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Magnetic domain walls of relic fermions as Dark Energy
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Abstract. We show that relic fermions of the Big Bang can enter a ferromagnetic state if they possess a magnetic moment
and satisfy the requirements of Stoner theory of itinerant ferromagnetism. The domain walls of this ferromagnetism can
successfully simulate Dark Energy over the observable epoch spanning∼ 10 billion years. We obtain conditions on the
anomalous magnetic moment of such fermions and their masses. Known neutrinos fail to satisfy the requirements thus pointing
to the possibility of a new ultralight sector in Particle Physics.
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INTRODUCTION

The recent strong evidence [1] [2] for the presence of a
Cosmological Constant in the Universe, contributing en-
ergy density≈ (0.03eV)4 (in units h̄ = c = 1), account-
ing for close to 70% of its contents presents a new chal-
lenge to fundamental physics. The enigma of the dis-
covery of such a small value, or indeed that of possi-
ble exact zero value for it has been discussed in [3]. A
less stringent alternative is to explore the possibility of
a substance capable of mimicking the equation of state
p = wρ with w close to−1 at present epoch as appropri-
ate to Cosmological Constant, but by contrast, capable of
undergoing dynamical evolution. A large number of pro-
posals have emerged along these lines, some attempting
to connect the explanation to other enigmas of Cosmol-
ogy, while some with a connection to theories beyond the
Planck scale. In this paper we consider the possibility of
a more convetional explanation based known phenom-
ena. It has been argued in [4] that the equation of state
obeyed by this form of energy could be well fitted by a
network of domain walls which obey an effective equa-
tion of statep = (−2/3)ρ , and called Solid Dark Mat-
ter (SDM). This possibility has been further examined
in [5][6] and shown to be still consistent with more re-
cent data. In this paper we suggest that the domain walls
could be of the same kind that occur in ferromagnets. The
domain wall complex obeys the Kibble law [7], its en-
ergy density contribution scaling as 1/S(t), (S being the
Friedmann-Robertson-Walker (FRW) scale factor) thus
providing a candidate SDM.

Approaches to ferromagnetism based on the well
known Heisenberg hamiltonian rely on interaction be-
tween spins localised in space at lattice sites. Such mod-
els are inadequate in explaining the large spontantaneous
ferromagnetism of iron, nickel and cobalt. A more fruit-
ful approach is provided by Stoner theory [8] which con-
cerns delocalised or itinerant electrons. In this approach

the cooperative phenomenon is visulaised in two parts,
first fermionic correlations, equivalently the Exclusion
Principle causes a deficit of fermions of the same spin
in a given region of space. This enhanced averge sepa-
ration of electrons leads to reduction in energy since the
screened coulomb interaction is repulsive. In turn same
orientation of the fermions is favoured energetically. A
crucial ingredient of implementation of this ansatz is the
excess interaction energy per particle, and in turn the
density of states at the Fermi surface.

In the cosmological setting, the density of states will
simply be the number density of a free gas at the Fermi
surface. Further, we assume neutral fermions with mu-
tual interaction of purely magnetic origin, which is repul-
sive for same spin fermions. With these hypotheses we
obtain a relation constraining the values of the anoma-
lous magnetic moment and mass of the fermions. The
suggested mass range is<∼ 10−5eV , tantalisingly close
to the small values suggested by neutrino oscillations
[9]. However, the anomalous magnetic moment required
is far in excess of the experimental and astrophysical
bounds on magnetic moments of the three known neu-
trino species, thus ruling them out as viable candidates.
Further, as discussed in conclusion, the gauge interaction
proposed may not be Electromagnetism. Thus we have
an explanation of Dark Energy within the framework of
known physical phenomena which leads to the hypothe-
sis of a new class of extremely light particles with large
magnetic moment and also the corresponding new gauge
force.

COSMOLOGICAL SETTING

The cosmological epoch we focus on is the one when
the energy density in Dark Energy became comparable
to that in the form of non-relativistic matter, an epoch in-
dicated to be about 7 billion years in the past. Assuming
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the energy density of walls scales as 1/S(t) and using the
law 1/S3(t) for the matter component, we can determine
the timet1 when the two contribute equally to the en-
ergy density. Using values of density fractionsΩm ≈ 0.3,
for matter andΩΛ ≈ 0.7 for the Dark Energy gives
(S1/S0)

2 = 3/7 where 0 refers to current epoch. Photon
temperature at this epoch isT1 = 4.18K = 5.0×10−4eV .

