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MICROLOCAL ANALYSIS OF
SOME ISOSPECTRAL DEFORMATIONS

F. MARHUENDA

Abstract. We study the microlocal structure of the examples of isospectral

deformations of Riemannian manifolds given by D. DeTurck and C. Gordon

in [DeT-Gl]. The Schwartz kernel of the intertwining operators considered by

them may be written as an oscillatory integral with a singular phase function

and product type amplitude. In certain instances, we identify them as belonging

to the space of Fourier integral operators associated with various pairwise in-

tersecting Lagrangians. After formulating a class of operators incorporating the

most relevant features of the operators above, we establish a composition cal-

culus for this class and show that is not necessary to introduce new Lagrangians

in the composition.

1. Introduction

Consider a Riemannian manifold (M, g) and its Laplace operator A. The

question of how much of the geometry of (M, g) is determined by the spectrum

of A is a problem in which considerable progress has been made during the last
decade. Many new types of nonisometric isospectral Riemannian manifolds
have been found. For the history of this interesting subject see [Be, DeT-Gl,
DeT-G2, D-G, G-W] and the references there.

In 1983 C. S. Gordon and E. Wilson exhibited for the first time contin-
uous families of nonisometric, isospectral metrics (isospectral deformations).
These occurred on compact solvmanifolds [G-W]. Their examples were further

analyzed by D. DeTurck and C. Gordon [DeT-Gl] for compact quotients of
nilpotent Lie groups of step 2. In the latter case, operators which intertwine

the Laplacians were explicitly found by the authors.
In this work we consider the microlocal structure of the DeTurck-Gordon ex-

amples and show that the operators intertwining the Laplacians have a Schwartz

kernel that can be put in the form of an oscillatory integral,

(1.1) Iei4,(x'y-e)a(x,y,d)dd,

where the phase function 4>(x,y, 6) is C°° in x and y and homogeneous of

degree 1 in 6 . In this latter variable, it has, at most, singularities of the type
l/p(0), where p(6) is a fixed homogeneous polynomial in 6. The function

a(x, y, 6) appearing in (1.1) is a product type amplitude. Thus, the kind of
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246 F. MARHUENDA

amplitudes needed in the construction of the above operators are more general

than Hörmander's symbols.

Away from where the singularity in the phase takes place, the kernel in ( 1.1 ) is
a Lagrangian distribution associated with two cleanly intersecting Lagrangians.
One of these, say C c T*X \0 x T*X\0, is locally the graph of a canonical

map x '• T*X\L -* T*X\L which fails to be defined at a certain submanifold

LcC.
We show that in some of the examples, C fails to be a canonical graph at L

in a very specific way, namely, along L the projections into the first and second
factors, n : T*(X x X) - T*X and p : T*(X xX)-*T*X are blowing-down
mappings. Further, n(L) and p(L) are involutive. Also the contribution from

the singularities of the phase in (1.1) introduces a third Lagrangian which is

exactly the flow-out from n(L).
Motivated by this, we formulate a class of Fourier integral operators associ-

ated with canonical relations satisfying the above properties and give a compo-

sition calculus and some L2 estimates for this class. These operators are not

covered by Hörmander's transverse intersection calculus or the Duistermaat-

Guillemin-Weinstein clean intersection calculus and in fact give rise to distri-
butions in the P 'l classes not considered by Hörmander.

The reason for doing this is to establish the basis for a more ambitious goal:

understand completely the above examples from the microlocal point of view

and develop a composition calculus that would allow one to construct new ex-
amples without making use of the group structure underlying the known cases

of isospectral deformations.
One difficulty is that our class of canonical relations cannot be conjugated to

a single normal form. In §4 we show, though, that any such canonical relation is

parametrized by a phase function satisfying certain conditions. Then, making

use of iterated regularity techniques, we prove the following:

Theorem 1.2. Let C c T*(X\0)xT*(Y\0) be a homogeneous canonical relation

satisfying: away from a hypersurface LcC, both projections n:C —> T*(X)

and p:C -» T*(Y) are diffeomorphisms, whereas at L they are both blow-downs
dropping rank by k and both n(L) and p(L) are nonradial and involutive. Let

A E Im(C), B E Im' (C) be properly supported Fourier integral operators. Then
BA £ I>»+m'+(k-l)/2,-(k-l)/2(AT.x , An[L)).

Here, At-x denotes the diagonal in T*X x T*X and An(L) the flow-out

from n(L). As a consequence we also have

Corollary 1.3. For A as above, A : HS(X) -+ Hls~m~k/2(X) is bounded.

It follows from [Hö3] that if the mappings dp and dn drop rank by at

most k < n , there is an estimate with a loss of k/2 derivatives: A : HS(X) —>

H^m~k/2(X). Thus Corollary 1.3 gives the same estimate, even though C is

less singular than a codimension k flow-out. There are examples which show
that this estimate is sharp.

Using the same method we also get a composition calculus for A e
P'l(C, A„(L)) and B E Ir's(C, ALL)). In this case, no new Lagrangian man-

ifolds are introduced.

In all the above results we make extensive use of the iterated regularity char-
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acterization of R. Melrose [Me 1, Me2], as developed by Greenleaf and Uhlmann
[G-U2, G-U3, G-U4]. A reference in which microlocal analysis has been applied
to isospectral problems is [Z].

The author wishes to thank his thesis advisor Allan Greenleaf, to whom he

is very deeply indebted for his insights and guidance.

2. ISOSPECTRAL DEFORMATIONS AND MICROLOCAL ANALYSIS

In this section we review briefly the examples of [DeT-Gl]. The interested
reader is referred to the original paper for details.

Let & be an «-dimensional two-step nilpotent Lie algebra, G = exp%? the

associated connected, simply connected Lie group. Then G is diffeomorphic

to R" for some n and \f§, &] c Z, the center of "§. We denote the adjoint
representation of & by ady(X) = [Y, X]. A map <f>: 2? -> Z is called an

almost-inner derivation [G-W] if for each X e & there is Y £ &, possibly

depending on X, such that <j>(X) = ady(Jf).
Two consequences of this definition are that (f>(Z) = 0 and that <f> is a

derivation (since 2? is two-step nilpotent). For nilpotent Lie groups with higher

step one needs to impose also that <p is a derivation. This derivation is inner
if and only if one can choose a Y G 2? which does not depend on X in the
above definition (thus if <f> = ady).

We can exponentiate <t> to get an automorphism of 2?. By the previous

remark, 4>2 = 0 so <S> = exp <f> = I + <z> and the map from Aut(G) to Aut(^)

that assigns to an automorphism <S>:G -^ G its derivative at the identity 0»,
is an isomorphism. Thus, to exp </> there corresponds an automorphism of G

for which we use the same name. Since G is two-step nilpotent, the Baker-

Campbell-Hausdorff formula provides us with a convenient description of this

map: if X = log(x) then <P(x) = exp(X + $(X)). Note that the derivative of
the latter at the identity is O = / + 4> and it satisfies

<D(xy) = exp<D(log(xy)) = exp(<D(X + Y + \[X, Y]))

= exp(X + Y + \[X, Y] + <t>(X) + (¡>(Y))

= exp(X + <t>(X)) exp(F + <f>(Y)).

Lemma 2.1 [DeT-Gl]. Let 4> be a derivation of a two-step nilpotent Lie algebra

2?, and let Z be the center of %?. Then <z> is almost-inner if and only if, for every
linear functional X E Z*, there exists a vector Y^eS? such that Xotf> = Aoad^ ,
i.e.,

(2.2) X(4>(X)) = X([Yk,X])

for all X e &.

A subalgebra SP of 2? is called ^-admissible if it contains Z (and therefore
Sf is an ideal of 2?) and some choice of Yx satisfying (2.2) for each X £ Z*.
Likewise, exp 3? will be called a «/»-admissible subgroup of G.

Let <f> be an almost-inner derivation of 2? that is not inner and choose a

^-admissible subalgebra ^ of ^ which is the Lie algebra of the subgroup

Hj, = expJz^. Let T be a uniform discrete subgroup of G, so that T\G is

compact. Let ^# be the set of metrics on G that are left-invariant under
the action of the subgroup YH^.  The Riemannian metric g £ Ji induces
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248 F. MARHUENDA

a unique Riemannian metric (also called g) on T\G such that the projection

n: (G, g) —► (r\G, g) is a Riemannian covering.

Theorem 2.3 [DeT-Gl]. Let G, 2?, T, g, <f>, and =2^> be as above, and define
<&t £ Aut(G) by O, = exp(í</>) = I + t<¡>. Then, for every t, gt = tyg is also left
invariant by YH^ and the family {gt}teR is a continuous isospectral deformation

of g on Y\G. The deformation is nontrivial for all g in some nonempty open

subset of Jt.

In the proof of Theorem 2.3, the authors in [DeT-Gl] construct an operator,

St that intertwines the Laplacians, i.e., 5/ satisfies

(2.4) SrlASt = At,        ¿>0,

where A, is the Laplacian associated with gt. In this work, we study these

operators from the microlocal point of view. We proceed next to describe them

more precisely.
Let Z = expJB' be the center of the group. The map exp induces an isomor-

phism of abelian groups from (Z n lo%(T))\Z onto the torus T = (Z n T)\Z .
The center, Z , and the torus T act on Sf = L2(r\G) by left translation: for
f E &, z £ Z , the action of Z sends / to L*(f). Hence it is possible to

extend the ordinary Fourier series decomposition of L2(T) to one of L2(Y\G)

by writing Sff = ®{A6jr. . ^niogínie*} *x, where

^ = {/ e SIT : L*J = e2*tt(logz)y    vz G Z}.

