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Heuristic methods for solution of problems in the NP-Complete class of

decision problems often reach exact solutions, but fail badly at ”phase bound-

aries,” across which the decision to be reached changes from almost always

having one value to almost always having a different value. We report an

analytic solution and experimental investigations of the phase transition that

occurs in the limit of very large problems in K-SAT. The nature of its ”random

first-order” phase transition, seen at values of K large enough to make the

computational cost of solving typical instances increase exponentially with

problem size, suggests a mechanism for the cost increase. There has been

evidence for features like the ”backbone” of frozen inputs which characterizes

the UNSAT phase in K-SAT in the study of models of disordered materials,

but this feature and this transition are uniquely accessible to analysis in K-

SAT. The random first-order transition combines properties of the 1st order

(discontinuous onset of order) and 2nd order (with power law scaling, e.g. of

the width of the critical region in a finite system) transitions known in the

physics of pure solids. Such transitions should occur in other combinatoric

problems in the large N limit. Finally, improved search heuristics may be

developed when a ”backbone” is known to exist.

http://arxiv.org/abs/cond-mat/9910080v1


Constraint satisfaction, the automated search for a configuration of a complex system

which satisfies a set of rules or inequalities, is often difficult, and occurs widely in practice.

The simplest example of a constraint satisfaction problem, K-SAT [1,4], is commonly used

as a testbed for heuristic algorithms intended for wider use and was the first problem proved

to be in the complexity class NP-Complete [5,6], in which the worst case instances are

believed to always require computing effort exponential in N , the number of input degrees

of freedom. In random K-SAT, the system parameters are a string of N bits, and the rules

to be satisfied are a set of M clauses. If the string consists of bits {xi = 0, 1}i=1,...,N , we

construct an instance of K-SAT by first randomly choosing K distinct possible indices i and

then, for each of them, a literal zi (i.e. the corresponding xi or its negation x̄i with equal

probability). A clause C is defined as the logical OR of the K literals chosen. Next, we

repeat this process to obtain M independently chosen clauses {Cℓ}ℓ=1,...,M and ask for all of

them to be true at the same time, i.e. we take the logical AND of the M clauses. This gives

a formula F , which may be written as

F =
M
∧

ℓ=1

Cℓ =
M
∧

ℓ=1

(

K
∨

i=1

z
(ℓ)
i

)

, (1)

where
∧

and
∨

stand for the logical AND and OR operations respectively. An assignment of

the {xi}’s satisfying all clauses is a solution of the K–SAT problem. If no such assignment

exists, F is unsatisfiable. The formulae F constructed at random keeping the ratio α = M/N

constant as M,N → ∞ provide a natural ensemble of test problems, with α characterizing

whether the F are typically under- or over-constrained.

The value of K is important. 2–SAT can be solved by a linear time algorithm [7]. There

is a critical value of α, αc(2) = 1, below which the likelihood of an F being UNSAT vanishes

in the limit N → ∞, and above which it goes to 1. For K ≥ 3, K–SAT is NP-Complete

and rigorous results are few. Computer experiments [8,9] on K-SAT for K = 2, 3 and higher

have located the phase transition and provided critical exponents for the sharpening of the

critical region which occurs with increasing sample size N .

The technique used, finite-size scaling, will be discussed in more detail below. It has

recently been proven [10] that certain monotonic properties (such as SAT) in combinatorial

ensembles do have sharp thresholds. “Sharp” means in our case that for any α < αc(K,N),

the probability that a formula in K-SAT can be satisfied goes to 1 as N → ∞ , while for any
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α > αc(K,N) this probability tends to 0. While Friedgut’s result leaves open the question

of whether αc(K,N) has a limit as N → ∞, experiment suggests that this is the case for

K-SAT.

One reason for the recent interest in the threshold is the growing recognition that “easy-

hard-easy” patterns of computational cost are characteristic of heuristic algorithms devel-

oped to solve problems whose cost in the worst case increases exponentially with problem

size N, and that the hardest instances occur near [11] phase boundaries like αc [12–14].

There is a strong analogy between these problems and the properties of disordered mate-

rials, alloys or even glasses, studied by constructing models whose energy function expresses

the constraints [15]. Strongly disordered models with conflicting interactions similar to the

randomly negated literals in K–SAT are known as ”spin glasses” [16]. Fu and Anderson [2]

first conjectured that spin glasses are the models underlying NP-Complete decision problems

and vice-versa. They cite the example of weighted graph partitioning, which is equivalent

to an Ising or Potts spin glass.

