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OPTIMIZATION OF VARIABLE AREA TRANSECT SAMPLING USING 
MONTE CARL0 SIMULATION 

RICHARD M. ENGEMAN' A N D  ROBERT T. SUGIHARA' 

'National Wild/@ Research Center. USDA/Animal and Plclrzt Health Inspection ServiceAYildlife Services, 
1716 Heath Parkway, Forr Collins, Colorado 80524-2719 USA 

2Ncitional IYiEdlij2 Research Center, USIltVAninzal and Plant Health Inspection Service/Wildlife Services, 
H a ~ ~ a i i  Field Station, P.O. Box 10880, Hilo, Hawaii 96721 USA 

Abstract. An extensive simulation study was conducted to optimize the number, r, of 
population members to be encountered from each random starting point in variable area 
transect (VAT) sampling. The quality of estimation provided by the original calculation 
formula presented by K. R. Parker in 1979 was compared to another formula that was a 
Morisita analog intended to reduce bias when sampling aggregated populations. Monte 
Carlo simulations covered 64 combinations of four spatial patterns, four sample sizes, and 
four densities. Values of r from 3 through 10 were considered in each case. Relative root 
mean squared error was used as the primary assessment criterion. 

Superior estimation properties were found for r > 3, but diminishing returns, relative 
to the potential for increased effort in the field, were found for r > 6. The original estimation 
formula consistently provided results that were superior to the Morisita analog, with the 
difference most pronounced in the aggregate patterns for which the Morisita analog was 
intended. As long as the sampled populations displayed randomness in location of indi- 
viduals, rather than systematic patterns that are uncommon in nature, the variance formula 
associated with the original estimation formula performed well. 

Additional simulations were conducted to examine four confidence interval methods 
for potential use in association with the Parker original estimation method. These simu- 
lations considered only the sample sizes for which the best estimation was achieved in the 
earlier simulations. The confidence interval method developed by Parker worked well for 
populations with random spatial patterns, but it rarely achieved 80% (generally much less) 
of target coverage for populations displaying aggregation. A nonparametric confidence 
interval method presented here, or a combination of it with the Parker method, is recom- 
mended for general use. 

Key words: conjdence interval coverage; density estintation; distance metlzods; plotless methods; 
spatial pattern. 

Many attempts have been made to develop improved 
methods for addressing a problem common in many 
fields of biology, estimating the density of immobile 
objects such as points of animal damage, plant com- 
munities, and bird nests. Although the quadrat or plot 
method is well known to produce unbiased estimates, 
it can be labor intensive, especially when objects are 
sparse, unevenly distributed, or otherwise difficult to 
locate. Many distance or plotless methods have been 
developed or proposed as more efficient approaches for 
acquiring a sample from which density can be esti- 
mated. In general, plotless density estimators (PDEs) 
were developed assuming that the sampled population 
followed a random spatial distribution (e.g., Pollard 
1971). A variety of PDEs have been proposed to offer 
robust estimation over different spatial patterns (e.g., 
Morisita 1957, Persson 197 1, Batcheler 1975, Diggle 
1975, Lewis 1975, Patil et al. 1979, Clayton and Cox 

1986, Delince 1986). Unfortunately, some PDEs in- 
tended to overcome problems with robustness are near- 
ly as difficult to apply in many field situations as is 
quadrat sampling (e.g., Pollard 1971, Engeman et al. 
1994). 

Recently Engeman et al. (1994) conducted a simu- 
lation study that compared a large number of PDEs on 
populations from a variety of spatial patterns and a 
number of densities. Recommendations were made as 
to which PDEs provided the best estimation properties 
while remaining feasible to apply in difficult field sit- 
uations. Here, we follow up on that work by optimizing 
one of the best performing, but simplest to apply, of 
the methods from that work, the variable area transect 
(VAT) developed by Parker (1979). 

The variable area transect estimator can be consid- 
ered a combination of distance and quadrat methods. 
At each of n randomly located starting points, a fixed- 

Manuscript received 11 June 1997; accepted 2 ~~l~ 1997; width (strip) transect is searched until ;he a h  individual 
final version received 25 July 1997. is encountered in the strip. Thus, the search for pop- 
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ulation members and the measurement of distances to 
them from the random point are accomplished at the 
same time, making this an attractive method to apply 
in the field. If we let w be the width of the strip transect 
and L, be the length searched from the ith random start- 
ing point to the rth individual, then the formula for the 
VAT estimator, which we call the original formula, is: 

B0,, = (nr - l)/(w C L,). 

