-liquid solution in reduced dimensionality. Thinking in terms
of standard scaling concepts, the results (67), are in agreement with dimensional
analysis [26,81], and with an explicit two-loop RG study [28] for Hubbard repulsion
U<Ucz<12t\\11.

The introduction of t± on Luttinger chains is not a good procedure for studying
possible non-Fermi-liquid systems in d > 1, since i) the regime t± <C t\\ is too
anisotropic for most realistic systems; ii) the system flows to strong coupling out
of the Luttinger-liquid line of fixed points; iii) as soon as t± ^ 0 the number of
effective coupling constants increases and the system goes out of control.

The alternative approach would be to extend the exact procedure from d = 1 to
d > 1 via bosonization in d = 2 [36,82] or via Ward identities [18-20], as we now
discuss.

B Tomographic Luttinger Model

We want to determine at which dimension the Luttinger liquid turns into a
Ferrni liquid, i.e., the dimensional crossover from Luttinger liquid to Fermi liquid.
To this purpose, we can generalize to d > 1 the method proposed by Dzyaloshinskii
and Larkin [16], by showing how the additional Ward identities can still be used
asymptotically near the Fermi surface, provided 1 < d < 2.

11) jn j-jjjg section t\\ is the hopping term along the chains. In Ref. [28] it is found that t± scales
to zero for U > Uc. However, this parameter range falls outside the region of validity of the
calculations.
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In going from d = 1 to d = 2 many more new coupling constants than in the
$-ology model appear, although the low-energy properties of the metallic phase are
still determined by the excitation close to the Fermi surface. For small momentum-
transfer cutoff A, constraints imposed by momentum conservation in the narrow
shell around the Fermi surface introduce strong simplifications and lead to a gener-
alization of the g-ology model to d > 1. Consider the model given by H = HQ + ///,
where

ka

and
(k + qK(k)4,(k' - q)Mk'),

with transferred momentum q < A <C kp. Here kr is the distance of k from the
Fermi surface, kr = |k| — kp. The model represents an effective Hamiltonian for
the excitations near the Fermi surface and we assume that g^f is a slowly varying
function of k and kf on the scale set up by A. As k and k; are both near the Fermi
surface, the scattering processes are severely restricted. We consider, for example,
a spherical Ferrni surface in d = 2. For incoming and outgoing particles strictly
on the Fermi surface, there are three distinct scattering processes, which can be
parametrized by a single angle each
forward (F) scattering: ki = k^ and k^ = k2,
exchange (E) scattering: k^ = k2 and k!2 = ki,
Cooper (C) scattering: kx + k2 = 0.
They are depicted in Figure 13. Forward and exchange scattering can be
parametrized in terms of the angle between the momenta of the incoming par-
ticles 6 = Z(ki,k2), while Copper scattering is parametrized by the angle defined
by the momentum transfer <f> = /(k^ky. The asymptotic behavior is therefore
described by three functions gp(0)^gE(0] and gc(fi) as a generalization of the g-
ology model in d = 1, where only two angles (0 and TT) exist, with the following
correspondence

9c(0) =92,

Since we want to discuss a normal metallic state, we do not consider the Cooper
channel here. In a Fermi liquid, gp plays a special role, giving rise to Landau's
quasiparticle interactions [65]. For parallel spins, exchange and forward scattering
are asymptotically indistinguishable, while for opposite spins exchange scattering
generalizes the spin backscattering process in d = 1 , which renormalizes to zero for
repulsive interactions. For our purpose, we would like to ignore both gc and gp- In
d = 2, for a system with dominant forward scattering the angle between particles
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i=r

2=2'

1=2'

2=r

FIGURE 13. Scattering processes on the Fermi surface in d = 2: forward, exchange, and
Cooper scattering, from top to bottom. The numbers 1, 1', 2,2; label the momenta, according to
the convention adopted in the text.

involved in low-lying scattering processes is asymptotically conserved. This is the
generalization to each point of the Ferrni surface of left and right charge and spin
conservation, determining the behavior of the Luttinger liquid in d — 1, and allows
to describe the low-energy properties of the system in terms of a tomographic Lut-
tinger model, i.e., a collection of one-dirnensional Luttinger models, each labelled
by the angle 6.

