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ABSTRACT

In this review we discuss theories of the electroweak symmetry breaking sector in

which the W and Z interactions become strong at an energy scale not larger than a few

TeV.
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The standard SU(2)W ×U(1)Y gauge theory of the electroweak interactions is in good

agreement with all current experimental data [1]. Nonetheless, there is no direct evidence

that shows which mechanism is responsible for the breakdown of this symmetry to the U(1)

of electromagnetism. However, it is clear that additional clues to the physics of symmetry

breaking must appear at energies of order a TeV or lower. Consider a thought experiment

[2], the scattering of longitudinally polarized W+ and W−:
 

-

-

W

WL

+

L (1)

Using the Feynman-rules of the electroweak gauge theory we can calculate W+
LW

−
L scat-

tering at tree level. We find that this amplitude grows like E2
cm:

A =
g2s

8M2
W

(1 + cos θ∗) , (2)

plus terms that do not grow with s. Projecting onto the s-wave state, we find

Al=0 =
g2s

128πM2
W

∼
( √

s

2.5 TeV

)2

. (3)

Unitarity implies that some new physics has to enter to cut off the growth of this

amplitude before an energy of around 2.5 TeV[2][3]. That is, the dynamics associated with

EWSB has to appear before that energy scale. There are three possibilities:

• There may be additional particles with masses less than or of order of a TeV, or

• the W and Z interactions may become strong at energies of order a TeV, or

• both of the above.

This review discusses the theory of a symmetry breaking sector in which theW and Z

interactions become strong at or below an energy scale of order a TeV. For an introduction

to the phenomenology of a strongly-interacting symmetry breaking sector, we refer the

reader to the review of Chanowitz [4]. For a more detailed review of the phenomenological

situation at specific proposed colliders, such as the LHC or NLC, we refer the reader to

the sections on strongly coupled electroweak symmetry breaking in [5].

In the next section we discuss theories of electroweak symmetry breaking. In the

second section, we discuss the use of effective Lagrangians to describe the phenomenology

of a strongly-interacting symmetry breaking sector. In the third section, we discuss the

limitations of the effective Lagrangian framework. Our conclusions are presented in the

final section.
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1. Theories of Electroweak Symmetry Breaking

Theories of electroweak symmetry breaking may be classified by the energy scale of the

dynamics responsible for the symmetry breaking. There are theories, such as technicolor,

in which the physics responsible for symmetry breaking occurs at an energy of order a

TeV, and there are theories, such as the top mode standard model, in which the physics

is at a much higher energy.

We begin our discussion of theories of symmetry breaking with a description of the

successes and shortcomings of theories with fundamental scalars, in particular the stan-

dard one-doublet Higgs model. We argue that, because of triviality, any theory with

“fundamental” scalars can only be regarded as a low-energy effective theory for some more

fundamental dynamics at a higher energy scale which is ultimately responsible for elec-

troweak symmetry breaking. We further argue that when the scale of new physics is high,

the low-energy effective scalar theory is weakly-coupled and cannot give rise to strong W

and Z interactions at energies of order a TeV.

Next, we discuss technicolor, the prototypical theory of dynamical electroweak sym-

metry breaking. In technicolor theories the scale of the physics responsible for electroweak

symmetry breaking is of order a TeV. In contrast to theories with fundamental scalars,

these theories can give rise to strong W and Z interactions at energies of order a TeV.

We conclude with a discussion of theories in which the scale of the physics of elec-

troweak symmetry breaking may be adjusted to a value of order a TeV, in which case the

theory is technicolor-like, or to a much higher value, in which case the theory generally

contains light scalar particles which appear to be fundamental. As the scale of symmetry-

breaking physics is varied, the behavior of theW and Z scattering amplitudes interpolates

between the two extremes discussed above: when the scale of symmetry-breaking physics

is of order a TeV, the W and Z interactions can become strong; if the scale is much higher

they cannot.

1.1. The Standard One-Doublet Higgs Model and Generalizations Thereof

In the standard one-doublet Higgs model one introduces a fundamental scalar doublet

of SU(2)W :

φ =

(

φ+

φ0

)

, (1.1)
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which has a potential of the form

V (φ) = λ

(

φ†φ− v2

2

)2

. (1.2)

In the potential (1.2), v2 is assumed to be positive in order to favor the generation of

a non-zero vacuum expectation value for φ. This vacuum expectation value breaks the

electroweak symmetry, giving mass to the W and Z. When symmetry breaking takes

place, the four degrees of freedom in φ divide up. Three of them become the longitudinal

components, WL and ZL, of the gauge bosons, and the fourth, commonly called H (for

Higgs particle), is left over

φ = Ω

(

0
H+v√

2

)

. (1.3)

In (1.3), Ω is an SU(2) matrix. If we make an SU(2)W gauge transformation until Ω is

the identity, we arrive at unitary gauge.

The exchange of the Higgs boson contributes to WLWL scattering. In the limit in

which Ecm is large compared to the masses of the particles in the process, the leading

contribution (in energy) from Higgs boson exchange exactly cancels the bad high-energy

behavior displayed in eqn. (2)

H

W
L

H

W
L

W

W
L

L

+ → A = − g2s

8M2
W

(1 + cos θ∗) , (1.4)

plus terms which do not grow with energy. At tree-level the Higgs boson has a mass given

by m2
H = 2λv2. In order for this theory to give rise to strong W and Z interactions, it

would be necessary that the Higgs boson be heavy and, therefore, that λ be large.

This explanation of electroweak symmetry breaking is unsatisfactory for a number of

reasons. For one thing, this model does not give a dynamical explanation of electroweak

symmetry breaking: one simply assumes that the potential is adjusted to produce the

desired result. In addition, when embedded in theories with additional dynamics at higher

energy scales, these theories are technically unnatural [6] in the following sense: radia-

tive effects (e.g. one-loop contributions to the Higgs mass), are typically proportional to

whatever cutoff is put on the theory

<

> → δm2
H ∝ Λ2 . (1.5)
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More precisely, there is no ordinary1 symmetry protecting the mass of the Higgs. When a

fermion mass goes to zero, there is a chiral symmetry that protects the fermion mass from

getting large radiative corrections; the Higgs mass has no such protection in the standard

model. Therefore, the parameters of the theory must be carefully adjusted in order to keep

the weak scale of order 250 GeV. In particular, in a theory with a higher scale, such as a

Grand Unified Theory, there is no explanation for why the Higgs mass is not equal to the

GUT scale.

Perhaps most unsatisfactory, however, is that theories of fundamental scalars are

probably “trivial” [8], i.e., it is not possible to construct an interacting theory of scalars

in four dimensions that is valid to arbitrarily short distance scales. In quantum field

theories, fluctuations in the vacuum screen charge – the vacuum acts as a dielectric medium.

Therefore there is an effective coupling constant which depends on the energy scale (µ)

at which it is measured. The variation of the coupling with scale is summarized by the

β–function of the theory

β(λ) = µ
dλ

dµ
. (1.6)

The only coupling in the Higgs sector of the standard model is the Higgs self-coupling λ.

In perturbation theory, the β-function is calculated to be

→ β =
3λ2

2π2
. (1.7)

Using this β–function and the differential equation eq. (1.6), one can compute the behavior

of the coupling constant as a function of the scale2. One finds that the coupling at a scale

µ is related to the coupling at some higher scale Λ by

1

λ(µ)
=

1

λ(Λ)
+

3

2π2
log

Λ

µ
. (1.8)

In order for the Higgs potential to be stable, λ(Λ) has to be positive. This implies that

1

λ(µ)
≥ 3

2π2
log

Λ

µ
. (1.9)

1 In supersymmetric theories, the mass of the Higgs particle(s) are protected by the chiral

symmetry of their fermionic partners. In such theories, however, the scalar self-couplings are

related to the gauge coupling constants and, therefore, these theories do not give rise to strong

W and Z interactions [7].
2 Since these expressions were computed in perturbation theory, they are only valid when λ(µ)

is sufficiently small. We will return to the issue of strong coupling below.
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Thus, we have the bound

λ(µ) ≤ 2π2

3 log
(

Λ
µ

) . (1.10)

If this theory is to make sense to arbitrarily short distances, and hence arbitrarily high

energies, we should take Λ to ∞ while holding µ fixed at about 1 TeV. In this limit we see

that the bound on λ goes to zero. In the continuum limit, this theory is trivial; it is free

field theory.

The inequality above can be translated into an upper bound on the mass of the Higgs

boson[9]. From eq. (1.10) we have

Λ

µ
≤ exp

(

2π2

3λ(µ)

)

, (1.11)

but

m2
H ∼ 2v2λ(mH) , (1.12)

thus

Λ ≤ mH exp

(

4π2v2

3m2
H

)

. (1.13)

For a given Higgs boson mass, there is a finite cutoff energy at which the description of the

theory as a fundamental scalar doublet stops making sense. This means that the standard

one-doublet Higgs model can only be regarded as an effective theory valid below this cutoff.

The theory of a relatively light weakly coupled Higgs boson, can be self-consistent to

a very high energy. For example, if the theory is to make sense up to a typical GUT scale

energy, 1016 GeV, then the Higgs boson mass has to be less than about 170 GeV [10]. In

this sense, although a theory with a light Higgs boson does not really answer any of the

interesting questions (e.g., it does not explain why SU(2)W ×U(1)Y breaking occurs), the

theory does manage to postpone the issue up to higher energies.