Because this estimator was developed under the as- 
sumption that the spatial pattern for the sampled pop- 
ulation was random, Parker (1979) also proposed an 
analog to Morisita's (1957) method for producing an 
unbiased sample with closest individual sampling in 
an aggregated spatial pattern. The formula for this Mor- 
isita analog (not included in the simulations by Enge- 
man et al. 1994) is 

Following Parker's (1979) example, Engeman et al. 
(1994) considered only the original form using r = 3. 
Here, we investigate the estimation properties of both 
formulae when sampling populations that represent a 
diversity of spatial patterns, and at a variety of den- 
sities. In each circumstance we consider estimation 
based on locating r = 3 ,4 ,  . . . , 10 population members 
from each random starting point. From there we attempt 
to determine optimal values of r and n. Concurrently, 
we also examine the properties for the corresponding 
variance formula for each estimator. The formulae (Par- 
ker 1979) used were: 

A simulation program was written in FORTRAN 77 
language (Version 5.0, MS-DOS operating system), 
each run of which was specified by a combination of 
population spatial pattern, population density, and sam- 
ple size (of random VAT starting points). We examined 
64 combinations encompassing four spatial patterns, 
four densities, and four sample sizes. At each random 
sampling point, the strip transect was extended and 
searched until 10 population members were encoun- 
tered. Thus, for each estimation formula, estimates 
could be calculated using r = 3, 4, 5, 6, 7 ,  8, 9, and 
10. This results in a simulation study on five features 
that potentially could affect estimation by VAT sam- 
pling: spatial pattern, sample size, density, estimation 
method, and number of population members searched 
for at each random sample point. 

The uniform random number generator used for plac- 
ing population individuals and locating sampling points 
was the UNIF routine (Bratley et al. 1983). Where re- 
quired, the VNORM routine (Bratley et al. 1983) was 
used to convert the uniform random numbers to normal 
random numbers. UNIF has been extensively tested for 

uniformity, independence, and nonperiodicity of the 
numbers generated and VNORM tested for accuracy 
(Brody and Morais 1987). 

The density used in a particular run of the program 
was specified by inputting the size of a rectangular area 
(the length of each dimension) and the number of in- 
dividuals to reside in that area. We examined target 
population densities of 2, 5, 10, and 20 individuals per 
unit area. The area used for each density was large 
enough to insure that the target population was several 
orders of magnitude larger than the number of sampling 
points. 

We considered four spatial patterns for the popula- 
tions simulated in this study: random, regular, trian- 
gular, aggregate, and double clumped. The random pat- 
tern (also called Poisson in recognition that the points 
are distributed as a two-dimensional Poisson process) 
was simulated by generating the appropriate number of 
random coordinates from an uniform distribution in the 
designated area. The regular spatial pattern was gen- 
erated by dividing the area into a grid of rectangles, 
the same number as individuals in the population. The 
population members were then situated by randomly 
locating one individual in each rectangle. For the ag- 
gregate pattern, the centers of user-specified number 
of clumps were randomly located in the designated 
area. In addition to the clump center point, user-spec- 
ified number of "offspring" for the clumps were lo- 
cated within user-specified radius of the center (parent) 
point. These offspring were located within the clump 
about the parent point using coordinates randomly gen- 
erated from the standard bivariate normal distribution. 
This tended to concentrate the members of the clump 
near the center point. Aggregate spatial patterns ap- 
proximate many of the naturally occurring biological 
population patterns. We considered only clumps of five 
individuals (the center point or "parent" and four "off- 
spring") that were severely clumped, with the offspring 
located within a clump radius of 15 distance units. The 
pattern we label as double-clumped is a second-order 
aggregation that was generated in a similar fashion to 
the aggregate pattern. The difference is that for the 
double-clumped pattern, the individuals in the clumps 
of the aggregate pattern are used for center points (par- 
ents) for subclumps of two individuals. The two in- 
dividuals of the subclumps include the parent plus one 
other point (offspring) randomly generated from the 
standard bivariate normal distribution. The radius for 
the subclump is restricted to one-half that for the clump 
(7.5 units). This spatial pattern approximates some of 
the field patterns that we have observed for rodent bur- 
rows and animal damage locations. It also provides one 
of the severest tests of the estimation methods. 

Randomly located starting points for the VATS were 
required to initiate the sampling procedures. The sam- 
ple sizes considered in this study refer to the number 
of such random starting points placed in the population. 
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Sample sizes of random starting points that we ex- 
amined were 5, 10, 20, and 40. 

There were two runs of the simulation program for 
each spatial pattern-by-density-by-sample size com- 
bination. At each replication of each run of the pro- 
gram, a new population was generated and a new set 
of random sampling points applied. Each simulation 
run comprised 5000 such replications. The observed 
statistics accumulated over the 5000 replications for 
each estimation method at each r included the mean 
density estimate, variance, relative bias, mean squared 
error (MSE), and the relative root mean squared error 
(RRMSE). RRMSE was calculated as 

RRMSE = { [ C ( D  - D)21D2)]/I) ' I 2  

where D was the estimated density, D was the true 
density, and I = 5000 was the number of replications 
in the simulation run. We used the RRMSE as the pri- 
mary criteria for comparing the performance of the 
estimators (see, for example, Patil et al. 1979, Engeman 
and Bromaghin 1990, Engeman et al. 1994), because 
it encompasses variance and bias, and it is unitless. 
The same statistics were used to evaluate the variance 
estimators for each method, where the density estimate 
in the above equation is replaced by the appropriate 
variance estimate and D is replaced by the observed 
variance of the estimate based on the 5000 simulation 
replications. Also calculated was the relative bias 
(RBIAS), the mean observed bias divided by the true 
parameter value. We present our statistics from the sim- 
ulations as "relative" statistics (divided by the true 
density) to standardize the scale across the density pa- 
rameter being estimated. 