Note that A: Sífx —► J¿ since, for z £ Z , the Laplacian A commutes with the

isometries Lz. Define Sx,t = (Lylti ° $-<)* on J¿, where y¿,t = exp{tYx}

and St = ©¿S^i ■ The operator St is continuous on L2(r\ G) with respect
to the topology induced by the norm corresponding to a left G-invariant metric
on r \ G. It is shown in [DeT-Gl] that (Lykt o$_,)* = R*x ( on each of the

spaces S(?x.
It is also shown in [DeT-Gl] that this operator does indeed satisfy (2.4) and

that this deformation is nontrivial whenever 4> is not inner and the metric g
is close enough to the space of metrics invariant under the action of the group.

The map X h-+ Yj may not be unique, but (2.2) imposes rather strict condi-

tions on it. Let {Zx, ... , Zm} be a basis for the center of Z and complete

it with {Xx, ... , Xn} to form a basis for 2? . With this choice, 2? splits into

2? = jV © Z. This induces a (smooth) product structure on G. We will make

use of x = (xi,... , x„), and z = (zx, ... , zm) to denote the coordinates cor-

responding to exp(7V) and exp(Z), respectively. In Z* we use coordinates

(Xx,... , Xn) dual to {Zi,..., Zm} .
Adding to Yx an element of the center will not affect (2.2) so we may assume

n

(2.5) Yx = Y,cii(X)Xi.
i=\

Let {Ch}ijjf be the structure constants, i.e.,

m

(2.6) [Xi,Xj) = Y,C?jZk.
k=l
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Then [Yx, Xj] = Y^i,kaiC\¡Zk and in this basis the matrix representing Adyx

is

/E,«/CÂ    Eí«íC¿   ...    E,aiCxn\
(2.7) Ad7,= : :•..:.

VE^q? E^/Cg ...   EiflíCg/

By (2.2), the map A^lo Ady¿ is linear, hence the following expressions are
linear in X :

Xx £aiCxx + X2 J2 a<C2x+■ ■ ■ + Xm £ atC^,
i i i

Xi Y, aiC¡2 + X2J2 aiC22+- ■ ■ + Xm £ a{Cf2 ,

(2.8)

h ¿2fl/C¿, + X2 Y, aiCfn+- ■ ■ + Xm YaiC\

As a consequence the functions a¡(X) must have the form

(2.9) ai(X) = qi(X)lp(X),

where q¡(X) and p(X) are homogeneous polynomials in X of the same degree.

Next, we look at the construction of the operator St from the microlocal

point of view. G has a local product structure coming from the splitting of

its Lie algebra 2? = ST © Z mentioned above. Fix a point p E F\G. Let

n: G —> Y\G denote the projection onto T\G. The map exp :2? —> G is a

global diffeormorphism. Thus, for appropriately chosen neighborhoods % o exp

provides a local chart around p. Locally, in the given coordinate chart, the
manifold M = F\G is also a product of manifolds N x Z .

In the above basis, we can identify G and 2? with E" x Rm and express the

product in the group G as follows: Recall that we use (x, z) G R" x Rm = G to
denote points in the group. There is a bilinear form B :RnxRn —► Rm , such that

for (x, z), (y, c) E G, their product is given by L(x t z) (y, c) - (x, z) ■ (y, c) =

(x + y, z + c + B(x, y)). By making use of the above basis we may write the
bilinear form B as B(x, y) = (£" j=1 Bj^yj,... , ££ j=ï B^jXiyj).

With the above notation, the map Sx>t maps the function f(x, z) £ Sifx to

f(x+tyx, z+tB(yx, x)-t(j)(x)) = f(x+iyx, z+tB(x, yx)), since Lyxo(f){ = Ryi
on Sifx.

We remark here that a function f(x, z) is in Sk\ if and only if it has the
form

f(x,z) = g(x)e2«a-\

with g satisfying that for each a eY , g(x) — g(x + a)e27lik'B(o'•*).

Define now the function

F(C,x, t) = x + tyr

and consider the following phase:

(2.10) v{x,y,Z;z,w,Q = {F{C,x,t)-y)-Z + (z-w + tB{x,yc))-C.
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For H G LX(G), we define the operator

(2.11) (TtH)(x, z) = ¡ei¥{x'?¿>z>w^H(y, w)d£dt;dydw.

We have

Proposition 2.12. The operators Tt, defined by equation (2.11), and St have

the same microlocal form.

Proof. In the following, we will use the notation £F(f)(x, a), &(H)(x, Q

(where a £ 1?, Ç £ R") to denote Fourier transformation in the second variable

(in the appropriate spaces).
Note, firstly, that for any function H, compactly supported in G, we have

F(TtH)(x, y) = íei{'//{x'y'i'z'w'í)~r^H(y,w)d^dCdzdydw

= fei((F(C,x,t)-y)-t+(tB(x,yô-wH) f ÍeHz-Y)-c¿z\ H(y, w)dc¡dCdydw.

Since J ei(-z~^'^dz = ôy(Q, Dirac's delta function, we obtain

F(TtH)(x, y) = Iei{-(F{-y'x't)-y)'t+^x^-w^H(y,w)dt¡dydw

= eitB(x ■»>*' I H(F(y, x, t), w)e~iw'y dw

= eitB{x,»)'?#■(H)(F(y,x, t), y).

Let now h E LX(T\G).  Identifying functions on the quotient space with

periodic functions on the cover, we may assume h is defined on G, and satisfies

h((y,c)-(x, z)) = h((x + y, z + c + B(y, x))) = h(x, z),

for all (y, c) E T (i.e., h is periodic). In particular,

h(x, z + c) = h(x, z),

if (0, c) E r n Z . And we may apply the usual Fourier analysis to it. We
remark that, in our notation, the map exp: 2? —► G is given by exp(x, z) =

(x, z + jB(x, x)), and hence, it induces the identity map exp \%: Z —* Z .

Identifying these two spaces we may also identify Z* =Rm*.

There is, now, another function H(x, z), defined on G, with compact sup-

port in the z variable, and such that, with the above identification,

h(x,z)=   Y  H(La(x,z)).
aeznr

Note that if a £ Z n Y then a must be of the form a = (0, c). And, hence,

La(x, z) = (x, z + c). Making a Fourier decomposition in the second variable,

we obtain

h(x, z) =     Y,    ay(x)elz"y,

76R""*nr*
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where Y* = {y £ Rm* : Va G TnZ, y(a) £ Z} and ay(x) = jH(x, y)e-^ dy.
(Here, we are identifying y • y = y(y).) Thus the operator St can be written as

(Sth)(x, z) =     £    ay(F(y, x, ,))«?<(*+<*<*>»))<y

(2.13) yeR:;nr*

=     J]    a,(F(y,Jc,/))ei'B',t','''7i/z''.

This shows that the Fourier coefficients of St(h) are

P{S,h){x, y) = ay(F(y, x, t))eitB^x^'y =^(h)(F(y, x,t), y)eitB^x: •»>'>''.

But from the Poisson formula we have that

F(h)(F(y ,x,t),y)= ?(H)(F(y ,x,t),y),

and, hence,

$-(St(h))(F(y ,x,t),y)= F(Tt(H))(F(y ,x,t),y).

Since, for fixed y £ Rm* nY*, the mapping F(y, x, t) is a diffeomorphism, we

see that Tt(H) and St(h) have the same Fourier coefficients and the proposition
follows.

For a general C°° function in Y\G with support not necessarily contained
in the coordinate chart above, we use a microlocal partition of unity, C°° in

the spatial variables, homogeneous in the cotangent variables, involving first the
(z, C) and then the (x, ¿;) directions. Thus the resulting amplitude will have

a product type nature as in [M-U, Gu-U].
Making use of this partition of unity to first localize the functions, and then

applying the operator Tt in (2.11) will not change its microlocal structure.

Thus, the resulting operators Tt, will have Schwartz kernels with the following
microlocal form:

(2.14)   K(X, Z,y,w)=   ( ei[í-{F(í,x,t)-y)+i'(z-w+tB(x,y:))]a^x ̂ y . ^ Qd^dÇ,

where a(x, y ; Ç, Q is a product type amplitude.
One can interpret the examples in [DeT-Gl] from this point of view.

Example 2.15 (from [DeT-Gl]). Consider a Lie algebra with n = 4, m = 2
and the following structure constants C¡3 = C2A = C24 = 1 and all the other

C'jk vanish. For the almost inner derivation <f> which maps Xx to Z2 and

vanishes on all the other elements of the basis, one obtains

ai(X) = a2(X) = 0,

(-X2/Xx   iO,^0,
a3(A) = {o if^O,

JO      ifA,^0,
Û4(A) = 1-1   ifA1=0.

Thus,

F(Ç,x,t)= (xx

H(C,x,t)= (-txx^,0^ ,        C-H(Z,x,t) = -tXiC2 = li-(0,-tXi),

Í2
X2 , X3 - ty , X4

4l
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and we obtain

K(x,z;y,w)= f eiv,ix>z>y>w'(>i)dÇdt,

with

r2
y/(x,z;y,w;c:,Ç) = (x-y)Ç- í—£3 + (zx - wx)Çx + (z2 -w2- txx)C,2.

