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Abstract By using Thurston’s bending construction we obtain a se-
quence of faithful discrete representations ρn of the fundamental group
of a closed hyperbolic 3–manifold fibering over the circle into the isome-
try group Iso H4 of the hyperbolic space H4 . The algebraic limit of ρn
contains a finitely generated subgroup F whose 3–dimensional quotient
Ω(F )/F has infinitely generated fundamental group, where Ω(F ) is the
discontinuity domain of F acting on the sphere at infinity S3

∞ = ∂H4 .
Moreover F is isomorphic to the fundamental group of a closed surface
and contains infinitely many conjugacy classes of maximal parabolic sub-
groups.

AMS Classification 57M10, 30F40, 20H10; 57S30, 57M05, 30F10,
30F35

Keywords Discrete (Kleinian) subgroups, deformation spaces, hyper-
bolic 4–manifolds, conformally flat 3–manifolds, surface bundles over the
circle

1 Introduction and statement of results

By a Kleinian (discontinuous) group G we mean a subgroup of the group
Conf(Sn) ∼= SO+(1, n + 1) of conformal transformations of R

n
= Sn =

Rn ∪ {∞} which acts discontinuously on a non-empty set Ω(G) ⊂ Sn called
its domain of discontinuity. It may be connected or not; we will say that G
is a function group if there is a connected component ΩG ⊂ Ω(G) that is in-
variant under the action of the whole group: GΩG = ΩG . The quotient spaces
MG = ΩG/G and M(G) = Ω(G)/G are n–manifolds in the case in which G is
torsion-free. The complement Λ(G) = (Sn\Ω(G)) ⊂ ∂Hn+1 is called the limit
set of G.

A finitely generated Kleinian group G is called geometrically finite if for some
ε > 0 there exists an ε–neighbourhood of HG/G in Hn+1/G which is of finite
hyperbolic volume. Here HG ⊂ Hn+1 is the convex hull of Λ(G).
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Let us consider for n = 3 a hyperbolic 3–manifold M = H3/Γ (Γ ⊂ PSL2C)
fibering over the circle S1 with fiber a closed surface σ . The notation is
M = σ×̃S1 . A representation ρ: π1(M) → Conf(S3) is called admissible if
the following conditions are satisfied.

(1) ρ: Γ → Conf(S3) is faithful and ρ(Γ) = Γ0 is Kleinian.

(2) ρ preserves the type of each element, ie ρ(γ) is loxodromic for all γ ∈ Γ.

(3) ρ is induced by a homeomorphism fρ: Ω(Γ) → Ω(Γ0), namely fργf
−1
ρ =

ρ(γ), γ ∈ Γ.

The set of all admissible representations modulo conjugation in Conf(S3) is
called the deformation space Def(Γ) of the group Γ.

The set Def(Γ) inherits the topology of convergence on generators of Γ on com-

pact subsets in S3 because Def(Γ) ⊂
(

Conf(S3)
)k

/∼, k ∈ N (∼ is conjugation
in Conf(S3)). As Def(Γ) is a bounded domain [13] two questions have arisen.
The first is to describe the cases when Def(Γ) is non-trivial and the second is to
study the boundary ∂Def(Γ), as was done for the classical Teichmüller space
[2], [10]. The answer to the first question is still unknown even in the case when
M is Haken. We will consider the case when M contains many totally geodesic
surfaces. Each of them produces a curve in Def(Γ) by Thurston’s “bending”
construction [19]. Our main interest is in groups which appear on the boundary
∂Def(Γ). These are higher dimensional analogs of B–groups which arise as the
limits of sequences of quasifuchsian groups in classical Teichmüller space.

One of the most fundamental questions is to describe the topological type of
the orbifold M(Γ) = Ω(Γ)/Γ (a manifold in the case when Γ is torsion-free),
in particular, when Γ is a function group it is important to know when the
fundamental group π1(MG = ΩΓ/Γ) turns out to be finitely generated, or even
more generally when it has finite homotopy type.

In dimension 2 the famous theorem of Ahlfors [1] says that a finitely generated
non-elementary Kleinian group G ⊂ Conf(R2) has a factor-space Ω(G)/G con-
sisting of a finite number of Riemann surfaces S1, . . . , Sn each having a finite
hyperbolic area.