C Dimensional Crossover

The extension of the theory to non-integer dimension 1 < d < 2 is obtained, as
usual, by analytic continuation of the Feynman diagrams, defined for arbitrary d,
to the complex d plane. It is sufficient to continue momentum integrals of functions
/(k) which depend on k only via the modulus |k| and the angle 0, between k and
another fixed momentum. In these cases one can use

, \p\\k\cos6), (68)
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where 8$ = 27rd/2/T(d/2) is the surface of the d-dimensional unit sphere. In the
limit d -> 1 one has Sd-i ^ d - 1, and thus Sd_i(sin(9)d~2 -> 5(6) + £(0 - TT).
The steps leading in d = 1 to the additional Ward identities of Sec. IV D, and in
particular to Eqs. (62) ,(63) are no longer strictly valid when d > 1. However, the
geometric restriction at small q and the condition d < 2 make both equations valid
asymptotically for small exchanged momentum, since the typical integrals in Eq.
(68) are peaked at 6 = 057r. In particular, since almost all relevant k vectors are
still parallel or antiparallel, asymptotically near the Fermi surface we can still write

A(p;g)~t;FpA0(p;g), (69)

where A and A° are the current and density vertex, respectively, and p =
Asymptotically we have, therefore, the same Ward identity for the density vertex,
which controls the infinite resummation of possibly relevant terms, leading to the
Luttinger liquid in d = 1,

-1 -1

- q

Eq. (70) is valid apart from a correction in the denominator, which vanishes as
d — > 1, and is small for |q| < A <C kp.

By inserting (70) in the Dyson equation, one again obtains the Green's function
in a form similar to that found for d = 1,

G?(r,t)=e
L^-L^G0(r,t), (71)

where L(r, t) is the Fourier transform of iD(q)[w— t;F<?r+«0+sgn(u;)]~2, and qr = p-q
is the radial component of q. The expression for L(r, t) involves now an angular
average D of the effective dynamical interaction D(q)J

?— [fa [7 T 2 J ̂  J [u - vFqr

where

In Eq, (73), we have integrated over the d — 1 components of the tangent momen-
tum. The low-energy behavior of G is now described in terms of a tomographic
Luttinger model [70]. In the limit d —» 1 one has D = D and one recovers the
exact expression for the propagator of the Luttinger model in d = 1. In the case
we considered (regular coupling, 1 < d < 2) the effective interaction scales to zero
at low-energy since Eq. (73) implies the scaling relation
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i.e., D(qrjuj) ~ &d 1D(qr/u). This result clearly illustrates the marginality of
small-q scattering processes in d = 1, and their irrelevance in higher dimensions
where the effective interaction has to be averaged over the angles. The physical
origin of this irrelevance is therefore related to the reduction of the phase space for
the scattering of the particles by the collective modes at d > 1, where the Landau
Fermi-liquid theory is recovered.

Fourier transforming G(r, 0) yields the momentum distribution n^ near the Fermi
surface. A signature of the validity of the Fermi-liquid theory is given by a finite
discontinuity Ank at the Fermi surface, which vanishes only if d —» 1. The quasi-
particle inverse lifetime is proportional to k^ (d < 2), and is therefore anomalous
when compared to the standard k% term present for d > 2. However, it is not
sufficient to destroy the Fermi-liquid quasiparticle features as soon as d > 1. These
results, which rely on Ward identities, are reproduced for d = 2 by various authors
[35,36], by extending the bosonization approach to d = 2, along the line proposed
by Haldane [34].

The above results show that the mechanism for non-Fermi-liquid behavior in
d = 1 does not extend to d > 1 (specifically to d = 2). The small-q scattering
processes which generalize those leading to the Luttinger-liquid behavior in d = 1,
can still be controlled by asymptotic Ward identities, and do not destroy the Fermi
liquid, as soon as d > 1. A non-Fermi-liquid behavior in d = 2 must therefore have
a different and more subtle origin than in d = 1. For example, strongly singular
interaction can produce such an effect, as we discuss in Sec. VE.

D Bosonization

For completeness, in this section we give a brief description of the bosonization
procedure to treat systems whose low-energy physics is dominated by forward scat-
tering. It consists in expressing the fermion creation and annihilation operators in
terms of boson density-fluctuation operators. This technique has been originally
invoked to analyze one-dimensional systems [30-33]. A generalization to higher
dimension has been pioneered by Haldane [34] and elaborated in detail for d = 2
in Refs. [35,36], and later in Refs. [82,83]. The basic conclusion is that the re-
sults obtained by bosonization procedure are equivalent to those obtained by the
asymptotic Ward identities.

Let us first assume spinless fermion for simplicity. The main idea behind the
bosonization approach in d = 1 is that the particle-hole excitation created by
the operator a^^ak has energy ek+q — ek = VFQ, independent of k. This gas
of bosons accounts for the free-particle part of the Luttinger Harniltoman for the
right- (a = +) and left- (a = — ) moving particles as

qa
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where f4(q) and 6a(q) satisfy the bosonic commutation relation

The formal correspondence between the density operators p«(q), whose commuta-
tors are given as in d = 1 by Eq, (58), and the boson operators is established via
the relation

p+(q) =

and similarly

P-(q) =

P-(q) =

, q > o ,

-q), q < o ,

q > 0 ,

q < 0 .