3.  PSEUDODIFFERENTIAL OPERATORS WITH SINGULAR SYMBOLS

The microlocal structure of operators of the form (2.14) is related to the

spaces of distributions associated with cleanly intersecting Lagrangian manifolds
introduced in [M-U] and [Gu-U]. These spaces have been further studied in [A-

U, G-Ul, G-U2, G-U3, G-U4, Gul]. In this section we review some of the
results pertaining to our case.

Let X and Y denote C°° manifolds of dimension n. Denote by cox =

Yüíx d£i A dxi (resp. œY) the canonical symplectic two-form on T*X (resp.

T*Y). On T*(XxY) we take the canonical symplectic two-form cüx-(Oy • Let

7i : T*(XxY) — T*X and p: T*XxT*Y -» T*Y be the canonical projections.
Recall that two Lagrangian submanifolds, say L and K, of a symplectic

manifold M, intersect cleanly [Bo] if L n K is a manifold and for each p E

LC\K we have Tp(Lf)K) = TpLnTpK. Since only the case A0 , Ai c T*(XxY)
is relevant for our purposes, we will adapt the results to this particular situation.

We start by considering the model case in which X = Y = R" , with coordi-

nates (x, £), Ä0 = Ar.(RnXR") is the diagonal in T*(X x Y) and

Ä, = {(x, i;y, n):x"=y"A' = n' = 0, ? = n"}

is the flow-out from À0 n {£' = 0} . We are using the notation x = (x', x") e

Rk x Rn~k . These two Lagrangians intersect cleanly at Z = {x = y, Ç =

n, Ç' = 0}. We define the class Ip'l(A0, Äi) to be the space of operators

whose Schwartz kernels have the form

(3.1) KA(x, y) = [eii(x'-y'-s)-o'Hx"-y"ye"+s'a]a(x, y, s-e, a)dddrjds,

where a(x, y, s; 6, a) is a product type symbol of order p' = p - n/2 +
k/2 in 6 and V = I — k/2 in a, i.e., it satisfies that for each compact set

K c Rn x R" x Rk and multi-indices a, ß, y, ô, e, there is a constant

C = C(K ,a,ß,y,o,e) such that for (x, y, s) £ K,

(3.2) \dp¿d¡d^a(x,y,s;e,o)\<C(l + \e\r'-^(l + \a\)1'-^.

We have [Gu-U].

Proposition 3.3. Let A0, Ax, and I be as above. Then WF(KA) c A'ü U Ä,.

Moreover, microlocally near Aq\L, Ka is in the space 7P+'(Ä0\Z). Near Äi\Z

it is microlocally in the space P(AX \ Z) .

For general X, Y, and conic Lagrangian submanifolds Ao and Ai c
T*X\0x T*Y\0 intersecting cleanly in a codimension k submanifold, there

exists [Gu-U] a locally finite covering of Aq n Ai  by conic sets {[/,}  such
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that for each U¡ there is a homogeneous canonical transformation Xi'- U¡ —>

T*Rn \ 0 x T*Rn \ 0 mapping U¡ n A0 into An and Ut n A] into Äj.

The space P'1(Aq, Ax) consists of all distributions p on X x Y which can
be written in the form

p = p0 + px + ^ Mi

where p0 £ P+l(A0 \H), px E P(AX \X) and co¡ is microlocally supported in

U¡ and is of the form F/i/,, where v¡ e P>l(Ao, Ax) and F, is a zeroth-order

operator associated with %~x.

One can show that if X- (F*R" \ 0 x F*R" \ 0) — (F*R" \ 0 x T*Rn \ 0) is a

homogeneous canonical transformation which leaves both À0 and Äi invari-

ant, p is in P'1(Aq, Ax) and F is a zeroth-order Fourier integral operator

associated with % , then Fp is in P'1(Aq , Ax).
The oscillatory representation (3.1) is usually difficult to verify in practice.

We will be making use of two other characterizations of these spaces. The
first one is a variation, given by A. Greenleaf and G. Uhlmann, of the iterated

regularity characterizations of R. Melrose.

Proposition 3.4 ([G-U2]; see also [Mel] and [Me2]). Let A C (T*X \ 0) x
(T*X\ 0) be a canonical relation cleanly intersecting the diagonal A. Then u E

P'l(A, A) for some p, I £ R if and only if for some sq £ R, all k > 0, and all
first-order pseudodifferential operators Px(z, Dz, y, Dy),... ,Pk(z, Dz,y, Dy),

characteristic for A'uA',

(3.5) Px---PkuEH^(XxX).

A multiphase [Mn] parametrizing the pair A0, Ai is a phase function

<f)(x, y, s, 6) on X x Y x RJ x RN, smooth in x , y, and s and homoge-

neous of degree 1 in 6 , such that

Mx,y, 6) = <f>(x,y,0,6)

parametrizes A0 and

<¡>i(x,y, a, 6) = <j)(x,y, o/\d\, 6)

parametrizes Ai.
The second characterization, by Greenleaf and Uhlmann [G-U4], is by means

of oscillatory integrals with multiphase.

Proposition 3.6. A distribution u £ P>l(Ao, Ax) iff it can be written in the form

(3.7) u(x,y)= ff       emx>y'"^• %(x, y, a, 6)dod8

with <j>(x ,y,s,9) a multiphase parametrizing A0, Ai, and a(x ,y,o,6) a

product type symbol of order p + I - n/2 + j/2 in 9 and -I - j + n- N/2 in
a.

We apply now the above calculus to operators of the form (2.14). We let
X = Y = G. Making use of the multiphase

(3.8) 0>(x, z ; y, w ; s ; 6) = |0|(F(0, x, t)-y)-s+ (z-w + tB(x, yr)) • 6,

and Proposition 3.6, we see that microlocally away from the region

L = {(x,z,i;,Ç;y,w,n,co)ET*GxT*G:p(Ç) = 0}
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operators given by equation (2.11) are Lagrangian distributions associated with
the Lagrangian manifolds An and Ai of T*G x T*G parametrized, respec-

tively, by the phases

<Pn=0(x, z;y,w; 0, 9) = 6-(z-w + tB(x, y¡;)) = d-(z-w + tB(x ,yc)-t^(x))

and

<Di = <D(x, z ; y, w ; £|C|, C) = £ • (F(C, x, t) - y) + Ç • (z -w + tB(x, yc)).

In particular, Ai is locally the graph of a canonical transformation

X:T*G\L^ T*G\L.

In the following we will assume that yx has the form

(3.9) yx = —(0,...,0, bn_k+xXPn_M ,... , bnXPn),

n-k

where bj £ R\ {0} . Hence, the phase in (2.10) is then

n-k

(3.10)

n-k n , r   \

y/{x,y,Ç;z,w,Q = Y](x;- - y,)& +   V    (x, - y¡ + tbtf- J &
U i=n-k+l V Cl '

.    m     n n

+ (z-w).i;+rY,¿2 £ 4v«W.
^  /=1 ;=1 7=n-A:+l

We will further assume that

(3.11) B(yl,x) = 0.

In general, one expects a third contribution to the wavefront set of
i£(x, z, y ,w) in (2.14), coming from the singularities of the phase which oc-
cur in the region p(6) — 0. The contributions from this region might be very
complicated. However, there are cases when it is possible to describe them.
The hypothesis in the proposition below is satisfied by some of the examples in

[DeT-Gl].

Proposition 3.12. (I) If assumption (3.9) holds, then Ax can be extended past

L. Further, Ax fails to be a canonical graph at L in a very specific way: the

mappings n: Ax —y T*G and p : Ax -» T*G are blow-downs (defined below)

along L and both n(L) and p(L) are involutive.

(2) If in addition, assumption (3.11) holds, then one obtains a third contri-

bution, A2 = A,(£), to the wavefront set of K(x, z, y, w) in (2.14), which is

the flow-out from n(L).

Proof. Let us assume first (3.9). From the usual microlocal calculus it follows

that, microlocally away from L, Ai is the set

Í3 13)      Al = ^x' z'^' ^'>y>w> *> co):dii// = dry = 0,cl = dxy/,

C = dzi¡/, r\ = dy\¡i, w = dwy/},
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where y/ is given by (3.10) and L is the set

(3.14) L = {(x, z,Ç,Ç;y,w, n, œ) £ Ax : £i = 0}.

After a tedious, but standard, computation it follows that Ai is the conormal

bundle to the following submanifold of G x G:

(3.15)

Sx = <(x, z;y,w) £GxG:y¡ = Xj, i= I, ... , n-k,

wh = zh-Bh(x,x-y), h${l,pn_k, ... ,pn},

™i = z'-7   E    \^^Ph-wPh-B^(x,x-y))-Bx(x,x-y)).
h=n-k+l       °h J

This parametrization does not have any singularities as we approach L. Writing
now local coordinates for Ai and using the above characterization, it follows

easily that the mappings n: Ax —> T*G and p : Ax —> T*G are blow-downs,

dropping rank by n-k at L. It is also immediate to check using the above

coordinates that n(L) and p(L) are defined by an involutive set of defining

functions.
If we further assume (3.11), then we may rewrite 4>o as <S>q- 6 -(z -w -

t(f)(x)), which is a linear phase. Hence, An is the conormal bundle to the

graph of (j>t(x). Writing local coordinates and using the above set of defining

functions for Sx, and the method of iterated regularity as stated in Proposition
3.4, it is possible to show, after some easy but tedious computations (see [Ma]

and §5), that, microlocally near L, expressions of the form (2.14) belong to the

space P'l(Ax, An^) for some p and /.

