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Abstract

Collision handling is very computationally expensive, especially in
large scale interactive animations. Hierarchical object representa-
tions play an important role in performing efficient collision han-
dling. Many different geometric primitives have been used to con-
struct these representations, which allow areas of interaction to be
localised quickly. For time-critical algorithms, such as interrupt-
ible collision detection, there are distinct advantages to using hier-
archies of spheres, known as sphere-trees. This paper presents a
novel algorithm for the construction of sphere-trees. The algorithm
presented approximates objects, both convex and non-convex, with
a higher degree of fit than existing algorithms. In the lower levels of
the representations, there is almost an order of magnitude decrease
in the number of spheres required to represent the objects to a given
accuracy.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Object hierarchies; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Animation
G.1.2 [Mathematics of Computing]: Numerical Analysis—
Approximation

Keywords: sphere-tree construction, object approximation, me-
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1 Introduction

Collision handling is a major bottleneck in any interactive sim-
ulation. Ensuring objects interact in the correct manner is very
computationally intensive and much research has addressed the is-
sues involved with trying to reduce the computational requirements.
Researchers often utilise hybrid collision detection algorithms to
tackle the problem in various phases. The initial phase of such an
algorithm, known as the broad phase, aims to efficiently cull out
pairs of objects which cannot possibly be interacting. A number of
different techniques have been used to achieve this coarse grain de-
tection. These include Sweep & Prune [Cohen et al. 1995; Ponamgi
et al. 1997], global bounding volume tables [Palmer and Grimsdale
1995] and overlap tables [Wilson et al. 1998].

Having determined which objects are potentially interacting, the
hybrid algorithm uses a finer grained algorithm to narrow in on the

regions of the objects which are in contact. This narrow phase pro-
cessing typically traverses hierarchical representations of the ob-
jects to hone in on the regions of interest. This reduces the amount
of work that is required to perform the “exact” collision detection
using such algorithms as Lin-Canny [Lin and Canny 1991; Lin
1993], V-Clip [Mirtich 1998] or Enhanced GJK [Gilbert et al. 1988;
Rabbitz 1994; Cameron 1997].

Many different geometric primitives have been used for con-
structing the “Bounding Volume Hierarchies” (BVH) used to per-
form narrow phase processing. These include: Spheres [Quin-
lan 1994; Palmer and Grimsdale 1995; Hubbard 1995a; Hubbard
1995b; Hubbard 1995c; Hubbard 1996; O’Sullivan and Dingliana
1999], Axis Aligned Bounding Boxes (AABB) [van Den Bergen
1997], Oriented Bounding Boxes (OBB) [Gottschalk et al. 1996;
Krishnan et al. 1998a], Discrete Oriented Polytopes (k-DOP)
[Klosowski et al. 1998], Quantised Orientation Slabs with Pri-
mary Orientations (QuOSPO) [He 1999], Spherical Shells [Krish-
nan et al. 1998b] and Sphere Swept Volumes (SSV) [Larsen et al.
1999].

There is often a trade-off between the complexity of the bound-
ing volume primitive and the tightness of fit that can be achieved.
Simpler primitives, such as spheres and AABBs, are quite inexpen-
sive to test for intersections. However, as they provide relatively
poor approximations, large numbers are often required to approxi-
mate the objects effectively. More complex bounding volume prim-
itives require more expensive intersection tests but, as they often
provide tighter approximations, fewer primitives (and hence inter-
section tests) are required. The following equation has been used
in [Gottschalk et al. 1996], [van Den Bergen 1997] and [Klosowski
et al. 1998] to evaluate various types of bounding volume hierar-
chies :

T = Nu×Cu +Nv×Cv, (1)

where :
T is the total cost of collision detection

between two objects,
Nu is the number of primitives updated dur-

ing the traversal,
Cu is the cost of updating a primitive’s po-

sition/orientation,
Nv is the number of overlap tests per-

formed,
Cv is the cost of an overlap test between a

pair of primitives.