(74)

(75)

The term JJ4 of the Luttinger model is also simply expressed in terms of $b. The
term H% has instead the bilinear anomalous form

#2 = § £ Iql
The full Hamiltonian can be diagonalized by a Bogoliubov transformation, leading
to the collective charge modes. In presence of spin variables we would have a
correspondence between p^ and the boson operators 6^5 and the charge (a = c) and
spin (a = s) sectors would decouple with charge and spin modes propagating with
velocities va

j leading to the charge and spin separation.
We now briefly recall the extension of the bosonization approach to d > 1.

The main idea of bosonization in dimension higher than one is a decomposition of
momentum space in disjoint sectors Kaj a = 1, . . , , M, which consists in a partition
of the Fermi surface into patches, the area of each patch being A^"1. The condition
Aa <C kp ensures that the Fermi surface is almost flat and the velocity is constant
within each patch. The condition for constant velocity in the patch box is the same
as the velocity conservation required by the Ward identities at each point of the
Fermi surface. As in d = 15 the basic ingredient in the bosonization procedure is
the density-fluctuation operator, that now is defined for each patch a as

Pa(q) = E 4+q^k.
kEpatch a

For |q| <C Aa? the above operators obey commutation relations [34,35] which gen-
eralize Eq. (58),

q,_q/(n0 • q),
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where Oa = VA^ 1/(27r)d is the number of states in the patch box divided by the
size A in the radial direction, and na is a unit vector normal to the patch. The
density fluctuation operator pa(q) can be related to boson operators ba(q) and
&£(q) by the following generalization of Eqs. (74) and (75),

pa(q) = (fia|nQ • q|)1/2[e(na • q)6a(q) + 6(-nQ • q)fct (-q)],

9 being the characteristic function.
The main point of the bosonization procedure is that also in d > 1, if we consider

forward scattering with momentum transfer restricted by |q| <C Aa, the interac-
tion Hamiltonian can still be written in a quadratic form in terms of the density
operators. Owing to the quadratic structure of the bosonized representation of
the Hamiltonian, the dynamics of the operators pa can be calculated exactly. The
result in d = 2 is the same as that obtained by the Ward identities presented
before. In particular, using the bosonic representation of fermion operators, the
single-particle propagator Ga can be expressed in terms of the expectation value of
the boson (density) operator for particles belonging to a small patch a of the Fermi
surface. Ga coincides with the expression (71) derived via Ward identity, when
calculated for d = 2. The only difference is that, instead of the radial variable,
a vector is now present in Eq, (72). The bosonization approach, indeed, intro-
duces an overcomplete set of fermion fields. The Ward-identity approach avoids
instead the patch construction with artificial overcompletness of states and inter-
patch scattering processes. Moreover the limitations of the bosonization approach
in d = 2 are not so transparent as in the Ward-identity approach in d = 2. Indeed,
in d = 2, the generic integrals (68) in momentum space are no longer peaked at
0 = O,TT. The relation between the current vertex and the density vertex and its
consequences are therefore much less evident, when extended to d = 2. The dimen-
sional crossover from Luttinger to Fermi liquid as d > 1 derived via Ward identities
is instead a firm result.

E Singular Interactions and Long-Range Forces

In this section we consider singular scattering as a possible source of non-Fermi-
liquid behavior in d > 1. Singular scattering is quite plausible to occur in strongly
correlated fermion systems [72], In ordinary metals the kinetic-energy term is strong
and ensures a homogeneous phase. However, in the presence of strong correlation
due, e.g., to local repulsion, the kinetic-energy term is strongly suppressed. In this
way the homogenizing contribution of the kinetic term may become insufficient
against the effect of forces of different nature (magnetic, nearest-neighbour repul-
sion, etc.) which give rise to phase separation [84]. On the other hand, long-range
Coulomb interactions, by forbidding charge unbalance on a macroscopic scale, pre-
vent the thermodynamic phase separation [85], However, Coulomb interactions
being strongly effective at small q, may lead to an instability at finite wave vec-
tors q = qC5 with strong dynamic charge fluctuations. Informations about such
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an instability are provided by the quasiparticle scattering amplitude F(u;,q). Near
phase separation in the absence of long-range Coulomb forces, F is strongly singular
at zero momentum. When long-range forces are present, F is anisotropic, and is
still strongly singular, although at a finite momentum q = qc, which signals an
incommensurate charge-density-wave instability [72]. A similar instability could be
present in the magnetic sector, giving rise to strong magnetic fluctuations [73]. In
both cases (short- and long-range forces) the singular interactions may lead to a
breakdown of the Fermi-liquid picture in the normal phase. Anomalous transport
properties of the metal arise in a region determined by a crossover temperature,
which depends in general on the density of charge carriers.