The theory of a heavy Higgs boson (i.e. with a mass of about 1 TeV), however, does

not really make sense. Since we have computed the β-function in perturbation theory, this

answer is only reliable at energy scales at which λ(µ) (as well as the Higgs boson mass)

is small. Fortunately, non-perturbative lattice calculations are available. Early estimates

[11] indicated that if the theory was to make sense up to 4 TeV, the mass of the Higgs

boson had to be less than about 640 GeV. More recent results [12] imply that this bound

may be relaxed somewhat; one might be able to get away with an 800 GeV Higgs boson,

but the Higgs boson mass is certainly bounded by a value of this order of magnitude. The
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triviality limits on the mass of the Higgs boson imply that it is not possible for the WL

and ZL scattering amplitudes in the standard model to truly become large at energies well

below the cutoff. This result is especially interesting because it implies that if nothing

shows up below energies of the order 700–800 GeV, then something truly “non-trivial” is

going on. We just have to find it.

It is straightforward to generalize the one-doublet Higgs model to models with more

than one fundamental scalar doublet, or to models with scalars in other representations

of the SU(2)W [7]. In such theories, one or more particles with the quantum numbers of

the standard-model Higgs boson (as well as, potentially, particles of weak-isospin 2 [7][13])

contribute to WLWL scattering. However, all such models3 suffer from the problems

described above for the one-doublet standard model. In fact, because these theories involve

more scalar degrees of freedom, they typically have β-functions which are larger (more

positive) then the standard model. For this reason, the corresponding triviality constraints

on the masses of particles are typically stronger [14][13].

In addition, in models with more than one doublet of scalars, care must be taken to

insure that the weak-interaction ρ-parameter

ρ =
MW

MZ cos θW
, (1.14)

does not deviate significantly from one. In the standard model, this parameter is (at tree-

level) automatically equal to one. This is the result of an accidental symmetry [15]. While

the potential eqn (1.2) has only a manifest SU(2)W × U(1)Y invariance, it is actually

invariant under a global O(4) ≈ SU(2)L(W ) × SU(2)R symmetry. When symmetry break-

ing occurs, the symmetry breaking sector in the one-doublet Higgs model has a residual

SU(2)L+R “custodial” symmetry which ensures that the relation ρ = 1 is satisfied.

Finally, we note that any theory of electroweak symmetry breaking must also allow

for the symmetry breaking to be transmitted to the quarks and leptons, so that they

can become massive as well. In the standard model, fermion masses are obtained by

introducing Yukawa interactions that couple the Higgs doublet to the left- and right-handed

fermions. After the Higgs field develops an expectation value, the fermions obtain a mass

proportional to the Yukawa coupling. By choosing the Yukawa couplings appropriately,

3 Supersymmetric models have a Higgs sector containing two scalar doublets. In principle,

they are trivial as well. However, as noted above [7], the quartic couplings in such models are

typically quite small and the physics of symmetry-breaking may arise at much higher scales.
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one can accommodate the observed masses (and mixing angles) of the quarks and leptons.

Understanding the couplings of the fermions to the symmetry-breaking sector, therefore,

generally involves understanding the physics of flavor symmetry breaking. As we will not

be discussing the physics of flavor here, we will have little to say about the couplings of

ordinary fermions to the symmetry-breaking sector in the current review.

1.2. Technicolor

In models with fundamental scalars, electroweak symmetry breaking can be accommo-

dated if the parameters in the potential (which presumably arise from additional physics

at higher energies) are suitably chosen. By contrast, technicolor theories strive to explain

electroweak symmetry breaking in terms of physics operating at an energy scale of order

a TeV. In technicolor theories, electroweak symmetry breaking is the result of chiral sym-

metry breaking in an asymptotically-free, strongly-interacting gauge theory with massless

fermions. Unlike theories with fundamental scalars, these theories are technically natural:

just as the scale ΛQCD arises in QCD by dimensional transmutation, so too does the weak

scale v in technicolor theories. Accordingly, it can be exponentially smaller than the GUT

or Planck scales. Furthermore, asymptotically-free non-abelian gauge theories may be fully

consistent quantum field theories.

In the simplest technicolor theory one introduces a (massless) left-handed weak-

doublet of “technifermions”, and the corresponding right-handed weak-singlets, which

transform as N ’s of a strong SU(N)TC technicolor gauge group. In analogy to the (approx-

imate) chiral SU(2)L×SU(2)R symmetry on quarks in QCD, the strong technicolor interac-

tions respect an SU(2)L×SU(2)R global chiral symmetry on the technifermions. When the

technicolor interactions become strong, the chiral symmetry is broken to the diagonal sub-

group, SU(2)L+R, producing three Nambu-Goldstone bosons which become, via the Higgs

mechanism, the longitudinal degrees of freedom of theWL and ZL. Because the left-handed

and right-handed techni-fermions carry different electroweak quantum numbers, the elec-

troweak interactions break to electromagnetism. If the f -constant of the theory, the analog

of fπ in QCD, is chosen to be 246 GeV, then the W mass has its observed value. Further-

more, since the symmetry structure of the theory is precisely the same as that of the stan-

dard one-Higgs-doublet model, the remaining SU(2)L+R custodial symmetry insures that,

to lowest order in the hypercharge coupling, MW =MZ cos θW . As discussed in section 2,

at low energies, the phenomenology of a model with an SU(2)L × SU(2)R → SU(2)L+R

symmetry can be described in terms of an effective chiral Lagrangian.
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In addition to the “eaten” Nambu-Goldstone bosons, such a theory will give rise to

various resonances, the analogs of the ρ, ω, and possibly the σ, in QCD. In general, the

growth of the WL and ZL scattering amplitudes (eq. (2)) are cut off by exchange of these

heavy resonances,

 -

WL

W

W

W LL

L

L W

W W

WL

L L

just as in QCD the growth of pion–pion scattering amplitudes are cut off by QCD reso-

nances. Scaling from QCD, we expect that the masses of the various resonance will be of

order a TeV. Unlike the situation in models with only fundamental scalars in the symmetry

breaking sector, the scattering of longitudinal W and Z bosons can truly be strong. In

section 3 we will discuss the resonances that can occur in these models.

The symmetry breaking sector must also couple to the ordinary fermions, allowing

them to acquire mass. In models of a strong electroweak symmetry breaking sector there

must either be additional flavor-dependent gauge interactions [16], the so-called “extended”

technicolor (ETC) interactions, or Yukawa couplings to scalars [17] which communicate

the breaking of the chiral symmetry of the technifermions to the ordinary fermions. As we

are not discussing the physics of flavor, we refer the reader to ref. [18] for a recent review.

The technicolor theory may possess a global chiral symmetry group G larger than

SU(2)L × SU(2)R, which breaks to a subgroup H larger than SU(2). For example, it is

commonly assumed in ETC models that the ETC interactions commute with the ordinary

strong and electroweak interactions. In order to explain the masses of all observed fermions

these models must contain an entire family of technifermions with standard model gauge

couplings. Such models are referred to as one-family models and possess an approximate

SU(8)L×SU(8)R symmetry. In general, all that is necessary to break electroweak symme-

try is that the electroweak SU(2)W ×U(1)Y gauge group is embedded in G in such a way

that the only unbroken subgroup of the electroweak interactions in H is electromagnetism.

One consequence of having a larger global symmetry is that the f -constant of the

theory may be different from 246 GeV: if the theory contains ND doublets, all of which

contribute equally to the W and Z masses, the f -constant must be chosen to be 246/
√
ND

GeV. Furthermore, since there are generally more broken global symmetries than the three

associated with the weak currents, chiral symmetry breaking produces additional (pseudo-

)Nambu-Goldstone bosons. Since experiment tells us that these extra Nambu-Goldstone
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bosons cannot be strictly massless, other interactions (generally electroweak, color, or

ETC) must break the corresponding global symmetries.

Non-minimal models typically also possess a larger variety of resonances than the

one-techni-doublet model. As in the simplest technicolor model, it is the exchange of

resonances that cuts off the growth in the WL and ZL scattering amplitudes. In theories

with many doublets (or, in general, with many flavors [19], see the third section), since the

f -constant is generally smaller than 246 GeV, we expect that the masses of the resonances

are smaller than in the one-doublet model. In addition, because of the existence of other

pseudo-Nambu-Goldstone bosons, there may be sizable inelastic scattering amplitudes for

WL and ZL scattering.

1.3. Other Theories of Dynamical Electroweak Symmetry Breaking

There are also theories in which the scale (M) of the dynamics responsible for elec-

troweak symmetry breaking can, in principle, take any value of order a TeV or greater.

We will describe two classes of such models.

The first class of models, inspired by the Nambu–Jona-Lasinio (NJL) model [20] of

chiral symmetry breaking in QCD, involve a strong, but spontaneously broken, gauge inter-

action. Examples include top quark condensate (and related) models [21][22][23][24][25],

as well as models with strong extended technicolor interactions [26]. When the strength

of the effective four-fermion interaction describing the broken gauge interactions – i.e. the

strength of the extended technicolor interactions in strong ETC models or the strength of

other gauge interactions in top-condensate models – is adjusted close to the critical value

for chiral symmetry breaking, the high-energy dynamics may play a role in electroweak

symmetry breaking without driving the electroweak scale to a value of order M .