Although spheres often do not provide particularly tight bound-
ing volumes, there are a number of distinct advantages to their
use. They are particularly advantageous when using the interrupt-
ible collision detection algorithm. This algorithm, introduced by
Hubbard, uses a time-critical traversal of the sphere-trees which is
terminated when the allotted time-slice has expired so as to main-
tain a consistent frame-rate [Hubbard 1995a; Hubbard 1995b; Hub-
bard 1995c; Hubbard 1996]. As the collisions may never be re-
solved down to the surface of the objects, the spheres can be used
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to approximate the collisions and formulate the response, as done in
[O’Sullivan and Dingliana 1999; Dingliana and O’Sullivan 2000].
Attractive properties include :

• Rotational Invariance : A sphere is invariant to the rotation
of the objects and therefore its update cost is very small. No
matter what type of motion the bodies are going through the
spheres can be updated by simply translating their centers.

• Efficient : The cost of performing an overlap test between two
spheres is extremely low, requiring only a few floating point
multiplications and additions.

• Suitability for Response : While providing graceful degrada-
tion of the object approximation, each level of spheres in the
hierarchy provides an approximation of the contact informa-
tion necessary for collision response.

While many techniques have been used for the construction of
sphere-trees, using the object’s medial axis (“skeleton”) has been
shown to produce tight fitting sphere-trees. This paper presents a
novel sphere-tree construction algorithm which extends the medial
axis based algorithm to allow the medial axis to be constructed as
required (full details can be found in [Bradshaw 2001]). Thus the
medial axis always provides enough information for the construc-
tion of the approximation. The rest of this paper is organised as
follows : Section 2 discusses the requirements of a good bounding
volume hierarchy and gives a brief overview of some of the existing
algorithms for the construction of sphere-trees. Section 3 overviews
the process of sphere-tree construction within our frame-work and
discusses how object sub-division is managed. Section 4 details
the use of Voronoi diagrams for the approximation of the medial
axis. Section 5 presents the adaptive medial axis approximation al-
gorithm which extends the existing algorithm to allow the approx-
imation to be updated as required. Section 6 presents a number of
new algorithms for the generation of sphere sets from the medial
axis approximation. Section 7 evaluates the new algorithms for the
approximation of objects, the construction of sphere-trees and their
use within interactive simulations. Finally, Section 8 presents con-
clusions and mentions some possible routes for future work.

2 Existing Algorithms

A number of algorithms have been used for the construction of
sphere-trees. Any algorithm which constructs bounding volume hi-
erarchies for collision detection must meet four basic requirements
[Hubbard 1995b] :

• the hierarchy conservatively approximates the volume of the
object, each level representing a tighter fit than its parent;

• for any node in the hierarchy, its children should cover the
parts of the object covered by the parent node;

• the hierarchy should be created in a predictable automatic
manner, not requiring user interaction;

• the bounding volumes within the hierarchy should fit the orig-
inal model as tightly as possible, representing it to a high de-
gree of accuracy.

For interactive simulations, the emphasis is on achieving high
and consistent frame-rates. Therefore a major concern is how well
the hierarchy facilitates this goal. As the collision detection algo-
rithm may not fully resolve the collisions, approximate collision
information must be available from each level of the BVH.

The simplest algorithm for construction of sphere-trees uses the
octree data-structure. The sphere-tree is constructed by using re-
cursive sub-division of the object’s bounding cube. The regions
which cover part of the object are then further sub-divided, continu-
ing down to the required depth. The sphere-tree is then constructed
by placing a sphere around each of the nodes of the octree. This
method has been adopted in [Palmer and Grimsdale 1995; Hubbard
1995a; Hubbard 1995b; Hubbard 1996; O’Sullivan and Dingliana
1999]. The simplicity of the algorithm allows it to be quickly and
easily implemented and for the sphere-trees to be updated when
objects deform. However, the sphere-trees produced often fit the
object quite poorly.

Quinlan also uses sphere-trees for collision detection. The
sphere-trees are constructed by first covering the surface with a set
of uniformly sized spheres which represent the leaf nodes of the
hierarchy. This set of spheres is divided into two (roughly equal)
sub-sets. Trees are constructed for each of the two sets and these
trees are used as children of the root [Quinlan 1994]. Q-Splat uses
a similar strategy for constructing sphere-trees for visibility culling
and level-of-detail rendering [Rusinkiewicz and Levoy 2000].

Along with the octree method, Hubbard also explored two other
methods for the construction of sphere-trees. He initially used sim-
ulated annealing for sphere-tree construction. Later he used the
object’s medial axis to guide where to put spheres. This method
provides tight fitting sets of spheres from which the sphere-tree is
constructed.