The trade-off between n and r was examined by de- 
veloping a predictive model of RRMSE for the density 
estimate using the better performing of the two esti- 
mation methods (providing one was consistently su- 
perior). Only variables under the investigator's control 
(n and r) were used to develop predictive equations. 
Density, therefore, was not included. Also, we pre- 
sumed that: (1) different relationships between RRMSE 
and n and r might come into play for different spatial 
patterns of population members, and (2) a field inves- 
tigator might have information on the population pat- 
tern, based on similar populations elsewhere or on other 
a priori knowledge. For each population pattern, all 
possible subsets of n, r, and their product were con- 
sidered as potential predictive variables of RRMSE. 
We also examined the situation of no prior knowledge 
of spatial patterns and analyzed all RRMSE results to- 
gether. 

Using the simulation and response surface results, 
we designed additional simulations to examine confi- 
dence interval coverage for the better performing 
(based on RRMSE) density estimation method. Four 
calculation methods for producing 1 - a confidence 

intervals were considered, the first of which was given 
by Parker (1979): 

where C, and C2 are, respectively, the lower and upper 
a12 percentiles from a chi-square distribution with 2nr  
degrees of freedom, and K = 2wxL,. The second for- 
mula used a normal approximation: 

The third confidence interval formula was a nonpara- 
metric method based on applying a confidence interval 
to the median (e.g., Hollander and Wolfe 1973) from 
a sample of n L,'s. The calculation steps are given in 
the Appendix. The final confidence interval method 
was a combination of the first and third methods, using 
an analog of Hopkins (1954) index of aggregation to 
provide a decision criterion for which of the two con- 
fidence interval methods to apply. We considered this 
method because increasing deviations from a random 
spatial pattern (e.g., greater aggregation) may lessen 
the quality of confidence interval coverage for the 
method based on a random pattern assumption devel- 
oped by Parker (1979). If so, we presumed that there 
would be an increased likelihood that the nonpara- 
metric method would provide superior coverage. The 
decision criterion that we applied was a ratio of search 
areas, also obtained from VAT sampling, that was anal- 
ogous to the ratio given in Hopkins (1954). Let L,, be 
the distance searched from the ith random point to the 
first population member and L,, be the distance 
searched from the ith random point to the second pop- 
ulation member. Then 

u = C L , , / C ( & ,  - LlJ. 

VAT sampling of a random spatial pattern should result 
in the average search distance (area for fixed-width 
transects) to the first individual encountered approxi- 
mately equalling the average search distance from the 
first individual to the second individual ( U  = 1). In 
aggregated populations the average search distance to 
the first individual should exceed the average search 
distance from the first individual to the second indi- 
vidual ( U  > 1). We found through trial simulations on 
random populations that U rarely exceeded 1.1. We ran 
test simulations using U = 1.05 and found little dif- 
ference from 1.1, U < 1.05 produced diminished ac- 
curacy in coverage, as did values of U > 1.1. Therefore, 
we used U = 1.1 as the decision point between applying 
Parker's formula vs, the nonparametric method pre- 
sented here. 

For each of the calculation methods, 90,95,  and 99% 
confidence intervals were considered. The simulations 
were conducted essentially as before with 5000 itera- 
tions, but only the better performing of the two esti- 
mation methods (original vs. Morisita) was considered 
and sample sizes were restricted to those identified as 
producing useful results in the initial simulation study. 
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TABLE 1. Mean RRMSE results for each density estimator using r = 3-10 in each spatial pattern at each sample size. 

