arXiv:cond-mat/0206126v1 [cond-mat.soft] 10 Jun 2002

Attraction and ionic correlations between charged stiff polyelectrolytes

Markus Deserno
Department of Chemistry and Biochemistry, UCLA, USA

Axel Arnold and Christian Holm
Maaz-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
(Dated: June 10, 2002)

We use Molecular Dynamics simulations to study attractive interactions and the underlying ionic

correlations between parallel like-charged rods in the absence of additional salt.

For a generic

bulk system of rods we identify a reduction of short range repulsions as the origin of a negative
osmotic coefficient. The counterions show signs of a weak three-dimensional order in the attractive
regime only once the rod-imposed charge-inhomogeneities are divided out. We also treat the case
of attraction between a single pair of rods for a few selected line charge densities and rod radii.
Measurements of the individual contributions to the force between close rods are studied as a function
of Bjerrum length. We find that even though the total force is always attractive at sufficiently high
Bjerrum length, the electrostatic contribution can ultimately become repulsive. We also measure
azimuthal and longitudinal correlation functions to answer the question how condensed ions are
distributed with respect to each other and to the neighboring rod. For instance, we show that the
prevalent image of mutually interlocked ions is qualitatively correct, even though modifications due

to thermal fluctuations are usually strong.

I. INTRODUCTION

The interaction of polyelectrolytes or charged colloids
in polar solvent depends sensitively on the structure of
the electrical double layer surrounding the macroion.
This double layer consists in the simplest case of small
counterions of opposite charge. The linearized mean-field
treatment of this layer lies at the heart of DLVO theory
[, B], one of the most influential and still very important
descriptions of these systems.

Today it is well established that sufficiently strong elec-
trostatic interactions entail phenomena qualitatively be-
yond the mean-field level. The possibility of attractive
interactions between like-charged cylindrical macroions
due to correlated ion fluctuation has been noted as early
as 1968 by Oosawa [B, E], and Patey showed in 1980
(using an integral equation approach and the HNC clo-
sure) that two like-charged spheres will ultimately at-
tract [E] For various reasons these results were initially
viewed with some scepticism, but attractive interactions
and other non-mean-field phenomena (like overcharging)
have soon after been confirmed by a large number of stud-
ies, based for instance on computer simulations [, {, B, .
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equations , B
density functional theories |I
theoretical calculations [49,
proaches | @ @ @ @ ,@, . An
excellent recent summary can be found in Refs. [p9, @]
Furthermore, experiments have shown that DNA (a stiff,
highly negatively charged polyelectrolyte) can be con-
densed by multivalent counterions [@, , @, @, @, @
This correlation-induced attraction is for instance be-
lieved to be important for the compaction of DNA inside
viral capsids [B7, ).

Even though many of the abovementioned theories are

quantitatively very successful, they are often also math-
ematically fairly involved—Ilike any systematic attempt
to improve upon mean-field theory. It is thus desir-
able to have a theoretical description which — based on
some knowledge about the nature of the dominant cor-
relations — gives a more direct insight into the physics.
For example, the Wigner-crystal theories, starting with
Refs. [@, @, @, @], follow these lines and estimate the
excess correlational free energy by looking at the ordered
ground state of a two-dimensional layer of adsorbed ions.
The success of these semi-empirical approaches clearly
depends on how well one understands the existing corre-
lations. However, even though the effects of correlations
on, say, effective potentials or the phase behavior have
been well studied in the past, their nature has attracted

much less attention [@, @, @, @]

Recently several theoretical models have been pub-
lished which discretize the distribution of condensed ions
on DNA (by assuming occupiable lattice-sites) and treat
the resulting partition function analytically or numeri-
cally [@, @, @, @] These works provided a further im-
portant step in understanding the origin of attraction and
the nature of the correlations involved, but it is not al-
ways obvious how the employed discretization influences
their strength.

In the present paper we use Molecular Dynamics (MD)
simulations in order to study the nature of counterion
correlations around charged cylindrical polyelectrolytes
(modeled as charged rods) in the absence of additional
salt and on the level of a dielectric continuum approxi-
mation for the solvent. We will investigate both the case
of a bulk system of parallel rods, in which the occurrence
of a negative pressure is a sure indicator of attractions,
as well as a single pair of rods, in which the total force
between the macroions is the appropriate observable. Re-
call that we invariably are concerned with effective free
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energies of interaction after “integrating out” ionic de-
grees of freedom, which generally renders these interac-
tions non pairwise additive. Hence, our two sets of data
complement each other. In both cases it provides addi-
tional insight to look separately at contributions coming
from electrostatic and non-electrostatic origin.

Finally we would like to remind the reader that short-
ranged correlation induced attractions have to be care-
fully distinguished from the much longer ranged attrac-
tion between like-charged macroions, indications of which
have been found experimentally in dilute suspensions of
highly charged colloids at low ionic strength (for recent
work see for instance Ref. @, @, @, @]) Suggestions
for a theoretical explanations of this phenomenon rest
on reconsiderations of DLVO theory [é), 4. 4, frd), but
the situation is much less clear-cut—both experimentally
[F7 as well as theoretically [fd, fd, Bd]. In the present
article we will not be concerned with these phenomena.

II. THE SIMULATION METHOD

Simulation details for the bulk systems have been de-
scribed in Refs. [B1, B3, BJ. In brief: We perform MD
simulations using a Langevin thermostat to drive the sys-
tem into the canonical state [@] We will need only two
kinds of basic interactions. First, a short range repulsion
which we model by the repulsive part of a Lennard-Jones
(LJ) potential
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where o is essentially the distance below which strong
repulsion sets in; we will use it as our unit of length. The
energy scale is set by e, but for a purely repulsive LJ-
potential its precise value will not matter and we set it
equal to the thermal energy kgT. Eqn. ([]) is sometimes
also referred to as the “Weeks-Chandler-Andersen po-
tential” [BF]. Second, the bare Coulomb potential Ve(r)
between two charges z1e and z9e can be written as