3 High-Level Construction Algorithm

This section gives an overview of the new sphere-tree construction
algorithm. The algorithm consists of a number of layers. The top
layer decomposes the construction into a number of sub-problems.
It controls how the object is sub-divided into regions, each of which
needs to be approximated with a set of spheres. These spheres will
become the children of the sphere which was used to define the
approximated region.

The root node of the sphere-tree is the smallest sphere that will
enclose the object, which can be found with a minimum enclos-
ing ball algorithm [Weltz 1991; White (www)]. The first level of
spheres, the children of the root sphere, are constructed by calling
a sphere generation algorithm which generates the required number
of spheres to cover the object. These spheres are then used to seg-
ment the object into a number of regions. Each region defines the
areas of the object that must be covered by a set of children spheres.
These spheres form the next level of the hierarchy - as children of
the sphere that defined the region.

3.1 Object Segmentation

For each node in the sphere-tree, sphere generation algorithms are
used to construct a set of children spheres. In order to ensure that
the entire object is approximated, the set of children spheres must
cover the region covered by their parent. Thus, to produce the chil-
dren spheres, we need to be able to determine the regions of the
object covered by each sphere in an arbitrary set of spheres. The
simplest method to achieve this would be to simply use any part
of the object (or its surface) which is contained within the parent
sphere. However, spheres generated from the medial axis tend to
contain large areas of overlap inside the object. This is particularly
true when trying to achieve tight fitting sets of spheres. Thus there
will be large areas of the object which are shared between sets of
children spheres. Rather than representing the common regions in
multiple sub-trees, they are divided between the sub-trees so that
each region will only need to be covered by one of the sets of chil-
dren.
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Figure 1: Dividing the object into distinct regions using dividing planes.

Rather than working directly with the underlying model, the sur-
face is represented by an arbitrarily large set of sample points. Thus
to segment the object into regions we simply choose the sub-set of
points that represent the surface within that area. For points cov-
ered by many spheres it is necessary to assign the point to one of
the sets of children. This is achieved by dividing the overlapping
region between the spheres. For each pair of overlapping spheres a
dividing plane is constructed. The points contained within the in-
tersection of the two spheres are divided based on which side of the
plane they lie on.

Figure 1 shows how a triangular object is divided into four re-
gions. The dividing planes, shown in Figure 1(a), are constructed
so that the plane passes through the points of intersection of the
spheres (circles in 2D). In this example the region associated with
the large central sphere is much bigger than the regions associated
with the other spheres. Thus, the children of this sphere will poten-
tially have a looser fit than the other child sets. It is very desirable
that the regions divide the object as evenly as possible without af-
fecting the fit of the current set of spheres. Thus, the dividing plane
between a pair of spheres is moved to try to get each to cover a
region of equal size, Figure 1(b). Once we have established the
regions to be covered by each of the spheres, new spheres can be
created. These new spheres are now only required to cover the parts
of the surface which are not covered by any other spheres, allowing
a tighter sphere to be fitted, Figure 1(c).

4 Medial Axis Approximation

Constructing the medial axis for a polyhedral model is a compli-
cated and computationally expensive task. For the purposes of con-
structing sphere-trees an approximate medial axis suffices. This
section describes the algorithm for constructing a medial approxi-
mation using a Voronoi diagram.

A Voronoi diagram is constructed from a set of forming points.
Each cell within the Voronoi diagram represents the region of space
which is closer to its forming point than any of the other forming
points. When the set of points is distributed over the surface of the
object, a sub-set of the faces that lie between the cells forms an
approximation of the medial axis [Hubbard 1995b]. We use Hub-
bard’s algorithm, based on work described in [Bowyer 1981] and
[Inagaki et al. 1992], for constructing the Voronoi diagram.

The algorithm for the construction of the Voronoi diagram is an
iterative one. Each of the forming points, which are points dis-
tributed across the surface of the object, is added to the diagram in

turn. As the points are added, new cells are constructed and the ex-
isting cells are updated so that each one still represents the region
of space closest to its forming point. The algorithm is initialised
with a Voronoi diagram containing 4 forming points which form a
bounding tetrahedron for the object. The Voronoi vertices (which
make up the cells) consist of one true vertex, constructed from the
forming points, and 4 dummy vertices located at infinity.