Pattern 

Random Regular 

Sample size 5 10 20 40 Mean 5 10 20 40 Mean 

Original 
r =  3 0.29 0.20 0.14 0.11 0.18 0.23 0.20 0.18 0.17 0.19 

10 0.15 0.11 0.08 0.07 0.10 0.08 0.06 0.06 0.05 0.06 
Mean 0.20 0.15 0.11 0.08 0.13 0.13 0.11 0.09 0.09 0.10 

Morisita 
r =  3 0.45 0.33 0.23 0.17 0.29 0.27 0.20 0.15 0.12 0.19 

4 0.32 0.23 0.17 0.12 0.21 0.18 0.14 0.11 0.09 0.13 
5 0.27 0.19 0.14 0.10 0.18 0.14 0.11 0.09 0.08 0.10 
6 0.23 0.17 0.12 0.09 0.15 0.12 0.09 0.08 0.07 0.09 
7 0.21 0.15 0.11 0.08 0.14 0.10 0.08 0.07 0.06 0.08 
8 0.19 0.14 0.10 0.08 0.13 0.09 0.07 0.06 0.05 0.07 
9 0.18 0.13 0.10 0.07 0.12 0.09 0.07 0.06 0.05 0.07 

10 0.17 0.12 0.09 0.07 0.11 0.08 0.06 0.05 0.05 0.06 
Mean 0.25 0.18 0.13 0.10 0.17 0.13 0.10 0.08 0.07 0.10 

Aggregate Double-clump 

Sample size 5 10 20 40 Mean 5 10 20 40 Mean 

Original 
r =  3 0.45 0.33 0.28 0.25 0.33 0.52 0.45 0.43 0.43 0.46 

4 0.44 0.31 0.24 0.21 0.30 0.49 0.39 0.35 0.34 0.39 
5 0.41 0.29 0.23 0.19 0.28 0.49 0.36 0.31 0.29 0.36 
6 0.35 0.25 0.20 0.17 0.24 0.50 0.36 0.30 0.27 0.36 
7 0.34 0.24 0.19 0.16 0.23 0.51 0.36 0.29 0.26 0.36 
8 0.34 0.24 0.19 0.16 0.23 0.5 1 0.36 0.29 0.26 0.36 
9 0.33 0.24 0.19 0.16 0.23 0.48 0.35 0.28 0.25 0.34 

10 0.32 0.24 0.19 0.16 0.23 0.40 0.30 0.25 0.23 0.29 
Mean 0.37 0.27 0.21 0.18 0.26 0.49 0.36 0.31 0.29 0.36 

Morisita 
r =  3 1.05 0.80 0.64 0.53 0.76 1.63 1.21 0.95 0.77 1.14 

4 0.92 0.74 0.61 0.54 0.70 1.46 1.15 0.95 0.82 1.10 

7 0.67 0.53 0.45 0.40 0.5 1 1.35 1.13 1 .OO 0.92 1.10 
8 0.65 0.52 0.45 0.40 0.51 1.29 1.08 0.97 0.90 1.06 
9 0.62 0.51 0.44 0.40 0.49 1.16 0.98 0.87 0.8 1 0.95 

10 0.58 0.48 0.42 0.38 0.46 0.94 0.78 0.67 0.61 0.75 
Mean 0.75 0.60 0.50 0.44 0.57 1.33 1.08 0.92 0.83 1.04 

Because it was equally easy in our simulation algorithm 
to acquire results for all values of r from 3 to 10, we 
did not restrict ourselves to considering only an optimal 
range of r. Confidence interval coverage, for a given 
target coverage, calculation method, n, and r, was cal- 
culated as the percentage of the 5000 iterations for 
which confidence intervals contained the true popula- 
tion density. 

RESULTS AND DISCUSSION 

The results from the 128 population simulations (two 
runs of each of the 64 combinations) are summarized 
as the mean RRMSE for each estimator in each spatial 
pattern at each sample size in Table 1. We present more 
condensed results for relative bias (RBIAS) in Table 

2. Each simulation run involved 5000 replications of 
a spatial pattern-by-density-by-sample size combina- 
tion. Besides the extensive testing involved in devel- 
oping a simulation program, various aspects of the re- 
sults served to confirm that the program was function- 
ing properly. Each of these combinations was run twice, 
with the difference being the seeds for the procedures 
required by the random number generator. There was 
very little variability between simulation runs, with 
some of the resulting statistics often being identical (to 
four decimal places) between the two runs. In addition, 
the results for the original estimator at r = 3 were 
nearly identical to those of Engeman et al. (1994) in 
those cases where the simulation frameworks were the 
same. 
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TABLE 2. Mean relative bias (RBIAS) for each density es- 
timator using r = 3-10 in each spatial pattern. 

Double- 
Estimator Random Regular Aggregate clump 

Original 
r =  3 

4 
5 
6 
7 
8 
9 

10 
Mean 

Morisita 
r =  3 

4 
5 
6 
7 
8 
9 

10 
Mean 

We now can make some general observations based 
on the results, while saving specific recommendations 
for the Conclusions section. The most obvious result 
was that the original form of the VAT estimator almost 

invariably outperformed the Morisita analog. The su- 
perior performance of the original estimator was most 
in evidence in the aggregate and the double-clumped 
spatial patterns, for which the Morisita analog was de- 
veloped (Parker 1979). For most of the simulation com- 
binations, definite improvement in estimation was 
made with r > 3, although the relative magnitudes of 
the improvements usually diminished after r = 6 (Ta- 
bles 1 and 2, Fig. 1). As would be expected, estimation 
improved with increasing sample size. RRMSEs tended 
to improve (decrease) as densities increased, especially 
for populations with one of the patterns involving ag- 
gregation, although this tendency was not nearly so 
pronounced as those differences among estimation for- 
mulas or population spatial patterns. One might expect 
performance to improve for aggregated populations as 
density increases, because populations of randomly 
placed clumps of individuals begin to appear more like 
the random populations that have the same density. 

