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Evolutionary Modular Neural Networks
for Intelligent Systems
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Seoul 120-749, Korea

The evolutionary approach to artificial neural networks has been rapidly developing in
recent years and shows great potential as a powerful tool. However, most evolutionary
neural networks have paid little attention to the fact that they can evolve from modules.
This paper presents a hybrid method of modular neural networks and evolutionary
algorithm as a promising model for intelligent systems. To build a neural network system
that is rich in autonomy and creativity, some ideas of artificial life have been adopted.
This paper describes the concepts and methodologies for the evolvable model of modular
neural networks, which might not only develop spontaneously new functionality, but also
grow and evolve its own structure autonomously. We show the potential of the method by
applying it to a visual categorization task with handwritten digits. The evolutionary
mechanism has shown a strong potential to generate useful network architectures from
an initial set of randomly connected networks. Q 1998 John Wiley & Sons, Inc.

1. INTRODUCTION

Intelligent systems adaptively estimate continuous functions from data
without specifying mathematically how outputs depend on inputs.1 System
behavior is called intelligent if the system emits appropriate, problem-solving
responses when faced with problem stimuli. Recently, some researchers have
tried to synthesize intelligent systems by using neural networks.

Most of the currently popular network architectures, however, show little
structural constraints. Some networks assume total connectivity between all
nodes. Others assume a hierarchical, multilayered structure where each node in
a layer is connected to all nodes in neighboring layers. However, there is a large
body of neuropsychological evidence showing that the human information
processing system consists of modules, which are subdivisions in identifiable
parts, each with its own purpose or function.

Questions may then be raised about how to design an information process-
ing system with various modules. There has been extensive work to design
efficient architectures from the engineering point of view,2 ] 4 which has pro-

*E-mail: sbcho@csai.yonsei.ac.kr.

Ž .INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 13, 483]493 1998
Q 1998 John Wiley & Sons, Inc. CCC 0884-8173r98r060483-11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/209831647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CHO484

duced some success in solving several problems. On the contrary, the concept of
evolving neural networks has appeared recently as a subject of intensive scien-
tific discussions from biological, social, and engineering viewpoints.5 ] 10

In order to build an artificial neural network that is rich in autonomy and
creativity, we have adopted the ideas and methodologies of artificial life. In this
paper, we describe the concepts and methodologies for the evolvable model of
modularized neural networks, which will be able not only to develop new
functionality spontaneously, but also to grow and evolve its own structure
autonomously.

2. RELATED WORKS

There is already a body of work wherein researchers both understand and
appreciate the importance of incorporating an evolutionary process into the
picture. Wilson11 discussed a general representational framework to set the
stage for simulations of evolution. A number of people have implemented some
models, which can be roughly categorized into two groups.12

Much work involves some kind of growth-model coding for evolving neural
networks. Kitano7 and Whitley and Hanson6 used grammatical encoding to
develop artificial neural networks. Harp5 tried to evolve the gross anatomy and
general operating parameters of a network by encoding areas and projections
onto them into the genome. Nolfi and Parisi13 used an abstraction of axon
growth to evolve connectivity architectures. Most of these models do not aspire
to be biologically defensible, though. Also, they have not been applied as such in
the area of autonomous agents.

In contrast, a number of other researchers have looked at more biologically
inspired models of evolutionary process. Some work is based on the grammar
based approach first developed by Lyndenmayer, such as deBoer, Fracchia, and
Prusinkiewicz.14 For instance, Mjolsness, Sharp, and Reinitz15 used grammatical
rules, to account for morphological change, coupled to a dynamical neural
network to model the internal regulatory dynamics of the cell. Fleischer and
Barr16 combined a hard-coded model for gene expression with a cell simulation
program.

It is the combination of a biologically defensible model of development with
evolutionary methods that we would like to apply to the design of intelligent
systems, something that at this point in time has not yet been addressed in the
existing literature. The point of this research is to utilize modules as building
blocks for developing intelligent systems by an evolutionary mechanism that is
quite similar to genetic programming.

3. EVOLUTIONARY MODULAR NEURAL NETWORKS

3.1. Overview

In order to give autonomy and creativity to a neural processing system, it is
vital that the system itself have some mechanism to spontaneously generate
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Figure 1. Overall structure of modular neural networks.

change in its function and structure.17 The overall scheme of the proposed
system is presented in Figure 1. In this figure, there are three modules that are

Žconnected to each other with two kinds of links: one for information flow solid
. Ž .lines and the other for control flow dashed lines . These modules cooperate to

produce appropriate output to the actuator given some sensory inputs. The basic
idea is to consider a module as a building block that results in local representa-
tions by competition and to develop complex intermodular connections with an
evolutionary mechanism

The initial network architecture is encoded as a chromosome. In our work
to date, we have used a genetic encoding scheme that stores hierarchically the
wiring diagram for the network. The encoding has been developed to be robust
with respect to the genetic operators such as mutation and crossover.