BeVa(r) = z129 £7B, (2)

where 8 = 1/kgT and the Bjerrum length (g =
Be?/4mege, measures the coupling strength by specify-
ing the distance at which two unit charges have interac-
tion energy k7. For instance, using the relative dielec-
tric constant of water £, ~ 80 and ambient temperature
T ~ 300K we have /g ~ 7A. Under periodic bound-
ary conditions the total Coulomb energy is obtained by
a sum over all pairs — including the images —, for which
we use efficient particle-mesh routines , @]

Our system consists of immobile charged rods and
mobile oppositely charged counterions. The rods are
assembled from a string of negatively charged spheres
(“monomers”) of diameter o which sit on a line at a sepa-
ration of b = 1.042 0. We place one rod along the main di-
agonal of the central simulation box which under periodic

boundary conditions yields a hexagonal array of infinitely
long rods. The counterions are also modeled as spheres
of radius o. If there are N counterions of valence v,
global charge neutrality requires v/3L/b = Nv and thus
an average counterion density of n = N/L3 = /3 /vbL?.
No simulations presented in this paper contain additional
salt. Let us finally introduce the dimensionless charge
parameter £ = ¢ /b, which measures the number of unit
charges along one rod per Bjerrum length. We briefly re-
mind the reader of the concept of Manning condensation,
stating that if v > 1, a fraction 1 — 1/&v of counterions
will associate with the rod [Bg]. A precise meaning of
“association” is provided by the Poisson-Boltzmann so-
lution of the cylindrical cell model [B9, and has been
carefully discussed in the literature [R1, P1l, @, @],

In a second set of simulations we place two rods par-
allel to the z-axis of the cubic box. Their separation is
small compared to the box length in order to decouple the
pair of rods from their periodic images. In this case we
used both three-dimensional periodicity as well as only
one-dimensional periodicity along the directions of the
rods. The latter case was handled by a one-dimensional
version of an algorithm that has been termed “MMM”
[@] This is an alternative method for evaluating electro-
static forces in three-dimensions based on a convergence
factor approach of order O(N log N), and which can be
adapted straightforwardly to two- and one-dimensional
periodic systems. We evaluate the forces pairwise using
two different formulas, one very efficient for particle pairs
with large distances in the non-periodic plane, the second
formula, which is slower, for particle pairs with small dis-
tance. The formulas are derived similarly to the formu-
las presented in [@, @] The formula for distant particle
pairs uses a Fourier transform, while the formula for near
particles uses an expansion in polygamma functions. In
this complementary approach we also used a continuous
line charge on the rod axis instead of an aligned assembly
of point charges. We found identical results when using
the three-dimensional and the MMM-based approach and
will thus in the following not distinguish between results
originating from either one.

We fixed the surface-to-surface distance of the two rods
to 2 0, which is a typical separation at which attractions
can be expected at sufficiently high Bjerrum length. For
these systems we considered three different rod diameters
ro, namely ro/c = 0.5, 2.0 and 6.271, which were imple-
mented by the repulsive part of a cylindrical Lennard-
Jones potential, which was shifted towards larger radii
by replacing 7 in Eqn. () by 7 — (ro — ¢/2). The sys-
tem 3 with the largest radius has a ratio of rod radius to
charge spacing of 6.0, which is similar to that of DNA,
where it is 10A/1.7A ~ 5.9, hence we refer to it as the
DNA-like system. The system parameters can be found
in Table m

Let us finally remark that the assumption of a homo-
geneously charged rod or linearly aligned point charges
is often only a first approximation, since many impor-
tant stiff polyelectrolytes (e.g., DNA or actin filaments)



system ro/o b/o s/o L/o
1 0.50 1.042 2.95 134.5
2 2.00 0.1538 6.00 42.00
3 6.27 1.042 14.54 134.5

TABLE I: Geometry of the simulated two-rod-systems. rg is
the rod radius, b the separation of unit charges along the rod,
s the axial separation of the rods and L the box length. The
surface-to-surface distance of the rods is 1.95¢ in case 1 and
20 in the other two cases. The ions are always trivalent.

feature a helical charge distribution. Implications of this
additional structure on many aspects of helix-helix inter-
actions are discussed in detail in a series of theoretical
papers by Kornyshev and Leikin [@, (see also the
simulations in Ref. [fl, B(]). Since in the present work
we are concerned with more generic questions about the
origin of correlations, we will neglect this complication.

III. BULK SYSTEMS
A. Osmotic coefficient

The osmotic coefficient p is defined as the ratio be-
tween the actual pressure and a fictitious pressure that
would act if all interactions were switched off (“ideal
gas”). For instance, the osmotic pressure of a dilute so-
lution of charged rods is overwhelmingly dominated by
the counterions, but a certain fraction of them may be
sufficiently strongly localized by the macroions such that
they do not contribute their full share (one says they
are “osmotically inactive”). In the regime of counterion
condensation, £v > 1, the osmotic coefficient should ap-
proach 1/2¢v < 1 in the infinite dilution limit, while for
finite concentrations p is larger , @, , @, @]

Figure m shows our MD-results for the osmotic coeffi-
cient of bulk systems which are characterized by ro/o =
1, b/oc = 1.042, ¢g/oc = 1, and v = 3. The pressure is
identified with the component of the stress tensor per-
pendicular to the rods @], and its contributions coming
from electrostatic and non-electrostatic (i.e., entropic
and excluded volume) origin are plotted separately. It
can be seen that within a density range from roughly
n=38x10"30"3t0 6.5 x 1072073, corresponding to rod
separations between 6.8¢ and 2.4 0, the osmotic pres-
sure is negative. If the rods were not forced to remain at
fixed separations, they would phase separate, producing
a condensate and a dilute phase.