The RRMSE results for the variance estimators as- 
sociated with each estimation formula are given in Ta- 
ble 3. There we can see that quality of estimation was 
much greater for the populations with a greater degree 
of randomness in locating individuals (and clumps) 
than for the regular population where individuals were 
more systematically placed. Fortunately, population 
patterns where the members are systematically located 

1 RANDOM 1 REGULAR 

ORIGINAL + 

FIG. 1. Mean RRMSE responses in each population spatial pattern for r = 3-10 using the original and Morisita analog 
calculation formulas. 
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TABLE 3. Mean RRMSE for the variance of each density estimator using r = 3-10 in each spatial pattern at each sample 
size. 

Pattern 

Random Regular 
Sample 

size 5 10 20 40 Mean 5 10 20 40 Mean 

Original 
r =  3 

4 
5 
6 
7 
8 
9 

10 
Mean 

Morisita 
r =  3 

4 
5 
6 
7 
8 
9 

10 
Mean 

Sample 
size 

Aggregate - 
5 10 20 40 Mean 5 10 20 40 Mean 

Original 
r =  3 0.78 0.67 0.65 0.65 0.69 0.93 0.74 0.72 0.73 0.78 

4 0.73 0.68 0.68 0.69 0.69 0.85 0.77 0.76 0.78 0.79 
5 0.72 0.69 0.69 0.70 0.70 0.83 0.79 0.79 0.80 0.80 
6 0.72 0.67 0.68 0.70 0.69 0.83 0.80 0.80 0.82 0.8 1 
7 0.70 0.69 0.69 0.71 0.70 0.83 0.8 1 0.81 0.83 0.82 
8 0.7 1 0.70 0.70 0.72 0.71 0.84 0.82 0.82 0.83 0.83 
9 0.72 0.71 0.71 0.73 0.71 0.83 0.82 0.82 0.83 0.83 

10 0.72 0.71 0.71 0.73 0.72 0.81 0.80 0.8 1 0.83 0.81 
Mean 0.72 0.69 0.69 0.70 0.70 0.84 0.79 0.79 0.81 0.81 

Morisita 
r =  3 1.93 1.08 0.70 0.61 1.08 2.5 1 1.18 0.81 0.77 1.32 

4 0.89 0.76 0.67 0.66 0.74 0.93 0.84 0.80 0.80 0.84 
5 0.76 0.71 0.69 0.70 0.71 0.85 0.82 0.82 0.82 0.83 
6 0.76 0.73 0.74 0.74 0.74 0.85 0.83 0.84 0.84 0.84 
7 0.77 0.75 0.75 0.76 0.76 0.85 0.84 0.85 0.85 0.84 
8 0.77 0.76 0.76 0.77 0.77 0.86 0.85 0.86 0.86 0.86 
9 0.77 0.77 0.77 0.78 0.78 0.86 0.87 0.87 0.87 0.87 

10 0.78 0.78 0.78 0.79 0.78 0.88 0.88 0.89 0.89 0.88 
Mean 0.93 0.79 0.73 0.73 0.80 1.07 0.89 0.84 0.84 0.91 

are probably the least likely to occur in nature. The 
RRMSE results for the original variance formula were 
invariably smaller than for the Morisita formula. The 
Morisita variance estimate showed considerable im- 
provement in RRMSE at the two smaller sample sizes 
when r was increased from 3 to 4. In general, the effects 
from increasing n or r were more pronounced for the 
Morisita variance estimates than for the original for- 
mula, even though the RRMSE magnitudes remained 
consistently higher (poorer) for the Morisita variance 
estimate. The most substantial improvement in RRMSE 
for the original variance formula was shown when n 
or r increased in the random spatial pattern. 

The original estimator, by providing consistently su- 

perior estimation to the Morisita formula, was used for 
development of prediction equations for the RRMSE 
results. Various degrees of quality (Table 4) were 
achieved across the spatial patterns for predicting 
RRMSE (using the original estimator). For each pattern 
the best prediction was produced by an additive model 
using n and r as predictive variables. The product of 
n and r, by itself or in combination with n and/or r, 
did not contribute to improved prediction. If an inves- 
tigator has information as to which of these spatial 
patterns a population tends to follow, then the equations 
(Table 4) may be of use in some situations for devel- 
oping a sampling plan by examining the trade-offs be- 
tween sample size and r. Because it is common for an 
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TABLE 4. Parameters at each spatial pattern of the best pre- 
dictive models for RRMSE using sample size and r, where 
the density estimate is calculated by Parker's (1979) orig- 
inal formula. 

