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ABSTRACT

Cloud variability on scales smaller than the gridbox size of numerical forecast and climate models

is believed to be important in determining the radiative effects of clouds, and increasingly attempts

are being made to parameterize these fluctuations in the radiation schemes of current models. In

order to calculate the radiative effects of an inhomogeneous cloud a model needs to know not only

the degree of variability within a gridbox, but also the degree to which the inhomogeneities in

vertically adjacent levels are overlapped. In this paper these two parameters are derived for ice

clouds from an 18-month mid-latitude 94-GHz cloud radar dataset and parameterized in terms of

horizontal gridbox size (d), the vertical shear of the horizontal wind (s) and the vertical position

in the cloud. The vertical decorrelation length 1z0 (i.e. the depth over which the correlation

coefficient of either ice water content or optical extinction coefficient in separate vertical levels

falls to e−1) is found to be well represented in the mean by

log101z0 = 0.3 log10 d − 0.031 s − 0.315,

where1z0 and d are in km and s is in m s−1 km−1. As expected, higher shear results in more rapid

decorrelation, although the rms deviation from this expression is around a factor of 2.5. It is found

that the probability distribution of ice water content within a gridbox is usually well represented

by a lognormal or gamma distribution. The fractional variance in ice water content ( f IWC) may be

expressed to within a factor of two by

log10 fIWC = 0.3 log10 d − 0.04 s − 0.93,

valid for d < 60 km, above which f IWC is constant with increasing d . The expression for the

fractional variance of visible extinction coefficient is the same except with the−0.93 term replaced

by −0.96. The s dependence indicates a tendency for increased shear to result in decreased cloud

variability. This can be explained by the presence of ice fallstreaks in a sheared flow: a parcel of

air in the middle of a cloud is alternately fed from above by ice-rich and ice-poor air, resulting in

a homogenization of the layer at a rate dependent on the shear. A more complicated formula is

derived to express the dependence of f IWC on the vertical position within the cloud; it is found that
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fractional variance tends to be largest at cloud top and decrease into the interior before increasing

again in the lowest third of the cloud. Thicker clouds tend to have lower fractional variance. No

significant dependence on temperature or absolute altitude was found for either f IWC or 1z0.
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1. Introduction

The importance of ice clouds on the earth’s radiation budget is well recognized (Liou 1986),

and increasingly attention is focusing on the role of small-scale cloud variability and how to repre-

sent it in models (e.g. Liou and Rao 1996; Donner et al. 1997). Most current forecast and climate

models represent the fractional cloudiness of a model gridbox either diagnostically from the rel-

ative humidity (e.g. Slingo 1987; Smith 1990; Lohmann and Roeckner 1996), or as a prognostic

variable (Tiedtke 1993). Recently, Tompkins (2002) proposed a more advanced scheme which

also carries the variance and skewness of the total water content (vapor and condensed phases) as

prognostic variables; cloud fraction and condensed water content are then determined by splitting

the probability distribution function (PDF) of total water into cloudy and cloud-free components

based on the saturation specific humidity. However, the implied distribution of condensed water

content in the cloudy part of the box is not currently used in the other parameterizations of these

models, which usually treat clouds as horizontally homogeneous.

For boundary-layer clouds, the primary effect of cloud inhomogeneity is to reduce the albedo

relative to that computed using the plane-parallel approximation. In an attempt to correct this prob-

lem in the model of the European Centre for Medium Range Weather Forecasts, Tiedtke (1996)

used the findings of Cahalan et al. (1994) and simply multiplied water content by 0.7 in the cal-

culation of albedo. Barker et al. (1996) proposed a more sophisticated method which involves

representing the distribution of optical depth by a gamma distribution function, and validated it

using high-resolution satellite imagery. However, if models do not include the effects of cloud

variability in all their parameterizations then significant microphysical and thermodynamical bi-

ases can also occur (Larson et al. 2001).

This paper addresses the issue of sub-gridscale inhomogeneity in ice clouds, which has gener-

ally received much less attention than liquid cloud inhomogeneity. Ice clouds are generally quite

deep, occupying several vertical gridboxes, so a single path-integrated satellite estimate of cloud

structure is unsatisfactory. Instead, we appeal to the new technology of cloud radar which provides

range-resolved data of cloud structure from the ground and, unlike instruments that operate at op-
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tical wavelengths, suffers virtually no attenuation in ice clouds. In the last few years the ability

of these instruments to detect cloud boundaries has been exploited to evaluate model representa-

tion of cloud occurrence (Mace et al. 1998), cloud fraction (Hogan et al. 2001) and cloud overlap

(Hogan and Illingworth 2000). The ability of radar to estimate cloud variables such as ice water

content (IWC) was used by Pomroy and Illingworth (2000) and Fu et al. (2000) to address the

specific problem of the emissivity bias in models due to ice cloud variability.