We discovered in [7] that the weakest topological version of Ahlfors’ theorem
does not hold starting already with dimension 3. Namely we constructed a
finitely generated function group F ⊂ Conf(S3) such that the group π1(ΩF /F )
is not finitely generated. Afterwards it was pointed out in [15] that this group
is in fact not finitely presented.

It has also been shown that there exists a finitely generated Kleinian group
with infinitely many conjugacy classes of parabolics [6].
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In [14] we constructed a finitely generated group F1 such that π1(ΩF1
/F1) is not

finitely generated and having infinitely many non-conjugate elliptic elements;
moreover F1 appears as an infinitely presented subgroup of a geometrically
finite Kleinian group in H4 without parabolic elements. On the other hand,
it was shown in [4] that a finitely generated but infinitely presented group can
also appear as a subgroup of a cocompact group in SO(1, 4).

Theorem 1 Let Γ = π1(M) be the fundamental group of a hyperbolic 3–
manifold M fibering over the circle with fiber a closed surface σ . Suppose that
Γ is commensurable with the reflection group R determined by the faces of a
right-angular polyhedron D ⊂ H3 . Then there exists a finite-index subgroup
L ⊂ Γ and a path βt: [0, 1[7→ Def(Γ) such that βt converges to a faithful
representation β1 ∈ ∂Def(Γ) (as t → 1) and the following hold:

(1) β1(FL) contains infinitely many conjugacy classes of maximal parabolic
subgroups,

(2) π1(Ωβ1(FL))/β1(FL) is infinitely generated,

where FL = L ∩ π1σ is isomorphic to the fundamental group of a closed hy-
perbolic surface which finitely covers σ and β1(FL) acts discontinuously on an
invariant component Ωβ1(FL) ⊂ S3 .

Remark Groups satisfying all the conditions of Theorem 1 do exist. An
example of Thurston, of the reflection group in the faces of the right-angular
dodecahedron, which is commensurable with a group of a closed surface bundle,
is given in [18].

Acknowledgement This paper was prepared several years ago while the au-
thor had a Humboldt Fellowship at the Rühr-Universität in Bochum. The
author is deeply grateful to Heiner Zieschang and to the Humboldt Foundation
for this opportunity. I would also like to thank Nicolaas Kuiper (who died re-
cently) for reading a preliminary version of the manuscript and to express my
gratitude to the referee for many useful remarks and corrections.

2 Outline of the proof

Before giving a formal proof of the Theorem let us describe it informally.

Our construction is inspired essentially by papers [6], [8] and [14]. In the first
two a free Kleinian group of finite rank satisfying the conclusion (2) was pro-
duced, whereas now we give an example of a closed surface group with this
property. Our present construction is essentially easier than that of [14]. Also,
we produce a curve in the deformation space whose limit point is the group in
question.
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Step 1 We start with an uniform lattice Γ ⊂ PSL2C commensurable with
the reflection group R whose limit set is the Euclidean 2–sphere ∂B1 – the
boundary of the ball B1 ⊂ S3 . There exists a Fuchsian subgroup H2 ⊂ Γ
leaving invariant a vertical plane π whose intersection with B1 is a round
circle, its limit set Λ(H2) (see figure 1). The group H2 also leaves invariant a
geodesic plane w2 ⊂ B1 . Consider the action of the group Γ in the outside ball
B∗

1 = S3\B1 . For some finite-index subgroup Γ1 of Γ we construct a new group
G1 obtained by Maskit’s Combination theorem from Γ1 and τπΓ1τπ combined
along the common subgroup H2 = Stab w2 , where τπ is the reflection in π .
The new group G1 is still isomorphic to some subgroup G∗ ⊂ R of finite index
essentially because the same construction can be done inside B1 by reflecting
the picture along the geodesic plane w2 . Thus G1 belongs to the deformation
space Def(G∗

1). One can obtain a fundamental domain R(G1) ⊂ B∗
1 of G1

which is situated in a small neighbourhood of the spheres ∂B1 and τπ(∂B1).