The above analysis is taking place in G rather than in Y\G, and one still

needs to push-forward these Lagrangians down to Y\G. Some technical diffi-
culties may arise in doing so. For the case considered in Example 2.15, it is

possible to show that the push-forward of the Lagrangian manifolds is an em-
bedded manifold only for t rational. For other values of t, the push-forward

is a nonclosed manifold. However, proving isospectrality for t in a dense set

would yield the same result for all t. With this in mind, we formulate

Proposition 3.16. (1) Under assumptions (3.9) and (3.11), the push-forward
of Ax c T*(G x G) by the canonical projection is a closed submanifold of

T*(Y\GxY\G).
(2) If there is a basis of G in which B¡j £ Q and in which the entries of

the matrix representing <f> are also rational then for t in a dense set of R, the

push-forward of A0 is a closed manifold of T*(Y\G x Y\G).

Proof. Let n: G x G —> Y\G x Y\G denote the canonical projection. From

the proof of Proposition 3.12 we see that Ai is the conormal bundle to the

submanifold Sx c G x G given by equation (3.15). Thus it is enough to show

that n(Sx) is a closed manifold of Y\G xY\G.
Let a E T and consider the pointin Sx, (x + a, z + c + B(a ,x)\y,w),
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where (y, w) satisfies

y i = Xi■ + o¡,        i = 1, ... , n - k,

wh = zh + cn + Bh(cj,x)-Bh(x + o,x + o-y),        h <£ {1, p„_fc, ... , p„},

wx — zx + cx + Bx (a, x) - Bx(x + a, x + a - y)

n

_1       E       Xh + °n-yn{2ph+Cph+BPh{0}X)

h=n-k+\ h

- wPh - BPh (x + a, x + o - y)).

Multiplying (y, w) on the left by (-o, B(a, a) - c) £ Y, we obtain the point

(x + a, z + c + B(o, x) ; u, v), with the condition that

w, = y, - <r,,        z = « - k + 1, ... , n,

vPh = wPh - cPh - BPh (a, a) - BPh (a, x),        h = n- k+l, ... , n,

n n

vn = zh + Bh(o,cj) + Bh(o,x)-Yl    E   Bfcxi + OiXxj + Oj-yj)
¡=1j=n-k+\

n   n—k n n

-¿ZzZBijai(xj+ai)-¿Z J2 Bua'yj'    h£{1 -Pn-k>•■■.f4.
;'=1 y'=l i=l y=«-/t+l

vx = zx +Bx(o, x) + Bx(a, a)

\    ±    x» + l-y»{Zph+cPh+B»(o,x)

-wPh-BPh(x + o,x + o- y))

9h
h=n-k+l

-¿ZzZ    Bjj(xi + (Ti)(xj + oj - yj)
i'=l j=n-k+l

n   n—k n n

(=1 j=\ ¿=1 j=n-k+\

After some cancellations, this is the same as the point (x + o, z + c + B(o, x) ;

u,v), where

Ui = y¡-Oi,        i = n-k+l, ... ,n,

vPh - wPh - cPh - BPh(o, a) - BPh(o, x),       h = n-k + l,... , n,

Vh = Zh~¿Z     ¿Z     BUX'(XJ + (TJ-yj)> h ${1, Pn-k, ■■■  ,Pn},
1=1 j=/j-fc+l

»i = *i-7    ¿    Xh + ahh~yh(zPh+cPh+B^(a,x)-wPh

1 h=n-k+\ °h

-BPh(x + o,x + o-y))

¿2 ¿2 Bhxi(xj + aj-yjï'
í=l ;=n-Zc+l
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which may be written as (x + a, z + c + B(a, x) ; u, v), where now

U i    —   Jíi   j I    ̂ —     M.   y    •  •  •      y    ¡I   ~~   #V   •)

n n

Vh = Zh-l2      ¿2      BUXi(XJ - UJÎ > hÍ{l,pn-k, ...   ,pn},
i=lj=n-k+1

»i-*i-7    £    ^^(2Ph-vPh-Bp^(x,x-u))

n n

"E    E    BXjXi(Xj - uj).
i=l j=n-k+\

Multiplying now (x + a, z + c + B(o, x)) on the left by (-er, B(o, o) - c),
we obtain the point (x, z ; u, v), with

«,• = x,,        i=l,... ,n-k,

vh = zh-Bh(x,x-u),       hi {l,p„-k, ... ,pn},

vx = zx-1-    ¿    x±^>L(zPh-vPh-B'»-(x,x-u))-Bx(x,x-u)

1 h=n-k+l       °h

which also lays in Sx. We note that it is also possible to write Sx as

Sx - l(x, z ; y, w) £ G x G : x¡ = y¡, i = I, ... , n - k,

zh = wh-Bh(x,x-y), hi{\,pn-kt... ,pn},

zi=™i-\    J2    ^JL(zPh-wPh-Bp"(x,x-y))-Bx(x,x-y)\,
1 h=n-k+\      °h )

so a similar argument applies to a point in Sx of the form (x, z ; y + o, w +
c + B(o, y)). Hence, Sx is invariant under the action of Y. Thus n(Sx) is a

closed submanifold of Y\G.

With respect to the second part of the proposition, we will prove that, for

(6Q, n(Gr((j>t)) = {(n(g), n((fit(g))): g £ G} is a closed submanifold of
T\G x r\(7. Without loss of generality (i.e., by scaling) we may assume that
we have chosen a basis in which the constants of structure are integers, and the
lattice T c Zm+n .

If, in this basis, the matrix of <f>t(x) has rational entries and t is rational,
then there is m £ Z, such that m4>t(x) has integer coefficients. Thus, there exist

sublattices ri, Y2 < T, with the inclusions of finite index and such that <j>t(x)

induces a diffeomorphism <$>t '■ Tj \G —> Y2\G. Let n¡ : Y¡\G -* Y\G, i = 1, 2,
denote the canonical projection.

Since T, < T, have finite index, the maps 7t,, z = 1,2, are proper and we

see that the set {(nx(g), n2(^t(g))) '■ g £ ri\C7} is a closed submanifold of

Y\GxY\G. But {(n(g), 7t(4>t(g))) -geG}^ {(nx(g), n2(4>,(g))) : g G YX\G}.
Hence, for rational t, n(Gr((f)t)) is a closed submanifold of Y\G x Y\G and
the proposition follows.
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Recall that A2 — An(L), is the flow-out from n(L), where L is a submanifold

of An n Ai. It follows that under the same hypotheses as in Proposition 3.16,

the push-forward, tz*(A2) , is also a closed submanifold of Y\G xY\G.

Putting together Propositions 2.12, 3.12, and 3.16, we obtain

Theorem 3.17. Under assumptions (3.9) and (3.11), and if there is a basis of G

in which B\j g Q and in which the entries representing 4> are also rational, then,

for each t e Q, the operators St have a Schwartz kernel K(x, z, y, w) of the
form given by equation (2.14), where the phase is given by (2.10). Microlocally,

the kernels of these operators satisfy

(3.18) K(x,z,y,w)£       £      /"»««(A,-, A,),

i,ye{0,l,2}
i<j

for some ptj, qtj £ R.

4. The geometry of blow-down mappings

Motivated by the above examples, and with the goal of developing a func-

tional calculus for these classes of operators in mind, we formulate a class of
canonical relations incorporating the features speiled out in Proposition 3.12

and Theorem 3.17.
Consider two manifolds X" and Y" and a mapping / : X —> Y. Let œ be

a volume form on Y. We are interested in the following kind of singularity of

the map /.

Definition 4.1 [Gul]. A smooth mapping f: X -> Y is a blow-down map along

a smooth hypersurface, L, if f is a local diffeomorphism away from L, while
along L, f has constant rank n-k so at L, dfs drops rank by k < n.
Further, the kernel of dfs is contained in TSL and f*co vanishes exactly to

kth order on L

Note that the requirement that f*a> vanishes exactly to kth order on L

means that the determinant of the Jacobian matrix of / vanishes to kth order

at L and this condition is independent of œ. One has

Proposition 4.2 [Gul]. If f is a blow-down along L then at every point mo £ L

one can find a local system of coordinates (xx, ... , xn) centered at mo and a

local system of coordinates (yx,... ,y„) centered at f(mo) so that f*(y¡) =
x¡, i — 1,,.. , n-k, and f*(y¡) — x¡xx, i = n-k+l,... , n.

If the target manifold is endowed with a symplectic form, the above structure

of / can be made compatible with a set of canonical symplectic coordinates.

Proposition 4.3. Let n: C —► X2n be a blow-down along LcC, where it drops

rank by 1 < k < n . Assume X is symplectic and n(L) is involutive. Let mo £ L.
Then there are local coordinates t on C and local canonical coordinates (x, £)
on X so that n*(x¡) = t¡, i = I, ... , n; n*(í¡) = í„+¿, i = l, ... ,n - k;

n*(£,i) = tn+xtn+¡,i = n-k+l, ... ,n.