When a new point is added to the Voronoi diagram, a new cell
must be formed. This cell represents the region of space closer to
the new forming point than to any of the existing forming points.
To update the Voronoi diagram, the vertices which are closer to the
new forming point need to be removed and new vertices created.
Vertices which are approximately equidistant from both their form-
ing points and the new point are considered marginally deletable.
These are problematic as it is difficult to determine if they should
be deleted or not. Hubbard finds the set of deletable vertices by
considering the vertices in order of removability. The search starts
with the most deletable vertex and maintains a priority queue of
the possibly deletable vertices, which is initialised with the posi-
tively valued neighbours of the starting vertex. Each vertex in the
queue is considered in order of removability. If the deletion of a
vertex will invalidate the Voronoi diagram, i.e. it cannot be added
to the deletable set, it is held back for later consideration. When a
deletable vertex is found, its positively valued neighbours are added
to the priority queue, and the vertices that were being held back are
returned to the queue for further consideration.

Having found the set of deletable vertices, a new vertex is created
for each pair of neighbouring vertices Vd and Vu, where Vd is a
deletable vertex and Vu is an undeletable vertex. These vertices will
share three forming points, which together with the new point will
create the new vertex. The circumcenter of the tetrahedron formed
by these four points gives the vertex’s location. As with all Voronoi
vertices, the new vertex Vn has four neighbours, Vu and three other
new vertices. These other neighbours are the new vertices with
which it shares 3 forming points.

The Voronoi vertices inside the object represent points on the
approximate medial axis. As the medial axis is defined as the set of
maximally sized spheres that fill the object [Blum and Nagel 1978],
these locations are used to make a set of spheres which approximate
the object. Using the distance from the vertex to its forming points
as the sphere’s radius results in it touching the surface in (at least)
3 places. The sphere placement algorithm does not need to give
special consideration to degeneracies in the medial axis, such as
zero length edges, as this just results in two spheres being located
in the same position.
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5 Adaptive Medial Axis Construction

The algorithm presented in the previous section approximates the
medial axis of an object with a Voronoi diagram. There are, how-
ever, a number of difficulties associated with this process. When
generating the Voronoi diagram, it is difficult to choose the set of
surface samples correctly. Problems in choosing the set of surface
points can result in the medial axis being pushed through the sur-
face to create either a hole in the approximation or a bridge that
joins two separate areas of the object.

Hubbard introduces the notion of “gap crossing” cells as a way
of identifying and fixing these problems [Hubbard 1995b]. How-
ever, this scheme does not address the problems associated with
constructing a sphere-tree from the medial axis approximation. It is
impossible to determine a priori how to construct a medial axis, and
hence the set of medial spheres, that will best suit the sphere-tree
being constructed. We favour an adaptive medial axis construction
algorithm, presented in this section. This algorithm handles both
the gap crossing problems and allows the medial axis approxima-
tion to be updated so that there is always a sufficient number of
spheres available to construct the sphere-tree and to fit the object to
a high degree of accuracy.

The adaptive medial axis approximation algorithm is iterative
in nature. It starts with an empty Voronoi diagram and iteratively
improves the approximation by adding new sample points to the
surface of the object. The first task of the algorithm is to ensure
that the set of medial spheres, which is the set of spheres placed
around the Voronoi vertices, covers the object’s surface. The second
phase of the adaptive algorithm is to adaptively improve the medial
spheres.

5.1 Completing Coverage

In order to ensure that the set of medial spheres is complete, it must
cover the entire surface. This is achieved by representing the ob-
ject as a densely packed set of points distributed across its surface.
The surface is considered to be covered when all these points are
covered by spheres. This representation makes it simple to ensure
that the model is completely covered. For those points which are
not covered we need to create spheres which will cover them. As
the set of spheres placed around a Voronoi cell’s vertices will cover
every part of the cell, the extra spheres can be chosen from those
belonging to the cell that contains the uncovered point.

There are several criteria that could be used to choose the sphere
to cover each point. The smallest sphere, or the sphere with the
lowest error, would help to produce a tight fitting approximation,
whereas choosing the largest sphere would also cover a number of
other uncovered points. This would mean that fewer of the spheres
in the approximation would be “coverage spheres”. As the adaptive
algorithm is able to replace poor fitting spheres, these spheres will
subsequently be replaced if they affect the quality of the approxi-
mation.