3.2. Modular Neural Networks

The basic elements and structure of a module are designed to model
neocortical minicolumns, as first proposed by Murre, Phaf, and Wolters.18 The
activation value of each node is calculated as

e s w a t , 1Ž . Ž .Ýi i j j
j

where w denotes the weight of a connection from node j to node i. Thei j
effective input to node i, e , is the weighted sum of the individual activations ofi
all nodes connected to the input side of the node. The input may be either

Ž . Ž .positive excitatory or negative inhibitory .
A module based on such nodes is designed to model neocortical mini-

columns.18 The constraints embodied in the model include:

Ž .1 Dale’s principle that individual neurons emit only one type of transmitter.
Ž .2 Learning as a local phenomenon that does not require knowledge of the correct

response.
Ž .3 The capacity to differentiate between novel and familiar input and behave

differently on that basis.
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The internal connections in a module are fixed and the weights of all
intramodular connections are nonmodifiable as exemplified in Figure 2.

In a module, the R node represents a particular pattern of input activations
to a module, the V node inhibits all other nodes in a module, the A node
activates a positive function of the amount of competition in a module, and E
node activation is a measure of the level of competition going on in a module.
The process in a module goes with the resolution of a winner-take-all competi-
tion between all R nodes activated by input. In the first presentation of a
pattern to a module, all R nodes are activated equally, which results in a state
of maximal competition, which is resolved by the inhibitory V nodes. The most
important feature of a module is to autonomously categorize input activation
patterns into discrete categories, which is facilitated as the association of an
input pattern with a unique R node.

The Hebb rule is used for learning intermodular connections via the
equation

Dw t q 1 s m a K y w t a y Lw t w t a m s d q w aŽ . Ž . Ž . Ž .Ýi j t i i j j i j i f f t m EEž /
f/j

2Ž .

where a , a , and a are activations of the corresponding R nodes, respectively,i j f
Ž . Ž .w t is the interweight between R nodes j and i, w t indicates an interweighti j i f

Ž . Ž .from a neighboring R node f of j to R node i, and Dw t q 1 is the changei j
in weight from j to i at time t q 1. Note that L and K are positive constants,
and a is the activation of the E node. As a mechanism for generating changeE
and integrating the changes into a system, we use module duplication and

Ž . Ž .Figure 2. a Schematic of the internal structure of a module. b Simplified representa-
Ž .tion of the module in a .
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elimination, and an evolutionary algorithm to determine the parameters in the
above learning rule and the structure of intermodular connections.

3.3. Genetic Representation

The chromosome has a tree structure that expresses the intermodular
connections in which symbols are replaced by the corresponding modules. A
chromosome example is shown in Figure 3. Each node has a number represent-
ing a specific module and several parameters on the number of nodes, as well as
local settings of the learning and activation rules and the fixed internal weights
of intramodular connections. The root of the tree is the input module that

Ž . Ž .Figure 3. a Genetic code encoded by the tree structure. b A modular neural network
Ž .architecture developed by the chromosome of diagram a .
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replaces the start symbol. A child node has a module number to be applied to
the symbols that represent the modules connected by its mother module.

By performing the genetic operators in the chromosome pool, the intercon-
nection between modules as well as the number of them are changed. Designing
the chromosome to represent the interconnectivity makes it possible to generate
a variety of offspring and to evolve them.

3.4. Genetic Operators

The following genetic operators are used in our approach.

v 19Selection. Roulette wheel selection is used. In roulette wheel selection, each
individual survives to the next generation in proportion to its performance. Elitist
strategy 20 is also applied to the selection. Some of the best individuals in the
population are made to remain to the next generation. Elitist strategy prevents all
of the best individuals from being eliminated by stochastic genetic drifts.

v Crosso¨er. Crossover exchanges subtrees between two chromosomes. It is similar
to the operator used in genetic programming.20 By performing crossover, many
useful interconnection parts are gathered, and the intermodular connectivity

Ž .evolves. An example of the crossover is shown in Figure 4 a .
v Deletion. The deletion operator deletes a function block from a chromosome. It is

expected to delete useless parts in the chromosome. As a result, a more compact
Ž Ž ..individual with the same function is generated see Figure 4 b .

v Mutation. Mutation changes each tree node to a new node in proportion to the
mutation rate. The mutated node is replaced with the new node and then the
subtree below the original node is deleted. Next a new subtree is created below
the new node according to some probability. The main roles of the mutation are
enforcing local search and making slight modifications to the connectivity parts
obtained by crossover and duplication. An example of mutation is shown in

Ž .Figure 4 c .
v Insertion. The insertion operator is similar to duplication except that it inserts a

Ž Ž ..function block from another chromosome see Figure 4 d .
v 21Duplication. Duplication imitates the gene duplication in living creatures and

makes it possible to evolve the chromosome from a simple structure to a complex
one. It also increases the complexity of functions and expands the network size.
Duplication inserts a copy of a function block within the same chromosome. The
function block is the part of the chromosome where the nodes with the same
category appear in a list. Duplication leads to a functionally correct interconnec-
tion. Just after duplication is performed, the inserted function block does not
affect the individual’s behavior and is neutral. Therefore, duplication does not
change the functionality for the individual. The inserted block may be modified
by mutations and a new function might emerge. The other parts of the chromo-
some also change and the inserted block is incorporated into the whole behavior.