The previous analysis for the effective interaction D, can be pursued in the
presence of static long-range forces with spin independent singular coupling g(q) =
$o/|q|a; which corresponds to a |r|~(d~a) behavior in real space [22]. One could
expect that long-range forces change the scaling dimension of D from d — I to d —
1 — a. However, summing up the RPA series for the effective (screened) dynamical
interaction, the leading contribution in the asymptotic regime |q|/u; —> 0, which is
relevant to the present problem, is found to be

-Y (76)

where C is a constant which depends on the dimension d. From Eq. (76) one sees
that the long-range forces change the dispersion of the collective mode from a sound
mode ujq oc |q| to a plasma mode uq oc |q|1-°/2; changing the the dimension of u;
from 1 to 1 — a/2 and reducing the contribution from the poles to the integrand for
L in Eq. (72). The scaling dimension for L(r, t) is now d — 1 — a/2. The outcome
is that the breakdown of the Fermi liquid occurs only if the long-range interaction
is strongly singular, a > 2d — 2 [21,22]. From this considerations it comes out that
in d = 2 the Coulomb interaction 0(q) ex l/|q| is not singular enough to produce a
non-Fermi-liquid behavior.

F Renormalization- Group Approach in the Presence of
Singular Forward Scattering

The result discussed in Sec. VE is based on the assumption that the RPA re-
sununation leading to the dynamically dressed effective interaction D is still valid
in the presence of a singular interaction. This amounts to say that (singular con-
tributions associated with) self-energy and vertex corrections to the polarization
bubble must cancel. This cancellation can be controlled by means of the Ward
identities, associated with the specific conservation laws of a system with singular
forward scattering, within a perturbative RG approach.

To develop the RG approach in the case of long-range interaction [23], we exploit
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the equivalence with a problem of fermions interacting with a scalar boson field <f>

HI = ig0 J

where the RPA propagator of the field </> is given by DLR = D/g$, with D given
by Eq. (76), in the region u > vF\q\. Here (7 = gQ^vFSdkj^l/d(27r)d, and
5d = 27rd/2/r(d/2) is the surface of the d-dimensional unit sphere. If w <C i>F|q| the
effective interaction assumes the usual short-ranged expression due to the screening
by the particle-hole fluctuations. Here we restrict to consider the regime a; ^> fj?|q|,
in the case a < 2 where the collective plasma mode is propagating and gapless.

Within a functional-integral formulation, by eliminating the fermions, one ob-
tains an effective action for the field (/>

where the first term in the right-hand side is the RPA quadratic part, and the
interacting part is symbolically represented by the second term, where the n-th
contribution contains n — 1 integrals over momenta and frequencies.

The dimensional analysis yields the scaling dimensions [q] = 1, [a;] = 1 — a/2,
[</>] = -(2d + 2 + a)/4, and \Tn] = d + 1 + [(3n - 2)a - 2n(d + l)]/4. Tn seems
therefore to be relevant for d < (3n — 2)a/(2n — 4) — 1. However, performing a
gauge transformation <f> -^ A = —q<f)/u from a scalar to a vector field, one is able to
make the momentum dependence explicit and show that, for n > 3, Tn vanishes at
least as Tn ~ (\q\/u)n in the dynamical regime |q|/tt; —> 0, which is the dominant
regime in the present problem [23]. The expression for the e^-field propagator is
therefore not changed by corrections beyond RPA. This amounts to say that the
field </> does not acquire an anomalous dimension with respect to its Gaussian form,
and the wave-function renormalization Z^ remains finite.

We are thus left with the problem of renorrnalizing the ferrnion Green's function
G and the fermion-boson vertex. We use conservation laws to establish relations
among the various singularities of the theory, thus reducing the number of inde-
pendent renormalization parameters. The first conservation law to be exploited is
the conservation of the total number of particles which is generically valid. The
corresponding Ward identity, which is the analog of Eq. (62) for a = c, then reads

q • A(k, q; e, u;) - u;A°(k5 q; e5 u) =
G-*(k - q/2, e - w/2) - G'l(k + q/25 e + w/2), (77)

which is valid both for the bare and for the fully renorrnalized vertices and Green's
functions, and allows to relate the renormalization parameters of the vertices with
those of the propagator.