A technique of calculating expectation values of observables in random many-parameter

systems, called the replica method [17] predicts that ordering of a new type is possible in the

presence of microscopic randomness. In the replica method, the calculation of the average

over the disorder leads to an effective energy or cost function which describes many identical

copies of one instance of the model system with the dynamical variables (usually Ising spins

taking on values +1 or -1) in different replicas coupled by some non-linear function. The

onset of ordering can be identified by the fact that a single stable state occurs in multiple

replicas. This corresponds to a physical ground state that is highly irregular in structure

due to the randomness of the problem. A more subtle kind of ordering (called Replica

Symmetry-Breaking) occurs when distinct stable states of this sort are found in different

subsets of the replicas, signalling that there may be infinitely many distinct ground states

with energies infinitesimally close to the true ground state. The extent of or absence of

this new kind of order can be quantified by an “order parameter,” which in general emerges

from the replica formulation. We describe both types of result in sections I and II. Details

of the calculations for K-SAT are given in section II. While the replica procedures are not

rigorous, certain steps can be proven, and some results have been verified by other means.
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We discuss these issues in section II.

Spin glass models with realistic connectivity are difficult to explore experimentally, either

on real substances or by computer simulation of models in thermal equilibrium at some finite

temperature. Experimental study of the “easy-hard-easy” phase transitions in combinatorics

is more tractable. Although these are spin glass models, the properties of interest are

ground state properties, and a large body of model-specific heuristics exists, which gives

powerful means of exploring these ground states. We have previously applied replica methods

and determined characteristics of the 3-SAT transition [18–20]. In section III, we report

additional results which provide new insights, hopefully of use to both fields. Note, however,

that the methods of statistical physics predict the most probable, or typical, behavior of a

system with many degrees of freedom, so we shall be describing the typical complexity of

K–SAT, not its worst case.

I. MIXTURES OF K = 2 AND 3: OVERVIEW OF RESULTS

In order to understand what occurs between K = 2 and K = 3, we have studied [21]

formulae containing mixtures of 2- and 3-clauses: consider a random formula with M clauses,

of which (1 − p)M contain two literals and pM contain 3 literals, with 0 ≤ p ≤ 1. This

“2+ p–SAT” model smoothly interpolates between 2–SAT (p = 0) and 3–SAT (p = 1). The

problem is NP–complete, since any instance of the model for p > 0 contains a sub-formula

of 3-clauses. But our interest here is in the complexity of “typical” problem instances.

We seek αc(2 + p), the threshold ratio M/N of the above model at fixed p. We know

αc(2) = 1 and αc(3) ≃ 4.27. F cannot be almost always satisfied if the number of 2–clauses

(respectively 3–clauses) exceeds N (resp. αc(3)N). As a consequence, the critical ratio must

be bounded by αc(2 + p) ≤ min
(

1
1−p

, αc(3)
p

)

.

The 2 + p–SAT model can be mapped onto a diluted spin glass model with N spins Si:

Si = 1 if the Boolean variable xi is true, Si = −1 if xi is false. Then, to any configuration is

associated an energy E, or cost-function, equal to the number of clauses violated. Random

couplings between the spins are induced by the clauses. The most important result of the

replica approach [19] is the emergence, in the large N,M limit and at fixed p and α, of order

parameters describing the statistics of optimal assignments, which minimize the number of
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violated clauses. In this section, we give an overview of the results from statistical mechanics.

The next section gives a more detailed description of the analysis.

Consider an instance of the 2 + p-SAT problem. We use the NGS ground state configu-

rations to define

mi =
1

NGS

NGS
∑

g=1

Sg
i (2)

the average value of spin Si over all optimal configurations. Clearly, mi ranges from−1 to +1

and mi = −1 (respectively +1) means that the corresponding Boolean variable xi is always

false (resp. true) in all ground states. The distribution P (m) of all mi gives the microscopic

structure of the ground states. The accumulation of magnetizations m around ±1 represents

a “backbone” of almost completely constrained variables, whose logical values cannot vary

from solution to solution, while the center of the distribution P (m ≃ 0) describes weakly

constrained variables. The threshold αc will coincide with the appearance of an extensive

backbone density of fully constrained variables xi, with a finite probability weight atm = ±1.