w2

w1

B1

Ig1

I ′g1

ℓ

π π3 π1

π2

ξ

Figure 1

Step 2 There is another geodesic plane w1 ⊂ B1 disjoint from w2 whose
stabilizer in Γ1 is H1 (see figure 2). Denote by B2 the ball τπ(B1). Take
a sphere Σ ⊂ B∗

1 passing through the circle w3 ∩ B2 – the limit set of the
group τπH1τπ – and tangent to the isometric spheres of some element g1 ∈ Γ1 ,
where H1 is a subgroup of Γ1 stabilizing w1 . We now construct a family
of Euclidean spheres Σt (0 ≤ t ≤ 1, Σ1 = Σ) and corresponding groups Gt

obtained as before from G1 and τΣt
G1τΣt

by using the combination method
along common closed surface subgroups. We prove then that there is a path
βt: t ∈ [0, 1[ 7→ β ∈ Def(L′) such that β0 = L′, βt = Gt where L′ is some
finite-index subgroup of R . One can equally say that βt is obtained by using
Thurston’s bending deformation. The main point is now to prove that the limit
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Figure 2

group G1 = lim
t→1

βt(L
′) is discontinuous and has a fundamental domain obtained

from the part of R(G1) by doubling along the sphere Σ. The group G1 is also
isomorphic to L′ and so contains a fundamental group N of a closed surface
bundle over the circle which is isomorphic to the group L = Γ∩L′ . Let F be the
fundamental group of the fiber given by β1(FL = F ∩ L). Since two isometric
spheres of the element g1 ∈ Γ1 are tangent to Σ, we get a new accidental
parabolic element g = g1 · g2, g2 = τΣg1τΣ in the group G1 . By a choice of
g1 made from the very beginning we assure that g ∈ F , so we have a pseudo-
Anosov action of some element t ∈ N \F such that the orbit tn ·g · t−n (n ∈ Z)
gives us infinitely many conjugacy classes of maximal parabolic subgroups of
F . Now Scott’s compact core theorem implies that π1(ΩF )/F is not finitely
generated. End of outline

3 Preliminaries

We will consider the Poincaré model of hyperbolic space H3 in the unit ball B1

equipped with the hyperbolic metric ρ. By a right-anguled polyhedron D ⊂ H3

we mean a polyhedron all of whose dihedral angles are π/2.

Geometry & Topology Monographs, Volume 1 (1998)



484 Leonid Potyagailo

Consider the tesselation of H3 by images of D under the reflection group R
from Theorem 1. Denote by W ⊂ H3 the collection of geodesic planes w such
that there exists r ∈ R , for which r(w) ∩ ∂D is a face of D .

It is easy to see that if σ1 and σ2 are two faces of D with σ1 ∩ σ2 = ∅, then
also the geodesic planes σ̃1 ⊃ σ1 and σ̃2 ⊃ σ2 have no point in common. One
can easily show that the distance between σ1 and σ2 , as well as that of σ̃1 and
σ̃2 , is realized by a common perpendicular ℓ for which ℓ ∩ intD 6= ∅.

Let Γ0 = R ∩ Γ which is a subgroup of a finite index in both groups R and
Γ. By passing to a subgroup of a finite index and preserving notation, we may
assume that Γ0 is a normal subgroup in R , |R : Γ0| < ∞. For a plane w ∈ W
we write Hw = Stab(w,Γ0) = {g ∈ Γ0, gw = w}. It is not hard to see that Hw

is a Fuchsian group of the first kind commensurable with the reflection group
determined by the edges of some face of the polyhedron r(D1), r ∈ R .