Since frequency and momentum are inequivalent variables in the present problem,
we introduce two different renormalization parameters in the fermion propagator
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G-HM = e - & - £(M - Z-xe - (ZZVF)'l&, where £k = (|k|2 - k2
F)/2m ~

i>F(|k| — fcF) is the free-particle dispersion and E is the fermion self-energy. The
renormalization parameters are

and have to be related with the singular parts of the current and density vertices
in the left-hand side of Eq. (77). In particular, one has to extract the coefficient of
q in the right-hand side of (77) and compare it with the static limit of the current
vertex in the left-hand side. In that way, defining the renormalization of the current
vertex A in the static limit, Z~tltvF = A(k, q —>• 0; e, u = 0), one finds

7 __ 7-7-^stat — zjzjVpf

To extract the divergences of the frequency part of the propagator, one defines the
dynamical limit of the density vertex Z~[^ = A°(k, q -^ Q; e, u; —» 0), and similarly
finds

Zdyn = Z. (78)

As we show below, the renormalization which is relevant for the long-range case is
Eq. (78).

The second conservation law to be considered is the conservation of the number
of particles at each point of the Fermi surface, which is obviously approximate
in d > 1 and holds if forward scattering is dominant at low energies as in the
tomographic Luttinger model. The associated Ward identity, as in Eq. (69), is

A(k, q; e, u) = vFA°(k, q; e, u),

Assuming the above approximate equation and combining it with Eq. (77) we
can once again write down the equation that expresses the density vertex as a
function of the single-particle propagator only. Finally, as it was shown in Sec. IV,
by inserting this into the expression for the polarization bubble, the latter does not
get dressed, since the vertex corrections exactly cancel the self-energy corrections,
i.e., the validity of the RPA expression for the boson propagator is under control.

The renormalization parameters Z and ZVF are calculated through a perturbative
expansion of the fermion self-energy E5 and are defined in terms of E at a proper
normalization point A in momentum space. It can be shown that the one-loop
self-energy contribution due to the long-range singular interaction is such that in
the dynamical limit

1 <9E——
d\k\ dt
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i.e., the derivative of S with respect to k and e have the same singular behavior in
the infrared [23]. Therefore, the renormalization of the momentum part of fermion
propagator is equal to the renormalization of the frequency part, ZZVF = Z, i.e.,
ZVF is finite and the Fermi velocity does not acquire singular corrections, as in the
one-dimensional Luttinger model.

When considering the general expression for the fermion self-energy

E = i

one realizes that the most singular contribution to this integral conies from the
pole of the boson propagator a;2 ~ |q|2~a, i.e., uj ^> |q|. We introduce, therefore
the renormalization parameter in the relevant kinematic regime

The renormalization of the coupling constant g is now

which, using Eq. (78), becomes go = g, i.e., the divergences in the vertex and
self-energy diagrams cancel out thanks to the Ward identity coming from the con-
servation of the total number of particles. In conclusion, due to Ward identities, the
Fernii velocity, the boson field, and the coupling constant do not get renormalized,

At one-loop level, one determines the effective coupling constant which appears
in the skeleton structure of the perturbative expansion. The effective coupling is
specified by observing that at the dominant pole a; = C\q\1~a^2

J the energy of the
internal fermion propagator is e + C'lql1"0/2. But, since at small momenta and for
a< 2,

one can neglect the contribution from £k+q when computing the contribution to E.
As a consequence, the effective coupling coupling constant coincides with g2 apart
from a multiplicative factor coming from the integration in the diagram. Defining
UQ ex $0, the one-loop calculation of the self-energy [23] leads to the one-loop wave-
function renormalization parameter

Since this quantity must be dimensionless, we can compute the scaling dimension
of w0 5 thus obtaining, for the dimensionless coupling constant, the expression

with xu = 2^~2d x [a;] = 1 — d + a/2. Thus u does not acquire any anomalous
dimension. Eq. (80) shows that a line of non-universal fixed points exist only for
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xu = 0, i.e., for d = dc = 1 + a/2, while for xu > 0 or xu < 0 the effective coupling
constant either scales to strong coupling or to the free fixed point u* = 0. In the
strong-coupling and non-universal fixed-point cases one obtains a non-Fermi-liquid
behavior in agreement with the result discussed in Sec. VE.

Prom the one-loop result, Eq. (79), we can obtain a differential equation for Z,
Z = —(1 — a/2)uZJ which can be integrated, taking Eq. (80) into account. We
find therefore

Z ~ exp [-(2 - a)wokr(2+a"2d)/(2"a)/(2 + a - 2d)] ,

i.e., Z vanishes as a stretched exponential, for d < dc, and

i.e., Z vanishes with a non-universal exponent for d = dc. We point out that, due
to the absence of an anomalous dimension for the effective coupling constant, the
solution of the RG equation for Z corresponds to the exponentiation of the one-loop
result, Eq. (79) [23].