A simple argument shows that the backbone must vanish when α < αc. Consider adding

one clause to a SAT formula found below αc. If there is a finite fraction of backbone spins,

there will be a finite probability that the added clause creates an UNSAT formula, which

cannot occur.

For α < αc, the solution exhibits a simple symmetry property, usually referred to as

Replica Symmetry (RS), which leads to an order parameter which is precisely the magneti-

zation distribution P (m) defined above. An essential qualitative difference between 2-SAT

and 3-SAT is the way the order parameter P (m) changes at the threshold. This discrepancy

can be seen in the fraction f(K,α) of Boolean variables which become fully constrained, at

and above the threshold. As said above, f(K,α) is identically null below the threshold. For

2-SAT, f(2, α) becomes strictly positive above αc = 1 and is continuous at the transition :

f(2, 1−) = f(2, 1+) = 0. On the contrary, f(3, α) displays a discontinuous change at the

threshold : f(3, α−
c ) = 0 and f(3, α+

c ) = fc(3) > 0.

While for the continuous transitions, the exact value of the threshold can be derived

within the RS scheme, for the discontinuous case the RS prediction gives only upper bounds.

The exact value of the threshold can be predicted only by a proper choice of the order

parameter at the transition point, i.e. by a more general symmetry breaking scheme, a

4



problem which is still open. However, the predictions of the RS equations, such as the

number of solutions, remain valid up to αc, and the RS prediction for the nature of the

threshold should be qualitatively correct.

For the mixed 2 + p–SAT model, the key issue is therefore to understand how a discon-

tinuous 3–SAT-like transition may appear when increasing p from zero up to one and how

it affects the computational cost of finding solutions near threshold. Applying the method

of ref. [19], we find for p < p0 (p0 = 0.41), there is a continuous SAT/UNSAT transition at

αc(2+p) = 1
1−p

. This has recently been verified by rigorous analysis up to p = 0.4 [22]. The

RS theory appears to be correct for α < αc(2+ p), and thus gives both the critical ratio and

the typical number of solutions, as in the K = 2 case. The SAT/UNSAT transition should

coincide with a replica symmetry breaking transition, as discussed in [19]. So, for p < p0,

the model shares the characteristics of random 2–SAT.

For p > p0, the transition becomes discontinuous and the RS transition gives an upper

bound for the true αc(2 + p). The RS theory correctly predicts a discontinuous appearance

of a finite fraction of fully constrained variables which jumps from 0 to fc when crossing the

threshold αc(2 + p). However, both values of fc(2 + p) and αc are slightly overestimated,

e.g. for p = 1, αRS
c (3) ≃ 4.60 and fRS

c (3) ≃ 0.6 whereas experiments give αc(3) ≃ 4.27

and fc(3) ∼ 0.5. A replica symmetry breaking theory will be necessary to predict these

quantities. For p > p0, the random 2+p–SAT problem shares the characteristics of random

3–SAT.

This transition differs from phase transitions in most ordered materials in that the ground

state is highly degenerate at αc. The entropy, i.e. the logarithm (base 2) of the typical

number of optimal solutions, can be computed exactly within the RS scheme for any p and

α < αc(2 + p). The entropy at the transition point decreases as a function of p, from 0.56

for p = 0 to 0.13 for p = 1, as plotted in Fig. 1.

II. STATISTICAL MECHANICS ANALYSIS OF THE 2+P–SAT MODEL

In this section we describe the analytical calculation of the typical ground state properties

of the 2+P–SAT model using the replica method. A brief discussion concerning rigorous

results and prospects for making the replica results rigorous is also included.
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A. The energy-cost function

The logical variables xi can be represented by N binary variables Si, called spins, through

the one-to-one mapping Si = −1 (respectively +1) if xi is false (resp. true). We then encode

the random clauses into a M ×N matrix Cℓi in the following way : Cℓi = −1 (respectively

+1) if the clause Cℓ includes xi (resp. xi), Cℓi = 0 otherwise. Note that
∑N

i=1CℓiSi gives the

the net number of literals satisfying clause ℓ. Consider now the cost-function E[C,S] defined

as the number of clauses that are not satisfied by the logical assignment corresponding to

configuration S.