The second class are the Georgi-Kaplan Composite Higgs models [27]. In these, all four

members of a Higgs doublet are Nambu-Goldstone bosons arising from chiral symmetry

breaking due to a strong “hypercolor” interaction coupling to massless hyperfermions. In

these theories SU(2)W ×U(1)Y breaking is due to vacuum misalignment, typically because

of the presence of an extra chiral gauge interaction. By adjusting the strength of the extra

interaction responsible for the misalignment of the vacuum, it is possible to choose the

scale of chiral-symmetry breaking of the hypercolor interactions to be larger, possibly

much larger, than 1 TeV.
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The high-energy dynamics must have the appropriate properties in order for it to

play a role in electroweak symmetry breaking [28]: If the coupling constants of the high-

energy theory are small, only low-energy dynamics (such as technicolor) can contribute to

electroweak symmetry breaking. If the coupling constants of the high-energy theory are

large and the interactions are attractive in the appropriate channels, chiral symmetry will

be broken by the high-energy interactions and the scale of electroweak symmetry breaking

will be of order M . If the transition between these two extremes is continuous, i.e. if the

chiral symmetry breaking phase transition is second order in the high-energy couplings,

then it is possible to adjust the high-energy parameters so that the dynamics at scale

M can contribute to electroweak symmetry breaking. The adjustment of the high-energy

couplings is a reflection of the fine-tuning required to create a hierarchy of scales.

What is crucial is that the transition be (at least approximately) second order in

the high-energy couplings. If the transition is first order, then as one adjusts the high-

energy couplings the scale of chiral symmetry breaking will jump discontinuously from

approximately zero at weak coupling to approximately M at strong coupling. Therefore,

if the transition is first order, it will generally not be possible to maintain any hierarchy

between the scale of electroweak symmetry breaking and the scale of the high-energy

dynamics.

If the transition is second order and if there is a large hierarchy of scales (M ≫ 1 TeV),

then close to the transition the theory may be described in terms of a low-energy effective

Lagrangian with composite “Higgs” scalars – the Ginsburg-Landau theory of the chiral

phase transition. However, if there is a large hierarchy, the arguments of triviality given in

the first section apply to the effective low-energy Ginsburg-Landau theory describing the

composite scalars: the effective low-energy theory would be one which describes a weakly

coupled theory of (almost) fundamental scalars, despite the fact that the “fundamental”

interactions are strongly self-coupled!

For this reason, only models in which M is of order 1 TeV can result in strong WL

and ZL scattering amplitudes. In these models, while the extra “Higgs” scalars may

be relatively heavy, they may still be light enough that they should be included in an

effective-Lagrangian description of low-energy WL and ZL interactions. Furthermore, the

interactions of these scalars can differ significantly from those of the standard-model Higgs

boson [29]. The effective Lagrangian appropriate for describing the phenomenology of

these models is discussed in section 3.
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2. Effective Lagrangians and Electroweak Symmetry Breaking

The unknown high-energy physics responsible for electroweak symmetry breaking both

provides the weak bosons with mass and influences their interactions with one another and

with other particles. Hence, a meticulous investigation of the properties of the weak bosons

can provide clues to the nature of the symmetry breaking sector. The most efficient way

of proceeding is to identify a model-independent method of analyzing the relationship be-

tween the weak bosons’ properties and the high-energy physics responsible for electroweak

symmetry breaking. We discuss here the formalism of effective Lagrangians which will

enable us to focus on the known symmetry properties of the broken theory and to classify

interactions at energies below the symmetry-breaking scale in terms of their transformation

properties under the symmetry remaining at low energies. This emphasis on symmetry

will enable us to make quantitative statements about strongly-interacting dynamics for

which direct calculation is problematic.

2.1. Effective Lagrangians

An “effective” Lagrangian is one that affords an approximate description of physics at

energies below a designated cutoff scale Λ. The particle content and symmetry structure

of the effective Lagrangian are dictated by what exists at scales below the cutoff. The

presence of higher-energy physics and heavier particles is incorporated via the inclusion of

appropriate non-renormalizable terms. The terms in an effective Lagrangian are arranged

as an expansion in powers of momentum over the cutoff, Λ. Although there are an infinite

number of terms in this expansion, at low energy the first few terms can give a good

approximation. A familiar example of an effective Lagrangian is the V − A description of

the charged-current weak interactions at energies belowMW . The effective theory includes

non-renormalizable four-fermion contact interactions that result from “integrating out” the

propagating W boson that is present at higher energies.

The effective Lagrangian is in general non-renormalizable. That means that if calcu-

lated to an arbitrary number of loops, the renormalization of the theory would require an

infinite number of counterterms. There must be some organizational principle by which

some of the operators are included and others neglected in a particular calculation. More-

over this procedure has to be systematic, so that large contributions are not neglected at

any order in the expansion.

In general, the requirement is that Λ be much larger than the momentum scale p at

which the experiments are performed, and amplitudes are written as a power series in p/Λ.
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When one computes a low-energy amplitude to a given accuracy, we compute the required

numbers of terms in the momentum expansion. For example, in the V − A theory, the

cutoff scale is the mass of the W , and the momentum expansion is in terms of four-fermi

operators that contain extra derivatives and are suppressed by additional powers of 1/M2
W .

This expansion can be expected to work for momenta up to the cutoff.

In addition to powers of Λ suppressing the higher dimension operators, each operator

has a dimensionless coefficient C. But if an operator in this expansion had a coefficient C

very much greater than order 1, there would be some momentum scale p ≪ Λ at which

it could compete with lower dimension operators. This would imply that the momentum

expansion had broken down at p, well below Λ. Accordingly, every dimensionless coefficient

in the expansion is expected to be smaller than or of order one, at least if the cutoff is

really Λ.

It is possible to judge whether a given experiment can place useful limits on the

coefficients of terms in the effective Lagrangian. Say, for example, that given the cutoff

Λ we expect a particular coefficient C to be of order 1. If a proposed experiment can

only place an upper bound of 100 on that coefficient, the measurement is not likely to be

informative. On the other hand, if an experiment appeared to measure a definite value

of 50 for that coefficient, it would indicate that new physics enters at a scale lower than

expected – an informative outcome indeed!

As mentioned above, the longitudinal modes of theW and Z are the Nambu-Goldstone

bosons of a spontaneously broken SU(2)×U(1) symmetry. As we will see, their lowest-order

interactions are completely determined by the symmetry structure. Therefore, distinguish-

ing among different models of symmetry breaking will require more precise measurements

than might seem necessary at first glance, because any dynamics that is sensitive to the

precise nature of the symmetry-breaking sector is suppressed by powers of 1/Λ2. As in

the V − A example, the cutoff is at the mass of the physics that was integrated out – a

characteristic scale of the symmetry breaking. For example, in the standard model with

MW ≪ mH
<∼ 1TeV, Λ = mH , while in a technicolor model, Λ might be of order the mass

of the lightest techni-resonance.

Interestingly, there are additional constraints on the effective Lagrangian: the cutoff

scale Λ may not get arbitrarily large, and the C’s of the operators cannot get too small.

This is once again due to the non-renormalizable nature of the theory. The operators that

appear at any given order in the momentum expansion are needed as counterterms for loop

diagrams involving lower-order operators. If the cutoff Λ were very large or a particular
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C were very small, it would imply that the corresponding higher-dimension operator was

unimportant. On the other hand, the operator is a counterterm for loop diagrams involving

lower-dimension operators, and so it is unnatural to assume that the small renormalized

value of the coefficient is the result of a cancellation of a large bare coupling with a large

loop diagram. It is more natural to assume that the coefficients in the effective Lagrangian

are not too small, and Λ is not too big. This argument, known as Naive Dimensional

Analysis (NDA), implies that, for electroweak symmetry breaking, Λ <∼ 4πv. If this limit

is saturated, the coefficients C are of order one[30].

Our discussion in this section of the effective Lagrangian for electroweak symme-

try breaking is subject to the following constraints. We will assume that the longi-

tudinal W and Z are the only quanta in the strongly-interacting symmetry-breaking

sector that are light compared to the symmetry-breaking scale. This necessarily con-

strains the global symmetry-breaking pattern to be SU(2)L × SU(2)R/SU(2)L+R or

SU(2)L×U(1)R/U(1)L+R [31]. We remain mindful that the formalism is only valid in the

energy regime in which the momentum expansion is valid.

In discussing high-energy tests of the strongly-interacting symmetry-breaking sector,

we shall also rely on the “equivalence theorem” [2][32][33]. This states that in calculating

scattering amplitudes at center-of-mass energy E, one may replace external longitudinal

W and Z bosons by the corresponding Nambu-Goldstone bosons, up to corrections of

order MW /E. The resulting simplification is of particular use in discussing the two-body

scattering of longitudinal weak bosons.

2.2. The effective Lagrangian at order p2

Our next task is to construct an effective Lagrangian that will enable us to study the

interactions of the W and Z bosons. We consider the most general Lagrangian consistent

with the observed symmetry breaking pattern. We begin by considering a Lagrangian for

global symmetry breaking, in terms of the “eaten” Nambu–Goldstone bosons πa. These

fields are most conveniently written in the non-linear representation

Σ = exp(2iπaT a/f) . (2.1)

Here the T a are SU(2) generators normalized to Tr
[

T aT b
]

= δab/2, and f is the analogue

of the pion decay constant. Under a global chiral transformation, the field Σ transforms

as Σ → LΣR†, with L ∈ SU(2)L and R ∈ SU(2)R or U(1)R.
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If the only low-energy degrees of freedom of interest are the Nambu-Goldstone boson

fields themselves, the most general chirally invariant Lagrangian can be written as an

expansion in powers of derivatives of Σ [34][35]. There are no nontrivial chirally invariant

terms involving no derivatives. And there are only two terms with two derivatives[31]:

Lu2 =
f2

4
Tr ∂µΣ†∂µΣ+

f2

2
(ρ− 1)

[

TrT3Σ
†∂µΣ

]2
. (2.2)

Here ρ is an arbitrary coefficient; we will see below that it corresponds precisely to the

ρ parameter defined in eqn. (1.14) above. Note that the second term is only invariant

under U(1)R and not the full SU(2)R symmetry group. Terms with more derivatives are

suppressed by inverse powers of the momentum cutoff corresponding to the scale, Λ, at

which additional physics enters; we will discuss these operators shortly.