Let us now fix two disjoint planes w1 and w2 from W containing opposite faces
of D and let ℓ be their common perpendicular; up to conjugation in Isom H3

we can assume that ℓ is a Euclidean diameter of B1 . Denote B∗
1 = S3\cl(B1)

as well (where cl(·) is the closure of a set). We have the following:

Lemma 1 For every horosphere π3 in B∗
1 centered at the point ξ ∈ ℓ ∩ ∂B1

(see figure 1) there exists ε0 > 0 such that for every ε–close sphere π1 ⊂ B∗
1

to π3 (ε < ε0 ) orthogonal to the plane π2 there exists a geodesic plane w and
an element g1 ∈ [Hw,Hw] (commutator subgroup) such that:

Ig1 ∩ π1 6= ∅ and g1(Ig1 ∩ π1) = I ′g1 ∩ π1,

where Ig1 , I ′g1 = Ig−1

1

are isometric spheres of g1.
(1)

Proof Up to further conjugation in Isom B1 preserving ℓ we may assume that
π3 is the vertical plane tangent to ∂B1 at ξ ∈ ℓ ∩ ∂B1 . Take w = w1 and let
g1 ∈ [Hw1

,Hw1
] be any primitive element corresponding to a simple dividing

loop on the surface w1/Hw1
.

Suppose first that Ig1 ∩ π3 = ∅. In this case we proceed as follows. Put
χ = τw1

◦τw2
∈ R , where τwi

denotes the reflection in plane wi (i = 1, 2). Then
χ is a hyperbolic element whose invariant axis is ℓ. Consider the sequence of
planes χn(w1). We claim that, for some n, χn(Ig1) ∩ π3 6= ∅. In fact this
follows directly from the fact that the fixed point ξ of the hyperbolic element
χ is a conical limit point of Γ0 , and so the approximating sequence χn(Ig1)
should intersect a fixed horosphere (or equivalently by sending ξ to the infinity
and passing to the half-space model one can see that χ becomes now a dilation
z 7→ λz (λ > 0) which implies that the translations of the image of Ig1 by
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powers of the dilation will intersect a fixed horosphere at infinity). Since Γ0

is normal in R it now follows that χng1χ
−n ∈ [Hχn(w1),Hχn(w1)] ⊂ Γ0 and

χn(Ig1) = Iχng1χ−n . The latter is true since χ preserves each Euclidean plane
passing through B1 ∩ ℓ and, hence (χng1χ

−n)|χn(Ig1 )
is an Euclidean isometry.

So up to replacing w1 by χn(w1) and g1 by χng1χ
−n if needed, we may assume

that Ig1 ∩ π3 6= ∅. The same conclusion is then obviously true for a plane
π1 ⊂ B∗

1 sufficiently close to π3 .

For ℓ1 = Ig1∩π1 we now claim that g1(ℓ1) = ℓ2 = I ′g1∩π1 . Indeed, g1 = τπ2
·τIg1

where π2 is orthogonal to π1 and contains ℓ (figure 1). Evidently

g1(ℓ1) = τπ2
(Ig1 ∩ π1) = τπ2

(Ig1) ∩ π1 = I ′g1 ∩ π1 (2)

since τπ2
(π1) = π1 . The lemma is proved.

So we can suppose that w1 ∈ W is chosen satisfying all the conclusions of
Lemma 1. Let w2 ∈ W be a geodesic plane disjoint from w1 and let ℓ be
their common perpendicular passing through the origin of B1 . Now consider
the Euclidean plane π orthogonal to ℓ (figure 2) such that

π ∩ ∂B1 = π ∩ w2 .

It is not hard to see that Stab(π,Γ) = Stab(w2,Γ) = Hw2
. Reflecting our

picture in the plane π we get

B2 = τπ(B1) , w3 = τπ(w2) and

Hw3
= τπHw1

τπ .

By Lemma 1 we can now find a Euclidean sphere Σ centered on ℓ which goes
through the circle w3 ∩ ∂B2 and is tangent to Ig1 (figure 2). Moreover, by
Lemma 1, Σ is tangent also to I ′g1 .

Denote Σ′ = τ−1
π (Σ).

Lemma 2 There exists a subgroup Γ1 ⊂ Γ0 of finite index such that the
following conditions hold:

(a) The boundary of the isometric fundamental domain P(Γ1) ⊂ B∗
1 lies in

a regular ε–neighbourhood of ∂B∗
1

(

B∗
1 = S3\cl(B1), ε > 0

)

.

(b) Σ ∩ Iγ = ∅ , γ ∈ Γ1\{g1, g
−1
1 }.