Our intention here is to use 94-GHz cloud radar to provide the essential data on ice cloud

variability that is needed by the newer model parameterizations that attempt to represent sub-

gridscale cloud structure. This information could be used either as the basis for a diagnostic

parameterization for the variance of ice water content, or to evaluate schemes that carry variance

as a prognostic variable, such as that of Tompkins (2002). Brown et al. (1995) estimated that

IWC could be derived from radar reflectivity factor (Z ) with an error of around a factor of two

(the typical range of IWC we wish to measure being around three orders of magnitude). Liquid

water clouds, on the other hand, often contain low concentrations of ‘drizzle’ droplets which can

dominate Z while containing negligible liquid water, with the result that Z is often essentially

unrelated to stratocumulus liquid water content (Fox and Illingworth 1997). We therefore restrict

our analysis to ice clouds.

The first parameter to be estimated is the fractional variance of ice water content within a model

gridbox, which we define as

fIWC = (σIWC/IWC)2, (1)

where σ denotes standard deviation. Similarly, the fractional variance of visible extinction coeffi-

cient α is defined as

fα = (σα/ᾱ)2. (2)

The relationship between fractional variance and the parameters used to describe gamma and

lognormal distributions is outlined in section 2. Then in section 3, aircraft data taken during the

European Cloud Radiation Experiment (EUCREX) are used to derive the appropriate functions

relating radar reflectivity to IWC and α.
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The other important parameter, in addition to fractional variance, is the vertical decorrelation

length, 1z0, which is the depth over which the correlation coefficient of IWC in separate verti-

cal layers falls to e−1. This is important because rapid decorrelation makes a cloud much more

effective at blocking outgoing thermal radiation and reflecting incoming visible radiation, com-

pared with the case of the inhomogeneities being stacked above each other, even though the total

water content may be the same. Hogan and Illingworth (2000) used radar data to derive a similar

parameter for describing ‘cloud overlap’ (Morcrette and Fouquart 1986; Liang and Wang 1997)

for use in current models, and it should be stressed that the two are not necessarily the same; the

decorrelation length of Hogan and Illingworth (2000) was derived considering cloud boundaries

alone, while here we are considering the overlap characteristics of the in-cloud fluctuations of wa-

ter content. Nonetheless, the two extremes of 1z0 = 0 and 1z0 = ∞ can be thought of as being

analogous to the ‘random’ and ‘maximum’ overlap assumptions made in models, respectively.

In section 4 we present radar observations of a thick ice cloud and demonstrate the effects of

gridbox size and wind shear on the parameters f IWC and 1z0. The suitability of gamma and log-

normal distributions for fitting the observed PDFs is investigated. Then in section 5, 18 months of

near-continuous data taken by the same instrument are analyzed to obtain empirical relationships

for these parameters.

2. Analytical probability distribution functions

Here we show how fractional variance is related to the parameters describing analytical PDFs

used to represent the distribution of IWC and α within a gridbox. Barker et al. (1996) used a

gamma distribution to represent the optical depth (τ ) distribution of boundary-layer stratocumulus

and cumulus as inferred from satellite:

p(τ ) = 1

0(ν)

(ν
τ̄

)ν
τ ν−1 exp

(
−ντ
τ̄

)
, (3)

where ν = (τ̄ /στ )
2 and 0(ν) denotes the gamma function. If the same distribution is used for

IWC instead of τ , then we have ν = f IWC
−1.
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A lognormal distribution for IWC has the form

p(IWC) = 1

(2π)
1
2 σ0 IWC

exp

[
− ln(IWC/IWC0)

2

2σ 2
0

]
. (4)

The parameters of the distribution, IWC0 and σ0, may be defined in terms of IWC and f IWC as

follows

IWC0 = IWC ( fIWC + 1)−
1
2 ; (5)

σ 2
0 = ln( fIWC + 1). (6)

Thus the results in this paper may be easily compared to other papers that express cloud vari-

ability in a different way. The suitability of gamma and lognormal distributions for parameterizing

the IWC distribution of real clouds is studied in section 4c.

3. Deriving relationships from the EUCREX dataset

a. Accounting for the small ice particles

To determine the appropriate expressions relating radar reflectivity to IWC and α we follow

Brown et al. (1995) and use size spectra recorded by the UK Met Office C-130 aircraft in mid-

latitude ice clouds during EUCREX. The dataset consists of over 10 000 5-s averaged size spec-

tra measured by the 2D cloud and precipitation probes, which cover the diameter range 25 to

6400 µm. However, the 2D cloud probe (2D-C) is known to be somewhat unreliable for measur-

ing particles smaller than 100 µm (Heymsfield and Baumgardner 1985). Francis et al. (1998) used

replicator measurements of the small crystals taken during a few runs of EUCREX to suggest a

correction for the whole dataset, which involves fitting a gamma distribution to the lower end of

the measured size distribution. The gamma distribution was constrained to have a modal diame-

ter of 6 µm, to have the same concentration of particles of diameter 100 µm as measured by the

2D-C, but to have five times more particles of diameter 25 µm. Note that diameter here refers to

the diameter of a circle with the same cross-sectional area as the particle image measured by the

probe. The intention of Francis et al. was to produce a ‘pessimistic’ estimate of the under-counting

of the small particles, and in the example plotted in their paper the replicator size spectrum for a
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diameter of 25 µm was only 3–3.5 times higher than the concentration measured in the first bin

of the 2D-C. The one or two other runs for which replicator data were available showed a much

smaller difference between the two spectra (P. N. Francis, personal communication). McFarquhar

and Heymsfield (1997) compared the ice water content contained in the particles with a maximum

dimension smaller than 90 µm (hereafter IWC<90) as measured by the the 2D-C and the Video Ice

Particle Sampler (VIPS). From Fig. 20a of their paper we estimate that the 2D-C probe underesti-

mated IWC<90 by a factor of 2.5, on average, although there was considerable scatter in their data

and on some occasions the 2D-C measured higher values than VIPS.