Up to now the discussion has been about global symmetries only, but to study the

interactions of the weak bosons, one gauges the chiral symmetries, identifying SU(2)L

with SU(2)W and the diagonal generator of SU(2)R (or the generator of U(1)R) with

U(1)Y , and employs the corresponding gauged Lagrangian. To lowest order this amounts

to gauging (2.2),

L2 =
f2

4
Tr

[

DµΣ†DµΣ
]

+
f2

2
(ρ− 1)

[

TrT3Σ
†DµΣ

]2
, (2.3)

where the covariant derivative is DµΣ = ∂µΣ + igWµΣ − iΣg′Bµ. and the gauge boson

fields are Wµ = W a
µT

a and Bµ = BµT
3. The full effective Lagrangian for the theory of

gauge and Nambu-Goldstone bosons is the sum of the lowest-order Lagrangian (2.3), the

usual gauge-boson kinetic energy terms

Lgauge =− 1

2
Tr [WµνWµν ]−

1

2
Tr [BµνBµν ] ,

Bµν = (∂µBν − ∂νBµ)T
3

Wµν =

(

∂µWν − ∂νWµ − i

2
g[Wµ,Wν ]

)

,

(2.4)

and gauge-fixing and Fadeev-Popov ghost terms.

To find expressions for the gauge boson masses in this effective theory, we rewrite the

order p2 Lagrangian in unitary gauge (where Σ = 1) and diagonalize the W3 − B mixing

matrix. The result is
g2f2

4
Wµ

−W+µ +
g2f2

8ρ cos2 θ
ZµZµ . (2.5)
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The photon Aµ = sin θW 3
µ + cos θBµ is massless. Since the mass of the W boson is

MW = gf/2, the Nambu-Goldstone boson decay constant f is equal to v ≡ 246 GeV.

As noted earlier, the parameter ρ equals 1 for a theory in which a custodial symmetry

SU(2)L+R remains after chiral symmetry breaking; otherwise the deviation of ρ from 1

measures the degree of custodial symmetry violation in the theory.

We can also obtain definitive expressions for two-body scattering of the Nambu-

Goldstone bosons (WL and ZL) that, like the W and Z masses, depend on v and ρ.

In the energy range where the effective Lagrangian and the equivalence theorem are both

valid, M2
W << s << Λ2, this can be done by expanding the Lagrangian (2.2) to determine

the 3-π and 4-π vertices, and then forming the amplitudes. The result is

M[W+
LW

−
L →W+

LW
−
L ] =

iu

v2ρ

M[W+
LW

−
L → ZLZL] =

is

v2

(

4− 3

ρ

)

M[ZLZL → ZLZL] =0 .

(2.6)

and the expressions for the W±
L ZL and W±

LW
±
L channels follow by crossing symmetry.

What is striking is that these tree-level expressions for longitudinal gauge boson scattering

at energies below the symmetry-breaking scale will be identical for any theory with an

SU(2)L × SU(2)R global symmetry structure at high energies. Hence, the expressions

(2.6) are known as the “low-energy theorems” for a strongly interacting symmetry-breaking

sector.

A wealth of data from LEP, SLAC and Fermilab now tell us that ρ equals 1 to a few

parts in a thousand [1][36] :

ρ− 1 = ±.004 . (2.7)

Therefore, for the rest of this article we shall assume that the pattern of symmetry breaking

is SU(2)L × SU(2)R/SU(2)L+R; the custodial symmetry that enforces ρ = 1 is present.

The only source of custodial symmetry breaking in our effective Lagrangian will be the

non-zero hypercharge coupling, g′.

2.3. The effective Lagrangian at order p4

So far, we have constructed an effective Lagrangian whose predictions depend only

on the symmetries of the electroweak symmetry breaking sector. In order to probe other

15



properties and differentiate among competing models, it will be necessary to include terms

in the Lagrangian that arise at higher order in the momentum expansion.

The next-to-leading order effective Lagrangian for the Nambu-Goldstone fields in-

cludes several terms containing four derivatives [34][37]:

Lu4 =
L1

16π2
{Tr(∂µΣ†∂µΣ)}2 +

L2

16π2
{Tr(∂µΣ†∂νΣ)}2 . (2.8)

All other possible four-derivative terms are linear combinations of these two or vanish by

the equations of motion.

The coefficients L1 and L2 are new parameters of the effective Lagrangian which are

not determined by the low-energy terms. The coefficients Li/16π
2 of the operators in (2.8)

are of order v2/Λ2. Therefore, the Li are of order one in a theory in which Λ ≈ 4πv. NDA

implies that Λ cannot be larger than this value. Different underlying theories of the high-

energy physics responsible for electroweak symmetry breaking will predict different values

for the Li. It is by measuring the physical observables related to these coefficients that

experiments will be able to constrain such models. If the Li are found to be significantly

larger than one, the scale Λ is less than 4πv.

Again, if we are interested in studying the loop-level properties of scattering ampli-

tudes involving the weak bosons, we employ a gauged effective Lagrangian. This looks

like:

L4 =
L1

16π2

[

TrDµΣ†DµΣ
]2

+
L2

16π2
TrDµΣ

†DνΣTrD
µΣ†DνΣ

− ig
L9L

16π2
TrWµνDµΣDνΣ

† − ig′
L9R

16π2
TrBµνDµΣ

†DνΣ

+ gg′
L10

16π2
TrΣBµνΣ†Wµν .

(2.9)

Unlike [38], we are not restricting ourselves to vectorial models with LL9 = LR9 .

We now relate these various coefficients to physical quantities that colliders are cur-

rently measuring or hope to bound in the future. We shall address sequentially the in-

formation provided by 2-point, 3-point and 4-point vertices involving gauge and Nambu-

Goldstone bosons.

• 2-point vertices

Radiative corrections from non-standard physics that alter the vacuum polarization

of the electroweak gauge bosons are known as “oblique” corrections [39]. Due to their

effects on many well-measured quantities, the oblique corrections provide some of the

most important limits on the electroweak symmetry breaking sector [35][40][41].
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It is conventional to describe the oblique corrections in terms of three ultraviolet-finite

combinations of vacuum polarizations [41]:

αS ≡4e2
[

Π′
33(0)− Π′

3Q(0)
]

αT ≡ g2

cos2 θm2
Z

[Π11(0)−Π33(0)]

αU ≡4e2 [Π′
11(0)−Π′

33(0)] .

(2.10)

where Π′(q2) ≡ dΠ(q2)/dq2. After calculating radiative corrections to an observable x, one

can write

x = xsm(mt, mH) + λx1S + λx2T + λx3U , (2.11)

where xsm includes all standard model contributions to x for given masses of the top

quark and Higgs boson, and the λxi are coefficients independent of mt and mH . When the

observables α, GF andMZ are used to define the parameters g, g′ and v in the electroweak

theory, αx3 is zero for all neutral-current and low-energy observables. The only measured

quantity depending on U is the ratio of the W and Z masses [41]; furthermore, since we

are assuming an approximate custodial symmetry holds, U/T ∼ m2
Z/Λ

2 << 1. If one

takes U ≈ 0, the S parameter measures weak-isospin-conserving oblique corrections from

new physics and T measures weak-isospin-violating contributions.

Examining the effective Lagrangian (2.9) in unitary gauge, we find that the only term

that includes a 2-point vertex is the operator with coefficient L10. This, then, is the

only operator that contributes to the oblique corrections at order p4. Since the L10 term

contributes an amount −q2L10(MZ)/16π
2 to the vacuum polarization Π33 −Π3Q, one has

[42]

L10 = − 1

π
S . (2.12)

We will find that this correspondence between L10 and S means that L10 is better con-

strained at present than any of the other Li.

The T parameter as defined above is related to the isospin-violating parameter ρ

encountered in the discussion of weak gauge boson masses

αT = ρ− 1 . (2.13)

We have already limited our discussion to theories in which the presence of an approximate

custodial SU(2)L+R symmetry enforces ρ ≈ 1. A non-zero value for the hypercharge

coupling does break the custodial symmetry, so that loop diagrams involving exchange
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of hypercharge bosons do contribute to non-zero T . If one is studying the energy range

MZ < E < mt, where the top quark is not present in the effective theory, then the absence

of a partner for the bottom quark introduces additional contributions to T .

Current limits on S and T derived from a global fit to data [1] are

S = −0.15± 0.25−0.08
+0.17, T = −0.08± 0.32+0.18

−0.11 . (2.14)

This implies the constraint

−.09 < L10 < 0.15 (2.15)

on the effective Lagrangian at order p4.

•3-point vertices

A popular topic in recent years 4 has been the study of the ability of collider experi-

ments to test the form and strength of the three-weak-gauge-boson vertices. While much

effort has been devoted to studying the potential of FNAL, LEP, LEP II, LHC, HERA

and various NLCs for measuring small deviations from the standard model predictions. It

seems clear that the prospects are dim [43]. Simply put, the only values of the Li that

would be accessible to any current experiment are so large that for any reasonable Λ they

contradict the rules discussed in section 2.1, which are an intrinsic part of the effective

Lagrangian. A similar statement can be made for any but the highest energy experiments

being planned. If any experiment at FNAL, LEP, LEP II, or HERA were to measure a

deviation from the standard model predictions, it would imply an Li so large that the scale

of new physics would have to be nearly as small as MW , invalidating the entire effective

Lagrangian approach.