Surprisingly, the electrostatic contribution (which is
always negative and always favors contraction) shows no
particular features in the regime where p < 0. It rather
appears that the negative pressure originates from a drop
in the repulsive excluded volume contribution which is
large enough such that the electrostatic contribution can
win against the short range repulsion. This finding is
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FIG. 1: Contributions to the osmotic coefficient p as a func-
tion of counterion density n for a bulk systems of paral-
lel charged rods characterized by 70/0 = 1, b/o = 1.042,
¢g/oc = 1, and v = 3. The heavy dots and crosses repre-
sent the non-electrostatic contribution (kinetic and excluded
volume) and the negative of the electrostatic contribution, re-
spectively (the curves are guides to the eye). The inset shows
the total osmotic coefficient, and the limiting value of infinite
dilution 1/2¢v & 0.174 is indicated by an arrow.

consistent with earlier simulation results which used
finitely replicated cells. A possible explanation of this
phenomenon rests on the following tempting picture: The
excluded volume contribution to the pressure stems from
the force that ions exert on the oppositely charged rods.
If the density increases, the rods come closer to each
other and start to pull the ions away from their neigh-
bors, thereby reducing this force. However, at too high
concentrations rods will again repel by pushing onto each
other via the ions in between. We will come back to this

effect in Sec. .

An alternative explanation suggests that the con-
densed ions between two neighboring rods form a mutu-
ally interlocked pattern, which results in a lower Coulomb
energy (compared to a homogeneous charge distribution)
and which thus leads to attractions @, Q, @, @] Since
each rod has six neighbors, this defines six “planes” in
which one would have to look for a two-dimensional in-
terlocking pattern. However, we were unable to find a
corresponding structure in our simulated data that goes
beyond a weakly developed first correlation hole, which
on its own is not a sure sign for attractions as we will
show in Sec. for the case of two rods. This may
partly be related to the small degree of arbitrariness in
the definition of the planes, but there is also a physical
explanation to consider. The systems are comparatively
dense in the regime where attractions occur. It is there-
fore likely that close ions are correlated irrespective of the
plane they “belong” to—in other words, that those arti-
ficial planes are irrelevant for understanding the physics.



It rather seems more reasonable to study the full three-
dimensional correlations of the ions, as we will do in the
following section.

B. Pair correlation function

If the radius of the rods and their mutual distance is
smaller than the Bjerrum length, the electrostatic inter-
action of ions reaches beyond the nearest rod and the
complete system of ions may form a three-dimensional
correlated structure. More specifically, Shklovskii sug-
gests [B1] that in the case ro/b < v, or equivalently
ro/lp < v/E, ions could form such a structure on the
background of the rods, which for very high coupling can
be described as a three-dimensional Wigner crystal (or
at least as a strongly correlated liquid). We tested this
assumption by computing the usual pair correlation func-
tion g(r) for the systems above which showed negative
pressure. Before we discuss the results, a few general
remarks are appropriate.

If the ions form a three-dimensional crystal structure,
there will be a typical minimum distance between them
which should scale like one over the third root of the
counterion density ] However, there is a second im-
portant length scale, which is the separation of the rods
and which is easily seen to scale as one over the square
root of the counterion density. Hence, whatever the de-
tails of the actual ionic structure are, if one measures a
characteristic length varying like n=1/3 it can be viewed
as a bulk correlated liquid property, while a length vary-
ing like n~'/2 is rod-imposed.

In Fig. E we present results for the system studied
above in the density range 0.02072...0.1073, which
corresponds to the high-density range in which the os-
motic pressure was found to be negative. The dashed
curve shows the pair correlation g(r) at the density
n = 4.25 x 1072073, which is at the minimum of the
osmotic coefficient in Fig. ﬂ A pronounced oscillatory
structure is clearly visible. The inset shows the position
of the first maximum as a function of density in a double
logarithmic plot (open circles). In this range the data
suggest a power law with exponent —0.48, which is close
to the value expected for a rod-imposed structure. In
fact, the oscillations in g(r) simply reflect the periodicity
of the array of rods.

In order to extract actual inter-ionic correlations from
the simulations, the imposed periodic inhomogeneity of
the ion density has to be removed. One way of doing this
is as follows: The pair correlation function is the proba-
bility of finding an ion at a distance r from another ion
relative to the probability of finding an ion at the same
distance in a random (. e., noninteracting, “ideal gas”)
system at the same average density. In the present case
it would be sensible to normalize not by a random homo-
geneous system but by a random inhomogeneous system,
i.e., a system in which there are no inter-ionic correla-
tions but the spatially varying ion density is preserved.
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FIG. 2: Pair correlation function g(r) for the bulk system
from Fig. m at a counterion density n = 4.25 x 1072072
(dashed line). The solid line is the ratio between this g(r)
and grana(r) (see text). The inset shows a double logarithmic
plot of the position of the first maximum of g(r) (open cir-
cles) and g(r)/grana(r) (full circles) as a function of density;
the slopes are indicated.

This can be easily accomplished in the following way: In
each configuration move every ion a random distance (be-
tween 0 and \/§L) along the direction of the rods. This
does not change the inhomogeneous one-particle distri-
bution, but completely destroys all two-particle corre-
lations. Then compute the pair correlation function of
this randomized system, granda(r). The ratio between the
usual g(r) and the randomized gyand(r) now contains all
information about inter-ionic correlations, but the im-
posed density inhomogeneity is divided out. This ratio
is also plotted in Fig. E for the system at the density
n = 4.25x 1072073 (solid line). Signs of correlations can
again be seen, but the long range oscillatory part has
been removed. The inset also shows the position of the
first maximum of ¢(r)/grana(r) as a function of density
(closed circles). The solid line has a slope of —0.35, which
is more close to the exponent expected for a correlated
three-dimensional ionic structure.

We see that the nature of correlations in this sys-
tem is a subtle interplay between rod-imposed and inter-
ionic contributions, and the latter are only identifiable
once the former are divided out. The idea that a three-
dimensional pattern of correlated ions forms on the struc-
tureless background of the rods is clearly too simple for
the system under study. Furthermore, both correlations
are comparatively weak, in the sense that the first max-
imum in g(r) is fairly low, and the long range structure
visible in the bare g(r) is identical in grand(r) and thus
is imposed by the external periodicity of the rods. The
observed correlations are definitely much weaker than ex-
pected for a Wigner crystal or a strongly correlated lig-
uid. If the ideas advocated in Ref. [@, @, about



the source of attraction are correct, the present analysis
implies that a very low degree of correlations is already
sufficient or, in other words, the Wigner crystal picture
holds way beyond the ground state. This of course pro-
vokes the questions “Why?” and “How far beyond?”.