5.2 Iterative Improvement

The second phase of the adaptive medial axis approximation algo-
rithm is the improvement step. During each iteration of the algo-
rithm, having marked the medial (and coverage) spheres, the sphere
with the worst fit is replaced1. This is achieved by adding a new
sample point to the Voronoi diagram. This point, q, is the point on
the surface which is closest to the center of the sphere, c. As q will
be closer to the vertex than its forming points, this results in the
vertex being replaced with new ones, as illustrated in Figure 2.

1Each Voronoi vertex caches its sphere and the associated error to allow
the worst fitting sphere to be chosen quickly.

6 Sphere Generation

The top level sphere-tree construction algorithm, presented in Sec-
tion 3, expresses sphere-tree construction as a number of sub-
problems, each requiring that a region of the object be approxi-
mated with a set of spheres. This section details the process of
constructing sphere sets from the medial axis approximation.

The sphere generation algorithm maintains a Voronoi diagram
which approximates the medial axis of the object. Prior to the con-
struction of a set of spheres, the medial axis is updated so that it is
of sufficient quality to allow a tight approximation. For this we re-
quire that the set of spheres covering the region to be approximated
contains some multiple of the target number of spheres and that the
worst sphere in the set has an error which is a fraction (typically 1

2
to 1

4 ) of the parent sphere’s error.
Having updated the medial axis approximation, the set of spheres

which approximates the required region is used to construct the
spheres for the sphere-tree. This set of spheres is reduced so that it
contains the required number, i.e. equal to the branching factor of
the tree. We have explored a number of algorithms for performing
this reduction. Our favoured approach is to use two different algo-
rithms, detailed next, and choose the set of spheres which best fits
the object.

6.1 Merge

The “merge” sphere reduction algorithm, loosely based on Hub-
bard’s algorithm, reduces the sub-set of medial spheres by succes-
sively merging pairs of spheres. Each sphere is allowed to merge
with a number of other spheres, its neighbours. Initially, each
sphere is given a set of neighbours which correspond to the vertex’s
neighbours within the Voronoi diagram.

Each of the medial spheres covers a sub-set of the surface points.
When a pair of spheres is merged, a new sphere is constructed
which covers the union of the two sets of surface points. When
constructing this sphere we wish to keep it close to the medial axis.
Thus we use two approaches to constructing the bounding sphere.
We first resize both the spheres to enclose both sets of points. Next,
we create the minimum volume bounding sphere for the points, us-
ing White’s algorithm [White (www)]. The final sphere is chosen
to be the one with the lowest error.

Having combined a pair of spheres, the set of merges is updated.
The neighbours of each of the merged spheres will become neigh-
bours of each other, resulting in new potential merges. Any spheres
that end up with no neighbours are given an artificial set of neigh-
bours. This set of neighbours consists of any spheres which overlap
the neighbourless sphere or all the remaining spheres if there are
no overlaps. The reason for limiting the pairs of spheres that may
be combined is to reduce the computational cost of the reduction
process. When the number of spheres becomes sufficiently low, it
becomes feasible to consider every pair for merging. This is typi-
cally done when we reach 2 or 3 times the target number of spheres.

Each iteration of the merge algorithm reduces the number of
spheres by one, using a greedy algorithm. At each iteration, the
merge which results in the lowest error is used. This does not con-
sider the effects of the merge on future operations. We give spe-
cial consideration to merges which actually reduce the error in the
approximation. We refer to these as “beneficial merges”. As an
approximation is only as good as its worst error, we favour merges
which improve the worst spheres in the approximation.

6.2 Expand

Although the merge algorithm is very general, it does not consider
the global effect of merging two spheres and therefore can often
produce sub-optimal sets of spheres. A much better strategy is
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Figure 2: Addition of a new point to the Voronoi diagram to improve the approximation.

to choose a set of spheres that distribute the error evenly between
them. By ensuring that all the spheres have the same error, the algo-
rithm will have a better chance of achieving a tight fit. For a convex
body, a sphere can be grown to hang over the surface by a given
amount, e, using the following equation to calculate its radius (with
q and c as defined in Section 5.2) :

r = e−‖q− c‖ (2)

Thus, the medial spheres are expanded to the desired stand-off
distance, using Equation 2, and a sub-set of the spheres is se-
lected. For non-convex bodies, the stand-off distance is an over-
approximation of the error present in the sphere. A simple search al-
gorithm, derived from binary search, is used to find the lowest value
of e that results in a set that does not contain too many spheres.