In order to study non-standard contributions to the three-gauge-boson vertices, we

expand the effective Lagrangian (2.9) in unitary gauge and extract the terms with three-

point vertices. To make contact with the literature on this topic, it is convenient to organize

the three-point terms as follows:

L3−point
4 =− ie∗

cos θ

sin θ
gZ

(

W †
µνW

µ −WµνW
µ†)Zν

− ie∗
(

W †
µνW

µ −WµνW
µ†)Aν

− ie∗
cos θ

sin θ
kZW

†
µWνZ

µν − ie∗kγW
†
µWνA

µν ,

(2.16)

4 see e.g. Proceedings, International Symposium on Vector Boson Self Interactions, ed. by U.

Baur, S. Errede, T. Muller, UCLA, Feb. 1-3, 1995.
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where

gZ =
e2∗L

L
9

32π2 sin2 θ cos2 θ
+

e2∗L10

16π2 cos2 θ(cos2 θ − sin2 θ)
,

kZ =
e2∗(cos

2 θLL9 − sin2 θLR9 )

16π2 cos2 θ sin2 θ
+

2e2∗L10

16π2 cos2 θ sin2 θ
,

kγ = −e
2
∗
(

LL9 + LR9 + 2L10

)

32π2 sin2 θ
.

(2.17)

The coupling e∗ and mixing angle are defined by

e2∗/4π =α∗(MZ)

sin2 θ cos2 θ ≡ πα∗√
2GFm2

Z

.
(2.18)

Before discussing possible experimental limits, we should demonstrate the relationship

between our effective Lagrangian and a related formalism often used for discussion of weak

boson three-point vertices. The notation introduced in [44] for describing non-standard C

and P conserving contributions to weak-gauge-boson self-interactions is

i

e cot θ
LWWZ =g1(W

†
µνW

µZν −W †
µZνW

µν) + κZW
†
µWνZ

µν +
λZ
M2
W

W †
λµW

µ
ν Z

νλ

i

e
LWWγ =(W †

µνW
µAν −W †

µAνW
µν) + κγW

†
µWνF

µν +
λγ
M2
W

W †
λµW

µ
ν F

νλ .

(2.19)

In the standard model, one has g1 = κZ = κγ = 1 and λZ = λγ = 0; deviations from these

values are intended to parametrize the contributions of new physics. By comparing (2.19)

with (2.9) and (2.17) above, we find that g1, κZ and κγ are related to the Li by

g1 − 1
κZ − 1
κγ − 1







≈ α∗Li

4π sin2 θ
. (2.20)

If the Li are of order 1, the parameters κγ and κZ differ from unity by an amount

that is of order 10−3. It will be crucial to bear this in mind when evaluating experimental

measurements of deviations of three-point vertices from the standard model predictions.

The coefficients λγ and λZ in (2.19) accompany terms that are of higher order, p6,

in the momentum expansion. Therefore, they are related not to the Li discussed above,

but to coefficients of higher-order operators. Because we are constructing our effective

Lagrangian (2.9) as a systematic expansion in powers of p2/Λ2, if we were to include terms

of order p6, they would naturally be suppressed by a factor of 1/Λ2. For example, our

order-p6 Lagrangian would include a term like:
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Cv2

Λ4
Tr

[

DµΣ
†DµΣ

]3
, (2.21)

where C is order 1. Expressing the order p6 terms in (2.19) as part of such an effective

Lagrangian, we have
λZ,γ
M2
W

=
Cv2

Λ4
, (2.22)

This is consistent with the fact that we expect the effects of a strongly-interacting symmetry

breaking sector to vanish in both the limit of vanishing W mass (since no symmetry-

breaking will have been effected) and in the limit of a large symmetry-breaking scale. For

Λ ∼ 1 TeV, we expect

λZ,γ = C
M2
W

Λ4
≈ 10−4 . (2.23)

Again, the small value expected for λZ,γ will strongly influence our assessment of the utility

of planned experimental measurements.

Much has been written about how to use present or anticipated data to constrain

3-gauge-boson vertices; a compendium of results from energies high and low appears in

[45] . We shall summarize the salient points and indicate where the interested reader may

look for further details. We have chosen this route in large part because most present and

anticipated limits on the three-point Li (or equivalently on the λi and κi) are woefully

loose.

A straightforward calculation starting from the effective Lagrangian (2.16) reveals

the contribution that higher-dimension operators make to scattering processes involving

three-vector-boson vertices. It has been demonstrated that the various operators make

complementary contributions to different processes. Production (at an e+e− or hadron

collider) of pairs of Z bosons or of a W±W± final state does not involve a three-gauge-

boson vertex, and so is independent of the Li considered here. The process f f̄ → W±Z

involves L9L; the channel f f̄ → W±W∓ involves L9L and L9R; the channel f f̄ → W±γ

involves L9L, L9R and L10 [46][47][48][49][50][51]. Precision measurements of Z decays at

LEP are indirectly sensitive to L9L, L9R and L10 [52][53]; measurements of ep → νγX

at HERA could also potentially access those three Li [54]. At an eγ collider, the process

eγ → νWZ is affected by the L9L and L9R couplings [55].

When the cross-sections are compared with existing or projected data, the following

pattern emerges. The integrated luminosity accumulated at the Tevatron should restrict

the |κi − 1| and |λi| to be smaller than about 1 [46][56]. The limits from HERA are,
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perhaps, a little looser at present [54]. In other words, the constraints derivable from

existing data greatly exceed the natural values of the coefficients5

This situation will gradually improve at future colliders [43]. Experiments at LEPII

may improve the bounds on |κi − 1| and |λi| to something of order 0.1 [47], which would

imply new strongly coupled physics at Λ ≈ 300 GeV. Either the LHC [49][50][51][48][56]

or an NLC [47] with a center-of-mass energy of half a TeV could push this to roughly 0.01,

which would imply strongly interacting new physics at Λ ≈ 1 TeV. It would take an NLC

with
√
s ≥ 1 TeV to probe |κi − 1| or |λi| to anything near their minimum size of a few

times 10−3 [47]. In other words, only the highest-energy electron-positron colliders being

discussed today would have the resolution required to probe Λ ≈ 4πv.

• 4-point vertices

Direct tests of the four-point vertices must await the advent of high-energy colliders

capable of producing large numbers of high-momentum weak boson pairs. Two-body

scattering of weak bosons occurs at high-energy colliders like the LHC or NLC when gauge

bosons are radiated from the incoming fermions and then rescatter via a four-point vertex.

The four-point vertices of greatest interest for experimentally probing the nature of the

electroweak symmetry-breaking sector are those involving only longitudinal gauge bosons.

The VLVL → VLVL processes that they mediate are precisely those which the dynamics

associated with electroweak symmetry breaking must unitarize at an energy of 2.5 TeV

or less. As can be seen by inspecting the effective Lagrangian (2.9), four-point vertices

involving transverse, as well as longitudinal, gauge bosons will be affected by the higher-

order terms. However, scattering processes involving transverse gauge bosons suffer from

much larger backgrounds which would obscure the effects of the symmetry-breaking sector.

Many terms in our effective Lagrangian include pieces that correspond to four-point

vertices, but only two are relevant here. Since we care only about the four-point scattering

of longitudinal weak bosons, we can work in terms of the ungauged Lagrangian (2.2) and

(2.8). This eliminates the L9 and L10 terms, for example. Furthermore, the contributions

of the leading-order Lagrangian (2.2) will, by the low-energy theorems, be identical in any

symmetry-breaking sector with a given symmetry structure. This leaves us with the order

5 Current LEP data have been shown to place indirect bounds of order 20 on |L9L| and of

order 80 on |L9R| [52][53]. These bounds are based on loop-level calculations assuming that no

large tree-level contribution causes a significant cancellation of the effect.
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p4 Lagrangian (2.8); as we assuming an SU(2)L × SU(2)R/SU(2)L+R global symmetry-

breaking pattern, only the terms proportional to L1 and L2 are present.

There are several different physical scattering processes encompassed in the expression

VLVL → VLVL. Since we are assuming that our theory possesses an unbroken custodial

SU(2)L+R symmetry, the scattering amplitudes for the different proceses are related to

one another by crossing and SU(2)L+R symmetries. More precisely, if the amplitude for

the process W+
LW

−
L → ZLZL is given by

M(W+
LW

−
L → ZLZL) ≡ A(s, t, u) , (2.24)

where s,t,u are the usual Mandelstaam kinematic variables, then the amplitudes for the

other VLVL → VLVL processes are

M(W+
LW

−
L → W+

LW
−
L ) = A(s, t, u) +A(t, s, u)

M(ZLZL → ZLZL) = A(s, t, u) +A(t, s, u) + A(t, s, u)

M(W±
L ZL →W±

L ZL) = A(t, s, u)

M(W±
LW

±
L → W±

LW
±
L ) = A(t, s, u) +A(u, t, s) .

(2.25)

The tree-level contribution to A(s, t, u) from the low-energy theorem is

A(s, t, u)L.E.T. =
s

f2
. (2.26)

The tree-level contribution at order p4 from (2.8) is [50]

A(s, t, u)4 =
4

f4

(

2L1s
2 + L2(t

2 + u2)
)

. (2.27)

The form and symmetries of the amplitudes for the 2-body scattering of Nambu-Goldstone

bosons arising from the effective Lagrangian (2.8) have been discussed at length in [19][37].