With these considerations in mind, we fit a gamma distribution to the small particles in the

same manner as Francis et al. (1998), but constrain the fitted distribution to be only a factor of

two higher than the measured distribution for 25-µm particles. This increases IWC<90 by around

a factor of 2.5, in agreement with the findings of McFarquhar and Heymsfield (1997).

From these modified distributions we calculate IWC using the mass-area relationship of Francis

et al. (1998), while α is defined to be simply twice the total cross-sectional of particles per unit

volume. Radar reflectivity at 94 GHz is calculated in the same manner as Brown et al. (1995)

and Hogan and Illingworth (1999); the crystals are approximated as homogeneous ice-air spheres

with a diameter Dm equal to the mean of the maximum particle dimensions measured parallel

and perpendicular to the probe photodiode array, their density is determined from the mass-Dm

relationship of Brown and Francis (1995), and Mie theory is applied. It should be noted that Dm

is systematically larger than the ‘equivalent area’ diameter, but is believed to better represent the

extremities of the particle which are important when the scattering at 94 GHz departs from the

Rayleigh approximation.

b. The SD line

We wish to derive relationships of the form

X = cZb, (7)
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where X is either IWC or α, and Z is in mm6 m−3. Since in this paper we are considering the

fractional variance of IWC and α, only the exponent b in (7) is important. The 1z 0 parameter is

also completely insensitive to the c coefficient. Therefore the results are unaffected by any error

in radar calibration.

Numerous Z -IWC power law relationships exist in the literature, and are typically derived by

performing a linear regression between the two parameters in logarithmic space. The slope of the

regression line is then equal to b. This approach produces the best estimate of IWC for any given

measurement of Z , but in this study we are really interested in obtaining the best estimate of the

fractional variance of IWC given a measurement of the fractional variance of Z . Since fractional

variance is equivalent to the variance of the logarithm, we require our best-fit line to have a slope

b = σlog IWC/σlog Z , where σ denotes standard deviation. However, according to statistical theory,

the slope of the regression line is actually rσlog IWC/σlog Z , where r is the correlation coefficient

between log IWC and log Z . This simply expresses the definition of the correlation coefficient,

that with each one-standard-deviation increase in one of the variables, there is an increase of

only r standard deviations in the other, on the average. Invariably r is significantly less than

unity, so relationships derived by linear regression in logarithmic space will tend to result in an

underestimate of fIWC by a factor of r 2. We therefore use the SD line1 rather than the regression

line as the basis for relationships between Z and other parameters.

A further consideration is that fits to an entire dataset include the variance associated with

changing altitude and temperature, whereas each retrieved value of f IWC in this study will corre-

spond to one particular altitude and temperature. The SD line is therefore calculated separately for

each horizontal aircraft run in the EUCREX dataset.

The thin solid lines in Fig. 1a depict the SD lines for each of the 115 aircraft runs of EUCREX

(two of the runs consisted of fewer than ten 5-s samples and were rejected). The ‘best’ SD line,

shown by the thick solid line, passes through the point of means, i.e.
(
log IWC, log Z

)
, and has a

1In statistics, the ‘standard deviation line’, or SD line, for abscissa x and ordinate y is defined

to have a slope of σy/σx and pass through the point (x̄ , ȳ).
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slope equal to the mean of the slopes of the individual runs. Its formula is

IWC = 0.241 Z 0.868 g m−3, (8)

where Z has the units mm6 m−3. The range of exponents in the individual runs is indicated in

Fig. 1b. The standard deviation of 0.18 (±21%) suggests a random rms error in f IWC retrieved

using 94-GHz radar of ±42%. The regression line (shown by the thick dashed line in Fig. 1a)

has a significantly smaller slope of 0.693, and is much closer to values previously reported in the

literature (see Liu and Illingworth 2000). The effect of not performing the small-particle correction

described in section 3a is to increase the slope of the regression line by 10%, although the slope

of the best SD line in (8) is changed by only 2%.

It should be stressed that (8) is not suitable for retrieving a best estimate of the absolute values

of IWC, nor should it be used at frequencies other than 94 GHz. It may be used in the retrieval of

1z0, however, since 1z0 is very insensitive to the exact form of the Z -IWC relationship, or indeed

to which variable is being correlated.