VI INTERACTING BOSONS AT ZERO
TEMPERATURE

In this section we discuss the application of RG to interacting Bose systems at
zero temperature, which represents a further example of a stable liquid phase of the
matter, with singular perturbation theory. As anticipated in Sec. I, and applied
in the context of one-dimensional fermion systems in Sees. IV and V, the use of
Ward identities provides a powerful tool to control the divergences, and show that
they cancel exactly in all physical quantities.

The development of the theory of interacting Bose systems is motivated by the
fact that, due to the small atomic mass, and to the weakness of the interactions,
helium remains liquid below the degeneracy temperature, where quantum effect
become relevant. At T = T\ c^ 2.17K the Bose liquid 4He undergoes a transition to
a superfluid phase. The phenomenon of superfluidity is a consequence of the form of
the spectrum of the low-lying excitation, according to the Landau criterion, which is
based on quasiparticle energy and momentum conservation. The transition itself is
instead attributed to the Bose-Einstein condensation, as suggested by the estimate
of the transition temperature for a Bose gas, TBE = 67i2n2/3/m, which is of the
correct order of magnitude ~ TA when the density n and the mass m are taken
as appropriate to 4He. The transition is then characterized by the appearance of
a non-zero expectation value of the Bose field (if}} = {̂ } = ^/no > 0. One of
the major problem in condensed matter physics during the '50s and the '60s was
therefore the description of the elementary excitation of an interacting Bose system,
in the presence of the condensate.
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The first solution to this problem was achieved by Bogoliubov [86] in 19475 within
a generalized Hartree-Fock approximation. The condensate density HQ is assumed
to coincide with the particle density n, and the interaction term, containing four
boson fields, is dealt with in mean field, by replacing two of them with their mean
value ^/HQ in all possible ways, generating an anomalous self-energy, proportional
to {^^} = {^t/^} = HQ. This approximation leads to the correct expression for
the sound velocity CQ in terms of the compressibility of the system, and to a lin-
ear (sound-like) spectrum at low momenta and energy, as required by the Landau
superfluidity condition. The first attempt to improve the Bogoliubov theory, in-
cluding the effect of the depletion of the condensate within the so-called pairing
approximation, led to a spurious gap in the excitation spectrum [87], together with
the non- vanishing anomalous self-energy. A series of exact results proved that the
gap in the excitation spectrum must vanish (Hugenoltz-Pines theorem) [88], and
that the anomalous self-energy is identically zero [89].

All the attempts to improve the Bogoliubov approximation encountered the prob-
lem of facing infrared divergences due to the presence of the Bose-Einstein conden-
sate and of the Goldstone mode associated with the global broken symmetry [90,91].
The problem of a singular perturbation theory was first recognized by Gavoret and
Nozieres [91], posing the question of the validity of perturbation theory. The in-
frared divergences appear in the intermediate steps of the calculations, while they
must cancel out in all physical quantities [90] , since the Bose superfluid is a stable
phase of the matter. A way to take care of the infrared divergences (in d > 1,
which is the necessary condition for the existence of the condensate at T = 0) is
the RG approach, together with the exploitation of the underlying local gauge sym-
metry and of the related Ward identity. This allows to show that singularities do
cancel exactly in all physical quantities, that the excitation spectrum is linear, in
agreement with the Hugenoltz-Pines theorem, and that the anomalous self-energy
vanishes. This approach to obtain the solution of the problem at zero temperature,
which reduces to the Bogoliubov result for d > 3, was employed in Ref. [24], and
we discuss it in the following. Ward identities for a Bose system were previously
partially exploited in Refs. [91,92]. The Wilson-like RG approach for bosons in
d = 3 was also discussed in Ref. [93]. Here we follow Ref. [24].

We start from the real-time zero-temperature action of a Bose system in d spatial
dimensions

S =

+ 1>(xW(z)+il>*(x)ri(x)}, (81)

where tp(x) is a boson field, x = (t,x), rj(x) and Qu(#), A(x)) = A(x) are external
sources to obtain, by functional derivatives, the order-parameter, density, and cur-
rent correlation functions. At the end of the calculation /i recovers the constant
value of the chemical potential while rj and A are set equal to zero. We have taken
units such that the mass of the boson is m = 1/2. Finally the interaction potential
is taken to be short-ranged in real space (i.e., constant in momentum space). The