The amplitudes we have written down for VLVL → VLVL scattering make it clear that

production of all of the different VLVL final states will be affected by the order p4 effective

Lagrangian coefficients L1 and L2. However, some final states lend themselves more readily

to the study of four-point vertices than others do. The W+
LW

−
L and W±

L ZL final states are

produced mostly through f f̄ annihilation rather than weak boson re-scattering; therefore

production of these states is more sensitive to alteration of the 3-gauge-boson vertex by

the L9 terms of (2.9) than to alteration of the 4-point vertex by L1 or L2 [51][49]. The

ZLZL final state cannot be produced through a 3-weak-boson vertex and therefore lacks
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the large f f̄ annihilation background; however there are backgrounds from continuum

ZZ production and (at hadron colliders) from gluon fusion through a top quark loop

[57]. The W±
LW

±
L final state has the distinct advantage of being free from order α2

continuum backgrounds; the largest backgrounds are from tt̄ production and decay and

from a mixed electroweak-strong process in which a gluon is exchanged between two initial-

state quarks which then each radiate a weak boson. The lower background rates in this

channel should allow the observation of signal events at relatively low invariant mass; since

theWW distribution functions fall with increasing invariant mass, this increases the signal-

to-background ratio. Indeed, the W±
LW

±
L channel appears to be most sensitive to L1 and

L2 once backgrounds, branching fractions and cuts are taken into account [58][49][57][59].

A good deal of effort has been directed at estimating the ability of proposed high-

energy colliders to constrain L1 and L2
6. It has been found that an NLC can probe the

coefficients L1 and L2 down to the level of 1-5 [60]. The LHC is projected to do even

better – measuring them to within their natural size of order 1 [57][49][45].

3. Beyond the Effective Lagrangian

The effective Lagrangians discussed in previous sections can never provide anything

more than a low energy description of symmetry breaking physics. Since they are non-

renormalizable, effective Lagrangians cannot be extended to arbitrarily high energies. Ul-

timately one wants to know the true structure of the strongly interacting theory.

Consider the interactions of the ordinary hadrons. The effective Lagrangian for the

low-energy states in QCD describes only the scattering of pions near zero momentum.

At energies above a few GeV one may use perturbative QCD to describe features of the

physics such as the rate of multijet events. In a sense, it is most difficult to describe the

range of energies between approximately 1 and 10 GeV. This is the region that contains

bound state resonances such as the ρ(770) and the baryons. The techniques for describing

this region are nowhere near as simple and beautiful as those that work for either low or

high energies.

In this section we wade into the bog of intermediate energy. We will go beyond

the dynamics of the longitudinal gauge bosons, to describe what happens when other

6 Current LEP data have been shown to place indirect bounds of order 20 on L1 and L2[52].

These bounds are based on loop-level calculations assuming that no large tree-level contribution

causes a significant cancellation of the effect.
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resonances appear. This discussion is speculative, because even in QCD the understanding

of this physics is difficult. No one really knows how it will look in theories that are

significantly different.

3.1. QCD-like Theories

In a technicolor theory with one doublet of techniquarks and three technicolors, the

spectrum should be the same as that of QCD, but scaled up by a factor of v/fπ [61].

Furthermore, all of the interactions of these techniparticles would be expected to mirror

those of the corresponding particles in QCD. For example, the ratio of the mass to the

width of the technirho should be the same as that of the ρ(770). This scenario is the

simplest technicolor model (though it is probably disallowed by experiment).

Gauging the lowest-order (two-derivative) effective Lagrangian for this model is not

very interesting. As we saw in the last section, in unitary gauge the symmetry breaking

sector is nothing more than a mass term for the gauge bosons, with no hint of the structure

of the higher energy theory. It is therefore imperative to find some way of going beyond

the lowest-order Lagrangian.

Section 2 discussed the most straightforward approach: include the four-derivative

terms of the effective Lagrangian. As shown there, this yields a description of the three-

and four-gauge-boson vertices. However, this method is not really adequate for the energy

regime in which a strongly interacting theory can be expected to become distinctive: only

in the region above 1 TeV will one expect that the πa scattering amplitudes become strong,

leading to the formation of resonances.

Consider the analogous situation in the ordinary strong interactions. At present, there

is no ideal way of parametrizing the energy region in which the bound-state resonances

occur. The techniques currently used to describe the plethora of resonances, such as the

non-relativistic quark model, are ad hoc and not based on either chiral symmetry or QCD.

In a QCD-like technicolor theory it is essential to preserve the chiral symmetry, because

that symmetry is gauged. What is frequently done is to include the lightest resonances

into the effective Lagrangian. So long as the dynamics are QCD-like, the lightest particles

are expected to be the vector resonances, the technirho and techniomega, which are the

analogues of the ρ(770) and ω(783). One hopes that in this way at least some of the

intermediate-energy region can be described.
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We now discuss two equivalent methods for including the vector resonances into the

effective Lagrangian [62]. The simplest way to include the ρ(770) into the effective La-

grangian for the strong interactions is as a “matter” field, an object that transforms ho-

mogeneously under chiral rotations. In order to include matter fields, one proceeds in two

steps. First, a field ξ is defined by

ξ2 = Σ . (3.1)

This field does not transform linearly under SU(2)L×SU(2)R rotations. Instead one must

define the matrix U by

ξ → LξU † = UξR† . (3.2)

Note that U will depend on ξ and hence on spacetime. The ρ field can now be included.

It written as a matrix

ρµ =
1

2
ρµi σi , (3.3)

where σi are the Pauli matrices and ρµi are three real fields. This field is taken to transform

as

ρµ → UρµU † . (3.4)

The kinetic energy term for ρ is then

LKE = −1

2
Tr(dµρν − dνρµ)2 , (3.5)

where dµ is a chirally covariant derivative, defined by

dµρν ≡ ∂µρν + iV µρν − iρνV µ , (3.6)

and

V µ = − i

2
(ξ†∂µξ + ξ∂µξ†) . (3.7)

This is a chirally covariant derivative, in the sense that

dµρν → dµ(UρνU †) = U(dµρν)U † . (3.8)

The mass term for the ρ is

Lm = m2
ρTrρ

µρµ . (3.9)
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The chirally covariant derivative can act on the fields of other particles that are included in

the effective Lagrangian. For example, if the nucleon doublet N is included, it transforms

as N → UN . Its kinetic energy and mass terms are

LB = N̄(i6d+mN )N . (3.10)

One then proceeds to add all possible chirally invariant terms to the Lagrangian. For

example, the term that couples the ρ to the nucleon is just

LρNN = gρN̄ 6ρN . (3.11)

In this formulation, it is a mystery why the ρ appears to dominate the vector current form

factor of the nucleon, and why its couplings appear to be universal.

Frequently, a different approach is used: the ρ(770) is included as a gauge particle of a

broken “hidden local symmetry”7. The goal is to give some explanation of the universality

of the ρ couplings to other particles. One can show the equivalence of the two approaches

by defining

ρnew = ρ+ gρV
µ , (3.12)

where here gρ acts as a gauge coupling constant. The chirally covariant derivative that

acts on other fields in the Lagrangian is

dµnew = ∂µ + igρρ
µ
new . (3.13)

One may as usual define a “field strength” tensor

Fµν =
1

i
[dµnew, d

ν
new] , (3.14)

and then the kinetic energy term of the ρ meson is

LKE = −1

2
TrFµνFµν , (3.15)

and the mass term of the ρ field is

Lm = mρTr(ρ
µ
new − gρV

µ)2 . (3.16)

7 When this method of including the vector mesons is used in the electroweak theory, it is

known as the BESS model[63].
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When an effective Lagrangian is built out of dnew, the ρ has universal couplings to the

nucleons and other particles. However, any chirally invariant term that can be built in the

“matter” formulation of the previous paragraph will continue to appear in this approach. In

other words, it is still possible to add additional ρ–nucleon couplings by adding additional

operators, such as

LρNN = hN̄(6ρnew − gρ6V )N . (3.17)

The mystery of the universality of the ρ couplings persists in this formulation of the theory,

but now it takes a different form. Now we need to know why the new coupling h is so

much smaller than one expects.

While it is true that every vertex in the “matter field ρ” Lagrangian can be written

in the “gauge field ρ” Lagrangian, the power counting of the operators is somewhat dif-

ferent in the two approaches. In the latter approach, mρ gets renormalized only by terms

proportional to powers of gρ. Only in the “gauge field ρ” method can one understand a

light, weakly coupled vector.

On the other hand, it is not really strictly valid to include the ρ(770) in the effective

Lagrangian description of QCD. The effective Lagrangian breaks down at a scale near

Λ. If Λ were much greater than 770 MeV, then one would expect to see a big hierarchy

between the ρ(770) and other physics. This does not appear to be the case; once 770 MeV

is reached the resonances come thick and fast. Another way of saying this is that when

the ρ is included as a gauge field, the coupling gρ is of order 4π. By analogy, it is likely

to be invalid in a strict sense to include the technirho in the effective Lagrangian for a

technicolor sector, because neither formulation has a valid procedure for the inclusion of

technirho loops or higher-derivative multipion operators.