The analogous relationship for visible extinction coefficient is derived in exactly the same way

(see Fig. 2):

α = 0.00691 Z 0.841 m−1. (9)

The error in retrieved fα is around ±45%. Due to the lower correlation between Z and α, the

slope of the regression line is significantly lower at 0.558. It may appear counter-intuitive that

the exponents in (8) and (9) are so similar when IWC and α represent different moments of the

size distribution, but this is due to several of factors. Firstly, IWC should not be regarded as the

third moment of the size distribution, but a moment between the second and third (and therefore

closer to α), because of the tendency for ice particle density to decrease with size (Brown and

Francis 1995; Francis et al. 1998). Secondly, much of the variability in the various moments

of the distribution is not due to changes in mean particle size, but to changes in total number

concentration which affect each moment equally. Moreover, by calculating the SD lines separately

for each horizontal aircraft run, the contribution of particle size variability is minimized since size

varies predominantly in the vertical.
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It is straightforward to deduce how the exponent will affect our retrieval of f IWC: (8) implies

that the fractional standard deviation of IWC within a gridbox will be close to 0.868 times that

of Z itself. Therefore, to change to a new exponent in (8) simply involves scaling any derived

formulae for fIWC by the square of the ratio of the new and the old exponents. Likewise, the

fractional variance of other bulk cloud parameters that can be related to Z by a power law may be

derived simply from fIWC. Hence, from the ratio of exponents in (9) and (8) it can be seen that

fα = 0.939 fIWC.

It should be mentioned that there is a slight dependence of the slope of the SD lines on tem-

perature; the correlation between the slope b of the Z -IWC relationship and temperature is 0.40,

while for the Z -α relationship it is 0.18. The reason for the correlation is that at higher tempera-

tures the ice particles tend to be larger. In the Rayleigh scattering regime this would be sufficient

only to change the c coefficient in (7), but at high frequencies such as 94 GHz, the largest parti-

cles scatter outside the Rayleigh regime which changes the slope as well. Because of the inherent

uncertainties in our representation of the non-Rayleigh effects, and the low correlation between b

and temperature, we choose not to include this effect in our relationships.

4. 27 December 1999 case study

a. Fallstreak structure

Figure 3a shows a 4-hr time-height section of Z measured in thick ice cloud by the vertically-

pointing 94-GHz Galileo radar, located at Chilbolton, England (51.145◦ N, 1.437◦ W). The data

were taken on 27 December 1999 and the resolution is 30 s and 60 m. A very distinct fallstreak

structure is evident throughout the depth of the cloud. Above around 7 km the cloud inhomo-

geneities associated with the fallstreaks appear to be close to vertically aligned, while below this

height they become much more slanted. This structure can be understood on examination of the

11 UTC wind profile in Fig. 3c (obtained from the mesoscale version of the UK Met Office Unified

Model), which shows a strong zonal jet exceeding 60 m s−1 between 7 and 8 km altitude where

the shear was less than 5 m s−1 km−1. Immediately below 6.9 km, however, the shear exceeds

20 m s−1 km−1. At an altitude of 5–6 km, the gradient of the fallstreaks in the time-height image
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is between 10 and 13 minutes per km; from the model winds this implies that the fallstreaks had a

horizontal-vertical aspect ratio of 25–30. The wind vector difference of around 30 m s−1 between

the jet and an altitude of 5.5 km is therefore consistent with an ice fall speed of around 1 m s−1.

This simple comparison between model and observations demonstrates qualitatively the impor-

tance of shear in determining the orientation of fallstreaks, and hence the correlation of horizontal

cloud inhomogeneities from one vertical level to the next.

b. Fractional variance of IWC

We next consider how the inhomogeneity evident in this cloud would appear in a model. Re-

flectivity factor is first averaged to 0.3 km in the vertical, imitating the highest resolutions that are

expected to be achieved by operational mesoscale models in the next few years. Ice water content

is then calculated using (8) and is shown in a linear scale in Fig. 3b. We consider a horizontal

gridbox size of 50 km by using the model wind speeds to select periods of time between 10 UTC

and 14 UTC equivalent to this distance. Only fully cloudy boxes are considered, because a model

implementing a parameterization for cloud variability would doubtless have also implemented an

ordinary cloud fraction scheme to cope with partially cloudy gridboxes. It should be noted that

the direct correspondence between time and space assumed here (and throughout the paper) may

‘bias in’ variations due to cloud temporal evolution, especially in low wind speed conditions or for

larger gridbox sizes. However, many models only call their radiation schemes every three hours, in

which time considerable evolution can occur. It is therefore possible that too little cloud evolution

is being included in our results, rather than too much.

A value for fIWC is calculated for each 50×0.3 km box, and Fig. 3d shows the mean and

standard deviation at each height. Because of the increase in wind speed with height, the data

that make up the 50-km samples are around three times better resolved at the bottom of the cloud

than the top. This should not affect the results since the variability occurs predominately at scales

much larger than the 30-s resolution of the data. It can be seen that mean f IWC decreases from

0.8 near cloud top to 0.1 at 5.7 km. Looking at Fig. 3a, it seems that after formation at cloud top

the fallstreaks remained relatively coherent in the first 1–2 km where the vertical wind shear was
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low. Then in the region of much higher shear below around 7 km, much of the fine structure was

lost, particularly after 12 UTC, with an ensuing fall in f IWC. This can be explained by considering

a parcel in the middle of the sheared region; the differential velocity with the layer above would

result in it being alternately fed by ice-rich and ice-poor air, resulting in a homogenization of the

horizontal ice distribution at a rate dependent on the magnitude of the shear.