The above analysis does not directly explain our earlier
finding that the occurrence of a negative pressure is ulti-
mately related to a sudden drop in the repulsive excluded
volume forces. One may speculate that the electrostatic
part of the pressure responds less sensitively than the
short range LJ-part to a comparatively local ordering
as observed in Fig. E, but additional studies would be
needed to support this.

IV. ONE PAIR OF RODS

The Wigner crystal picture is ultimately based on en-
ergetic arguments, it does not provide a direct “mechan-
ical” explanation for why correlations actually produce
an attractive force. To answer this question, these corre-
lations have to be studied in more detail. However, the
bulk system is not necessarily the easiest case: The rele-
vant observable is the pressure, which is less direct than
a force, and the more complex geometry complicates the
definition of suitable and reasonably intuitive correlation
functions. We therefore resort now to the interaction be-
tween two rods as well as the involved ionic correlations.
As we have mentioned in the introduction, studying the
pair interactions is not merely an alternative but also a
complementary approach to studying the bulk system,
since the forces in the latter cannot be decomposed into
pair forces.

A pair of parallel rods has previously been investigated
as a function of rod separation, which gives the distance
dependence of the force [B, @, @, E] and by integration
the potential of mean force. In our work we supplement
these results by studying the properties of the system at
fized distance as a function of Bjerrum length. This al-
ternative scan is promising since unlike for bare charges
the Bjerrum length does not simply enter as a prefac-
tor of the interaction. Rather, its size will determine to
what degree ions can be found close to the rods and how
strongly they correlate with it as well as with each other,
thereby influencing the nature of the force itself.

We studied three systems which differ in their values
for rod radius and line charge density, as specified in
Tab. I, but we always kept the surface-to-surface dis-
tance between two rods around 2 o, i. e., twice the diam-
eter of a counterions, since this is a typical separation
at which attractive forces have been found at sufficiently
large Bjerrum length. The observables we measured were
the force between the rods (split again into electrostatic
and non-electrostatic origin) as well as various ionic cor-
relation functions along and around the rods. The three
studied systems will provide examples for qualitatively
different behavior, but cannot predict detailed dependen-
cies on key system parameters. For instance, the simula-

tions in Ref. ] suggest that increasing the rod radius at
fixed line charge density will ultimately remove repulsion,
while increasing the line charge density at fixed rod ra-
dius will ultimately lead to attraction. However, present
studies in this direction show a more complex behavior
g

It is well known that the importance of correlations
is strongly influenced by the valence of the counterions.
However, this variable cannot be changed continuously.
In contrast, increasing the Bjerrum length can be viewed
as continuously increasing the strength of correlations
and thereby studying in detail how they develop. Experi-
mentally the Bjerrum length is a parameter whose change
requires some effort, but it can be achieved for instance
by a careful control of the solvent dielectric constant, as
has been recently shown in an experimental study of the
coil-globule transition of DNA [[L01].

A. Force as a function of Bjerrum length

In a first step we study the force between the two rods
by (separately) adding up all electrostatic and excluded
volume forces that act on one rod and average over the
simulation run (which typically means over about 3000
configurations separated by 2000 integration steps). Un-
der periodic boundary conditions the total force on one
rod originates not just from the neighboring rod, but also
from all periodic images. However, we assume these con-
tributions to be negligible in our case for the following
reasons: For high Bjerrum length all ions are condensed
onto the surface of the rods, implying that interactions
of these essentially neutral objects (i. e., rods plus coun-
terions) over a distance of the box length is much weaker
than the direct interaction (compare the values for s and
L in Tab. ). It is not immediately clear that this re-
mains valid in the limit /g — 0, but in this case our data
are always asymptotic to the analytical expression for the
electrostatic force between two charged lines (see below),
which implies that the images can be neglected as well.

One may ask why we used periodic boundary condi-
tions in the first place, if we want images to be irrelevant.
The answer is of course that the images along the direc-
tion of the rod are important, since they render the rods
infinitely long—or stated differently: remove end effects.
Periodic replication perpendicular to the axis of the rods
is an unwanted but acceptable (since controllable) side
effect imposed by the use of traditional Ewald schemes,
in which it is not trivial to switch off periodicity in a
specific direction. However, the latter can be achieved
quite easily by using a one-dimensional version of MMM
[@, @, , compare Sec.Il, and we will also present data
obtained by this second method.

Motivated by our observations in bulk simulations we
also look at the components of the force originating from
electrostatic and excluded volume interactions. Let us
start with a few general remarks concerning what to ex-
pect. For /g = 0 there is no electrostatic interaction
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FIG. 3: Force between two rods of system 1 from Tab. I as a
function of Bjerrum length /5. Total force, excluded volume
contribution and electrostatic contribution are represented by
“” on a solid line, “4+” on a dashed line, and “x” on a dotted
line, respectively. The fine dashed line indicates the limit-
ing behavior from Eqn. (J). Positive forces denote repulsion,
negative attraction. Measured values are indicated by the
symbols, the lines should merely guide the eye.

between the rods, and the only possible source of inter-
action is a depletion attraction [L0J] generated by the ex-
cluded volume of the (at g = 0 effectively uncharged!)
ions ] When slightly increasing the Bjerrum length,
the two rods will feel an unscreened Coulomb repulsion,
since for é&v < 1/2 ions will remain unbound [B§]. The
force per unit length is then given by

te0 2lp
BE = b%s’ 3)

i. e., proportional to Bjerrum length. In other words, in
this regime the Bjerrum length still acts as a prefactor de-
termining the strength of the interaction. Upon further
increase of /p ion condensation and subsequent correla-
tions set in, resulting in nontrivial F-fp-curves (see be-
low). However, in the limit {5 — oo everything becomes
simple again: The counterions will ultimately assume a
“ground state” configuration which will no longer change
upon further increase of £g (only fluctuations around the
ground state will become weaker). Hence, the electro-
static force (and as an indirect consequence also the ex-
cluded volume force) will again be proportional to /p.
However, the constant of proportionality cannot be pre-
dicted from these considerations—not even its sign. In
the following we will plot the force per unit length and
use the convention that a positive sign denotes repulsion,
while a negative sign denotes attraction.