However, for the simpler purposes of calculating event rates, inclusion of the tech-

nirho into the effective Lagrangian and working at tree level is actually quite useful. It

does yield a qualitatively reasonable, gauge invariant amplitude for gauge boson scatter-

ing. There have been numerous papers that have looked at the possibility of seeing the

low-lying hadronic resonances at colliders[4][33][64][65], but many of these papers discuss

observability at 17 TeV or 40 TeV machines. At present, more work is needed to determine

exactly where the window of discovery is at the 14 TeV LHC.
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3.2. Limits of the Effective Lagrangian

In this paper we have mentioned examples of technicolor models with various numbers

of flavors. In such models the symmetry breaking pattern is SU(Nf )L × SU(Nf )R →
SU(Nf )L+R. For example, Nf = 2 in the simplest technicolor model and Nf = 8 in

the one-family model. We begin by deriving some formulas implementing the extension

to SU(Nf ) of the custodial symmetry. We will use these results to explore the scale Λ

at which the effective Lagrangian breaks down, and to argue that the number of flavors

directly influences the mass of resonances, such as the technirho [19].

As stated in the introduction, the chiral symmetries of technicolor are generally only

approximate symmetries. In addition to the three “eaten,” exact Nambu-Goldstone bosons,

there are often additional pseudo-Goldstone bosons. If the mass of a typical pseudo-

Goldstone boson is m, the effective Lagrangian is also an expansion in m2. For simplicity,

we consider a chiral symmetry breaking interaction that does not break the conserved

SU(Nf )L+R vector symmetry. Such a chiral symmetry breaking term gives the same mass

to all Nambu–Goldstone bosons.

Consider the scattering process πaπb → πcπd. The amplitude for such a process may

be decomposed into irreducible representations of the unbroken SU(Nf )L+R. Since the π’s

are in the adjoint representation of this symmetry, one needs to know the representation

content of adjoint ⊗ adjoint. For Nf = 2 there are three representations, corresponding

to the isospin 0, 1, and 2 channels. For Nf = 3, the representations are the familiar

1, 8a, 8s, 27, 10, and 10 in 8⊗ 8. For Nf > 3, there are always seven representations. Of

greatest interest for our purposes will be the singlet representation, in which the incoming

π’s have the same flavor: a = b.

We can construct the most general amplitude for ππ scattering consistent with Bose

symmetry, crossing invariance, and SU(Nf )L+R conservation. If we define dabc and fabc

by

fabc = −2iTr[T a, T b]T c and dabc = 2Tr{T a, T b}T c , (3.18)

then the most general amplitude is

a(s, t, u)a,b;c,d =δabδcdA(s, t, u) + δacδbdA(t, s, u) + δadδbcA(u, t, s)

+ dabedcdeB(s, t, u) + dacedbdeB(t, s, u) + dadedbceB(u, t, s) ,
(3.19)

where s, t, and u are the Mandelstam variables and A and B are unknown functions. Bose

symmetry implies that the functions A and B must be symmetric under the exchange
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of their second and third arguments. From this amplitude we may derive the scattering

amplitude of, for example, the singlet representation:

a0(s, t, u) =(N2
f − 1)A(s, t, u) +A(t, s, u) +A(u, t, s)

+
(N2

f − 4)

Nf
(B(t, s, u) +B(u, t, s)) .

(3.20)

We may, as usual, project this amplitude onto its various (even) orbital angular momentum

components. The functions A and B will be such that all these partial wave amplitudes

obey the usual unitarity relations.

One may use the two-derivative effective Lagrangian to compute the invariant func-

tions A and B: A(s, t, u) = (2/Nf )(s−m2)/f2, and B(s, t, u) = (s−m2)/f2. The isosinglet

spin-zero scattering amplitude is therefore [66]:

a00 =
Nfs

32πf2
− m2

16πNff2
. (3.21)

It will be important below to note that this scattering amplitude is enhanced by a factor

of Nf .

We have seen in previous sections that the most general chirally invariant Lagrangian

can be written as an expansion in powers of derivatives. Additional terms with more

derivatives are suppressed by powers of the momentum scale that we have denoted Λ. The

effective Lagrangian is an expansion in p2/Λ2 (and m2/Λ2).

At energies near or above Λ, all terms in the expansion contribute and the effective

Lagrangian becomes useless. The amplitude a00 calculated at tree level is real, and (for

small m2) exceeds 1 when
√
s > 4πf/

√

Nf . A physical scattering amplitude must lie

on or inside the Argand circle, but the point a00 = 1 is far outside. At these energies,

therefore, loop corrections and higher order terms in the effective Lagrangian must make

as large a contribution as the two-derivative term, and the calculation using just the lowest

order effective Lagrangian ceases to be useful. This suggests that Λ is less than or of order

4πf/
√

Nf , as was emphasized in [67]8.

An alternative approach which puts the same limit on Λ is based on an estimate of the

size of loop corrections [30]. Since the theory is not renormalizable, the terms of order p4 are

required as counterterms to loops involving the lowest order interactions. In calculating the

scattering amplitude to order p4, one must consider tree-level diagrams with interactions

8 Note that in section 2, Nf = 2 and the factor of 1/
√

Nf was neglected.
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coming from operators of fourth order in momenta, and one-loop diagrams using the two-

derivative terms in the effective Lagrangian. Similarly, the two-loop calculation using the

lowest order effective Lagrangian will require counterterms of order p6, etc.

In doing the one-loop calculation, it is unnatural to assume that the contribution from

the loop diagrams is much larger than that from the tree-level four-derivative operators,

since such a statement could only be true for a particular choice of renormalization scale9.

Therefore it is inconsistent to assume that the corrections to ππ scattering of order p4 are

less than or of order (
√

Nfp/4πf)
2 where p is a typical momentum in the process – meaning

that it is unrealistic to assume that the coefficients of the higher order four-derivative terms

in the effective Lagrangian are smaller than about Nf/16π
2f2.

It is possible to show that this pattern persists to all orders: with each additional loop,

the corrections are a factor of order (
√

Nfp/4πf)
2 times the previous correction. Again,

this implies that at any order in the momentum expansion, the mass scale Λ suppressing

the higher derivative terms cannot be much larger than 4πf/
√

Nf .

3.3. Implications for New Physics

Some interesting questions arise at this point. We have argued that the momentum

expansion breaks down at or before Λ, but what actually happens to the amplitudes as

s increases beyond this value? What is the significance of Λ? The amplitudes for the

partial waves other than a00 are all below their unitarity limits when
√
s = 4πf/

√

Nf .

Is it possible that, like ΛQCD, Λ is a purely calculational artifact corresponding to no

particular physical structure?10

In the effective Lagrangian the multiderivative terms contribute an arbitrary polyno-

mial in s, t, and u to the scattering amplitude:

∑

k

ak
p2

f2

(

p2

Λ2

)k−1

(3.22)

9 The explicit calculation [19] of the one loop corrections to the tree-level functions A and B

shows that the results are factors of order Nfs/(16π
2f2) or Nfm

2/(16π2f2).
10 Ref [68] argues for this interpretation. In the absence of any well-motivated way to calcu-

late these field theories, any such argument, including the one presented in this paper, is fairly

speculative. However, in certain toy models the argument presented here can be made rigorous

[69].
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where all the ai are numbers of order 1. When does such a series fail to converge? Since

the ak are of order one, the radius of convergence is Λ. Because the series diverges at

energies higher than Λ, the momentum expansion (to any, arbitrarily high, finite order)

cannot give a good approximation to the scattering amplitude at energies beyond Λ.

It is plausible that the effective Lagrangian can accurately match the scattering am-

plitude out to the first non-analytic structure representing new physics. This is because

the S matrix is an analytic function of momenta, except at isolated points where inter-

mediate states go on shell. All the non-analytic structures in the scattering amplitudes

corresponding to multipion states are correctly included at some order in the momentum

expansion by the pion loop calculations - what is not properly included are effects of other

states. For example, in QCD there is a pole in the S matrix at the ρ(770) mass. Above

mρ, the effects of a term like 1/(p2 −m2
ρ) in the S-matrix this can never be reproduced as

a finite power series in positive powers of p. The series has to be resummed in some way.

If this argument is correct, then it follows that Λ is precisely the mass of the lightest

non-analytic structure in the S-matrix. The conclusion is that new physics is lighter than

a scale of order 4πf/
√

Nf .

The implications for technicolor and strongly interacting field theories in general may

be substantial. In the case of technicolor, it may be that the new physics that comes in

at this low scale is the technirho. If this is true then the technirho mass suggested by

the simple scaling argument may be a significant overestimate. In this case, if the vector

dominance relations continue to hold, then the simplest estimates of oblique radiative

corrections in technicolor models, such as those in [35] and [41], may be rather unreliable

[70]. If technicolor somehow manages to evade the problems from radiative corrections,

the lightness of the vector bosons may make them interesting for future colliders [71].

Even if non-perturbative physics has nothing to do with electroweak symmetry break-

ing, the arguments of this section may be of interest for ordinary QCD. The idea that the

masses of the resonances depend on the number of light flavors may seem counterintuitive.

If the charm, strange, top, and bottom quarks were as light as the up and down, the

ratio mρ/fπ would be substantially altered. However, in a non-relativistic quark model

neither the ρ nor π contains anything other than the first generation quarks. Understand-

ing the effects discussed in this section may have something to do with understanding the

difficulties [72] with quenched chiral perturbation theory [73].
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3.4. A “Hidden” Symmetry Breaking Sector

As we have seen, the most direct probe of the symmetry breaking sector is the scatter-

ing of longitudinal W and Z bosons. That is because at energies large compared to their

mass, the longitudinal components of these particles are (essentially) the eaten Nambu–

Goldstone Bosons of SU(2)W × U(1)Y symmetry breaking [33]. Section 1 discussed var-

ious possibilities for the new physics that enters at the scale Λ: in the weakly coupled

one-doublet Higgs model, it was the light and narrow Higgs boson; in minimal technicolor,

the exchange of the technirho and other particles unitarizes gauge boson scattering.