Proof. Let (tx, ... , t2n) (resp. (sx,... , s2n)) be a coordinate system around

mo (resp. n(mo)) as in Proposition 4.2, then L = {tx = 0} and 5 = %(L) =
{sx = s2„_k+x = ■ ■ ■ = s2„ - 0} . Since S is involutive, the Hamiltonian vector
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field HSl is tangent to S. Choose a (2n - l)-dimensional manifold Wx c X
containing n(mo) and transversal to HSl and choose a function a, defined on

Wx, so that a\wxnS = 0 but da\^mo) and dsx\n(mo) are linearly independent at

Tn(ma)Wx. Note that dim(Tn{mg)Wx) = 2«-1, whereas dim(SnWx) = 2n-k-2,
so the codimension of S n Wx in Wx is k + 1. We may impose the conditions

^kl^jtsnw,) = dsX\Ti!(mo}{SnWl) = 0

and da, dsx are linearly independent on the complement of T^m) (S n Wx) in

Frc(mo) ^i » which must be k + 1 dimensional.

We can extend the function a to a neighborhood of n(mo) £ Y by requiring

that be constant along the flow of HSi . Let ¿ji = sx, Ç„-k+x = a. We have,

H^in-k+x = 0, since Ç„-k+x is constant along the integral curves of & . Also,

£,n-k+\\s = 0 (so Hin_M is also tangent to S at m0) and d£,x A ̂ „-¿-n ^ 0

at /no and therefore does not vanish in a small neighborhood of mo .

Pick a submanifold W2 transverse to both Hit and Htn_M . Necessarily,

dim^) = 2n-2 and dim(W2nS) -2n-k-Z so (Sn W2) has codimension
k+1 in W2 . We may thus pick Çn-k+2 , defined on W2, so that <Ü„-fc+2|srw2 = 0

and dÇn_k+2 is linearly independent of d£x and dÇn_k+x at F„(mo).

Extend, as above, Çn-k+2 to be constant along the integral surfaces of H^ ,

and Hin_k+l . (The latter form an integrable distribution, since the Lie bracket

{#i, > H(n-kJ = Hii, ,{„-*+,} = %,<,_*+, = 0) - Now, we have that H^n.M =

H(„-k+t£n-k+2 = 0, Çn-k+2\s = 0, and d£x, dÇn_k+x, dÇn_k+2 are linearly inde-
pendent in a neighborhood of 7t(w0).

We can continue this procedure to find Çx, £,n-k+x, ... ,Çn, satisfying

HtiÇj = 0,       i,j=\,n-k + l,...,n,

(4.4) dix dÇn_k+x,... , dÇn   are linearly independent at m,

Í\ \s — Ín-k+\ \s = • ■ ■ = in \s = 0

in a neighborhood of mo . Since //¿.¿j = 0, the vector fields H^ , Hink+l, ... ,

Hin form an integrable distribution. Complete Çx, in-k+x ,...,£„ to form
a canonical coordinate system on X, say (x, £). By construction £1 \s =

in-k+\\s = ■■■ = Zn\s = 0, so for dimensional reasons, S = {£1 = £„_fc+i =
• • • = £„ = 0} around a small neighborhood of 7t(mo).

Now, we have tx = Çx o n, by construction, and 0 = £1 o 7t|{fl=0} = ¿Jn-/;+i °

7t|{i,=o} = • • • = inon|{fl=0} = 0. Thus, there are functions/« _fc+i(f^|, ... , f„(t)

so that iion = txfi(t), i = n-k+l, ... , n, and n(t) = (tx, G(t), txf„-k+l(t),
• •■ , txfn(t)) where G:R2n -> R2n-k-i   in mese coordinates,

...    Ox

...    0

...    0    •

..." 0/

Since dn\{ii=o} has rank 2n-k, then Z)G|{fl=0} must have rank 2n - k - I.

Also, i/7T has full rank away from {tx = 0} , so tx, DGX, ... , DG2n_k^x are
linearly independent at every point.  Set tn+x = tx,  t¡ = G¡, i = 1, ... , n ;

dn\{h=o} =

/     ! °
(F>G|i|=o)(2n-A:-l)x2n

fn-k+2 0

V  /„ 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



260 F. MARHUENDA

t¡ = Gi, i = n + 2,...,2n-k-l, and complete (tx, t„+x, ... , t2n-k) to
form a coordinate system (ti,... , t2n) on X. Now, L is defined locally by
i„+i=0.

As before we obtain functions g„-k+x(t), ... , g„(t) so that ¿j,o7t = tn+xg¡(t),

i = n - k + 1,... , n , and n(t) = (tx,... , t2n_k, tn+xgk+i(t),... , tn+xg„).
From the fact that the rank of dn is 2/7. - k on L, we see that g, ^ 0 on L.

Further, the Jacobian determinant of / in these coordinates is

'£+i det ( -^ ) >        k+l<i<n, 2n-k+l <j <2n.

Since dn vanishes at L exactly to order k, the determinant of the matrix

(dgi/dtj) cannot be zero, for, otherwise f*to would vanish to order higher

than k . Hence we obtain the desired form by making the change of variables

t¡ = ti,        i = I,... ,2n - k,

ti = gi,        i = 2n-k + l, ... ,2n.

Let X and Y be two n -dimensional manifolds. From now on we let

C C T*(X) x T*(Y) denote a homogeneous canonical relation satisfying the

following: away from a hypersurface L c C, both projections 7r:C -> T*(X)

and p:C —> T*(Y) are diffeomorphisms, whereas at L they are both blow-
downs dropping rank by k < n and n(L), p(L) are nonradial, involutive
submanifolds of codimension k + 1.

For a symplectic vector space, W, and subspace, A c W, we let A" denote

the orthogonal complement of A with respect to the symplectic form on W.

Lemma 4.5 [Gul]. Let m £ Le C then at TmC :

(1) dp(kerdn) = (Im dp)",
(2) d7t(kerdp) = (lmn)a.

Proof. Let U E kerdn. Since C is Lagrangian, for all W e TmC, we have

coT-Y(dp(U),dp(W)) = coT.x(dn(U),dn(W)) = 0, so dp(X) e (Imdp)".
Hence, dp(ker(dn)) c (Im dp)a. But, since ker dn and ker dp are transverse

(for considering TmC c Tm(T*(X x Y)) = TK{m)(T*X) © Tp{m)(T*Y), we have

that kerú?7T c Tp^m)(T*Y) and ker dp c TK(m)(T*X)) and both have the same
dimension, dim(dp(kerdn)) = dim(lmdp)a . Hence (1) follows. The proof of
(2) is completely analogous.

Even though the projections p and n cannot both be conjugated simulta-

neously to a normal form as in 4.3, we can still parametrize the lagrangian

manifold C c T*X x Y by means of a phase function satisfying certain re-
strictions. We will do this next, but first we need some notation. Since we are
going to work locally at a point m £ L, we will assume X = Y = R" .

For points x G R" we will denote,from now on, x = (x', x") £Rn~k xRk .

Let m £ L c C. By Proposition 4.3 we can find local coordinates (s, a), (t, t)
in C and local canonical coordinates (x;£) in T*(X) , (y,n) in T*(Y) so

that in a neighborhood of m £ L, n(s, a) = (s; a', oxon-k+x,... , axon),
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p(t, r) = (f, t'; TiT„_fc+1, tit„) . Let us change coordinates on C as follows:

Oi-Si-Ti,        i = n- k+ I, ... , n,

Ti = Si-t¡,        i = n-k+l, ... , n,

ii=Si + i    £   (Si-ti)2.
2

i=n-k+l

Then in a neighborhood of ztj ,

F = {a,=0} = {T,=0},

and in these coordinates,

n(s;o',T") = (s;o',ox(s"-T")),

p(Sx,t2,... ,tn,r',S")

= [Sl + ï   £  (*-í<)2.fe,...,í»;T',T,(Sw-<'')].

\        í=«-fc+i /

Let ({e¡}"=l) denote the linear span formed by the vectors {e¡}"=l. Then

to*=({(s--<-á}L+1>-

We also compute the pullback, wc > of the symplectic form cdt-x , in T*X
as follows:

<yc = n*a>T'x = dox A \dsx +    ^2   (s' ~ Ti)dsi

\ i=n-k+\

n—k n

+ Y2d(Ti Ads¡ + ax    ^2   (dsjAdTi).
i=2 i=n-k+\

Since C is Lagrangian this is equal to

p*coT'Y = dxx A j dSx +    J2   (Si-ti)dSi
\ i=n-k+\ j

n—k n

+ ̂ 2 d-Ci A dti + ti    5Z   (^ A dtù-
i=2 /=n-fc+l

At points of L,

(n                              \ n-k

dsx +    ^T   (s> - Ti)dsi + ^2 d°~i A ¿Si
i=n-k+\                       J f=2

(n                             \ n-k

dSx +    J2   (* - t^dSi + £dT* A ¿'s'-
i=n-k+\                         I 1=2
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So

Let m = (5i, t2,... ,tn,x', S") £ L and consider dp\m : TmC -> Tp(m)(T* Y)
We have

lmdp\m = '
<( dyi"" ' dyn—k

- (Sn-k+l — tn-k+l)~Z—- , •••  , TT"-(Sn ~ O".
oyn-k+\ oyx öyn dyx

9^   i=Bt£+1 àm dm        dvn-k

thus, the orthogonal complement of Im i//9|OT in F¿,(„,)(F*y) is

(4.6) i=n-fc+l<

-({*l-(s¿^)'-'*l-(s :)})■

By Lemma 4.5 and the fact that ker(dp) and ker(ß&r) are transversal at every

point, we have that

I \      9 d   I \     ,      ,  ,        I \       d 9   |\
= kerúf7r|m =

\[c'í„_a:+i oí„J/ \[dl„-k+x d1")/

and the 1-forms ds¡, i — I, ... , n, dt¿, i = n - k + I, ... , n , and dr¡, i =
1,... , n - k, are linearly independent. Hence, about m G F we can use

coordinates 5 = 7r*x, t¡ = p*y¡, i = n — k + 1,... , n , and t, = />*>/,, z =

1, ... , n-k.
Thus (x, n', y") form a coordinate system on C about m E L. By [Hol]

there exists a generating function of the form S(x, y", 6) for L, homogeneous

of degree 1 in 8 £ Rn~k . In this coordinate system,

(4.7) C = {(x,i;y,v):i = dxS, y'= deS, n' = 6, n" = drS}

with (x, y", 8) £ W, a conic neighborhood of 6X =0 near m. Thus the

phase function </>(x, y, 6) = S(x, y", 8) - y'8 parametrizes C near m.
The properties of C translate into some restrictions on the generating func-

tion S which we spell out next.