Fig. E shows the result for system 1 (for notation see
Tab. [[), which consists of rods having the same diameter
as the ions and the same separation as in the system from
Fig. m showing the most negative pressure. For small
Bjerrum length the force is given by Eqn. (E) However,

if v > 1/2 (i.e., £ > 0.17 0 the present case) Manning
condensation will set in on the two-rod system. Since ions
will condense preferentially between the rods, they reduce
the electrostatic repulsion, but at the same time produce
an outward pressure due to their excluded volume.

Provided the excluded volume contribution to the in-
teraction is not yet substantial, a description of the sys-
tem using Poisson-Boltzmann (PB) theory can work up
to this Bjerrum length. Indeed, the PB equation can be
solved exactly in this geometry , , but the analyt-
ical solution (in terms of hypergeometric functions) is ex-
tremely complicated. One particularly direct result how-
ever (exact for infinitely thin rods) is that if the two-rod-
system is below the Manning threshold, pure Coulomb
repulsion (i.e., unmodified by the presence of counteri-
ons) is found asymptotically at large separation, while if
each rod is at the Manning threshold, the Coulomb re-
pulsion at large distances is reduced by a factor of 2. We
mention aside that for the case of two rods (of arbitrary
radius) and added salt the PB equation has been solved
numerically [, and analytical studies in the presence
of salt exist within linearized PB theory [L0{], even for

tilted rods [L07.

Upon further increase in Bjerrum length the electro-
static force is seen to change sign at {g/o ~ 0.6, and the
total force becomes attractive beyond ¢g /o ~ 0.9. While
it is easy to imagine counterion distributions between
the two rods that would lead to electrostatic attraction,
those distributions are counteracted by both entropy and
excluded volume interactions among the ions, since a
high density between the rods is required. A mean-field
treatment on the level of PB theory [@, , can-
not resolve the issue because rigorous proves exist that
the above situation must give repulsion [, @, —
contrary to the actual observation, which is in agreement
with earlier simulational works [L2, [Ld]. Tt is clear that
(on the level of the restricted primitive model of elec-
trolytes) the attraction must hence be related to the ex-
istence of correlations between the ions. We will discuss
a few of them in the following section.

For a Bjerrum length larger than 2.5¢ the excluded
volume part of the force becomes attractive as well. This
is surprising, since it implies that there are still suffi-
ciently many ions between the rods to induce electro-
static attraction, but they organize their positions such
that they put less pressure on the rods than the ions
located on the outward surfaces.

In Fig. E we show the same Bjerrum-scan for system
2, which differs from the previous one in the following
ways: The linear charge density is 6.78 times larger, the
rod radius is four times larger, and the rods are kept at
a separation of 6 o, which ensures that the surface-to-
surface separation is again 2. The generic behavior at
small Bjerrum length is the same, but in this system a
very pronounced difference occurs at larger values: Be-
yond fp/o =~ 1.5 the electrostatic contribution to the
force becomes repulsive and the total force is attractive
only because of the excluded volume term. Note that to-
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FIG. 4: Force between two rods of system 2 as a function of
Bjerrum length. The inset magnifies the initial region /g €
[0;0.6]. The line styles are the same as in Fig. E
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FIG. 5: Force between two rods of system 3 as a function of
Bjerrum length. The inset magnifies the initial region /g €
[0; 3]. The line styles are the same as in Fig. E

gether with the results discussed above this implies that
a net attraction can occur both because electrostatic at-
traction overcomes excluded volume repulsion and be-
cause excluded volume interactions overcome an electro-
static repulsion. In the present case electrostatic repul-
sion is only weakly developed and numerical errors are
large compared to the other two systems, but we have
observed the same phenomenon in several other systems
as well. Its characteristics will be discussed more thor-
oughly somewhere else [ Even though this effect may
appear counterintuitive, we want to remind the reader
that minimizing the total energy of the ionic system at
given rod separation does not imply that the electrostatic
part of it gives rise to rod-rod-attractions.
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FIG. 6: Relative imbalance 6 Nin = (Nin — Nout)/(Nin + Nout)
of ions between the rods and outside (see text) as a function
of Bjerrum length for the three systems studied. Note that a
positive 0 Vi, means that more ions are between the rods.

Fig. H presents results for system 3, which compared
to system 1 has an approximately 12.5 times larger rod
radius. The surface-to-surface separation is again main-
tained at 2 0. The ratio 7o /b ~ 6 is close to that for DNA.
Fixing the length scale via b = bpna = 1.7A implies a
(somewhat small) ion diameter of ¢ = 1.63 A [[13. At
the Bjerrum length ¢ = 7.14 A = 4.38 0 (as appropriate
for water at room temperature) the total force is attrac-
tive, and indeed it has been experimentally established
that trivalent ions lead to attractive interactions between
DNA strands [, , @, @, @, @] Note also that just
like in system 1 both contributions to the force are at-
tractive at sufficiently high Bjerrum length; however, in
system 3 the excluded volume part is stronger than the
electrostatic part for values of ¢ /o larger than ~ 6.

As we have mentioned above, the attraction between
the rods due to electrostatic forces arises because ions
condense preferentially between the rods. A straight-
forward measure for this imbalance is provided by the
following observable: Imagine two parallel planes, each
containing the axis of one of the rods, whose distance
equals the axial distance between the rods. These planes
divide space into a region “between” the rods and two
disjunct regions “outside”. Denote by Nj, and Nyy the
number of counterions in the region “between” and “out-
side”, respectively, and define the relative ionic excess
between the rods as dNiy = (Nin — Nout)/(Nin + Nout )-
This observable is plotted in Fig. fl as a function of Bjer-
rum length for systems 1, 2 and 3. For small Bjerrum
length § Vi, is negative, since ions are not condensed and
the outside region is larger. As ion condensation sets in
at increasing /5, 0V, also increases until it reaches 0,
the point at which the inside and outside numbers are
balanced. For system 1, d Ny, becomes strongly positive
afterwards, showing that there are more ions between



FIG. 7: Geometry for the definition of the azimuthal corre-
lation function g(¢|dr). It is proportional to the probability
density of finding a counterion at the angle ¢ relative to the
other rod within a condensation distance of at most dr. The
normalization is such that g = 1 corresponds to the average
density, or stated differently, the average of g is 1.

the rods than outside, but it decreases again beyond
¢p/o =~ 1.5, implying that this imbalance softens out.
For system 2, § Ny, does not rise significantly above 0, but
rather approaches this balance line at about ¢g/o ~ 1.
For system 3, 0 N;, weakly rises above 0 at fg/o ~ 1.6,
but it again drops below at ¢p/o =~ 3.6.