Below 5.7 km, the mean fIWC increases again toward cloud base. This is due to the base of

the cloud becoming steadily lower during the four hour period, with the result that significant

horizontal gradients are present across the gridboxes near cloud base. Also, strong small-scale

variability is present at cloud base after around 1330 UTC. This is most likely to be instability

generated by the latent heat release associated with sublimation, and is not uncommon at the base

of thick ice clouds.

The distinctive behavior evident in Fig. 3d suggests that f IWC could be parameterized effec-

tively in terms of wind shear and distance from cloud top or cloud base. However, the standard

deviation of fIWC in Fig. 3d increases from ±25% near cloud top to +300%/−75% below 5 km.

So, even in a single cloud with similar shear conditions persisting throughout the period that it is

observed, different f IWC values are able to evolve. This limits the ability of a parameterization to

predict fIWC precisely. Indeed, we should conclude that the cloud fractional variance in individ-

ual model gridboxes (particularly below cloud top) is impossible to predict accurately based on

the information available to large-scale models, but that the mean fractional variance over many

realizations may be possible to predict accurately. For the purposes of climate modeling this is

probably sufficient, especially given that most current models effectively assume that f IWC = 0 in

all ice clouds. The same reasoning holds for current ‘cloud overlap’ schemes; the overlap behavior

of individual clouds can vary greatly, but if models can capture the mean overlap characteristics

of clouds then the corresponding radiative fluxes should be unbiased.

The range of fIWC values observed in this case study is comparable to values that may be

derived from the results of other researchers. Smith and DelGenio (2001) plotted aircraft mea-

surements of σIWC against IWC in cirrus for runs between 50 and 300 km in length. Figure 7a

of their paper indicates values of f IWC ranging between 0.09 and 1.5, with a median of around
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0.5. Presumably the larger values corresponded to the longer aircraft runs. Barker et al. (1996)

examined the distribution of τ in 60×60-km regions of boundary-layer cloud observed by satel-

lite, and for overcast stratocumulus reported ν (defined in Eq. 3) to be 7.98±6.29, equivalent to

a fractional variance of optical depth, f τ , of 0.13±0.10. For broken stratocumulus they found

fτ = 0.83 ± 0.42. It is interesting that this range of values for f τ is similar to the 0.1–0.8 range

for fIWC found in Fig. 3c, despite the fact that quite different parameters and cloud types are being

compared.

c. Probability distribution functions

In this section the sub-gridscale distribution of ice water content is investigated. Figure 4 shows

PDFs of IWC measured in three 50-km boxes at different heights in the cloud, each centered on

1230 UTC. As before the model winds have been used to determine the appropriate sample time.

The values of fIWC are shown in each panel. Overlayed on each measured PDF are lognormal

and gamma distribution functions, fitted such that they have the same mean and variance as the

original data. In these cases there is little difference between the two functions and both fit the

data reasonably well, although there is some bimodality evident at 4.65 km.

Figure 5 shows PDFs at the same heights as in Fig. 4, but using boxes with a horizontal size of

250 km. The occurrence of larger values of f IWC indicates the need to include gridbox size in any

parameterization for cloud variability. Again, the PDFs at 6.45 and 8.25 km are well represented by

both lognormal and gamma distributions, but this time the PDF at 4.65 is very poorly represented

by either. A ‘top hat’ function would probably describe the distribution better. The reason is that

most of the variance at this altitude is not due to small-scale fluctuations but to a trend in IWC

across the gridbox, from zero (i.e. cloud-free air) at the beginning of the period to 0.7 g m−3 in the

thick fallstreaks at the end. A model may be able to use the resolved horizontal gradient in IWC

to determine how much variance within each box is due to such a trend, but this is only likely to

be necessary for relatively low resolution models.
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d. Vertical correlation of ice water content

The next step is to look at the correlation of the horizontal structure with height. The IWC

between 10 UTC and 14 UTC is analyzed separately in the height ranges 6.9 to 8.9 km (the ‘low

shear’ case) and 4.9 to 6.9 km (the ‘high shear’ case). A model horizontal gridbox size of 50 km

is simulated by dividing the data above 6.9 km (where the mean wind speed was 63 m s−1) into

13-min boxes and the data below this height (where the mean wind speed was 38 m s−1) into

22-min boxes.

In each column of boxes, the correlation coefficient, ρ, is computed for the IWC of each level

with each other level, neglecting partially cloudy boxes, and with no ‘double-counting’. The

circles in Fig. 6 depict the mean ρ versus vertical separation, 1z, for the low shear and high shear

regions. In both cases the correlation of the horizontal structure decreases rapidly with1z, and for

1z > 1 km it is essentially uncorrelated. The difference in results is negligible if the correlation

is performed on ln(IWC) instead of IWC. The solid lines in Fig. 6 are simple inverse-exponential

expressions of the form

ρ̄ = exp

(
− 1z

1z0

)
, (10)

with 1z0 chosen to give the correct ρ̄ for adjacent layers, 0.3 km apart. The corresponding decor-

relation lengths, 1z0, are 0.68 km and 0.35 km for the low and high shear cases respectively.