E[C,S] =
(1−p)M
∑

ℓ=1

δ

[

N
∑

i=1

CℓiSi;−2

]

+
M
∑

ℓ=(1−p)M+1

δ

[

N
∑

i=1

CℓiSi;−3

]

, (3)

where δ[.; .] denotes the Kronecker function, which is 1 if its arguments are equal, zero

otherwise. The minimum (or ground state) E[C] of E[C,S], the lowest number of violated

clauses that can be achieved by the best possible logical assignment [19], is a random variable

which becomes totally concentrated around its mean value ≪ E[C] ≫ in the large size

limit [23]. The latter is accessible through the knowledge of the averaged logarithm of the

generating function

Z[C] =
∑

S

exp (−E[C,S]/T ) (4)

since ≪ E[C] ≫= −T ≪ logZ[C] ≫ +O(T 2) when the auxiliary parameter T is eventually

sent to zero. Since ≪ E[C] ≫= 0 in the SAT region and is positive in the UNSAT phase,

calculating ≪ E[C] ≫ locates αc(K).

B. The average over the disorder

The calculation of the average value of the logarithm of Z from Eq. (4) is an awkward

one. To circumvent this difficulty, we compute the nth moment of Z for integer-valued n and

perform an analytical continuation to real n to exploit the identity ≪ Z[C]n ≫= 1 + n ≪

logZ[C] ≫ +O(n2). The nth moment of Z is obtained by replicating n times the sum over

the spin configuration S and averaging over the clause distribution [19]
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≪ Z[C]n ≫=
∑

S1,S2,...,Sn

≪ exp

(

−
n
∑

a=1

E[C,Sa]/T

)

≫ . (5)

The average over the clauses can be performed because their probability distributions are

uncorrelated. We obtain

≪ Z[C]n ≫=
∑

S1,S2,...,Sn

(ζ2[S
a])(1−p)M (ζ3[S

a])pM , (6)

where each factor is defined by (K = 2, 3)

ζK [S
a] =≪ exp

(

−
1

T

n
∑

a=1

δ

[

N
∑

i=1

CiS
a
i ;−K

])

≫ . (7)

We stress that ≪ . ≫ now denotes the unbiased average over the set of 2K
(

N
K

)

vectors of N

components Ci = 0,±1 and of squared norm equal to K.

Resorting to the identity,

δ

[

N
∑

i=1

CiS
a
i ;−K

]

=
∏

i/Ci 6=0

δ [Sa
i ;−Ci] , (8)

one may carry out the average over disorder in eq.(7) to obtain

ζK [S
a] =

1

2K
∑

C1,...,CK=±1

1

NK

N
∑

i1,...,iK=1

exp

{

−
1

T

n
∑

a=1

K
∏

ℓ=1

δ
[

Sa
iℓ
;−Cℓ

]

}

, (9)

to the largest order in N .

It is crucial to remark that ζK [S
a] in (9) depends on the n×N spins only through some 2n

quantities c(σ) labelled by the vectors σ with n binary components; c(σ) equals the number

(divided by N) of labels i such that Sa
i = σa, ∀a = 1, . . . , n [24]. Indeed, one can rewrite

ζK [S
a] = ζK [c] with

ζK [c] =
1

2K
∑

C1,...,CK=±1

∑

~σ1,...,~σK

c(−C1 ~σ1) . . . c(−CK ~σK) exp

{

−
1

T

n
∑

a=1

K
∏

ℓ=1

δ [σa
ℓ ; 1]

}

. (10)

Notice that c(~σ) = c(−~σ) due to the even distribution of the disorder C.

Introducing the effective energy function,

Eeff [c] = α (1− p) ln





∑

~σ,~τ

c(~σ)c(~τ) exp

(

−
1

T

n
∑

a=1

δ[σa; 1]δ[τa; 1]

)





+α p ln





∑

~σ,~τ,~ω

c(~σ)c(~τ)c(~ω) exp

(

−
1

T

n
∑

a=1

δ[σa; 1]δ[τa; 1]δ[ωa; 1]

)



 , (11)
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we may rewrite the nth moment of the generating function Z (5) as

≪ Zn ≫=
∫

∏

~σ

dc(~σ)e−Eeff [c]
∑

S1,S2,...,Sn

∏

~σ

δ

(

c(~σ)−
1

N

N
∑

i=1

n
∏

a=1

δ[Sa
i ; σ

a]

)

. (12)

The sum over the spins in the last term of the above equation can be computed, and gives

rise to a combinatorial factor

N !
∏

~σ(Nc(~σ))!
= exp

(

−N
∑

~σ

c(~σ) ln c(~σ)

)

, (13)

to the leading exponential order in N . As a consequence, the nth moment of Z using the

Laplace method is ≪ Zn ≫≃ exp(N Fmax) where Fmax is the maximum over all possible cs

of the functional [19]