Since 7t(L) = {Çx = in-k+x = ••• = £„ = 0} at 8X = 0, the function
S(x,y",0,82,... , 8n_k) does not depend on Xi, x„_k+x,... , x„ , i.e.,

S(x,y",0,82, ... , 6n-k) = Si(x2>... , xn_k ,y",82,... , 8n_k). Similarly,
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since p(L) - {nx = nn_k+x = ■■• = n„ = 0}, we must have that dySx = 0.

Thus, we can write

(4.8)
S(x,y", 8) = S(x, y", 0, 82,... , 6„.k) + dxS2(x,y", 8)

= Sx(x2, ... , xn_k , 82, ... , ö„_fc) + 8xS2(x, y , 8),

where Sx is homogeneous of degree 1 in (82, ... , 8„_k) and S2 is homoge-

neous of degree 0 in 8. Hence

C={   x, [8X
dS2    dS dS

dxx ' 9x2 ' " ' ' dx„_,
,8xdx„S2 );(deS,y"), (8,8xdrS2)

(x,y",8)EW

and

(4.9)

F=i|x,(0,
dS2

dx2

8S2

9xn_k
,0);(deS,y"),(0,82,

(x,y",82,

0n-k,0)\:

Bn-k) ew\.

The matrix representing dn has the form

M     8XN
dn

0
d2s

ddxdxx
Q      8XR A

0

BxP

B

W «■" *"(H) e'v )
where M, N, P, Q, R, T, U, and V are submatrices of respective di-
mensions, lx«, lx/c, I x (n - k - I), (n-k-l)xn, (n-k-l)xk,
k x n , k x k , and k x (n - k - 1) ; dx»(dS/d6x) is though of as a k x 1 ma-
trix and A and F are the matrices

/   d   (8xdS2\^
d8x

A =

(8X6S2\

V dx2 )

d  fdxds
ddx Ux„_

dSA

Hin(n-k-l)xl

and

So at L.

A\{el=o} =

5 =

/  ^1  \
dx2

d'S2

V dxn_k )

d2s

WJ gg3 •

and   B\{e¡=0} =
d2Sx

dXjddj 2<i<n-k
2<j<n-k
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(4.10) dn\L =

0     \
0

(Inxn     0 0

M      0        ̂
dxx

Q     0   A\{d]=0}   B\{e¡=0}
V o    o   dx..s2       o    /

But dn\L has rank 2« -k, so det(5|{ei=0}) ^ 0, that is Sx(x-2, ... , x„_fc,
82,... , 8n-k) is a nondegenerate phase function. Changing variables canoni-

cally in T*X we may assume that

n—k

Sx(x2, ... , x„_£, 82, ... , 8n_k) = 2_^x¡8¡.
1=2

The rate of vanishing of the canonical symplectic form on L imposes that

det(iz"7r) vanishes at L to order k ; but

d2S „ „\

det(iz,7r) = det

8XN
ddxdxx

8XR A

= of det

JV
92S

V

= öf det

d8xdxx
R A

f3öiöx,

Í—1

OxP

B

8XV

OxP

B

8XV j

dxp\

8XV

B  )

Hence, near L,

O^det

(4.11)

= det

N        a s

U   dx„(§-X
d2S2

dy„_k+idxt

d2S7.

9yn-k+i9xn-k+,

d2S,_
\     dy*-k+\dxn

a1Si
dy„dXi

d2S,
dyndx„-k+l      dx„-k+

Hal j. ñ    0 &
dx, + °1 dtidx,

¡Uh_L. Ñ,_d2s2
'1 dC¡dx„_k+¡

92s, as, , ß   d2s7        I
dy„dx„ dx„ ^ °l dCidxn J

And, for similar reasons,

(4.12)

in a neighborhood of m in C. Thus, we have

(dS2       dS2 dS2 \

\dxi' dxn_k+x'---' dxnJ*   '
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Theorem 4.13. Assume that C c T*(X \ 0) x T*(Y \ 0) is a homogeneous
canonical relation satisfying: away from a hypersurface LcC, both projections
n:C —► T*(X) and p:C —> T*(Y) are diffeomorphisms, whereas at L they are
both blow-downs dropping rank by k and both n(L) and p(L) are nonradial

and involutive. Then there are canonical transformations X\'- T*Rn\0—* T*Y\0

and X2- T*X \ 0 -► T*Rn \ 0, such that Gr(x2) o C o Gr(xx) is parametrized by

a phase function of the form

n—k

(4.14) (¡>(x,y,8) = £>,• -y,)0,- -y^, + 8xS2(x,y",8)
i=2

satisfying (4.11) and (4.12).

5. Iterated regularity and the proof of Theorem 1.2

Let L c C c (T*X \ 0) x (T*Y \ 0) as in the previous sections and consider

the properly supported Fourier integral operators A £ Im(C), B e Im'(C). By

An = K(L) we denote the flow-out of n(L) in (T*X \ 0) x (T*X \ 0).

If m, m' £ (C x C1) n (T*X x Ar.y x T*X), then p(m) = p(m') ; so if m
or m' is in C\L, then so is the other. Away from L, C is locally the graph
of a canonical transformation and the clean intersection calculus applies there.

Proposition 5.1. Assume that, away from L, p is globally 1-1. Then

(CxC')n(T*XxAT.Y x T*X) = AöB,

where A is the diagonal in T*(X x Y x Y x X) and B is a submanifold of

dimension 2n + k - 1. Thus, C o C' = A U An(L), where An(L) is the flow-out

of n(L).

Proof. Let (m, m') £ (C x C) n (T*X x AT.Y x T*X) and assume that m £

LcC. Then near m , C is the graph of a local canonical transformation so
p~xp(m) and n~xn(m) are discrete. Since n and p have compact fibers, they

must be finite.
Now, assume m £ L, then (m, m') E (L x V) n (T*X x At-y x T*X)

and m! is in the integral manifold of Am = ker(dp\m) = (dn)~x{lm(dn\m)a}

passing through m. Thus (L x V) n (T*X x Aty x T*X) can be written,
locally, as \}meV{m} xAm , where U is an open neighborhood of m in L and

p~x(p((j>~x(m))) projects down to T*X as the bicharacteristic of n(L) through
m.

Since the Am 's depend smoothly on m and have dimension k, we see that

(LxL')r\(T*XxAT'Y>< T*X) is a smooth manifold of dimension dim(L)+k =
2n + k-l.

Corollary 5.2. With the notation as above WF(A o B) c A U AÄ(i)

As we are going to see below, much more can be said about A o B.

By means a microlocal partition of unity, we may write A and B as lo-

cally finite sums of operators A = J2¡ ¿i, B = E¡ Bi, sucn mat each A¡ or
Bj has its wavefront set contained either in a part of C where the latter is

either a canonical graph or, if it intersects L, this occurs in a small enough

neighborhood in which Theorem 4.13 applies.
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If W F (Ai) o W F (Bj) cA\Ao then both WF(A¡) and WF(Bj) are canon-
ical graphs and Hörmander's transverse intersection calculus applies to give

BjAi E /m+«'+(*-i)/2(A) c /«+«'.-(*-D/2(A, Ao). The other two cases are

WF(Ai) o WF(Bj) c A0 \ A and WF(A¡) o WF{Bj) n A n A0 # 0.
In the first case, we may use the clean intersection [D-G, We] calculus with

excess e = k - 1 to obtain

BjAi E 7»W+(*+l)/2(Ao) c 7m+m'+(7c-l)/2,-(fc-l)/2(A> Aq) _

Finally, by Proposition 4.13, when WF(A¡) o WF(Bj) n A n Ao ^ 0 ; we
may assume C c F*M" is parametrized by a phase function of the form

n-k

<Kx,y,d) = £>,- -yi)0i -yx8x +8xS(x, y", 8)
1=2

where (x, y, 8) £ R" x Rn x (R"-k \ 0) and S satisfies (4.11) and (4.12). Let

(m, m) E (Co C') n At-x • By Hörmander's Theorem, modulo a smoothing

operator, A has an oscillatory representation

(5.3) Af(x) = Je^a(x, y, 8)f(y) d8dy

with phase <f>x = E¿=2 (x¡ ~ yù^i - yi#i + 8xS(x, y", 8) and an amplitude

a(x,y,8)£ Sm+V2(Rn xRn x (Rn~k \0)) supported in a conic neighborhood

U x Rn~k \ 0 of (m, m). Similarly B has an oscillatory representation

(5.4) Bf(z)= f e~i*2b(z,x,o)f(x)dodx

with b(z,x,o) E Sm'+kl2(Rn x Rn x (R"-k \ 0)) supported in U x M"-k \ 0

and <fo = Eí=2:(xi ~ zi)ai _ zi(7i + o\S(x, z", a). Hence the Schwartz kernel
of AB has the following representation:

(5.5) KAB(z,y)= ¡é^z>y'x>6>^a'bd8dadx,

with
n—k n—k

(5-6) tí tí

+ 8xS(x,y",8)-oxS(x,z",a).