Hence, as expected, high shear produces a much more rapid decorrelation with height.

This analysis is similar to that performed by Hogan and Illingworth (2000) in their determi-

nation of an e-folding length-scale over which the overlap of clouds in a partially cloudy gridbox

becomes random, but there are some interesting differences. Firstly, they reported values in the

range 1.40–2.93 km, depending on the resolution of the gridbox, whereas our values are a factor of

4 smaller. This presumably reflects the larger horizontal and vertical scales that cloud boundaries

exist on compared with the scales of sub-cloud variability. Secondly, they reported that several

days of data were necessary to obtain something approaching an inverse-exponential relationship,

while as little as 4 hrs of data seem to be sufficient here.

At this point we should consider whether an inverse-exponential is really the best way of char-
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acterizing the relationship between correlation coefficient and vertical separation. Although the

inverse-exponential falls within all the error bars of the observations (indicating the range of ρ

that was actually measured), the biggest difference between it and the mean ρ occurs for a vertical

separation of 0.6 km, where ρ was significantly less than that indicated by the inverse-exponential.

In fact it seems that the first 0.6 km would be much better characterized by a linear decrease of ρ

with 1z (indicated by the dashed lines in Fig. 6). This is presumably because the decorrelation is

due to fallstreaks, coherent over several kilometers in the vertical, which pass through the columns

of boxes at an angle, rather than being due to some genuinely random process. It is interesting

that the same phenomenon appears to be present to a small extent in the randomization of cloud

overlap (Hogan and Illingworth 2000, Fig. 4). Despite this behavior, the results presented in the

remainder of this paper are in terms of decorrelation length because of its appeal in conceptual-

izing the phenomenon of cloud decorrelation in the vertical, and because it is independent of the

vertical resolution under consideration. The reader should be aware, however, that it is calculated

simply from the correlation coefficient between layers 0.3 km apart.

5. Analysis of 18 months of radar data

We now extend the analysis performed in the last section to the near-continuous observations

taken at Chilbolton by the 94-GHz Galileo cloud radar between May 1999 and October 2000.

Again, the derived IWC data are used at a resolution of 0.3 km in the vertical and 30 s temporally,

and only fully cloudy boxes are considered. The data are analyzed in boxes of duration varying

between 5 mins and 3 hrs. Because of the possibility of variable attenuation by rain, which would

tend to increase the correlation between the layers above, data taken by a drop-counting rain gauge

at Chilbolton were used to reject whole columns of data from the analysis whenever rain was

detected. Attenuation by the ice clouds themselves is negligible (Hogan and Illingworth 1999).

For each box the fractional variance of ice water content, f IWC, is computed, and for every pair of

vertically adjacent boxes we calculate the correlation correlation coefficient, ρ.

These values are then combined with data from the Unified Model over Chilbolton, which

consist of the six-hourly analyses and the intervening hourly forecasts. The model wind speeds are
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used to convert the 15 different temporal resolutions into horizontal resolutions. Clouds warmer

than−5◦C are rejected to prevent contamination of the results by the melting layer. The magnitude

of the wind shear is extracted at the height of every f IWC and ρ observation.

We first classify the resulting 221 659 data points by horizontal box size, d , and wind shear,

s. Nine d classes are used, the mean sizes of which are spaced logarithmically between 2 and

300 km. The data are then further divided according to s into 5 m s−1 km−1 intervals, and mean

fIWC is calculated in each class. The decorrelation length is calculated from the median ρ in each

class.

These values are plotted in log-log space in Fig. 7 as a function of d and s. Means calculated

from fewer than 100 data points have not been plotted because of doubts over their statistical

representativity. These points represent means of very scattered data as indicated by the error

bars; the standard deviation of f IWC is around +100%/−50%, and the standard deviation of 1z0

is around +150%/−60%. It should be noted that this is greater than the estimated error in the

retrieval associated with uncertainties in the Z -IWC relationship. Nonetheless, some clear trends

are evident. There seem to be approximate power-laws relating both f IWC and 1z0 to d , while the

dependence on s is closer to inverse-exponential. Up to d = 60 km, the f IWC data are quite well

fitted by the following expression, shown by the dashed lines in Fig. 7a:

log10 fIWC = 0.3 log10 d − 0.04 s − 0.93, (11)

where d is in km and s has the units m s−1 km−1. At around d = 60 km, the observations

suggest the beginnings of a scale break, beyond which mean f IWC reaches an upper limit of around

0.4. Over 8000 events are present with d > 60 km, so this effect is believed to be statistically

significant. It is therefore recommended that models with a horizontal gridbox size greater than

60 km use a value of d = 60 km in (11). The dashed lines in Fig. 7a become horizontal where this

occurs.