71

Downloaded 07 Mar 2003 to 130.235.92.220. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



generating functional associated with the action (81) is F = log / D(f^J if)*) ex.p(iS).
In the case of spontaneously broken symmetry, it is convenient to introduce the
notation if>(x) = if)i(x) + iif>t(x) and if)*(x) = if>i(x) — iif>t(%), to distinguish be-
tween the longitudinal and transverse components along the broken-symmetry di-
rection (the order parameter ipi0 = (if)i(x))rj=Q is assumed to be real). By dif-
ferentiating the generating functional F one obtains the connected correlation
functions as the wave function of the condensate, ipw = (^i(x)) = —i5F/5r]i(x)
and the single-particle Green's function G# = —52F/5r)i6rij with i,j = l,t and
we defined %^ through rj = rji + irfy, rj* = rji — irfc. Introducing the Legendre
transform of F with respect to r/i, F = i f dxTftifoo — F, one obtains the vertex
functions associated with the one-particle irreducible diagrams, where the func-
tional derivatives with respect to Av generate the composite density (current)
vertices IV..̂ ...̂  = (-i)n^md^m^T/5^il0 , . .^0M^ . . . 6AVm. In the broken-
symmetry phase one keeps the value of the condensate fixed ipio and introduces
the fluctuation fields ̂  with vanishing averages in the absence of external sources,
such that

Within mean field, taking into account the mean-field condition ̂ 0 = <*/no = y p>/v,
the quadratic part of the action (81) leads to the single-particle Green's functions
ft* ~ cg^'-cgk2)-1, fit - oV-cgk2)-1, ft, ~ k^^-cgk2)-1, where Co = ̂
is the mean-field sound velocity, and the expressions are approximated at small
momenta and energies. At this point one could set up the usual perturbation
expansion in which the quadratic action is treated as free and the rest as a pertur-
bation. The resulting perturbation theory is affected by infrared divergences, due
to the presence of the sound Goldstone mode, already at one-loop level for d < 3.
A RG treatment is then required. Since perturbation theory generates (divergent)
corrections to the mean-field quadratic part of the action (81), we generalize the
inverse Green-function matrix to include all its possible renormalizations

vtt + zuk2 - uttw2 vu• ,vu - iwuu) vtt + z

where the bare (mean-field) values are vft = 2jz ^ 0, 0§ = z| = wft = 1, and
?.o _ 7/o _ ,.o _ 7.o _ n% — un — utt — vit — u-

Apart from the quadratic terms, one also introduces the running coupling con-
stants, for the cubic (three-leg) and the quartic (four-leg) interaction vertices,
(vttt]Vitt)j etc.) and (^tnt^itn)-, etc.) respectively. We point out that the cubic
terms only appear in the presence of the condensate.

The RG treatment requires a preliminary power counting for the running cou-
pling constants. The mean-field sound velocity CQ is assumed dimensionless from
the point of view of scaling (see also below) and may be reabsorbed by redefining
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momenta, frequencies, and Bose fields, suitably multiplied by powers of c®. There-
fore, we take units such that [k] = [u] = 1, as suggested by the bare single-particle
Green's functions. The most singular bare propagator is Qttj with [Qu] = — 25 fol-
lowed by Qitj with [Qit] = — 1, and by On, with [Qu] = 0. Thus we have that the
bare dimensions of the fields are

The bare dimensions of the longitudinal and transverse fields differ by one since
in the free action a quadratic term in the longitudinal field appears (a finite mass
v^ is present), whereas the transverse field only appears through the square of its
gradient (vft = 0), i.e., the mass of the transverse mode vanishes, since this is the
Goldstone mode.

zu and uu are irrelevant. For d < 3 there are nine running coupling constants
controlling the infrared behavior. They have bare dimensions [vu] = [wu] = [uu] =
[ztt] = 0 (marginal), [vu} = 1, [vn] = 2, [vm] = l+e/2 (strongly relevant), [vm] = e/2
and [VMM] = e, where e = 3 — d. For instance, [vtttt] — d — 1 + 4[^(x)] = 0 gives the
previous result.

Although VitjVtt, and vm would be strongly relevant, they vanish identically for
vanishing external sources, as we show below. The continuity equation will, in the
present case, allow for the elimination of two coupling constants.

As already mentioned, in presence of a stable phase, we expect the singular
perturbation theory to result in finite response functions. On the other hand,
the cancellation of infrared divergences implies a connection between the various
running coupling constants. We shall identify three running variables in terms
of physical quantities, which indeed remain finite. We are finally left with only
one running coupling, whose closed equation can be solved as for the case of the
Luttinger model in d = 1. We now proceed to sketch how all this is achieved by
analyzing the Ward identities, which result from the local gauge invariance of the
functional F, i.e.,