We note that away from {|0| = \o\}, dxy/ ^ 0, and an integration by parts

argument shows that KAb is a smoothing operator in this region. Thus, we

may assume the Schwartz kernel of AB has the form

(5.7) KAB(z,y)= ( eiv{z'y'x'e'a)c(z,y,x,8,o)d8dodx,

where c £ Sm+m'+k(Rn xR" x (R"_fc \ 0)) is a • b supported in a conic neigh-

borhood Of {|0| = |ff|} .
Since the gradient of y/ in all the variables is nowhere vanishing, integration

by parts shows that expressions of the form (5.7) belong to the same fixed
Sobolev space H^R" xR") for any so < -(3n + m + m'-k) (see, for example,

[HÖ3]).
The following two technical results will allow us to simplify the computations.
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Lemma 5.8. There is a neighborhood U of m and mappings

Ä: U -» Hom(R", Rn~k),       B: U -» Hom(R", R*),

homogeneous of degree 0 in (8, a) such that

(1) (8 - ff)e'> = Ä • dxe*.

(2) (z"-y")öie'> = 5.^e'>.

Froo/. Near y = z, 8 — o, 8X =0 we can write

■ i

S(x , y",0)-S(x,z",(T) = /   -=-5(x,íy + (l-0z,ío + (l-í)^)^
Jo dt

n n—k

=    £   (yi-z,)At + J2(ei-Oi)Bt
i=n-k+l ;=1

where

(5.9)

Ai= Í ^(x,ty + (l-t)z,t8 + (l-t)a)dt,
Jo  oy¡

Bi = j ^(x, ty + (l - t)z, t8 + (l - t)o)dt,

with An_k+X,... , An homogeneous of degree 0 and Bx, ... , Bn_k homoge-

neous of degree -1 in (8, a). Hence

8xS(x,y",8)-oxS(x, z", o)

= 8xYJ(8i-oi)Bi+    ¿    8x(yi-Zi)Ai + (8x-ax)E
i=2 i=n-k+\

with E = 8XBX + S(x, z", a). Consider the system of equations

9x7 "^g^-^ 9x7

(5.11) =  ± ei(yt-Zi)d£ + {e.-oi)dJL
i=n-k+\

I — I, n-k+l, ... , n.

We want to be able to solve for (y„_,t+i - zn_k+x)8x,... , (y„ - z„)8x and
(öi - ffi) in the system (5.11). The discriminant of this system is, by the
Mean Value Theorem, the same that appears in (4.11), except that now each of

the entries of the above matrix is evaluated at a point of the form (x, toy +
(1 - to)z, tod + (1 - to)o) for some (different for each entry) 0 < io < 1 • By
(4.11), the determinant of this matrix is different from 0 near y = z, 8 — a,
0i =0.

Thus, in a small enough neighborhood of m, one can solve for

(y„_fc+i - z„_fc+,)0i, ... , (yn - z„)8x
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and (0i - ox) to obtain expressions of the form

n-k

0i - o-i = d • dxy/ + 0i ]T Dxm(8m - am),
m=2

(5.12) n-k

(y, - Zi)8x = Crdxy/ + 8xY, ¿»A - °m) ,
m=2

i = n - k + I, ... , n,

where C, G Hom(R" , R). Since

n-k

W = ^2(Xi-yi)8i + zxax -yx8x
■2

n-k

J2(x¡ - zi)Oi + 6iS(x, y", 0) - oxS(x, z2, Zi,o)
1=2

■k n-k

= £(■*' - yWi + Zli7l - Viol - ^(X, - Zf)ffj

i=2 ;=2

+ 0,^(0,-0-,)^+    J]    0i(y!-z/H + (0i-o-i)F,

1=2

(5-13) !=2

i=2 ;'=n-fc+l

then, for I — 2, ... , n - k ,

JL=8l-ol + 8^(8,-00— +    J]    *,(,,-*,)+(ft _ffl)
' i=2 '       i=n-fc+l ' '

Substituting (y„_A;+i - z„_fc+j)0i, ... , (y„ - z„)8x and the value of (0i - ox)

in (5.12),

n-k

0/ - o, + 8X ]T F,(0, - u,-) + Gi • rfx^,
1=2

where G¡ E Hom(R" , R). If we regard this as a system in the unknowns 0, -

o,-, i = 2, ... , n-k, the determinant at 0i = 0 is 1. Thus in a neighborhood

of m, one can solve for 0, - cr,,  i = 2, ... , n-k , and we may write

(5.14) 8i-Oi = Äi-dxy,        i = 2,...,n-k,

for some matrix Ä with entries that are homogeneous of degree 0 in (0, a).
Combining (5.12) with (5.14) proves the lemma.

Corollary 5.15. (zx-yx)8xeii' = (8x/i)(d/d8x+d/d(jx)e^ + F •dxei'", for some
F:Rn —> R, homogeneous of degree 0.
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Proof.

i=n-k+l

n—k n

+ ¿2(ei-(Ti)Bi+ Y, (y¡-zMi>
i=2 i=n-k+\

and the result follows after multiplying by 8xe'v and using Lemma 5.8 to

substitute (0, - cr,), z = 1, ... , n-k, and (y, - zy)0i, j = n-k+l, ... , n.

We are now ready to make use of iterated regularity to show that if the

operators A £ Im(Ax) and B £ Im'(A\) have Schwartz kernels KA and KB

which are microlocally supported near AodAi, then the Schwartz kernel of their

composition KAB e P'l(A, Ao). Here, A denotes the diagonal in T*X x T*X

and Ao = An{L) denotes the flow-out from n(L). Recall that near An A, KAB

can be expressed as in (5.7).

By Proposition 3.4 it is enough to show that for some fixed so and all first-

order pseudodifferential operators Px(z, Dz;y, Dy), P2(z, Dz; y, Dy), ... ,

Pk(z, Dz;y, Dy), whose principal symbols vanish on A' U A0,

(5.16) Px---Pku£H^(XxX).

A set of defining functions for the diagonal, A', and A0 is

A' An{L)

Zi - y j,        z¡ - y j,

Ci + Vi,        Ci + m,
^i - y i,      Ci - »i,

= 2, ... , n,

= 1,... ,",

= l, n-k,.

Thus a first-order pseudodifferential operator, P(z, Dz, y, Dy), which is

characteristic for A' u A0 has a principal symbol which can be written in the
form

n—k n

p(z,y;C,r\)= YlSzj - yj)pj(z > y ; C, n) + £(C7- + iMfa ,y;C,r¡)
j=2 j=l

+        ¿2       (ZJ - yMi - nùriAz ,y;C,n)
i,je{l,n-k+l,... ,n]

where the p/s, qfs and /^/s are homogeneous of degrees 1, 0, and 0, respec-
tively. Then

(5.17)      PKAB(z,y)= Ieiv(z>y'x>e>a\p(z,dzy/,ydyy/)c + d)d8do'dx
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with d £ Sm+m'+k-x. Note that for l =, 2... , n - k ,

where we are using the notation as in 5.13. Making use of Lemma (5.8), we can

write

"* (4+ ¿)" = (z< -»>**"+«**'«■*>)
with Hl:Rn -* R a matrix whose entries are homogeneous of degree -1  in

(d,o).

Hence we deal with the terms Y!j=2(zj - yf)Pj(z, y ; C, V) m PKab(z , y)

as follows: for j — 2, ... , n-k ,

— + — -THj— U'>

/(z7 -yj)e,y,pj(z, y; dz^, dyy/)cdddodx

-\s
after integration by parts this becomes

+ 7 £ / eÍ¥dx~lHkpj(z>y,dzV, dyw)c]d8dadx.

Pj(z, y;dzy, dyy/)cdddodx

dddadx

But

{wj+-ck)PÁZ'y''dzy/'dy¥)C£S
m+m'+k-l
1,0

m+m'+k—1
—[HJkpj(z ,y,dzip, dyy/)c] E S?$

for p7 is homogeneous of degree 1 and the coefficients i/j are homogeneous

of degree -1.
Next we study contributions of the terms E/=i (Cj + *\Mj(z> y ; C, *]). Mak-

ing use of Lemma 5.8, we note, first, that, for j = I,... , n - k, the leading

coefficient coming from the term (C} + t}j)qj(z, y ; C, *l) is

/ ( (-h -— j yi J el¥ qj(z, y ; dzyi, dyy/)cdd dddo do dx

= / (oj - 8j)e'vqj(z, y ; dzyi, dy yi)cd8¡ d8 da da dx

= 4 / Bjdx(ei>¥)qj(z,y\ dzyi, dyyi)cd8d8dadadx,
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whereas for j = n-k+I, ... , n the leading coefficient coming from the term

(Cj - nj)Qj(z, y ; C,r¡) is

i=n-/e+l v     ' ]/

+ (0i - ffi) f ̂ - + ^-) Ee^qjCdddadx,
\dzj     dyjj

and we may substitute (0, - a¡), i = I, ... , n , and 0i(y, - z¡), i - n - k +

I,... , n, by the value given in Lemma 5.8 leading to an expression of the
form

/ G • dx(elv)q¡(z, y ; dzyi, dyy/)cdddadx

for some matrix valued function G whose entries are homogeneous of degree
0. After integration by parts we see that both terms are again of the form (5.7).