It is frequently assumed that these two types of behavior for elasticW and Z scattering

are generic (see, for example [4],[59]). If the symmetry breaking sector is weakly coupled,

the growth of the WLWL scattering amplitudes is cut off by narrow resonances (like a

light Higgs boson) at a mass scale well below a TeV. For strongly coupled theories, it is

assumed that the amplitudes saturate unitarity and that there are broad resonances in the

TeV region where the strong interaction sets in.

There is another possibility: if the electroweak symmetry breaking sector has a large

number of particles, the elastic W and Z scattering amplitudes can be small and struc-

tureless, i.e. lacking any discernible resonances. Nonetheless, the theory can be strongly

interacting and the total W and Z cross sections large: most of the cross section is for

the production of particles other than the W or Z. In such a model, termed a “Hidden

Symmetry Breaking Sector” [74], discovering the electroweak symmetry breaking physics

depends on the observation the other particles and the ability to associate them with sym-

metry breaking. Physicists should keep an open mind about the experimental signatures

of the electroweak symmetry breaking sector because discovery of electroweak symmetry

breaking may not rely solely on two-gauge-boson final states.

This scenario may be illustrated by considering a toy model of the electroweak sym-

metry breaking sector based on an O(N) linear sigma model. This model is particularly

interesting since it can be solved (even for strong coupling) in the limit of large N [75].

One constructs a model with both exact Nambu–Goldstone bosons (which will represent

the longitudinal components of the W and Z) and pseudo-Goldstone bosons. To this end

let N = j + n and consider a model with j- and n-component real scalar fields. One can

construct a theory that has an approximate O(j + n) symmetry which is broken softly

but explicitly to O(j) × O(n). A vacuum expectation value, breaks the O(j) symmetry

to O(j − 1), and the theory has j − 1 massless Nambu–Goldstone bosons and one mas-

sive Higgs boson. The O(n) symmetry is unbroken, and there are n degenerate massive
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pseudo-Goldstone bosons, which we refer to as ψs. It is possible to solve this model in the

limit that j, n→ ∞ with j/n held fixed11.

The scalar sector of the standard one-doublet Higgs model has a global O(4) ≈
SU(2) × SU(2) symmetry, where the 4 of O(4) transforms as one complex scalar dou-

blet of the SU(2)W × U(1)Y electroweak gauge interactions. This symmetry is enlarged

in the O(N) model: the spin-0 weak isosinglet scattering amplitude of longitudinal gauge

bosons is modeled by the spin-0 O(j) singlet scattering of the Nambu–Goldstone bosons

in the O(j+n) model solved in the large j and n limit. Of course, j = 4 is not particularly

large. Nonetheless, the resulting model will have all of the qualitative features needed,

and the Nambu–Goldstone boson scattering amplitudes will be unitary (to the appropri-

ate order in 1/j and 1/n). Thus this theory can be used to investigate the scattering

of Nambu–Goldstone bosons at moderate to strong coupling [77]. Since they are mostly

produced via their strong interactions, the electroweak quantum numbers of the pseudo-

Goldstone bosons can be anything; here we assume that the pseudo-Goldstone bosons are

SU(3) color singlets12.

Nambu–Goldstone boson scattering in an O(N) → O(N − 1) model is in some ways

similar to that in the SU(Nf ) × SU(Nf ) model considered above. For example, the

amplitude aij;kl(s, t, u) for the process πiπj → πkπl is

aij;kl(s, t, u) = A(s;M)δijδkl + A(t;M)δikδjl +A(u;M)δilδjk , (3.23)

where A(s;M) is some function. This O(N) theory is soluble to leading order in 1/N , so

A may in fact be computed to this order without any assumptions. In the equation above

M is a parmeter with dimensions of mass that specifies the strength of the self-coupling

of the symmetry breaking sector. It is essentially a cutoff, and so the smaller M is, the

stronger the self-coupling. The isospin-zero amplitude spin-zero is therefore calculable to

order 1/N too; it is

a00(s) =
jA(s;M)

32π
. (3.24)

Plotted in fig. 1 is the absolute value of a00 vs. the center-of-mass energy for different

values of M . We have set j = 4, as always. We have also set the number of pseudo-

Goldstone bosons, n, to 32. The pseudogoldstone bosons have a mass mψ = 125 GeV.

11 For the complete details of the construction and solution of this model, see [74] and [76].
12 Gauge boson pair production in models with colored pseudo-Goldstone bosons is discussed

in detail in [78].

33



The curves plotted correspond to approximately 8M/mψ = 10000, 600, 200, 100, and 60.

For the weakly coupled theory, for example the 10000 curve, there is a light Higgs boson

which decays to π’s. When the Higgs boson is light, its width is more or less unaffected by

the heavy ψ’s, and thus its properties are identical to those of the Higgs boson of similar

mass in the O(j) model [77]. As the Higgs resonance gets closer to the two ψ threshold,

it gets relatively narrower than it would have been were the ψ’s absent. As the theory

becomes more strongly coupled still, the resonance gets heavier and broader. Eventually,

for small enough M , the imaginary part of the location of the pole is so great that there

is no discernible resonance in a00.

When the Higgs resonance is heavier than twice mψ , it no longer decays exclusively

to π’s, and thus the absolute value of the amplitude for elastic ππ scattering never gets

anywhere near 1. Probability is leaking out of this channel into that for the production of

pairs of ψ’s. For comparison, the dashed line shows the scattering amplitude in the limit

mψ → ∞ with M adjusted to produce a Higgs resonance at approximately 500 GeV.

In the gauged model, the π’s are eaten by the gauge bosons, and become their lon-

gitudinal components. Therefore, ππ final states correspond to two-gauge-boson events.

In this toy model the Higgs resonance may be light but so broad that at no energy is the

number of WW or ZZ events large; discovering the Higgs boson depends on its observa-

tion in the two ψψ channel. Depending on how the ψ’s decay, this may be easy or hard.

Nonetheless, it is clear that an experiment looking for electroweak symmetry breaking may

not be able to rely exclusively on the two-gauge-boson events. Parton level computations

have indicated [79] that it is probably not possible to detect this symmetry breaking sector

at the proposed LHC by examining the gauge-boson-pair modes exclusively13.

This section has shown that it is possible for the W and Z scattering amplitudes to

be small and structureless: if the symmetry breaking sector contains a large number of

particles in addition to the longitudinal gauge bosons, there may be light but very broad

13 This claim is disputed in [80]. There it was shown that the numbers of final state gauge

boson pairs from gauge boson scattering is roughly independent of N if
√
NM is held fixed. This

is because as N increases for fixed
√
NM , M and the mass and width of the Higgs boson decrease

like 1/
√
N . The increased production of Higgs bosons due to their smaller mass is approximately

cancelled by the Higgs boson’s smaller branching ratio into W s and Zs. The number of signal

events, therefore, is approximately independent of N and is the same as the number which would

be present in the standard model. However, the background rate is much larger, because the Higgs

boson is much lighter, and this renders the signal unobservable.
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“resonances”. The ability to discover the electroweak symmetry breaking sector depends on

the observability of technipions other than the longitudinal gauge bosons [64]. Associating

the technipions of this model with electroweak symmetry breaking will be crucial.

4. Conclusions

In this review we have discussed theories in which the W and Z interactions become

strong at an energy scale of order a TeV or less. We began with a survey of the range

of theories which have been constructed to explain electroweak symmetry breaking. We

argued that the putative triviality of theories with fundamental scalar particles implies that

any theory with a large hierarchy between the weak scale and the scale of the dynamics

responsible for producing electroweak symmetry breaking must be weakly interacting. This

implies that if the W and Z interactions are strong at energies of order a TeV or less, the

physics responsible for electroweak symmetry must become apparent at the same energy

scale.

We then reviewed the use of the effective Lagrangian to describe the physics of any

strongly-interacting symmetry breaking sector at energies lower than the mass of the light-

est resonance. Limits on the values of low-energy parameters (e.g. S or L10, and T ) provide

the most significant constraints on the strongly-interacting symmetry breaking sector.

In order to discover the physics of the symmetry breaking sector it will be necessary to

probe physics at energy scales of order a TeV. In a strongly-interacting symmetry breaking

sector we expect that a plethora of new resonances will appear at these energies to cut off

the growth of the WL and ZL scattering amplitudes. As we discuss in the last section, the

effective Lagrangian ceases to be a useful description at an energy scale of order the mass

of these resonances. Further, we argued that, in order for the effective chiral Lagrangian

to be self-consistent, the mass scale of the resonances must be lighter than or of order

4πf/
√

Nf .

Finally, it is often assumed that if the W and Z interactions are strong, there will

always be large W and Z scattering cross section at high energies. We concluded with a

description of the “hidden” symmetry breaking sector in which, although the WL and ZL

interactions are strong, the elastic scattering amplitudes are always small and structureless.
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Figure Captions

Fig. 1. The absolute value of the ππ → ππ scattering amplitude vs. CM energy for

different values of M . Here j = 4, n = 32, mψ = 125 GeV, and f = 250

GeV. The curves correspond to roughly 8M/mψ ∼ 10000, 600, 200, 100, and

60. The curve with the leftmost bump is 10000, and the low nearly structureless

curve is 8M/mψ ∼ 60. For comparison, the dashed line shows the scattering

amplitude in the limit mψ → ∞ with M adjusted to produce a Higgs resonance

at approximately 500 GeV.
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