F [c] = −
∑

~σ

c(~σ) log c(~σ)− TEeff [c] , (14)

with the constraint

∑

~σ

c(~σ) = 1. (15)

C. The replica symmetric theory

The optimisation conditions over F [c] provide 2n coupled equations for the cs. Notice

that F is a symmetric functional, invariant under any permutation of the replicas a. A

maximum may thus be sought in the so-called replica symmetric (RS) subspace of dimension

n + 1 where c(σ) is left unchanged under the action of the symmetric group. Within the

RS subspace, the occupation fractions may be conveniently expressed as the moments of a

probability distribution P (m) over the range −1 ≤ m ≤ 1 [19].

c(σ1, σ2, . . . , σn) =
∫ 1

−1
dm P (m)

n
∏

a=1

(

1 +mσa

2

)

. (16)

P (m) is the distribution of Boolean magnetizations previously introduced in the paper.

At this stage of the analysis it is possible to perform the analytic continuation n → 0,

since all the functionals have been expressed in term of the generic number of replicas n.

Such a process lead to a self-consistent functional equation for the order parameter P (m).
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In the limit of interest T → 0, in order to properly describe the accumulation of the Boolean

magnetization to the border of its domain (m ∈ [−1, 1]), it is convenient to introduce the

rescaled variables z, implicitly defined by the relation m = tanh(z/T ). Calling R(z) the

probability distribution of the zs, we obtain

R(z) =
∫ ∞

−∞

du

2π
cos(uz) exp

{

−α(1− p) + 2α(1− p)
∫ ∞

0
dz1R(z1) cos(umin(1, z1))

−
3

4
αp+ 3αp

∫ ∞

0
dz1dz2R(z1)R(z2) cos(umin(1, z1, z2))

}

. (17)

As discussed in detail in ref. [19], the above type of equations admit an infinite sequence

of rapidly converging exact solutions of the form

R(z) =
∞
∑

ℓ=−∞

rℓ δ

(

z −
ℓ

q

)

. (18)

In the above expression, 1/q is the resolution of the rescaled variable z which eventually goes

to zero. Equation (17), leads to the following set of coupled equations for the coefficients

rℓ’s

rℓ =
∫ 2π

0

dθ

2π
cos(ℓθ) exp





q
∑

j=1

γj(cos(jθ)− 1)



 (19)

for all ℓ = 0, . . . , q − 1 where

γj/α = 2 (1− p) rj + 3 p rj



1− r0 − 2
j−1
∑

ℓ=1

rℓ − rj



 , ∀j = 1, . . . , q − 1

γq/α = (1− p)



1− r0 − 2
j−1
∑

ℓ=1

rℓ



+
3

4
p



1− r0 − 2
j−1
∑

ℓ=1

rℓ





2

. (20)

By looking for the value of α at which the internal energy (11) becomes positive, we are

able to recover the results discussed previously in the text. For p < p0, the transition is

continuous and the solution of the equations up to αc is simply r0 = 1, rℓ = 0 (l = 1, ..., q).

At αc, the coefficients rℓ become continuously positive. For p > p0, the coefficients rℓ jump

discontinuously to a finite value beyond αc. It follows that in order to find the point where

the discontinuous transition first takes place, one should look, within the RS scheme, for the

point p0 at which the derivative of the order parameters rℓ at αc diverge.

We may expand the saddle point equations (19,20) to the second order in the parameters

rℓ and s ≡ 1− r0. We find

9



rℓ = α(1− p)rℓ +
3

2
α p rℓ

(

s− 2
ℓ−1
∑

k=1

rk − rℓ

)

− α2 (1− p)2 rℓ s+
1

2
(1− p)2α2

ℓ−1
∑

j=1

rjrℓ−j + (21)

+ (1− p)2α2
q−ℓ−1
∑

j=1

rjrℓ+j +
1

2
(1− p)2α2rq−ℓ(s− 2

ℓ−1
∑

k=1

rk) , (ℓ = 1, ..., q − 1)

and, for ℓ = 0,

s = α(1− p)s+ 3αp





q−1
∑

j=1

rj(s− 2
j−1
∑

ℓ=1

rℓ − rj) +
1

4
(s− 2

q−1
∑

ℓ=1

rℓ)
2



− (22)

− α2(1− p)2





q−1
∑

j=1

r2j + (
s

2
−

q−1
∑

ℓ=1

rℓ)
2



−
1

2
α2(1− p)2s2 .