In all three systems the point at which the electro-
static force becomes attractive coincides roughly with the
point at which a strongly negative imbalance J Vi, van-
ishes. However, one has to be careful in interpreting this
observable: For system 1 the excluded volume repulsion
between the rods vanishes beyond ¢g/c =~ 2.5, but J N;,
is positive there, i.e., there are still more ions between
the rods than outside. The attraction between the rods
in system 2 is due to excluded volume forces, but the
imbalance 0 N, is essentially 0. Hence, attraction occurs
not due to a simple density difference. In the following
section we will therefore also study the azimuthal distri-
bution of ions in some more detail as well as the question
how close the ions actually come to the rods.

Let us close our discussion of forces with the following
observation. Compared to system 1 the density of sur-
face charges ¢ is 12.5 times lower in system 3, but the
total force becomes attractive at ¢g/o ~ 2.9, which is
only 3.2 times larger than for system 1. Rouzina and
Bloomfield [@] use the two-dimensional plasma parame-
ter I'y = ¢gv®/%¢1/2 as a measure for the strength of cor-
relations and estimate that the onset of attraction should
be expected at I'y =~ 2. This implies that the correspond-
ing Bjerrum length scales inversely proportional to the
square root of the surface charge density. For our simu-
lations I's &~ 2.58, 1.83 and 2.35 for systems 1, 2 and 3
at the onset of attraction, which agrees remarkably well
with their estimate.

B. Azimuthal correlations

The previous sections have revisited the importance of
ionic correlations for the nature of the force between two
charged rods, and in the following we will present mea-

FIG. 8: Polar plot of azimuthal correlation functions g(¢|s/2)
for system 1. The particular Bjerrum lengths are indicated.
The neighboring rod is assumed to be located to the right
side. The normalization is such that the average value of g is
equal to 1 (indicated by the dotted circle). Measured values
(dots) are only indicated for the case {g = 1o0.

surements of a few of them. We start with an ion-rod
correlation that answers the question how the ions dis-
tribute around a rod relative to the position of the other
rod. Fig. [ illustrates our definition of the correlation
function. Denote the position of a counterion relative to
rod 1 in polar coordinates r and ¢, such that ¢ = 0 corre-
sponds to the direction towards rod 2. We define g(¢|dr)
to be 27 times the probability density of finding an ion
at the angle ¢, given that its separation from rod 1 is at
most ér. Note that this implies that the mean value of
g(p|or) (when averaged over ¢) is 1. Obviously, g(¢|dr)
is periodic in ¢ with period 2. At first we will choose
or as large as possible, i.e., half the rod separation s.
We want to mention that for dr — 7o this function is
essentially the rod-analog of the density resolved by the
polar angle for the spherical case studied in Ref. [@]

Figure f shows a polar plot of g(i|s/2) for system 1.
The Bjerrum length is varied between 1o and 5o. Com-
pare also the corresponding force-plot from Fig. . Sev-
eral things can be observed: (i) The azimuthal correla-
tion function is largest in the direction towards the other
rod. (i7) There exists a “second tide” on the side oppos-
ing the other rod. (iii) The elongation of g(y|s/2) along
the line joining the two rods increases with increasing
Bjerrum length. (iv) The larger than average g at ¢ =0
and maybe ¢ = 7 is balanced by a less than average g
in the transverse direction. (v) While g(0|s/2) is always
larger than 1, g(m|s/2) is smaller than 1 for sufficiently
small Bjerrum length, but ultimately rises above 1 as
well.

As can be seen from Fig. E, all five systems presented in
Fig. E feature a net attraction, but for the systems with
¢p/o =1 and 2 the excluded volume part is still repul-
sive. It is unfortunately difficult to directly relate this
finding to the shape of the azimuthal correlation func-
tion, since the position of the ions are of course relevant
for both electrostatic and excluded volume forces, which
are opposite and show a different distance dependence.
We come back to this issue below, when we discuss the
dependence on dr.
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FIG. 9: Same plot as in Fig. E for system 3. Measured values
(dots) are only indicated for the case fg = 1o.

Fig. Hshows exactly the same five correlation functions
for system 3. This system differs from system 1 “only”
by a 12.5 times larger rod radius, but the shape of the
correlation functions is quite different. The second peak
at ¢ = 7 has given way to two new peaks emerging some-
what beyond 7 /2, while the ion density at ¢ = 7 is below
average. The fact that the peak at ¢ = 0 decreases upon
increasing Bjerrum length can be traced back to the nor-
malization of g and the fact that the total number of
ions within the shell r» < s/2 initially increases as ¢g in-
creases. At low Bjerrum length most of the condensed
ions can be found between the rods. Upon increasing
{p the additionally condensed ions will occupy the other
parts of the rod, thereby reducing the relative weight of
the ones at @ = 0. Once essentially all ions have con-
densed within the shell r» < s/2, a larger Bjerrum length
will only enhance the correlations and thereby make the
peak at ¢ = 0 larger again. We note that in the spirit of
our mapping indicated above the azimuthal correlation
function for ions around DNA would approximately be
given by the curves for ¢g/o =4 or 5.