Parameter estimates 

Pattern Intercept Sample size r R2 

Random 0.2625 -0.0031 -0.0109 0.72 
Regular 0.2335 -0.0010 -0.0170 0.77 
Aggregate 0.4376 -0.0046 -0.0143 0.47 
Double-clump 0.5637 -0.0047 -0.0171 0.28 
Overall 0.3743 -0.0033 -0.0148 0.16 

investigator not to have a clear notion in advance of 
the spatial pattern of the population to be sampled, we 
also examined the quality of predictive model produced 
overall without regard to spatial pattern (Table 4). 
Again, n and r in an additive model produced the best 
prediction, but the quality of that prediction was rather 
low (R2 = 0.16). Thus, as we describe in the Conclu- 
sions section, it may be best for the investigator to 
identify an overall range for n and r where performance 
is acceptable. Within this range for n and r, the logistics 
of the field situation can determine the trade-off be- 
tween n and r. 

We examined confidence interval coverage by the 
four methods for sample sizes of 20 and 40 (Table 5). 
The method given by Parker (1979) produced excellent 
coverage in the random spatial patterns for all values 
of r from 3 to 10, for both samples sizes (20 and 40). 
This method provided inconsistent results among target 
coverages for the regular spatial pattern, although the 
results for n = 20 and r = 4 or 5 were probably ad- 
equate for each of the 1 - ct target coverages. Most 
notably, the Parker method, derived under the assump- 
tion of a Poisson pattern, produced very poor coverage 
for population patterns having aggregation, never 
achieving 80% (generally much less) of any target cov- 
erage, for any r, at either sample size. 

The normal confidence intervals followed a pattern 
of results similar to the Parker method. Excellent cov- 
erage in the random pattern occurred for all r and n. 
This method, too, exhibited inconsistent coverage in 
the regular pattern, producing much higher than target 
coverage in most situations (very conservative). In con- 
trast, this method produced even poorer coverage than 
the Parker formula for the population patterns having 
some form of aggregation. 

The nonparametric method generally exceeded target 
coverage in the random and regular patterns for n = 

20, but generally fell slightly short of target for n = 

40. (With r = 6 or 7, results were excellent for n = 

40.) The regular spatial pattern was a challenge for this 
method too, as coverage results were always short of 
target. This method also tended to be conservative for 
the aggregated patterns by providing actual coverage 
in excess of the target coverage. As one might expect, 
the combination of the nonparametric method with the 

Parker method based on a decision criterion concerning 
spatial pattern provided results balanced between the 
two methods. Using r = 5 or 6 usually resulted in 
coverage reasonably near target, even for the regular 
pattern with n = 20. 

We conclude this paper by giving our recommen- 
dations, based on the results presented here, as to how 
VAT sampling would be best applied in the field. Al- 
though Engeman et al. (1994) demonstrated that VAT 
sampling with r = 3 was one of the more practical 
methods among the spectrum of plotless density esti- 
mators displaying good estimation properties, we be- 
lieve that valuable improvement for the design of field 
studies would be realized using r > 3. The greatest 
improvement in estimation properties generally oc- 
curred when r was increased from 3 to 4, but additional 
improvements in performance occurred using r = 5 or 
6. The two estimators that displayed the best overall 
estimation properties in Engeman et al. (1994) involved 
angle-order sampling (Morisita 1957) with measure- 
ments to the second and third nearest population mem- 
ber in each quadrant. It should be noted that had the 
VAT estimator in that same study used r = 5 or 6, it 
would have displayed comparable estimation proper- 
ties as these two angle-order estimators, but it would 
have required locating fewer population members 
while employing a much easier (and more practical) 
search pattern from each random starting point. 

We suggest that the largest r 5 6 that can be prac- 
tically applied in the field should be used. Saying that, 
we also realize that, depending on the field situation 
and the cost or effort of locating population members 
along each VAT relative to locating the starting points 
for the VATs, there may be trade-offs between the num- 
ber of VATs (n) that can be applied in the field and the 
number of population members that can be located 
along each VAT (r). Beyond r = 6, the relative im- 
provement in estimation could well be counterbalanced 
by additional effort in many field situations. That is, 
if field conditions are "easy" enough to use r > 6, 
then quadrat sampling should be considered. 

For calculation of estimates from VAT sampled data, 
we recommend the use of the original formula rather 
than the Morisita analog. Unless the population follows 
a very regular or systematic spacing pattern (unlikely, 
but may occur occasionally), the variance formula as- 
sociated with the original formula appears satisfactory. 
For confidence interval calculation we recommend us- 
ing the nonparametric1Parker combined method with a 
decision criterion of U = 1.1. If one wanted to consider 
only one confidence interval formula, then the non- 
parametric formula is preferable, due to the very poor 
results in aggregated populations by the Parker for- 
mula. However, in the relatively uncommon situations 
where the population is systematically placed in a re- 
peated pattern (regular population pattern), and if sam- 
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TABLE 5. Average percentage confidence interval coverage results using sample sizes of 20 and 40 in four spatial patterns, 
across four population densities, for four methods of a calculation using r = 3-10. 