(c) For subgroups H1 = Γ1 ∩Hw1
,H2 = Γ1 ∩Hw2

there exists another fun-
damental domain R(Γ1) ⊂ B∗

1 of Γ1 such that

R(Γ1) ∩ (π ∪ Σ′) = P(H) ∩ (π ∪Σ′),

where P(H) is an isometric fundamental domain for the group H =
〈H1,H2〉.

(d) g1 ∈ Γ1 ∩ [H1,H1].
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Proof This Lemma can be obtained by repeating the arguments of [14, Main
Lemma]. We just sketch these considerations. First, we choose a subgroup
Γ̃ ⊂ Γ0 of a finite index satisfying conditions (a) and (b) such that g1 ∈ Γ̃ by
using the property of separability of infinite cyclic subgroups in Γ0 [9].

To obtain (c) we will find Γ1 by using Scott’s LERF –property of the group Γ0

with respect to its geometrically finite subgroups (see [16], [17]). To this end
we proceed as follows: the group H is geometrically finite as a result of Klein–
Maskit free combination from H1 and H2 , which are both geometrically finite
subgroups of Γ0 . The LERF property now says that for the element g1 there
exists a subgroup of Γ0 of finite index which contains H and does not contain
g1 . Call this subgroup Γ1 . Evidently, g1 ∈ [H1,H1] ⊂ Γ1 by construction. For
the complete proof, see [14, Main Lemma].

Let us introduce the following notation: Ω−
1 = B∗

1\
⋃

γ∈Γ1
γ(π−) where π− is

the component of S3\π for which w3 ∈ π− . Let Γ′
1 = Stab(Ω−

1 ,Γ1).

The complete proof of the following assertion can be also found in [14, Lemma 3].

Lemma 3 The group G1 = 〈Γ′
1, τπΓ

′
1τπ〉 is discontinuous and

(1) G1
∼
= Γ′

1 ∗H2
(τπΓ

′
1τπ) .

(2) G1 is isomorphic to a subgroup G∗
1 ⊂ R of finite index.

Sketch of proof (1) This follows from the fact that the plane π is strongly
invariant under H2 in Γ′

1 by [14, Lemma 3.c], which means H2π = π and
γπ ∩ π = ∅ , γ ∈ Γ′

1\H2 . One can now get assertion (1) from Maskit’s First
Combination theorem [11].

(2) Consider the reflection τw2
in the geodesic plane w2 ⊂ B1 . We claim that

the group G∗
1 = 〈Γ′

1, τw2
Γ′
1τw2

〉 is isomorphic to G1 . Indeed, w2 is also strongly
invariant under H2 in Γ′

1 and we again observe that G∗
1 = Γ′

1 ∗H2
(τw2

Γ′
1τw2

)
∼
=

G1 because τw2
|
w2

= τπ |
π
= id.

Now τw2
∈ R . Therefore, G∗

1 ⊂ R and G∗
1 has a compact fundamental domain

R(G∗
1) = R(Γ′

1) ∩ τw2
(R(Γ′

1)). The covering H3
/

(G∗
1 ∩ Γ0) → H3

/

G∗
1 is finite

since |R : Γ0| < ∞ and, hence, the manifold M (G∗
1 ∩ Γ0) = H3

/

(G∗
1 ∩ Γ0) is

compact. Thus, the covering M(G∗
1 ∩ Γ0) → M(Γ0) is finite as well and so

|Γ0 : G∗
1 ∩ Γ0 |< ∞.

Corollary 4 There exists a path αt: [0, 1] → Def(G∗
1) such that α0 = G∗

1

and α1 = G1 .
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Proof By choosing a continuous family of spheres µt for which µt ∩ π =
w2∩π = Λ(H2), µ0 ⊃ w2, µ1 = π, t ∈ [0, 1), we construct the family of groups
Gt = 〈Γ′

1, τµt
Γ′
1τµt

〉 by the arguments of Lemma 3. Consider now the action of
Γ′
1 in B∗

1 where p1: B
∗
1 → B∗

1/Γ1 is the covering map. The surfaces p1(µt) are
all embedded and parallel due to condition (b). If now ΩGt

is the component
of G1 containing ∞ then the manifold MGt

= ΩGt
/Gt is homeomorphic to

the double of the manifold M−
1 = Ω−

1 /Γ
′
1 along the boundary p1(π). Thus,

for all t ∈ [0, 1], MGt
are all homeomorphic and there exists a continuous

family of homeomorphisms ft: Ω(G
∗
1) → Ω(Gt) such that Gt = ftG

∗
1f

−1
t , G1 =

f1G
∗
1f

−1
1 .