The1z0 data are reasonably well fitted by the following expression, shown by the dashed lines

in Fig. 7b:

log101z0 = 0.3 log10 d − 0.031 s − 0.315, (12)
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where 1z0 is in km. This expression is valid for all values of d considered. It is interesting

that for a horizontal gridbox size of less than 20 km the mean decorrelation length is always

less than 1 km and in many cases is less than the likely model vertical resolution in the middle

and upper troposphere. Given that most ice clouds would be more than two layers thick, it may

be a reasonable approximation for some high resolution models to simply assume that ice cloud

inhomogeneities are randomly overlapped (i.e. 1z0 = 0).

We next consider the fractional variance and decorrelation length of the visible extinction co-

efficient, calculated from Z using (9). As explained in section 3, fα is simply ‘scaled down’ from

fIWC according to the square of the ratio of the exponents in (9) and (8), yielding the following

expression:

log10 fα = 0.3 log10 d − 0.04 s − 0.96. (13)

The decorrelation lengths are found to be exactly the same as for IWC.

In section 4b and Fig. 3d, an apparent dependence of f IWC on distance from cloud top and

base was found. Although the minimum in f IWC coincided approximately with the maximum in

shear, as would be predicted by (11), we would expect a constant shear to still result in a decrease

of fIWC with distance from cloud top, since the ice in the fallstreaks would get gradually more

homogenized as it fell through the sheared region. To investigate this further we consider only

cases of shear between 0 and 10 m s−1, and categorize each fIWC observation according to its

distance above cloud base zb and its distance below cloud top z t. Cloud boundaries are deemed to

be where the cloud fraction falls below unity. The solid lines in Fig. 8 depict mean f IWC versus

zb for clouds of thickness ranging from 0.3 to 3.6 km. Thicker clouds have a much noisier profile

due to their less frequent occurrence in this dataset, so have not been plotted. Panels a and b

correspond to gridbox size ranges of 5–10 km and 40–80 km, respectively.

A clear tendency is evident for the fractional variance to decrease steadily from cloud top to

perhaps half of its cloud-top value around two-thirds of the depth into the cloud, and then increase

toward cloud base. Generally the fractional variance at cloud top is greater than that at cloud

base. The minimum fractional variance of clouds 3.6 km thick is found to be around a third that
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of clouds 0.3 km thick. The d0.3 dependence of fIWC in (11) implies a factor of 1.87 difference

in fIWC between the data plotted in Figs. 8a and 8b, which is consistent with the observations.

Nonetheless, the scatter for 40–80 km gridboxes is considerably more than that for 5–10 km

gridboxes.

The dashed lines in Fig. 8 show the following fit to the data:

fIWC = 0.153 d̄ 0.03 R(zb, zt), (14)

where

R = exp [−1.5 zb − 0.2 zt]

+ exp [−1.5 zt/(zb + zt)− 0.05 zb] . (15)

The terms on the right hand side of (15) may be explained as follows. The first term expresses the

inverse-exponential dependence of f IWC on distance from cloud base, with the −0.2 z t term in the

exponent describing how the cloud-base value of f IWC decreases with increasing cloud thickness.

The second exponential expresses the inverse-exponential dependence of f IWC on the fraction of

the distance into the cloud from cloud top, with the −0.05 zb term describing the decrease in the

cloud top value with increasing cloud thickness.

The full expression including dependence on gridbox size, wind shear and distance from the

cloud boundaries is then

log10 fIWC = 0.3 log10 d + log10 R − 0.04 s − 0.66. (16)

Similarly for the fractional variance of visible extinction coefficient we have:

log10 fα = 0.3 log10 d + log10 R − 0.04 s − 0.69. (17)

As with (11) and (13), a maximum value of d = 60 km should be used in (16) and (17). No

dependence of 1z0 on the position in the cloud was found.

The fractional variance data were examined as a function of both temperature and absolute alti-

tude, but no significant dependence was found. It should be noted that when the weak temperature
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dependence of the b coefficient in (7) is included in the retrieval of IWC from Z , then this can

feed through directly to a weak temperature dependence of f IWC. However, since the temperature

dependence of b is due to non-Rayleigh scattering of the larger particles at 94 GHz, rather than

a meteorological phenomenon, and the fact that there are inherent uncertainties in our represen-

tation of non-Rayleigh effects, we are not confident that this represents a genuine temperature

dependence of fIWC. This finding is not at odds with the previous finding of a strong temperature

dependence of absolute IWC (e.g. Stephens et al. 1990; McFarquhar and Heymsfield 1997), and

certainly there is a robust temperature dependence of c in (7) for all radar frequencies (Liu and

Illingworth 2000), but as discussed in section 3b, this does not affect the retrieval of f IWC.

6. Conclusions

A large dataset of ice cloud observations by cloud radar has been used to derive essential

information on cloud variability for use in the next generation of cloud schemes in operational

numerical models. It is found that observed IWC distributions are usually well represented by

lognormal or gamma distributions. Expressions have been fitted relating the fractional variances

of IWC and α to horizontal gridbox size, wind shear and distance above cloud base and below

cloud top.

A clear tendency for increased shear to cause a homogenization of the cloud was evident,

which resulted in significantly lower fractional variance. Due to the vertical distance over which

the homogenization occurs, fractional variance tended to be greatest at cloud top and decrease

with depth into the cloud, although beginning to increase again in the lowest third of the cloud.