Nonpara- Com- 
r CI Parker Normal metric bined r CI Parker Normal 

Nonpara- Com- 
metric bined 

Random spatial pattern (n = 20) 
3 90 90.0 90.6 

95 95.0 95.3 
99 99.0 99.0 

4 90 89.7 90.3 
95 94.9 95.4 
99 98.9 99.0 

5 90 89.7 90.5 
95 94.8 95.6 
99 98.9 99.1 

6 90 89.7 90.7 
95 94.9 95.4 
99 99.0 99.2 

7 90 89.7 90.5 
95 94.9 95.4 
99 98.9 99.1 

8 90 89.5 90.3 
95 94.7 95.2 
99 98.8 99.1 

9 90 89.5 90.3 
95 94.6 95.2 
99 98.9 99.1 

10 90 89.3 90.1 
95 94.7 95.2 
99 98.9 99.1 

Random spatial pattern ( n  = 40) 
3 90 89.4 90.1 

95 94.7 95.0 
99 98.8 99.0 

4 90 89.2 89.9 
95 94.4 94.9 
99 98.7 98.8 

5 90 89.2 89.7 
95 94.3 94.6 
99 98.7 98.9 

6 90 88.9 89.7 
95 94.1 94.6 
99 98.7 98.9 

7 90 88.6 89.4 
95 93.9 94.6 
99 98.7 98.9 

8 90 88.6 89.4 
95 93.9 94.6 
99 98.6 98.9 

9 90 88.3 89.2 
95 93.8 94.4 
99 98.5 98.9 

10 90 88.4 89.2 
95 93.9 94.5 
99 98.6 98.9 

Regular spatial pattern ( n  = 

3 90 82.1 
95 92.1 
99 95.2 

4 90 87.8 
95 95.5 
99 97.9 

5 90 92.7 
95 97.7 
99 99.4 

6 90 94.3 
9 5 98.4 
99 99.6 

7 90 95.9 
95 99.1 
99 99.8 

8 90 97.0 
95 99.4 
99 99.9 

9 90 97.9 
95 99.6 
99 99.9 

10 90 98.0 
95 99.7 
99 >99.9 

Regular spatial pattern ( n  = 

3 90 57.8 
95 75.8 
99 99.0 

4 90 68.2 
95 84.5 
99 99.7 

5 90 80.2 
95 92.0 
99 99.9 

6 90 83.5 
95 94.0 
99 >99.9 

7 90 87.8 
95 96.2 
99 >99.9 

8 90 9 1 .O 
95 97.3 
99 >99.9 

9 90 93.0 
95 98.2 
99 >99.9 

10 90 93.7 
95 98.5 
99 >99.9 

ple sizes are adequate (say n 2 20), then a bootstrap 
variance and confidence interval might be considered. 
In obvious regular patterns alternative sampling plans 
to VAT, such as quadrat sampling, might also be con- 
sidered. 

We sought to optimize the application of VAT sam- 
pling through extensive simulations. In natural situa- 
tions the pattern and density of populations can vary 
greatly and a simulation using artificial populations can 
only approximate natural processes. Therefore, the true 
test of the results presented here would be verification 
using a wide variety of fully enumerated field data sets. 

We currently are accumulating a series of such field 
data sets, which eventually can be used for further eval- 
uation of VAT sampling. At present, it appears that the 
VAT sampling method using r = 5 or 6 and the original 
formula for calculating estimates offers the field in- 
vestigator a method that is relatively easy to apply, 
confusion-free, and produces high-quality estimates. 
Future efforts might point toward developing a se- 
quential stopping criterion in which r could differ 
among the individual VATS according to a measure of 
the immediate density of objects. This would place 
VAT sampling in the realm of adaptive sampling 
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TABLE 5. Extended. 

Nonpara- Corn- Nonpara- Com- 
r CI Parker Normal metric bined r CI Parker Normal metric bined 

Aggregate spatial pattern ( n  = 20) Double-clump spatial pattern ( n  = 20) 

99 50.1 43.5 99.6 94.8 99 7.7 5.9 98.5 95.7 
4 90 42.3 39.7 94.9 88.9 4 90 9.2 8.2 93.3 90.6 

95 50.2 46.5 98.4 93.0 95 11.8 10.4 97.6 94.8 
99 63.8 58.8 99.6 95.6 99 17.9 14.9 99.3 96.7 

5 90 47.9 45.7 94.6 89.1 5 90 17.4 16.0 95.3 92.7 
95 55.2 52.6 98.2 93.2 95 21.3 19.5 98.5 95.8 
99 68.8 64.7 99.6 96.1 99 29.8 26.5 99.7 97.3 