We now look at the contributions of the terms (zj-yj)(Ci-ni)r¡j(z ,y;C,l),
for i,j£{l,n-k+l,... , n} .

The leading term in PKAB coming from (zi -yi)(Ci - V\)rn(z, y ; C, *l) is

\(z\ -Vi)   (-37---37-J y eiy/rxx(z,y;dzy/,dyy/)cddxdddoxdadx

=    (zx-yx)(ax + 8x)ei't'rxxcdddadx,

but from Lemma 5.8 axe'v = 8X - Bx ■ dxeix>l, so this is equal to

2 ¡(zx-yx)8xeivrxxcd8xd8daxdadx- ((zx -yx)È • dxei¥rxxcdddadx.

Now, by Corollary 5.15 above, this is

2i(j(-^- + -^-)eiy' + F-dxeiwrxxc\ddxd8daxdadx

which after integration by parts has again the same homogeneity as in (5.7).

The terms (z, - y,)((i - nx)rXi(z ,y;C,r¡),j>n — k+1, can be treated

in a similar way, except that the computations are easier since one can apply
directly Lemma 5.8.

Finally, the main contribution to the integrand coming from terms of the
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form (z¡ - y()(Cj - nj)ru(z ,y;Ç,n),   j>n-k+l,is

, Aid d
(zí - y¡)

dzj    6yjJ¥,

= (zi-yi)(eigp,-«) (A -£.)*

+ &**-*&-£) +

and, again, we can use Lemma 5.8 to substitute (8¡ - a¡), i = I, ... , n - k ,

8x(y¡ - Zj), j = n-k + l, ... , n , allowing one to reduce the integrand to the

appropriate homogeneity after integration by parts.
From these computations the next theorem follows easily.

Theorem 5.18. Let C c T*(X \ 0) x T*(Y \ 0) be as in Theorem 4.13 and let
A£lm(C), BElm'(C) be properly supported Fourier integral operators. Then

BA E /W+m'+(i:-1)/2, -(fc-1)/2(Ar,x f À7t(L)) _

Proof. The method of iterated regularity above and Proposition 3.4 show that
BA E P'l(A, A2) for some p, and /. To determine these orders, we note

that away from L — {8X = 0} the composition is covered by Hörmander's

calculus, and hence, BA £ Im+m'(AT.x \ An{L)) c Im+m>'°(AT*X, K(L)) • Thus

p + I = m + m'.
If a is the principal symbol of A, considered as a ¿-density on Aj>x , one

can write a as ax \n*oinx\xl2 , where a>x is the canonical symplectic form in

T*X and n denotes the projection from C onto T*X. Since n drops rank
by k at L, n*œn vanishes to kth order at L an a has a singularity at L of

order -k/2.
Similarly if b denotes the principal symbol of B, then b = ß x \n*œnx\xl2

with ß having at L a singularity of order -k/2.
Thus ß'a\r'XxAT.xxT'X has a singularity, above 7t(L), of order -k . When

pushed down by n , it still gives rise to a singularity of the same order at L,
in the principal symbol ß x a of BA. Hence, by [Gu-U, Proposition 5.4],

-k = l-(k + l)/2, so / = (1 - k)/2 and p = m + m' + (k - l)/2.

We recall the following estimate from [G-U2],

Proposition 5.19. Let Ic F*M\0 be a smooth, conic, codimension j subman-

ifoldand A c (T*M\0) x (T*M\0) its flow-out. Then, ifmax(p+j/2,p + l) <
-s0 and T e P>l(A,A), for each s E R, we have that T:H^mp(M) ->

Combining the two previous results we obtain

Corollary 5.20. For A as above, A : HS(X) -» Hlsocm~k/2(X) is bounded.

Proof. From the theorem we have that A*A £ l2m+(k-i)ß,(i-k)ß^ATmX > j^^

is properly supported, so from 5.19 it maps AA* : HS(X) -+ Hxs-2m-k (X).
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Hence, the corollary follows for s = m + k/2. For general s £ R apply this
result to PAQ, where F and Q are elliptic pseudodifferential operators on X

and Y of orders s - m - (k + l)/2 and -s + m + (k-\-1)/2, respectively.

Note that the above estimate is no better than the ones that follow from

[Hö3], even though we are in a less singular case. Example 2.15 shows that the

loss of k/2 derivatives is sharp. There, the Lagrangian with both projections
blow-downs, dropping rank by k — 2, is the conormal bundle of a codimension
4 submanifold, say M. The FIO associated with surface measure on M is of

order -1 and it is easy to see that it is no better than bounded in L2 .

We have the following compositions: ALZ) oA7t(i,) = CoAn(L) = ALL) oC —

C, C o C = A U An{L). Thus (C U An{L))' o (C U A»(L)) = A U An{L) does not
yield new Lagrangians. It is then natural to ask whether the above theorem also

holds in the P'1 class. The method above can be extended to prove

Theorem 5.21. Let C c T*(X \ 0) x T*(Y \ 0) and An(L) be as above. Let

A £ P>l(C, A„{L)), B E r-s(Cl, A£(L)) be properly supported. Then BoAe

lP+rHk-i)/2,-(k-w{AT,X}An{L)h

Proof. The proof is a slight variation of Theorem 5.18. We will only give here
the modifications and leave the details to the reader. Let A £ P'l(C, An[-L)),

B E Ir's(C, ALL)). As in the previous theorem, after a microlocal partition

of unity, it is enough to consider a composition B o A, where C, A„(L) c

T*(R" x R") and A and B are supported near a point meCfl A„(L).

From 4.13 and 3.6, distributions in P''(C, A^) can be represented using
a multiphase

n-k

®(x,y,t,œ) = ^2(x¡ -yi)(Oi - t\(o\(yx + S(x, y", t\a>\, co)),
i=2

where S(x, y, 8) satisfies (4.11) and (4.12) with 8 = (t, co). Hence we may

write the Schwartz kernel, u(x, y), of A as

u(x, y) — /  / el^a(x, y, t, co)dtdco,
J   JRxR»-*-l

with a phase 4>x = Ei^C*':~ Vi)w,--i(yi +S(x,y",t, oj)) and a product type

amplitude, a(x, y, t, w), of order p+l-(n-1)/2 in co and -l+(n+k-l)/2

in t. For convenience, we are writing <y = (co2,... , con_k) £ R"_fe_1. Note

that the only contributions to the wavefront set of u near C n A„(L), come
from a conic neighborhood of {t = 0} . Thus, we may assume integration takes

place in the region {\t\ < \co\} .
Similarly, the Schwartz kernel of B has an expression of the form

v(x,y)= Il e~^2b(z ,x,ô,a)dôda,
J    JRxR"-'-'

where (¡>2 = E^fo ~ zi)°i ~ <Hzi + S(x, z", Ô, a)) and b(z, x, S, a) is a
product type symbol of order r + s - (n - l)/2 in a and -s + (n + k - l)/2
in S and the integral is extended to the region {|<5| < |<r|} .
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As in the argument preceding Theorem 5.18 we may assume that, modulo

lower order contributions, the Schwartz kernel of B o A has an oscillatory inte-
gral representation of the form

(5.22)   KAB(z,y)= je^z'>'>x'(0'tr''^c(x,y, co, a, t, S)dcodadtdôdx,

where integration takes place in a conic neighborhood of the region {\cd\ =

\a\, t = \3\} n {\t\ < |eo|} n {\3\ < \a\}, the phase is

n n

,s,«       y = £(*«■ ~ y^œi - £(■*«■ -z^
(•>-Zi> i=2 ,=2

+ S(S(x,y",co)-yx)- t(S(x, z", a') - z,).

and c(x, y, œ, a, t, 8) is a product type symbol of order p + l + r + s-n+l

in (co, a) and n + k-l-s-l in (t, 3).
But, in the region of integration, c(x, y, co, a, t, 3) behaves like a regular

symbol of type p + r + k in the combined variables (a, co, t, 8).
In this situation, the method of iterated regularity may be used as in 5.18 to

yield AoB £ I"' ''' for some p', V. To compute the values of p' and /', we

observe that the only contribution to A comes from C'oC. Away from A„(¿)

we have, according to [Gu-U], that A E P(C \ An{L)) and B £ Ir(C \ An{L)).
On C \ A„(£) Hörmander's transverse composition calculus applies. Then

B ° ^IaW) e /p+r(A \ An{L)) and, as in 5.18, a(B o ̂ )|a\a,(L) has a conormal

singularity of order -k at n(L). Hence, we have that p' + I' = p + r and

/' = -(fc-l)/2.

The same proof as in Corollary 5.20 now yields

Corollary 5.24. For A as in (5.21), A : HS(X) -> ̂ '^'^^(X) is bounded.
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