The analysis of the linear terms in the above equations shows that the threshold is given by

αc(2 + p) =
1

1− p
, (0 ≤ p < p0). (23)

Next, we expand around the latter by posing α = 1
1−p

+ x, rℓ = Bℓx and s = Ax. At

the critical point p0, the above quantities {Bℓ, A} should diverge in order to have a first

order jump when x → 0+. We then assume that Bℓ = λℓA, with λℓ = O(1) and A → ∞,

discarding irrelevant O(x2) corrections to the order parameters. We find q equations for p0

and λℓ, ℓ = 1, . . . , q − 1.

0 =
3

4

1− 2p0
1− p0

−
q−1
∑

j=1

λj +
q−1
∑

j=1

λ2
j +





q−1
∑

j=1

λj





2

(24)

and, for ℓ = 1, . . . , q − 1,

0 =
3

2

p0
1− p0

λℓ



1− 2
ℓ−1
∑

j=1

λj − λℓ



+
1

2

ℓ−1
∑

j=1

λjλℓ−j +

q−ℓ−1
∑

j=1

λjλℓ+j + λq−ℓ





1

2
−

q−1
∑

j=1

λj



− λℓ (25)

Though we have not been able to find an exact solution to (24,25), the above equations can

be easily solved iteratively, leading to a value of p0 ≃ 0.41. A more detailed discussion of

the equations for p0 is given in [20], in which the connection with the calculation of ref. [22]

is made explicit by showing that p0 = 2/5 is indeed a lower bound for p0.

The exactness of the above results depends on the validity of the RS assumption in-

troduced in the functional saddle-point equations. For p < p0, such an assumption turns
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out to be correct, leading to a threshold value which as been proven to be exact also by

other methods [22] For p > p0, the change in the order parameter P (m) (or R(z)) at the

threshold becomes discontinuous and the solutions of the RS equations account only for an

upper bound of the true threshold. The exact solution of the self–consistency equations lies

outside the RS subspace to which we have restricted our analysis. The exact determination

of the SAT/UNSAT threshold for discontinuous transitions requires the introduction of a

more general (and much more complicated) symmetry breaking scheme in the equations,

the so called Replica Symmetry Breaking, which embodies the RS subspace as a particular

case.

It is worth noting that in the SAT region α < αc(p), the RS theory is believed to be

exact and allows for the estimation of quantities of interest such as the typical number of

solutions or the probability distribution of the variables over all solutions. Some rigorous

probabilistic results are given in [25].

D. Comments on the replica approach

In the previous paragraphs, replicas are introduced as a trick to compute the average

value ≪ logZ[C] ≫ from the integer moments ≪ Z[C]n ≫ of the generating function (4).

As long as the number of variables N is finite, a(n) ≡≪ Z[C]n ≫ is an analytic function of n

and grows less than exponentially at large n, a(n) < (2N)n. Invoking a theorem of Carlson,

a(n) is uniquely known from its values at the nonnegative integers. Therefore the analytic

continuation to real n → 0 is unambiguous. However, due to the saddle-point calculation

of Section II.B the limit N → ∞ is made first and the analytic continuation requires the

introduction of some additional hypotheses.

The most natural continuation scheme, called Replica Symmetry (RS) has recently been

shown to be exact at high temperature T [26,27] for the K-SAT model. Though not explicitly

proven in [26,27], it is reasonable to think that RS should also hold at T = 0 for small ratios

of clause per variable α. Indeed, in a simple constraint satisfaction model, the RS hypothesis

has been shown [28] to be exact in the range 0 < α < αc giving thus access to the exact

value of the threshold αc [29]. Note that self-consistency criteria of the calculation of the

local stability of the saddle-point over c(~σ) found in Section II.B are satisfied by the RS

11



hypothesis in this range.