The job of selecting the minimum number of expanded spheres
that cover an object is a complicated one. Instead of looking for the
globally optimum set we try to find a good minimal set of spheres,
i.e. a set of spheres from which none of the spheres can be removed
without exposing part of the surface. A greedy algorithm allows us
to achieve this efficiently. In this algorithm the set of currently se-
lected spheres is maintained and more spheres are selected until the
region is completely covered. To decide which sphere to add, each
sphere is ranked according to its potential to keep the set of spheres
small. Two heuristics for ranking the spheres have been explored.
The first is to simply rank the spheres by the area of previously un-
covered surface contained within it. The second heuristic ranks the
spheres by the number of other spheres which it makes redundant.
The second heuristic tends to select spheres near to those previously
selected and seems to work slightly better in practice.

7 Evaluation

This section compares sphere-trees generated using the new algo-
rithm with existing medial axis based sphere-trees. Other tech-
niques, including the octree method, have also been evaluated but
the results are not included here as the medial axis method produced
far tighter fitting hierarchies, as expected. A full discussion of these
and other results can be found in [Bradshaw 2001].

The algorithms have been compared using a number of simple
geometric shapes including a cube, an ellipsoid, a cylinder, a torus,
a cone, an S-shaped object and a block with square cross sections.
A number of commonly used complex models have also been used,

including the Bunny2, the Cow and the Dragon3. The Bunny and
S-shape are shown in Figure 3.

There are a number of factors which must be considered when
approximating an object with spheres. As stated in Section 2, the
spheres should approximate the object’s surface to a high degree
of accuracy and should cover the entire object. The tightness of
fit can be measured as the maximum distance from the surface of
the spheres to the actual surface of the object. This represents an
upper bound on the distance between two objects when they are
falsely thought to be involved in a collision. The initial analysis
is concerned with the geometric properties of sphere-trees and the
later analysis considers the use of the resulting sphere-trees in an
interruptible collision handling system.

7.1 Sphere-Tree Construction

Figure 4 compares the geometric fit achieved using the various
sphere reduction algorithms. All tests were conducted with a tree
branching factor of 8. All the algorithms used a set of 5000−10000
surface points to check coverage. The original algorithm was used
with a medial axis approximation containing circa 2500 spheres.
For the adaptive algorithm, the medial axis initially contained 500
spheres and was dynamically refined so that each region had 1

2
the error of the parent sphere and at least 100 spheres, i.e. the
merge/expand algorithms started with 100 spheres from which the
final 8 were to be produced.

The new merge algorithm shows significant improvements over
the original algorithm. For complex models, such as the Bunny,
the 3rd level spheres produced by the new merge algorithm exhibit
about 1

2 the error of those constructed with the original algorithm.
The expand algorithm shows further improvements and using both
sphere reduction algorithms in combination results in a further de-
crease in error. In fact, the worst case for the combined algorithm’s
level 2 spheres is roughly the same as that for the original algo-
rithm’s level 3 spheres (see Figure 4(a)). Thus the combined al-

gorithm produces the same tightness of fit using around 1
8

th
the

number of spheres.

7.2 Simulation

In order to further evaluate the sphere-tree generation algorithm, the
behaviour of the sphere-trees during simulation was tested. During

2Data from http://graphics.stanford.edu/data/3Dscanrep/
3Data from http://graphics.cs.uiuc.edu/∼garland/research/quadrics.html
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(a) Bunny (b) S-shape

Figure 3: Some of the models used for testing the algorithms.
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Figure 4: Comparison of sphere-tree construction algorithms (worst error).
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Figure 5: Comparison of sphere-trees at various interruption times for the Bunny (20 objects).
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these simulations, objects were positioned (and oriented) randomly
about a sphere and given a random velocity towards a central point.
Each sphere-tree approximation of the object was evaluated during
the simulations. At each time-step the colliding pairs were created
by testing their bounding spheres. The sphere-trees for these pairs
were then traversed as they would be in the interruptible collision
detection algorithm. To avoid bias towards or against a particular
sphere-tree, the motions of the objects and their response to colli-
sions were computed using a commercial dynamics system which
uses an “exact” collision detection algorithm and a complex friction
dynamics model.