In Fig. [L0 we show g(p|s/2) for two versions of sys-
tem 2. This system has a rod radius 4 times larger
than system 1 and a line charge density about 6.8 times
larger. For a Bjerrum length of /g = 0.50, for which
the total force between the rods approximately vanishes
(see Fig. [l), a pronounced peak in g(¢|s/2) towards the
neighboring rod as well as a slightly smaller than av-
erage counterion density on the opposite side is visible.
Just as for system 3, upon increasing the Bjerrum length
g(p|s/2) does not merely “intensify” its features but de-
velops a qualitatively new structure. In addition to the
main correlation peak at ¢ = 0, five new peaks show
up, roughly at multiples of 60°. This occurrence of ad-
ditional peaks is a common phenomenon in usual liquids
as correlations increase. However, in the present case we
have the additional constraint that g(p|dr) is periodic in
¢ and obviously an even function, which restricts the lo-
cations of these peaks. While for a flat two-dimensional
system the position of peaks in the pair correlation func-
tion is solely determined by the density of charges (cfl/ 2
is the only available length scale), in a curved geometry
two more effects play a role: first, the radius of curvature
appears as a new length scale, and second, topological
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FIG. 10: Same plot as in Fig. E for system 2. Measured values
for ¢g/o = 0.5 and /o = 3.0 are indicated as open circles
(o) and dots (+), respectively. The lines should merely guide
the eye.
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FIG. 11: Azimuthal correlation functions g(p|dr) for the sys-
tem 2 with /g = 30 (see also Fig. [L() for different values
of dr. Note in particular that for decreasing ér the peak at
¢ = 0 turns into a correlation hole.

constraints require the function to close upon itself as
in the case above. Particularly the latter observation
suggests that there are situations in which this match-
ing works “automatically” whereas in other situations it
leads to a frustration. This may favor counterion confor-
mations which relax these constraints (e. g. helices) and
influence the strength of the rod-rod-interaction.

We conclude our discussion of the azimuthal correla-
tion function by discussing its dependence on dr. This
variable determines which counterions are taken into ac-
count for computing the density as a function of . If ir
gets smaller, the focus is on ions that are more closely in



contact with the rod. Fig. [L] shows a plot of g(p|dr) for
system 2 with /g = 3 0. The bold solid line is the same
curve as shown in Fig. (i.e., or = s/2 = 30), only
plotted in a Cartesian way. The other three curves cor-
respond to successively smaller values of ér. We would
like to draw attention to the fact that the peak at ¢ =0
gives way to a correlation hole. While ¢g(0]dr) decreases
upon reduction of dr, g(w|dr) increases. This is impor-
tant since the ions most closely in contact with the rod
produce the strongest excluded volume force. Fig. @
thus shows that ions very close to the surface of the rods
are more likely to push them inwards rather than out-
wards. Note that this particular system is special in
that the attractive forces have been found to originate
from the excluded volume term, see Fig. E A similar
dr-analysis for system 1 in the strongly attractive regime
at £ = 20 0 does not show this effect (data not shown).
As 6r gets smaller than 1.0, the peaks at ¢ = 0 and
¢ = 7 start decreasing and rising, respectively, but the
former does not turn into a correlation hole. The same
finding applies to system 3 in the attractive regime at
g = 50. However, note also that in the latter two sys-
tems electrostatics is the dominant reason for attraction.
Unfortunately, effects at small §r are difficult to observe,
since the small number of ions at these close distances
impedes a good statistics.

We want to remark that a similar correlation hole has
been previously observed in the spherical case and has
been termed an electrostatic depletion effect [L5]. Ob-
serve that in our case this effect is only visible if one fo-
cuses on ions very close to the surface of the macroion—
the total amount of ions between the macroions is above
average, which contradicts the depletion picture.

C. Ion interlocking

It has previously been suggested that the ionic cor-
relations in the case of attracting rods take the form
of an interlocked pattern in the plane between the rods
3, g, B3, PJ). In this section we present first measure-
ments of these kind of correlations under off-lattice con-
ditions. It turns out that alternating charge-asymmetries
indeed exist, but they are remarkably weakly pronounced
and fairly short ranged. We also investigate their rele-
vance for the attraction.

Fig. @ envisages a tentative “ground state” for system
1 from Tab. I We have previously deduced from Fig. E
that in the limit of high Bjerrum length the ions are es-
sentially either at ¢ = 0 or ¢ = 7. On each rod, every
three monomers a trivalent counterion is condensed. The
ions between the rods form an interlocked pattern that
also gets imprinted on the ions located on the opposite
side of the rods. Such a pattern suggests the definition
of the following three pair correlation functions, as indi-
cated in Fig. : Given an ion, that is condensed on one
rod and sits between the two rods, what is the probabil-
ity of having a second ion at a distance z along the rods
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FIG. 12: Scheme of a possible “ground state” of the two rod
systems, showing ion interlocking. The relative position of
three kinds of condensed counterions with respect to a con-
densed ion between the rods give rise to three different corre-
lation functions, as discussed in the text.
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FIG. 13: Interlocking correlation functions gi(z) (solid line
g2(z) (dashed line) and g3(z) (dotted line) as defined in Fig. @
and the text for system 1 with Bjerrum length ¢g = 50. The
inset shows the ratio g2(z)/g1(z).

that is condensed (1) on the opposing rod and also be-
tween the rods, (2) on the same rod and also between the
rods, and (3) on the same rod, but facing outward? With
the usual normalization to 1 at large distance, let us call
these three functions g1(2), g2(2) and g3(z), respectively.
We only consider ions whose center has a distance of less
than /2 from the common plane of the rods.

Fig. E shows the result of a measurement of these
three correlation functions for system 1 with /g = 50.
Pronounced correlations are clearly visible, but their
range is comparatively short. Structural features in the
correlation function g3 are much weaker developed. The
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91(2) and g>(2)

FIG. 14: Interlocking correlation functions gi(z) (solid line) and g2(z) (dashed line) for system 2 with three values of the
Bjerrum length: (a) g = 0.1250, (b) ¢g =0.50, and (c) s = 30.

reason for this is that the ionic density outside the rods is
lower than between them, and the structure arises from
a weak “transfer” of the correlations of g; and especially
g2-