Let us refer to the particle species generically asF
and assume that it was relativistic at the time of nu-
cleosynthesis, iemF < 0.1MeV . There are two pos-
sibilities for their abundance. One is that like neu-
trinos their abundance is similar to that of photons,
nF(t1) = (S0/S1)

3120cm−3 [10]. A less restrictive pos-
sibility which we would like to exploit is that there may
be excess abundance of these particles, characterised by a
factorϒ relative to photons. These possibilities together,
in the unitsh̄ = c = 1 become

nF(t1)≈ 3.2×10−12ϒ(eV )3 (1)

Excess abundance of a relativistic species conflicts with
nucleosynthesis unless it occurs only after the latter
is complete. However, nontrivialϒ can arise from late
deacy of a weakly interacting heavy particle. At present
epocht0 this abundance is constrained by the require-
ment that the density fractionΩF of a potentialhot dark
matter member must remain less than 0.003 [2] [11]. Us-
ing the value forρcrit = 3.6×10−6(eV )4,

ΩF =
mFnF(t1)

ρcrit
= 2.25×10−7×ϒ

(mF

eV

)

< 0.003

(2)
Thus if the speciesF is saturating this bound,
ϒ(mF/eV )∼ 104. These considerations apply to any one
independent species. For more than one species partici-
pating in ferromagnetism, appropriate modifications can
be incorporated. Finally, we use the expression for the
Fermi energy

EF = (p2
F +m2

F)
1/2−mF (3)

which accords with the non-relativistic expression, and
where the zero-temperature Fermi momentum ispF =
(3π2nF)

1/3 for number densitynF .

THE STONER CRITERION AND
COSMIC FERROMAGNETISM

We now turn to collective magnetic properties of this
gas. We assume that individual particles have an effective
intrinsic magnetic moment

µF ≡ gF
e h̄

2mF

= gF µB
me

mF

(4)

whereme is the electron mass,µB is the Bohr magneton,
andgF is the gyromagnetic ratio which must be entirely
anomalous since we are assuming the fermions to be
neutral. For neutrinos the radiatively induced magnetic
moment is expected to be small [12], orµF/µB < 10−15

as derived in [13] under certain reasonable assumptions.
In a more general setting,gF can be order unity as in the
case of the neutron. No such particle is expected from
terrestrial experiments, however most of the Universe
seems to be composed of particles not suggested by
any terrestrial experiments and there is no reason to
forbid their existence. Also most unified theories such as
E8⊗E ′

8 and likewise the gauge mediated supersymmetry
breaking scheme invoke an unobserved gauge sector and
this may be a manifestation of such a sector.

The Pauli paramagnetic susceptibilityχP of a spin gas
is usually small. Large susceptibility and spontaneous
magnetization arise according to the Stoner ansatz [8]
if there is an additional shift in single particle energies,
proportional to the difference between the spin up (N↑)
and the spin down (N↓) populations. A parameterI is
introduced to incorporate this, the single-particle energy
spectrum being

E↑,↓(k) = E(k)− I
N↑,↓
N

(5)

Using this it is shown [14][15][16] that the ferromagnetic
susceptibility is

χ =
χP

1− I 3
4EF

(6)

The condition for spontaneous magnetization is negative
χ , which is ensured provided the second term in the
denominator dominates. A sufficient condition for the
gas to be spontaneously magnetised at zero temperature
is the Stoner criterion,

I >
4EF

3
(7)

Further, it can be shown that concordance with the Curie-
Weiss law suggests a critical temperature for the ferro-
magnetic phase transition asTc = I/4. Thus, if the zero
temperature condition is satisfied and temperature is less
thanTc, ferromagnetic state is possible.

We now turn to the origin of the ferromagnetism.
Firstly we note that in the vicinity of a given fermion
there is a deficiency of other fermions of same spin, the
so called "exchange hole" which is shown to exist in
a standard derivation for which we refer the reader to
[17][15]. By averaging over the Fermi sphere and inte-
grating over the relative positions this density deficiency
can be estiamted to be

∆nF = −0.86nν (8)



The upshot of this is that in principle a local population
deficit of order unity is easy to obtain. Now consider a
long range two particle interactionγ2 which is repulsive.
Compared to absence of interaction and compared to a
classical gas, the density deficit causes a reduction in
total energy density. This energy reduction should be
proportional to∆nF . To retain the significance of two
particle interaction energyγ2, we stipulate the relation

I = γ2 |∆nF |
nF

(9)

We now make the assumption that for the fermions un-
der consideration, this coupling arises from magnetic
dipole-dipole interaction, which is repulsive between
same spins. The resulting increase in single particle en-
ergy can be estimated as (withµ0 the magnetic coupling
in MKS units)

γ2 = κµ0µ2
F |∆nF | (10)

being the mean field magnetic field due to the deficit den-
sity of the magnetic moments, times the magnetic mo-
ment µF of the single particle. Hereκ is an unknown
factor expected to be of order unity. Note that the dipole
interaction energy goes as inverse third power of inter-
particle separation and hence correctly scales as|∆nF |.
Now we use (4), (8), (9), (10), and (3) in the Stoner cri-
terion (7), and assume|∆nF | ≈ nF , andκ = 1 for sim-
plicity. The resulting regions in logmF − loggF parameter
space permitting ferromagnetic state to occur are shown
in fig. 1 for ϒ = 1 and for the value ofϒ which saturates
the bound in eq. (2). ForgF ∼ O(1), the allowed mass
range of the species is≤ 10−6eV for ϒ = 1, and relaxes
to≤ 10−3eV for largest allowableϒ.