In low shear conditions the vertical decorrelation length, which is independent of the parameter

being correlated, was found to vary between 0.5 km for a 2 km gridbox to 2 km for a 300 km

gridbox. Again, shear was found to reduce the correlation, principally because of the change

in fallstreak orientation. Both fractional variance and vertical decorrelation length increased as

gridbox size to the power of 0.3.

Some radiation schemes under development are able to represent the sub-gridscale variability

of cloud properties, so would be able to make use of the results on fractional variance and vertical
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decorrelation reported in this paper. They typically split each column of gridboxes up into a

number of narrower columns and perform radiative transfer calculations separately for each one.

This way an arbitrary sub-gridscale distribution of cloud properties may be specified, and partially

cloudy gridboxes treated in a more consistent way. To run the full radiation scheme on each sub-

column would be very computationally expensive, but by simply running each different wave-band

of the radiation scheme over a different sub-column, no significant increase in cost is incurred (H.

W. Barker, personal communication).

It is not immediately clear how these results should be applied in partially cloudy models

gridboxes. We excluded partially cloudy gridboxes from the analysis because to include them

would imply that the cloud-free regions were distributed evenly through the gridbox, in the same

way as in fields of cumulus or broken stratocumulus. In the case of ice clouds, partially cloudy

gridboxes are invariably those containing the edges of a large cloud that may span many gridboxes

in the horizontal. Therefore the best approach for a model may be to retain a parameterization for

cloud fraction, and apply the formula for fractional variance to only the cloudy part of the box,

using a value of d that reflects the size of the cloudy sector of the box, rather than the size of the

gridbox as a whole.

The large majority of the clouds considered in this study would have been nucleated from cloud

top in small generating cells, so it would be useful to extend this study to the tropics where a most

ice clouds are anvil cirrus. It should also be pointed out that the relationships derived here apply

principally to stratiform clouds, and model gridboxes containing storm cells penetrating into more

extensive ice cloud should treat the overlap of the convective and stratiform regions separately,

with the convective component presumably conforming to maximum overlap. The forthcoming

NASA CloudSat mission involves launching a 94-GHz radar in space in 2004 and will be able to

provide data on IWC variability and overlap on a global scale.
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115 horizontal aircraft runs in EUCREX with their length indicating ±1 standard deviation. Panel
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(b) IWC calculated from it in 0.3-km layers using the Z -IWC relationship in (8). The dashed line
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from 50-km horizontal samples of cloud, and using the wind speed from panel c to determine the

appropriate sample time at each height.

27



0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

IWC (g m−3)

P
ro

ba
bi

lit
y 

de
ns

ity

(a) f
IWC

 = 0.098

Height: 4.65 km
Duration: 0.77 hours (50 km)

0 0.2 0.4 0.6 0.8
0

5

10

15

20

IWC (g m−3)

P
ro

ba
bi

lit
y 

de
ns

ity

(b) f
IWC

 = 0.023

Height: 6.45 km
Duration: 0.27 hours (50 km)

0 0.2 0.4 0.6 0.8
0

5

10

15

20

IWC (g m−3)

P
ro

ba
bi

lit
y 

de
ns

ity

(c) f
IWC

 = 0.62

Height: 8.25 km
Duration: 0.23 hours (50 km)

Lognormal
Gamma
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gamma distributions fitted such that they have the same mean and variance as the data. The f IWC
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FIG. 6: The circles depict the mean correlation coefficient of the ice water content in 50×0.3-km

boxes, versus vertical separation. Panel a shows the results for the data between 6.9 and 8.9 km in

Fig. 3 (low shear case), and panel b shows the results for the data between 4.9 and 6.9 km (high

shear case). The error bars indicate the standard deviation of the raw data. The solid and dashed

lines show exponential and linear fits to the first point at 1z = 0.3 km, as discussed in the text.

29



10
1

10
2

10
−1

10
0

Horizontal gridbox size, d (km)

V
er

tic
al

 d
ec

or
re

la
tio

n 
le

ng
th

, ∆
z 0 (

km
)

(b)

10
1

10
2

10
−2

10
−1

10
0

Horizontal gridbox size, d (km)

Ic
e 

w
at

er
 c

on
te

nt
 fr

ac
tio

na
l v

ar
ia

nc
e

(a)

0 < shear < 5 m s−1 km−1

5 < shear < 10
10 < shear < 15
15 < shear < 20
Formula

FIG. 7: The parameters fIWC and 1z0 (averaged from 18 months of cloud radar data) versus

horizontal gridbox size and the magnitude of the vertical wind shear s. The dashed lines show the

analytical fits given in (11) and (12). The error bars indicate the range of raw values from which

the means were calculated, for shear in the range 5–10 m s−1 km−1. The spread is similar for other

values of shear.
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(a) Gridboxes 5−10 km in size
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(b) Gridboxes 40−80 km in size

FIG. 8: The parameter fIWC versus distance from cloud base zb, for two different gridbox size

ranges (panels a and b). Each line corresponds to clouds of a different depth, the solid lines being

the means of the retrieved values, and the dashed lines being 0.28R in panel a and 0.52R in panel

b, where R is given by (15).
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