By construction the domain R(G1) = R(Γ′
1) ∩ τπ (R(Γ′

1)) is fundamental for
the action of G1 in ΩG1

.

Claim 5 R(G1) ∩ Σ =
(

P(H3) ∪ Ig1 ∪ I ′g1
)

∩ Σ.

Proof Recall that π+(π−) means the right (left) component of S3\π
(Ig1 ∈ π+). Then π+ ∩ Σ ∩ R(Γ′

1) = P(H1) ∩ Σ =
(

Ig1 ∪ I ′g1
)

∩ Σ by (b)
and (c) of Lemma 2.

Also, τπ (π
− ∩ Σ ∩ τπ(R(Γ′

1))) = π+ ∩ τπ(Σ) ∩ R(Γ′
1) ⊂ P(H1) ∩ Σ′ , so π− ∩

Σ ∩R(G1) = τπ (P(H1)) ∩ Σ = P(H3) ∩ Σ.

Let us consider now the family of spheres Σt centered on the y–axis (figure 2)
such that Σt ∩w3 = Σ∩w3, σ1 = Σ, σ0 = Σ0, t ∈ [0, 1], where Σt ∩ ext(B1)∩
ext(B2) ⊂ ext(Σ) ∩ ext(B1) ∩ ext(B2) (recall ext(·) is the exterior of a set in

R
3
), Σt ∩ Ig1 = ∅ (t > 0). Denote by τΣt

the corresponding reflections. As
before take the domain Ω∗ = ΩG1

\G1(Σ
−
0 ) and the group G′

1 = Stab(Ω∗, G1),

where Σ−
0 = ext (Σ0) is the unbounded component of R

3
\Σ0 .

Denote Gt = 〈G′
1, τΣt

G′
1τΣt

〉. Evidently, G1 = lim
t→1

Gt .

Lemma 6 The groups Gt are discontinuous, t ∈ [0, 1].

Proof First, let us prove the lemma for t 6= 1. By Claim 5 we have now that
R(G1) ∩Σt = P(H3) ∩ Σt . Moreover we claim also that

gΣt ∩ Σt = ∅, g ∈ G1\H3, H3Σt = Σt,

where H3 = τπH1τπ .
(3)

To prove (3) we only need to show that g(Σt ∩ Λ(H3)) ∩ (Σt ∩ Λ(H3)) = ∅,
but this can be shown from the fact that each point of Λ(H3) is a point of
approximation (see [14, Claim 1]).
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All conditions of Maskit’s First Combination theorem are now satisfied for the
groups G′

1 and τΣt
G′

1τΣt
(t 6= 1) [11] and we obtain also

Gt
∼= G′

1 ∗H3
(τΣt

G′
1τΣt

) (4)

where the Gt are all discontinuous, t ∈ [0, 1).

Let us now consider the group G1 and the domain R(G1) = R(G1)∩τΣ(R(G1)).
Our goal now is to show that R(G1) is a fundamental domain for the action of
G1 in ΩG1

(∞ ∈ ΩG1
). If now 〈g1, γ1, . . . , γℓ〉 is a set of generators of G′

1 then
S = 〈g1, γ1, . . . , γℓ, g2, γ

′
1, . . . , γ

′
ℓ〉 are generators of G1 , where γ′

i = τΣ · γi · τΣ
and g2 = τΣ · g1 · τΣ . Observe that the element g1 is included in S because
some of its isometric spheres belong to the boundary ∂R(G′

1)

We want to apply the Poincaré Polyhedron theorem [12]. Indeed, an arbitrary
cycle of edges in ∂R(G1) consists either of edges situated in ∂(R(G1))∩ int(Σ),
and ∂(τΣ(R(G1))) ∩ ext(Σ), or is an edge cycle ℓ1 = Ig1 ∩ Ig2 , ℓ2 = I ′g1 ∩ I ′g2 ,

where Igk , I
′
gk

are the isometric spheres of gk and g−1
k (k = 1, 2). The sum

of angles in any cycle of the first type is 2π because R(G1) is a fundamental
domain [12].