What happens when RS fails, e.g. above (respectively in the vicinity of) αc for 2-

SAT (resp. 3-SAT) ? Among all models for which RS fails, the so called Random Energy

Model (REM) [30] has been the only one rigorously solved so far. Its exact solution can

be reproduced [31] using another Replica Symmetry Broken (RSB) scheme designed by

Parisi [17]. Within such a scheme, the analytic continuation is performed by an iterative

hierarchical procedure characterized by a closed algebraic structure at each stage of the

hierarchy [17]. The known random mean-field models (i.e. models with a complete graph

of interaction) appear to be divided in two main classes. A first one for which the complete

solution requires an infinite iteration of the Parisi scheme (e.g. the SK model [17]) and

a second one for which the first step already provides the correct result. In the latter

case, the successive steps of the RSB scheme lead to saddle point equations having as

solutions the first step result [31]. It is worth noting here that in the random 3-SAT problem,

like several random mean-field models known to exhibit a discontinuous transition and be

solvable by the one step RSB ansatz, the energy can be expressed as a sum of products of

up to three spins Si. Therefore, the use of the one-step RSB hypothesis has promise for

analyzing the SAT/UNSAT transition of 3-SAT. We expect that there will be differences

resulting from the fact that the 3-SAT model involves a sparse graph of interactions. This

permits heterogeneous orderings not possible in the mean-field models, for which all degrees

of freedom are frozen in the ordered phase.

III. EXPERIMENTAL TESTS

We have run experiments to test the theory betweenK = 2 andK = 3, finding thresholds

and assigning an exponent ν for the narrowing of the critical region by finite-size scaling.

The data obtained for this study is collected and presented in Figs 2a and 2b, which show the

fraction of formulae that are unsatisfiable as a function of α for sample sizes from N = 50 to

the largest practical size for each value of p. To obtain the data in Figs 2a and 2b, we take

a sample of formulae with the desired value of p, and for each formula, starting well inside

the SAT phase, add clauses until the formula first becomes unsatisfiable. The cumulative

distribution of the values of α at which this occurs provides the curves in Figs 2. From
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10,000 to 40,000 formulae were studied for each value of N and p shown. For cases with

p > p0, our scripts used as their core the TABLEAU implementation of the Davis-Putnam

search algorithm [32,33]. For cases with p < p0 a variant called MODOC was used [34]. This

adds binary resolution to eliminate 2-clauses by the relation (p ∨ q) ∧ ((¬q) ∨ r) = p ∨ r.

Finite-size scaling of the critical region is done by plotting all quantities against the

rescaled variable

y = N
1

ν (α− αc(K,N))/αc(K,N), (26)

which “opens up” the critical region in samples with large N so that data from all sizes

collapse onto a single universal curve [8]. If αc(K,N) were constant, all the curves for a given

value of K would pivot about a single point, αc(K,∞). This occurs in the finite-size scaling

analysis of the random graph ensemble and is a good approximation at large K for K-SAT

[8]. But there are significant additional size dependences present for small values of K, as

evidenced in Fig. 3, which shows K = 2, (p = 0.0) on a fine scale. The successive crossings

of pairs of curves for increasing values of N provides a rough measure of αc(K,N) (e.g.

estimate αc(K, 50) as the point where the fraction UNSAT for N = 50 crosses the fraction

UNSAT for N = 100). If we make the ad hoc assumption that the added size dependence

is due to the variation with N of αc(K,N), then we do not have to specify αc(K,N) for

each N . The data reduction required is to choose values of αc(K,∞), ν for which all the

transformed curves are parallel, that is, shifted by (αc(K,N) − αc(K,∞))/αc(K,∞). An

example of such a reduction is shown in Fig 4, for the case p = 0.0. Using this methodology,

we obtained rescaled curves for all of the data which varied smoothly with p, as shown in

Fig. 5.

We find (Fig. 6) good agreement between the observed and predicted values of αc, with

an error which increases slowly from p = 0.41 to p = 1.0. We also show the bounds obtained

by rigorous methods in Fig. 6. Lower bounds are obtained by showing that some analyzable

algorithms, such as unit clause propagation [7] find SAT solutions with a finite probability

[35]. Upper bounds use the fact that the probability of finding a satisfying assignment is

bounded by the expected number of solutions. Refined versions of this argument [36,37]

partially eliminate the high degeneracy of some solutions [38]. Both methods have been

applied to (2 + p)–SAT in [22], yielding the dashed and dotted lines plotted in Fig. 6.
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In figure 7, we show values of ν obtained from finite-size scaling analysis described above.

Below p0, the exponent ν is roughly constant and equal to 2.8, the value found for 2SAT.

This indicates that the critical behavior along the second order transition line in Fig. 6

is dominated by the 2-clauses in the formulae. When we include additional corrections to

scaling in y(α,N) and in the probability of UNSAT, following the classic prescription [3],

we find that ν may be as large as 3, the value that occurs in the percolation transition for

undirected random graphs [39]. The UNSAT phase for K = 2 is one in which ”constraint

loops” become so ubiquitous that almost certainly there is some literal that implies its

converse. It is likely that the 2SAT transition results from percolation of these loops, and is

in the same universality class as random graph percolation, differing only in the corrections

to its scaling behavior.