The current upper bounds [18] [19] on the neutrino
magnetic moments are 10−10 for νe and νµ and 4×
10−7 for ντ . These values are smaller by many orders of
magnitude,∼ (me/mF)×1010 ( ×107 for ντ ) compared
to what is required here. We must conclude that neutrinos
cannot participate in such a mechanism. We also note
that the excess abundance factor for neutrinos has been
recently well constrained to be small, as deduced from
neutrino oscillations [20][21].

DOMAIN WALLS

We now assume that at the phase transition when the fer-
romagnetic state becomes favourable a domain structure
sets in due to finite corrrelations in the system. These
domain walls are not expected to be topologically sta-
ble. This is because the underlying symmetry isSU(2)
of spin, which permits rotations within the vacuum man-
ifold for the defect to disentangle. However the situation
is analogous to the case of global internal symmetries
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FIGURE 1. Permitted regions in parameter space logmF -
loggF are to the left of the curves in all cases. Regions which
satisfy Stoner criteria are labelled Ferromagnetism (FM),with-
out or with maximum permissible abundance. The requirement
of simulating Dark Energy (DE) restricts the regions further as
shown. The horizontal dotted line corresponds togF = 1.

and the decay of the walls is governed by tunneling pro-
cesses as detailed later. We assume that the domain wall
dynamics can be described by a Landau-Ginzburg effec-
tive lagrangian[22] for a vector order parameterS with a
symmetry breaking self-interactionλ (S·S−σ2)2, where
σ determines the magnitude of the magnetization and
can be related toI andγ2 introduced above. From stan-
dard solitonic calculation [23] the domain walls have a
width w ∼ (

√
λ σ)−1 and energy per unit areaE/A ∼√

λ σ3.
We can now estimate the energy trapped in the domain

wall structure and require that it must account for half of
the total energy density of the Universe at the epocht1.
Let the domain wall structure be characterise by length
scaleL. Equivalently, there is one wall passing through
a cubical volume of sizeL3 on the average. The energy
density containd in such a wall isE/wL2, while its aver-
age contribution to the total density isE/L3. If the walls
are sufficiently distinguished as a structure, we expect
w/L ≪ 1.

ρwalls =
E

Aw
w
L
≥ 1

2
ρcrit

(

T1

T0

)4

(11)

For the generic case with no excess abundance this places
a more stringent requirement on the allowed values ofgF

andmF as shown in fig. 1, wherew/L = 0.1 is assumed.
The restriction to smaller mass values enhances the mag-
netic energy stored in the walls, however the mass values
are in the range<∼ 10−12eV , much smaller than known
mass scales. If excess abundance is permitted this situ-
ation is considerably relaxed. In this case a future prob-
lem would be to understand the mechanism of the excess



abundance.
One of the main sources of wall depletion is mutual

collisions. However the walls become non-relativistic
soon after formation and the free energy available for
bulk motion reduces. The walls can also spontaneously
decay as was discussed in [24]. However the decay rate
would be governed by an exponential factor exp(−B/λ ),
with B the Euclidean action of the "bounce" [25] of order
unity. Stability of this complex for several billion years,
compared to intrinsic time scales of microscopic physics
in the range(0.03eV)−1, requires the suppression factor
to be 10−30 which is natural forλ ∼ 0.01.

Finally we face the important question whether the
gauge force responsible for this magnetism is Electro-
magnetism,U(1)EM. Further investigation is required to
determine the extent to which known phenomena such as
[19] constrain the magnetic properties of such particles.
If magnetic moment of purely electromagnetic origin is
too tightly constrained, the gauge group may be a hid-
den sectorU(1)H . Such aU(1)H would still mix with
theU(1)EM. So long asU(1)EM is involved, an intrigu-
ing possibility is an explanation for the origin of the in-
tergalactic magnetic fields [26]. While the magnetic field
averaged over the domains is zero, a deviation from the
average, proportional to square root of the number of do-
mains may suffice to provide the requisite seed [22]. An
explanation for thegF value∼ O(1) may be provided
by the existence of a hidden gauge group of the form
SU(N)H ⊗U(1)H . In this case the situation may be simi-
lar to the neutron, with the fermionF a strongly coupled
neutral bound state with large anomalous magnetic mo-
ment of theU(1)H .

A distinctive prediction of this scenario is that the
Dark Energy dominated era must end. As the Universe
expands, the densitynF decreases and when the interac-
tion stipulated in eq. (10 ) becomes insignificant, sponta-
neous magnetism vanishes. The time scales are expected
to be comparable to cosmic time as per the discussion
about stability of the walls. The disappearance of the do-
main walls would release some entropy. This and other
possible signatures of this scenario are model depedent
and need further investigation.

If this scenario is correct then there is no fundamen-
tal Cosmological Constant, returning General Relativity
to its status where Einstein left it. Why the Higgs mech-
anism of electroweak theory induces no vacuum energy
remains an open problem [3].
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