Ž .Figure 4 e shows an example.

4. SIMULATION RESULTS

In order to illustrate the potential of the proposed model, a data set of
handwritten digits was used as a source of both training and test samples.

Ž .Handwritten digits were inputted to the computer SUN workstation by a
Photron FIOS-6440 LCD tablet, which samples at the rate of 80 dots per
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Figure 4. Graphical explanation of the genetic operators used.
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second. A sample of the task was initially obtained by having different writers
draw 200 digits within prepared square boxes in order to facilitate segmentation.

The size of a pattern was normalized by fitting a coarse 10 = 10 grid over
each digit. The proportion of blackness in each square of the grid provided 100
continuous activation values for each pattern. Network architectures generated
by the evolutionary mechanism were trained with 100 patterns in two rounds of

Žsubsequent presentations. A single presentation lasted for 60 cycles i.e., itera-
.tive updates of all activations and learning weights . A fitness value was assigned

to a solution by testing the generalization performance of a trained network
with the untrained half of the 200 digits.

The initial population consisted of 100 neural networks having random
connections. Each network contains one input module of size 100, one output
module of size 10, and different numbers of hidden modules. The size in a
module means the number of R-V pairs, and every module can be connected to
every other module. The evolution parameters used in this experiment are as
follows: crossover is 0.5, mutation is 0.02, and insertion and deletion are 0.001,
respectively.

After making the population evolve, 10 networks were selected, and all of
the networks produced a recognition rate higher than 92%. Figure 5 shows the
best and average fitness changes in the course of evolution. As the figure
depicts, clearly the performance increases with increased generations, and after
the initial radical improvements the overall fitness stabilizes. Nearly all the best
networks present in the population after a few number of generations scored

Figure 5. Best and average fitness changes with increased generations.
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100% correct recognition rate for the training set and over 90% for the test set.
However, the generalization performance was gradually improved with addi-
tional training.

Ž .Figure 6 b shows a final network architecture producing the best result,
Ž .and Figure 6 a depicts the corresponding genetic code, which contains three

hidden modules of sizes 2, 3, and 5, implementing different subsystems that
cooperatively process input at different resolutions. The direct connection from
the input module to the output module forms the most fine-grained processing
stream. It is supplemented by a sophisticated modular structure that is globally
connected with the input and occupies two coarser processing streams as well as
local feedback projections.

Ž . Ž .Figure 6. a Genetic code encoded by the network producing the best result. b The
corresponding modular neural network architecture developed by the chromosome of

Ž .diagram a .
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Table I. A series of snapshots of the internal activations. The numbers in
Ž .each column represent the activated nodes and the asterisk ) means that

there is no node activated in the module.

Step Module 1 Module 2 Module 3 Module 4

1 0123456789 ) ) 01
2 0123456789 012 01234 01
3 0234567 012 034 01
4 023467 01 034 01
5 0237 1 034 01
6 27 1 03 01
7 2 1 03 0

In the course of simulation, for the trained patterns and the patterns that
are similar to the trained, the network produced direct activation through a
specific pathway. On the contrary, the network oscillated among several path-
ways to obtain a consensus for strange patterns. The basic processing pathways
in this case complemented each other to result in an improved overall catego-
rization. Furthermore, the recurrent connections utilized bottom-up and top-
down information that interactively influenced categorization in both directions.
The oscillation stops when the whole network stabilizes as only one R node at
the output module remains to be activated.

Table I shows a series of snapshots of the internal activations of the
Ž Ž ..network Fig. 6 b with an input pattern of class 2. This is not comparable to a

practical pattern recognizer, but we can assure that the proposed evolutionary
neural network works. Especially, we can appreciate that the effectiveness of
evolution for designing complex structures with some sophisticated network
architectures resulted from the evolution process.

5. CONCLUDING REMARKS

We have presented a preliminary design of a modular neural network built
by an evolutionary algorithm, rich in flexibility, adaptability to environmental
changes, and creativity. It has a modular structure with intramodular competi-
tion and intermodular excitatory connections. This sort of network will also
assume an important part in several engineering tasks exhibiting adaptive
behavior. We are currently endeavoring to apply this method to design a control
system for behavior based robots, especially the Khepera-type of robots.22
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