Above p0, ν drops rapidly to 1.5. For K ≫ 3, the values of ν tend to 1.0, a result which

can be understood in the “annealed” limit discussed in [19,38].

It is surprising that finite size scaling holds in the presence of discontinuous behavior of

the order parameter characterizing the backbone. But this discontinuity is accompanied by

smooth behavior of other thermodynamic quantities, e.g. entropy, as first discussed by Gross

and Mézard in [31]. First order transitions in pure solids involve two (or a finite number of)

phases and do not exhibit critical fluctuations or scaling laws with non-integer exponents.

The random first-order transition taking place for p > p0, into an infinite number of distinct

ground states, displays features of both first and second orders. This mixed behaviour has

also recently been observed in random-field models [40].

Previous work showed that the cost of running the best heuristics, depth-first search

algorithms with backtracking [32] increased exponentially with N for any value of α for

K = 3, with a prefactor that could be mapped into a universal function by plotting it as

a function of y [14]. The cost was maximized at α.5(K,N), so we have obtained cost data

at this value of α for p = 0., .2, .4 and .6 over the range of N that could be searched. The

plot in Fig. 8a shows that the median cost increases linearly with N for p < p0. It increases

dramatically over a smaller range of N for p > p0. Fig. 8b confirms that this increase is

exponential already for p = 0.6.

Discontinuous nucleation of UNSAT regions due to the breakdown of replica symmetry
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and the “backbone” of frozen spins conveniently explain the apparent inevitably high cost

of heuristic search near the phase boundary. Heuristics which proceed by ”asserting” the

possible value of a spin make early mistakes by mis-asserting a backbone spin, and take

a long time to backtrack to correct their mistakes. Even if the backbone can be identified

before the depth-first search begins, the problem that remains is one of organizing the search

over the remaining spins which lie on the boundaries of ”nuclei” or partial solutions to find

the lowest energy arrangements of the whole solution, also involving much wasted effort to

explore an exponential subspace.

The experiments, shown in Figs. 9a (K = 2) and 9b (K = 3), confirm that the appear-

ance of the backbone is discontinuous for K = 3, and support the prediction of a continuous

appearance of the backbone for K = 2. Above the threshold, the fraction of frozen spins

found in small samples by exhaustive enumeration to locate all ground states is relatively

insensitive to N. At and below the threshold, the fraction of frozen spins decreases rapidly

with increasing N. While the samples which could be studied are too small to permit ex-

trapolation, the results are consistent with < f(K,α) > vanishing below αc.

The existence of a “backbone” has previously been reported in the traveling salesman

problem [41], with only a few bonds differing in many near-optimal tours. This observation

has recently been turned to advantage by heuristics [42] which identify the backbone links

and concentrate attention on the small subproblems which remain. This may prove to

be a generally valid approach. Efficient means of finding the backbone will be specific to

each problem type, but should nonetheless provide a step ahead in algorithm efficiency.

Moreover, many worst-case NP-complete problems occurring in practice contain a mix of

tractable and intractable constraints. Our results suggest that search algorithms that exploit

as much of the tractable structure as possible may in fact scale polynomially in the typical

case. In much of the work on search methods in, for example, Artificial Intelligence and

Operations Research, one already informally follows the methodology of exploiting tractable

problem structure in worst-case intractable problems. However, our hybrid model provides

the first formal explanation why such a methodology can work so well in practice. Below

a certain threshold fraction of intractable constraints, the overall behavior is dominated by

the tractable substructure of the problem, leading to an overall efficient, polynomial time
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solution method.
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8. Median computational cost of proving a formula SAT or UNSAT using the TABLEAU

search method, for p ranging from 0 to 1. The data in (a) is plotted on a linear scale,

appropriate for the cases with p < p0. The semi-log plots in (b) show an exponential

dependence of cost on N for p > p0.
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9. Backbone fractions as a function of α averaged over many samples for K = 2 (a) cases

with N = 18 to 45 and K = 3 (b) cases with N = 18 to 28. The vertical lines mark the

SAT/UNSAT thresholds in the limit N → ∞. For 2-SAT, data obtained from larger sizes

N = 100, 200, 500 show that the backbone fraction at the threshold decreases to zero.
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