The sphere-tree traversals were interrupted at regular intervals
and the approximate collisions evaluated. The error associated with
each colliding pair was computed as the sum of the spheres’ errors,
i.e. the maximum distance between the sphere and the surface. This
represents an upper-bound for the true separation between the ob-
jects. The new algorithms were compared to a reference sphere-
tree, i.e. that constructed with Hubbard’s original algorithm. For
each interruption time, the average improvement was computed us-
ing all the frames of the animation (typically 1000+).

Figure 5 presents results for simulations containing 20 objects.
The horizontal axis of each of the graphs shows the interruption in-
terval. This is expressed in terms of the number of primitive opera-
tions performed, i.e. sphere updates and overlap tests. The amount
of work done before interruption is computed using Equation 1.
The values of Cu and Cv are 2 and 1 respectively. These values rep-
resent the relative number of floating point operations performed
when updating a sphere’s position (21 floating point operations) and
testing two spheres for overlap (10 floating point operations). The
first graph (a) in each set shows the fraction of error present in the
approximations and the second (b) shows the relative number of
colliding pairs produced by the different algorithms.

The new algorithms show a definite reduction in error. For com-
plex models, such as the Bunny, the combined algorithm quickly
falls to as little as 50% of the error resulting from existing algo-
rithms (see Figure 5(a)). The amount of error continues to decrease
to as low as 30%. In other simulations, using the simpler models,
we have found this to be as low as 20%. The algorithms also show
significant reductions in the numbers of pairs of colliding spheres,
which result from the traversal. This provides a reduction in the
amount of work which will need to be done by the later stages of
the collision handling system, i.e. contact modelling and collision
response. For the Bunny, the number of resulting collisions has
decreased to as little as 20% (see Figure 5(b)).

8 Conclusions & Future Work

This paper has presented some novel work in the areas of medial
axis approximation and sphere-tree construction. An adaptive me-
dial axis approximation algorithm, which addresses many of the
issues involved with using Voronoi diagrams for this purpose, was
presented. The adaptive algorithm not only allows us to ensure that
every part of the object is approximated but also allows the sphere-
tree construction algorithm to refine the approximation as it moves
down the sphere-tree. The approximate medial axis is then used to
construct a set of spheres from which the sphere-tree is constructed.

A generic sphere-tree construction algorithm was presented
which expresses the task as a number of sub-problems. Each of
these sub-problems involves approximating a region of the object
with a desired number of spheres. This allows many different al-
gorithms, each of which generate the required number of spheres
from the medial axis approximation, to be slotted into the top-level
algorithm. The sphere reduction algorithm presented combines two
of the algorithms we have explored. The merge algorithm is generic
in nature and is suitable for most scenarios. The expand algorithm
takes a novel approach to sphere reduction. This algorithm reduces

the set of medial spheres by enlarging them and selecting a sub-set
to cover the object. This produces spheres which distribute the er-
ror evenly between them and often results in tighter fitting sets of
spheres.

The sphere-reduction algorithms were used for the construction
of sphere-trees to approximate a number of different models. The
new algorithms consistently provide improvement over the existing
algorithms. In the lower levels of the sphere-trees, the new com-
bined algorithm required almost an order of magnitude less spheres.
The sphere-trees were also evaluated for use in interruptible simula-
tions. The sphere-trees constructed with the new algorithms showed
a large decrease in error and resulted in far fewer pairs of colliding
spheres.

There are a number of interesting areas of research that can build
upon this work. To date, we have concentrated on fitting tight hier-
archies of spheres to rigid bodies. This can, of course, be used for
articulated objects too. However, further work would be required to
make the algorithms suitable for use with deformable objects. Also,
many objects contain large flat areas which are not well approxi-
mated by spheres, e.g. buildings. For general purpose simulation it
would be nice to be able to use other collision detection strategies
for these areas while using sphere-trees where applicable. Sphere-
trees have also recently been used for visibility culling and level-
of-detail rendering [Rusinkiewicz and Levoy 2000; Rusinkiewicz
and Levoy 2001]. It would be extremely interesting to combine this
technique with level-of-detail collision detection so that the same
sphere-trees could be used for both. Finally, another interesting re-
search area would be the construction of more generic bounding
volume hierarchies containing many different types of primitive,
each one being used where it is best suited.
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