6 90 44.6 42.5 95.5 89.9 6 90 25.3 24.1 95.2 92.8 
95 52.4 49.7 98.7 93.8 95 30.6 28.7 98.7 96.3 
99 66.0 62.1 99.8 96.2 99 40.6 37.8 99.7 97.5 

7 90 48.8 47.0 95.3 90.2 7 90 32.0 30.9 94.5 92.3 
95 57.0 54.4 98.6 94.1 95 38.1 36.5 98.2 96.0 
99 70.4 67.0 99.7 96.6 99 49.3 46.7 99.5 97.6 

8 90 52.9 5 1.6 94.7 90.0 8 90 35.7 34.8 93.5 91.3 
95 61.0 59.0 98.3 94.1 95 42.3 41.0 97.8 95.8 
99 74.3 71.5 99.6 96.7 99 54.0 52.0 99.4 97.7 

9 90 55.2 54.1 94.4 90.0 9 90 36.6 35.8 94.0 91.9 
95 63.4 62.0 98.2 94.4 95 43.0 42.0 97.9 95.9 
99 76.3 74.7 99.6 97.0 99 55.2 53.3 99.5 97.7 

10 90 56.7 56.1 94.1 89.9 10 90 33.1 32.1 95.3 93.2 
95 64.6 63.6 98.0 94.3 95 38.9 37.6 98.6 96.5 
99 77.8 76.1 99.5 97.1 99 50.5 48.2 99.6 97.8 

Aggregate spatial pattern ( n  = 40) Double-clump spatial pattern ( n  = 40) 
3 90 13.0 11.6 95.8 90.1 3 90 0.2 0.2 80.8 79.9 

95 17.4 15.2 98.1 92.7 95 0.3 0.3 88.3 87.3 
99 27.4 23.7 99.8 95.1 99 0.7 0.6 96.7 95.7 

4 90 27.5 25.7 94.4 89.3 4 90 1.8 1.6 91.4 90.4 
95 33.8 3 1.3 97.3 92.4 95 2.4 2.1 95.5 94.5 
99 46.8 42.6 99.5 95.3 99 4.1 3.4 99.2 98.1 

5 90 34.7 33.3 93.7 88.9 5 90 6.6 6.2 94.9 93.9 
95 41.7 39.3 96.9 92.3 95 8.6 7.9 97.6 96.7 
99 55.3 5 1.9 99.3 95.6 99 13.3 11.8 99.6 98.7 

6 90 30.7 29.0 95.7 91.0 6 90 14.1 13.6 95.0 94.1 
95 37.2 35.1 98.1 93.8 95 17.5 16.5 97.6 96.7 
99 50.9 47.3 99.7 96.2 99 24.6 22.9 99.6 98.7 

7 90 37.2 35.6 95.4 90.9 7 9 0 22.0 21.3 93.1 92.2 
95 42.3 42.2 97.8 93.7 95 26.1 25.2 96.6 95.6 
99 57.8 54.9 99.7 96.5 99 34.9 33.0 99.3 98.4 

8 90 43.5 42.1 94.3 90.2 8 90 26.5 26.0 91.1 90.2 
95 51.0 49.8 97.2 93.4 95 31.8 30.9 95.1 94.2 
99 65.0 62.5 99.5 96.7 99 41.4 39.9 98.8 97.9 

9 90 47.5 46.5 93.0 89.3 9 90 27.7 27.2 91.8 91.0 
95 55.9 54.6 96.4 93.0 95 32.9 32.2 95.6 94.8 
99 69.1 67.3 99.3 96.9 99 43.1 41.8 98.9 98.1 

10 90 49.5 48.7 92.7 89.1 10 90 22.4 21.7 94.8 93.9 
95 57.6 56.4 96.2 93.1 95 26.7 26.0 97.4 96.5 
99 71.3 69.8 99.2 96.9 99 36.1 34.3 99.6 98.8 

(Thompson 1992), whereby some of the associated ef- 
ficiencies could be realized. 
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APPENDIX 
Calculation method for a nonparametric 1 - a confidence L") < L(2' < . . , < L("). 

interval on density from variable area transect sampling, 
when the transect is followed from each random sampling 2, the the nearest integer where 
point until r population members are encountered. At any C = (n12) - Z,,,(n/4)'". 
given random sampling point let w = the width of the variable 
area transect (VAT) and let L, = the distance searched along 3) The lower (LL) and upper (UL) 1 - a confidence limits 
that transect to the rth population member. Let n = the number are, respectively: 
of such random sampling points from which VATS were ap- LL = (nr - l ) ( n l ~ L [ " - ' - ~ ~ )  
plied. 

1) Order the n L,'s from smallest to largest such that UL = (nr - l)(nwLcCl). 
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