We now claim that the element g = g−1
2 · g1 is parabolic with a fixed point

d = Ig1 ∩ Ig2 . Indeed, g−1
2 · g1 =

(

τΣ · τIg1
)2

because g1 = τπ2
· τIg1 and π2 is

orthogonal to Σ (figure 2). Now it is easy to check that g(d) = d, gIg1 ⊂ int(Ig2)
and g(int(Ig1)) = ext (g(Ig1)), therefore the elements g and g′ = g1 ·g ·g

−1
1 are

parabolics.

All conditions of the Maskit–Poincaré theorem are valid at the edges ℓi also
and, hence, G1 is discontinuous. Lemma 6 is proved.

Lemma 7 The group G0 is isomorphic to a subgroup L′ ⊂ R of a finite index.

Proof We repeat our construction of G0 by modelling it in H3 so as to get
the required isomorphism.

Recall that we started from the group Γ′
1 ⊂ Isom(H3) and showed that G1 =

〈Γ′
1, τπΓ

′
1τπ〉

∼= G∗
1 = 〈Γ′

1, τw2
Γ′
1τw2

〉 (see Lemma 4). Next we constructed G0

by using reflection in σ0 = Σ0 such that σ0 ∩ w3 = Λ(H3), σ0 ∩B1 = ∅, w3 =
τπ(w1).

Let η = τw2
(w1) ⊂ H3, η ∈ W . Again let us take the subgroup G∗∗

1 of G∗
1

which is G∗∗
1 = Stab(H3\G∗

1(η
−), G∗

1), where η− is a subspace H3\η not
containing w2 .
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By construction the fundamental domain R(G∗
1) = R(Γ′

1) ∩ τw2
(R(Γ′

1)) of the
group G∗

1 satisfies R(G∗
1)∩ η = P(H ′

3 = Stab(η,G∗
1)). Again by Maskit’s First

Combination theorem we have a group L′ :

L′ = G∗∗
1 ∗H′

3
(τηG

∗∗
1 τη) (5)

We constructed an isomorphism ϕ1: G
∗
1 → G1 in Lemma 4 such that τπ · ϕ1 ·

τw2
= ϕ1 , therefore ϕ1(H

′
3) = H3 and ϕ1(G

∗∗
1 ) = G′

1 . It follows now from (4)
and (5) that the map ϕ1

∣

∣

G∗∗

1

can be extended to an isomorphism ϕ: L′ → G0 .

Index |R : L′| is finite because L′ has a compact fundamental domain. The
Lemma is proved.

Recall that we identify [ρ] ∈ Def(L′) with ρ(L′).

Lemma 8 There exists a path βt: [0, 1] → cl(Def(L′)) such that β0 = L′ ,
β1 = G1 ∈ ∂ Def(L′), βt([0, 1)) ⊂ Def(L′).

Proof We have constructed a path αt: [0, 1] → Def(G∗
1) in Corollary 4 such

that α0 = G∗
1 , α1 = G1 and αt is a family of admissible representations. Let

further αt

∣

∣

G∗∗

1

= α′
t . Obviously, the representations α′

t are also admissible and

α′
1(G

∗∗
1 ) = G′

1 . We can easily extend our family α′
t to a family of admissible

representations θt: L
′ → Def(L′) by the formula θt = τµt

α′
tτµt

, where µt are
the spheres constructed in Corollary 4.

Observe that µ1 = π and now take a new continuous family of spheres νt for
which νt ∩ w3 = Λ(Hs) = w3 ∩ B2 and ν1 = w̃3, ν2 = Σ0 where w̃3 is the
sphere containing w3 (t ∈ [0, 1]).

Again we have a path θ′t(L
′) = 〈G′

1, τνtG
′
1τνt〉. Composing the path θt with θ′t

and with the path corresponding to spheres Σt connecting Σ0 with Σ1 we get
required path βt . The Lemma is proved.