F[A,(x) + ̂ aOr),%[^ (83)

where Rij[a(x)} ~ I + ia(x)r2 is a rotation matrix by an angle a in the (t^i^t)
space, / is the identity matrix, r2 is the Pauli matrix, and we wrote the explicit
expression for Rij at small a, which is needed to derive the Ward identities. Eq.
(83) follows from the invariance of the action (81) under the gauge transformation
^(x) -» eia^^(x),rj(x) -> e-ia^rj(x) and Av(x) -> Av(x) + dva(x), where a(x)
is a real function. By taking the derivatives of the functional (83) with respect to
a,if)i and Av one obtains an infinite set of Ward identities. The following Ward
identities are relevant for kv — »• 0

(84)
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Since t/^o ^ 0 in the superfluid phase, as the external sources I\(0) = r]t and
1^(0) = 7]i vanish, F^(0) and Ftt(0), which are directly connected to v\t and Vtt
must vanish. By inspection of Eq. (82) one realizes that this implies that no gap
appears in the single-particle spectrum, in agreement with the Hugenoltz-Pines
theorem [88].

Other three relations are established via Ward identities, specifying the continuity
equation, which in the presence of the condensate connects 3- and 4-point vertices
to the 2-point vertices. These Ward identities, for vanishing external momenta and
frequencies, and taking into account the vanishing of F^(0),rtt(0), read

-r«(o) = o, (85)
= 0, (86)

rtttt(o,o,o)^«,-3rztt(o,o) = o. (87)
The first two equations imply Vm^m = vu and vm = 0, while the last one yields

We are left with four marginal running coupling constants, namely, vu =
— <92r/c^f0, wit, Uu and ztt, whose infrared behavior can be determined exactly, ow-
ing to the identification of the renormalization parameters with physical quantities.
In particular, 1%, wtt and ZM, which are related to the frequency and wave- vector de-
pendence of Ftt and Ftt, can be identified in terms of physical quantities, by exploit-
ing the full Ward identities in terms of frequency and wave vector, generalizations of
Eqs. (85), (86), and (87), to include now the derivatives with respect to jj, also. As
the scaling parameter s — »• 0, one obtains Ztt — >• 2ns/n0, VU/WK — »• —2no/(dno/dp)rjj
vuZtt/(vuUtt + wft) — »> c2 = 2ns/(dn/dfjf)rij where ns is the superfluid density, c is
the sound velocity, and (dn^/d^)^ is the condensate compressibility. By the very
stability of the boson system, all these quantities are free from infrared divergences
in the limit of vanishing sources.

The RG equations at one-loop level reproduce this situation with the following
asymptotic behavior for vu as s — » 0: Vu ~ s€ —> 0, for e > 0 (i.e., d < 3),
Vu ~ — l/log(s) — »• 0, for e = 0 (i.e., d = 3), whereas vu is finite for e < 0 (i.e.,
d > 3), where the Bogoliubov result vu = 2/x is recovered.

~T ™~F" "t—LJ----" "k
%

FIGURE 14. Equation for the most singular part of TU (filled square). The empty square
represents the bare interaction vj, whereas the empty and black circles represents vftt and F^{,
respectively. The external dashed lines, which represent longitudinal fluctuations, are amputated,
and are only drawn to indicate the corresponding ingoing and outgoing momenta. The solid lines
represent the propagator of transverse fluctuations, Qtt-

The behavior vu ~ se, or TU ~ fce, is again fixed exactly by the Ward identities
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which allow to close the equation for TU, The true asymptotic behavior of TU(S)
follows by expressing the most singular part of TU in terms of the exact Titt and Qtt
(see Fig. 14)

(q, -q - fc). (88)

The Ward identity (85) allows one to express Fj# in terms of F« thus closing
Eq. (88) and providing the exact asymptotic behavior TU ~ fc€, since the loop of
integration over moment urn and frequency, with two transverse Green's functions,
gives a kernel going as k~€.

We point out that, although the spectrum is always linear at small momenta
at energy, leading to sound-like excitations and superfluidity, the sound mode is
realized in completely different ways for d > 3 and d < 3. Indeed, from Eq, (82),
once vn and vu have been set to zero, and the Hugenoltz-Pines result is recovered,
the scale dependent quantity c2(s) = vuZu/(vuUu + w|) must be interpreted as the
sound velocity for s — > 0. In the Bogoliubov case vu = 2ngv , ztt = 1, utt = 0,
and t% = 1, so that the sound velocity c = y^. In d < 3, instead, as s — »> 0,
Wtt ~ VH — »• 0, and the scale-dependent function c2(s) — » c2(0) = ;3tf(0)/w#(0) =

In conclusion, Ward identities have been used to reduce the number of running
coupling constants to the single vu, for which a non-linear equation has been solved
[24] , thus providing the exact infrared behavior of the system, as for the d = 1
fermion case. The final results turn out to be quite different from the Bogoliubov
result in d < 3, despite the coincidence of the sound-like spectrum,
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