It may seem surprising that not just g;(z) but also
g2(z) has its first peak at z ~ 3b. The reason for this
is that just as for the three-dimensional pair correlation
function discussed in Sec. [II B a fair amount of long-
ranged periodicity in the g;(z) arises due to an external
imprinting. Here it is the fact that charge neutrality
essentially requires 1 trivalent ion per rod every 3b. A
visual inspection of typical ion configurations also shows
that the system is still far from a highly ordered ground
state as envisaged in Fig. D In particular, for {g/o =5
the imbalance JNj, presented in Fig. ﬂ has a value of
about 0.022, which implies that the average density be-
tween the rods is about 5% higher than outside. These
additional ions have to be put somewhere and clearly
destroy the simple groundstate from Fig. @ Together
these findings imply that 3b is also a typical distance
that has to be expected for g2, but observe also that the
peak in ga2(z) at z &~ 3b is less pronounced than the one
for g1(z). In fact, the terminology “interlocking” sug-
gests that we should be interested in the relative charge
asymmetries along the rods. A better measure would
therefore be the ratio between the two inner correlation
functions, as is shown in the inset of Fig. [[3. For z — 0
the ratio g2(2)/g1(z) approaches 0, since the correlation
hole of g2(z) at z = 0 is of course more pronounced than
that for g1(z). The small peak shortly before z = 3b in-
dicates the high probability for this distance as discussed
above, but the fact that the peak value is below 1 means
that such a value occurs more likely for ions belonging
to different rods. A somewhat broader peak can be seen
around z ~ 6b. It has its value above 1, indicating that
this distance occurs preferentially for ions on the same
rod. Beyond z = 10b no significant structure is visible.

Together these findings show that ion interlocking does
indeed occur, but that it is again superimposed by “triv-

ial” periodicities along the rods and that its extension
along the rods is fairly weak. For increasing Bjerrum
length the above features get more pronounced and the
oscillatory structure extends towards larger separations,
while for decreasing Bjerrum length the features dimin-
ish. At fg = 10, at which the total force is approxi-
mately 0, the only remaining feature of all three correla-
tion functions is the correlation hole at z = 0 (data not
shown), which survives at even smaller values for ¢p.

We would like to emphasize that this correlation hole
at z = 0 is not sufficient to entail attractive forces. This
is important for the following reason: In the Wigner crys-
tal approach the correlation energy of an ion can be well
approximated by its interaction energy with the counter-
charge within its correlation hole, which turns out to give
the dominant contribution to the energy up to tempera-
tures far beyond the crystallization . This may give
the impression that the existence of this first correla-
tion hole is also sufficient for the appearance of attractive
forces. Fig. @ gives another illustration that this is not
the case. The correlation functions g; and g are plot-
ted for system 2 for three values of the Bjerrum length
(/o = 0.125, 0.5 and 3. As can be seen from Fig. i, the
first case corresponds to the strongest total repulsion, the
second to an approximately vanishing net force and the
third case to attraction. While the correlation functions
in the first two cases are very similar, in the third case
pronounced interlocking is observed.

One word of caution should be addressed to the nu-
merous theories which apply the interlocking picture to
DNA-like systems. Our simulations show that the net
attractive force in System 3 around ¢g/o ~ 4 — 5 is only
weak compared to the other two systems, and thus an
interlocking pattern at theses values of ¢p is basically
invisible.



V. SUMMARY, QUESTIONS AND OUTLOOK

We have revisited the phenomenon of attractive in-
teractions in systems of charged rods in the presence of
multivalent counterions. Within bulk systems this ef-
fect is seen as a negative osmotic pressure. Separating
between (i) the electrostatic and (i) the entropic plus
excluded volume component unveils the key role played
by the short range repulsive forces. We further explored
these components by measuring their contribution to the
force between two parallel charged rods as a function of
Bjerrum length /5. An important result is that an over-
all attraction can be due to (i) both electrostatic and
excluded volume forces bringing the rods together, (i)
an electrostatic attraction overcoming excluded volume
repulsion, and (¢i¢) a short range excluded volume force
pushing the rods together against an electrostatic repul-
sion. The excluded volume induced attraction can occur
even if the average density between the rods is higher
than outside, hence it is not a simple depletion mech-
anism. This suggests that there exists more than one
mechanism for attraction between rods. It is the subtle
interplay between several effects which ultimately deter-
mine the total force. We have shown that this crucially
depends on the parameters of the system, like the line
charge density or the rod radius.

We also presented measurements of various ionic corre-
lation functions. For the bulk systems the scaling of the
first peak of the three-dimensional pair correlation func-
tion indicates the existence of a three-dimensional corre-
lated liquid, but only if one corrects for trivial effects due
to the inhomogeneous average ion density. The assump-
tion of a correlated liquid forming on the background of
the rods is thus too simple. If the attractive interactions
are still to be explained on the basis of the weak and
masked three-dimensional correlations, this would imply
that the Wigner crystal idea remains useful far beyond
the ground state.

For the two rod case we studied the distribution of ions
around one rod relative to the other. We always found a
correlation peak towards the other rod, but the rest of the
distribution depends sensitively on Bjerrum length, line
charge density and the rod radius. On the far side of the
rod there exists a correlation hole at low Bjerrum length,
which may turn into a peak at increasing Bjerrum length.
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Also, secondary peaks can appear at a certain angle with
respect to the rod-rod direction. The periodicity of the
azimuthal correlation function implies commensurability
constraints, which influence the structure. The azimuthal
correlation function was also shown to depend on the
condensation radius dr. It has been demonstrated for one
system that the peak at ¢ = 0 can turn into a correlation
hole if one focuses on the ions most close to the rod.
While this is important for the direction of the short
range repulsive forces, it is presently unclear under which
circumstances this effect occurs.

We finally confirmed the recently proposed picture of
ions mutually interlocking between the rods. The clos-
est ions along the direction of the rod have a tendency
to be condensed on different rods, even though defects
in this structure occur quite frequently. In agreement
with earlier observations on discretized models [@ this
structure is remarkably short ranged. While attractive
interactions have been found for all cases in which a first
correlation peak is discernible, the mere existence of a
first correlation hole was demonstrated to be insufficient.

The phenomena observed in our molecular dynamics
simulations also give rise to several new questions, for in-
stance: How can one predict the relative contribution of
electrostatic and short range forces to the net interaction
between rods? The structural changes in the azimuthal
correlation functions result from usual pair correlation
functions being “wound up” around the rod. In conse-
quence, the condensed ions predominantly push or pull
from specific directions, not necessarily aligned with the
direction joining the rods. What effects on the net force
does this have? Under which circumstances do the ions
between the rods get pulled away from the surface, and
when is this the dominant force of attraction? Further
studies along these lines are currently under way.
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