4 Proof of Theorem 1

(1) Denote by F = π1σ a fixed fiber group of our initial manifold M , and let
also F0 = Γ0 ∩ F .

By Jørgensen’s theorem [5] the limit β1 = lim
t→1

βt is an isomorphism β1: L
′ →

G1 . Let us consider the subgroup L = L′ ∩ Γ0, |Γ0 : L| < ∞. Put also
FL = L∩F0 for its normal subgroup. We have also the curve βt(L) ⊂ Def(L).
Let N = β1(L), F = β1(FL). Let us show that g = g−1

2 · g1 ∈ F . To this
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end let us recall that the element g1 was chosen from the very beginning being
in [Hw1

,Hw1
] (Lemma 1). Recalling also that β−1

1 (g1) = g1 and denoting
β−1
1 (g2) = g′2 , by construction we get g′2 = τη · g1 · τη, η = τw2

(w1), g1 ∈
[Hw1

,Hw1
] ⊂ [F0, F0] (see Lemma 1). The group Γ0 was chosen to be normal

in the reflection group R , and since [Γ0,Γ0] ⊂ F , it is straightforward to see
that

r[F0, F0]r
−1 ⊂ F0, r ∈ R .

Hence, g′2 ∈ F0 , and for the element g′ = (g′2)
−1 · g1 we immediately obtain

g′ ∈ FL = F0 ∩ L′ . It follows that β1(g
′) = g = g−1

2 · g1 ∈ F0 ∩ G1 = F as was
promised.

We have that N is isomorphic to the semi-direct product of F and the infinite
cyclic group Z, so taking the element t ∈ N\F projecting to the generator of
N/F , we observe that the elements

gn = tngt−n ∈ F , g ∈ F , n ∈ Z (6)

are all parabolics. Since N contains no abelian subgroups of rank bigger than
1 and tn 6∈ F (n ∈ Z) one can easily see that the elements (6) are also non-
conjugate in F . We have proved (1) of the Theorem.

(2) By the construction, the fundamental polyhedron R(G1) of the group G1

contains only one conjugacy class of parabolic elements g of rank 1. There is
a strongly invariant cusp neighborhood Bg

∼= [0, 1] ×R1 × [0,∞) which comes
from the construction of R(G1). So each parabolic gn of type (6) gives rise to
submanifold

Bgn

/

〈gn〉 ∼= Tn × [0,∞), Tn
∼= S1 × S1 (7)

in the manifold M(F) = ΩN

/

F . Therefore M(F) contains infinitely many
parabolic ends (7) bounded by tori Tn . They all are non-parallel in M(F)
and therefore by Scott’s “core” theorem the group π1(M(F)) is not finitely
generated [16].

Remark By using the argument of [14] one can prove:

Theorem 2 There is a (non-faithful) represention β1+ε which is ε–close to
β1 for some small ε > 0 such that the group β1+ε(FL) is infinitely generated,
has infinitely many non-conjugate elliptic elements. Moreover, β1+ε(FL) is a
normal infinitely presented subgroup of a geometrically finite group β1+ε(L)
without parabolics.

Geometry & Topology Monographs, Volume 1 (1998)



Deformation space of hyperbolic 3–manifolds 491

To prove the theorem one can continue to deform the group for 1 < t ≤ 1 + ε
(these representations will no longer be faithful) in order to get an elliptic
element gt whose isometric spheres form an angle θ(t) instead of being tangent.
To do this in our Lemma 2, instead of the sphere Σ tangent to the isometric
spheres of g1 , one needs to consider a nearby sphere Σ1+ε forming angle θ(ε)
with them. If θ(ε) = π

2n and n > 0 is large enough the group β1+ε(FL)
is Kleinian, has infinitely many non-conjugate elliptic elements of the order
n (obtained as above as an orbit of g1+ε by a pseudo-Anosov automorphism
of the β1+ε(FL)). The construction gives us that β1+ε(FL) is a normal and
finitely generated but infinitely presented subgroup of the geometrically finite
group β1+ε(L) without parabolic elements. In particular β1+ε(L) is a Gromov
hyperbolic group (see [14, Lemmas 5–7]).
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