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The Mystical Power of Twoness:
In Memoriam Eugene L. Lawler

Jan Karel Lenstra
Eindhoven University of Technology; CWI, Amsterdam

Abstract. This paper reviews the work of Eugene 1. Lawler, one of the
early investigators of combinatorial optimization and the architect of deter
ministic machine scheduling theory. After sketching his research career and
examining the development of his interests, I describe some of his seminal
results in scheduling theory and recall one of his contributions to scientific
journalism.

1. Introduction
Eugene L. Lawler (1933-1994) was one of the earliest researchers who con
centrated on combinatorial optimization as a field of investigation. His text
book on networks and matroids is a classic, and several of his papers became
benchmark references. His research in sequencing and scheduling was instru
mental in stimulating and unifying an area that, prior to his work, was a
rather unsystematic hodgepodge. He also made significant contributions to
algorithmic graph theory, complexity theory, and computational biology. In
addition, he was a phenomenal expositor, and he was the social conscience
of the Computer Science Division at Berkeley.

In this paper I attempt to review his work, with an emphasis on his re
search in deterministic machine scheduling. The paper is based on a lecture
given at the 16th International Symposium on Mathematical Programming
in Lausanne on August 25, 1997. It supplements the personal reminiscences
that he wrote in 1991 [23] and an obituary that appeared in 1994 in Optima,
the newsletter of the Mathematical Programming Society [39]. A selection
of his publications [1] and two issues of Mathematical Programming contain
ing fourteen papers dedicated to his memory [30] will appear shortly.

2. An overview in six dimensions
Gene Lawler went to college in Tallahassee, Florida. He began graduate
study at Harvard in 1954. After interruptions by law school, the army and
employment at a real job shop, he obtained his PhD in Applied Mathematics
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in 1962. He then joined the faculty of Electrical Engineering at the Univer
sity of Michigan in Ann Arbor. In 1970 he moved to the EECS Department
at the University of California in Berkeley. He died on September 2, 1994.

Figure 1 is a map of his scientific life. Time runs vertically. His career
is represented by the vertical bar at the left-hand side. Figure l(a) lists his
publications, with algorithmic or analytical approaches indicated by capitals
and problem areas by colors. Figure l(b) classifies the publications according
to style. Figure 1(c) gives a further partitioning of the papers on scheduling
problems.

Some caveats are in order. I have applied a fair amount of judgemental
rounding in classifying the publications, especially in deciding about the
algorithmic approach taken. Several D papers also deal with B or E, and
the last scheduling paper is not only A but also E. I have included only final
publications and deleted prepublications as well as translations (into Czech,
Dutch, Hungarian, and Japanese).

Figure l(a) shows that Gene, after his early work in switching theory,
became interested in combinatorial optimization. Most of his work is con
cerned with networks and matroids or sequencing and scheduling, perhaps
with a gradual shift from the former area to the latter. In the 1990's, he
turned to combinatorial problems in the new field of computational biology.

The algorithmic approaches also show a clear picture. He started by
studying enumerative methods, first branch-and-bound and then dynamic
programming. Under the influence of complexity theory, he became inter
ested in polynomial-time optimization and, later and to a lesser extent, in
performance guarantees for polynomial-time approximation algorithms. I
will return to this development in Section 3.

Figure l(b) highlights two books: his textbook on networks and matroids
[17] and an edited collection of chapters on the traveling salesman problem
[26]. Especially the first book had a pronounced impact and is as useful
today as it was in 1976. He contributed a number of influential surveys,
most notably on branch-and-bound (see Section 3), well-solvable cases of
the TSP [8], and scheduling [10, 21,27]. His lucid writing style and innate
wit made him a superb scientific journalist. The Sputnik paper [20] will
serve as an example in Section 6.

The classification given in Figure 1(c) will be discussed in Section 5.

3. Early work
I will explore the development of Gene's research interests by examining
nine publications from the period 1962-1975.
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E.L. Lawler. Some aspects of discrete mathematical programming. PhD
thesis, August 1962; Report BL-31, Computation Laboratory, Harvard Uni
versity, Cambridge, MA (1963). - Gene's thesis deals with integer program
ming. He applies local search avant la lettre and branch-and-bound in the
footsteps of Willard Eastman. To my knowledge, Eastman's thesis of 1958
[7] is the earliest publication on branch-and-bound in the operations re
search literature, predating the celebrated paper by Little, Murty, Sweeney
and Karel by five years. The majority of Gene's work in switching theory is
also concerned with enumerative methods based on tree search.

E.L. Lawler. The quadratic assignment problem. Management Science
9 (1963), 586-599. - Gene's first paper in combinatorial optimization is still
an important reference. Some later papers on special cases of the quadratic
assignment problem propose lower bounds that are dominated by the bound
developed here.

E.L. Lawler, D.E. Wood. Branch-and-bound methods: a survey. Op
erations Research 14 (1966), 699-719. - This is a great survey. It unifies
approaches that originated in distinct areas. The LP-based integer program
ming methods of Land, Doig and Dakin, Balas' additive algorithm for the
same problem, the synthesis and covering algorithms for switching circuits
proposed by Roth, Karp and Lawler, the game trees from artificial intel
ligence, and the backtrack methods from combinatorics are all put in the
branch-and-bound framework. The paper became a citation classic [22].

At this point, Gene had paid his dues to branch-and-bound. His research
was moving to more structured forms of enumeration. I remember that, at
Bernard Roy's 1974 Versailles Summer School on Combinatorial Program
ming, where we first met, he tallied the papers presented and commented
that there was too much branch-and-bound to his liking. It is not that
he came to dislike the approach. He admired his younger colleagues who
turned it from an art into a science and who used Lagrangian relaxation
and polyhedral combinatorics in replacing branch-and-bound by continue
to-bound-and-avoid-to-branch. But he followed his own gifts and redirected
his interests to pseudopolynomial and truly polynomial algorithms.

E.L. Lawler, J.M. Moore. A functional equation and its application to re
source allocation and sequencing problems. Management Science 16 (1969),
77-84. - Gene became the wizard of finite-state dynamic programming re
cursions. Among his many papers on the approach, the most salient ones
are the Lawler-Moore paper and his 1977 paper on a pseudopolynomial-time
algorithm for minimizing total tardiness on a single machine [18].

E.L. Lawler. Optimal cycles in doubly weighted directed linear graphs.
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In: P. Rosenstiehl (editor). Theory of Graphs, International Symposium.
Gordon and Breach, New York, NY (1967),209-213.

E.L. Lawler. A solvable case of the traveling salesman problem. Mathe
matical Programming 1 (1971),267-269.

E.L. Lawler. Optimal sequencing of a single machine subject to prece
dence constraints. Management Science 19 (1973), 544-546. - Three short
papers presenting polynomial-time solutions for the ratio cycle problem in
graphs, a special case ofthe TSP, and a minmax scheduling problem. Gene's
interest in well-solvable TSP's led to his co-authorship of Chapter 4 of the
TSP book [8], which spawned much research on the subject. The scheduling
paper will be discussed in Section 5.

E.L. Lawler. Matroid intersection algorithms. Mathematical Program
ming 9 (1975), 31-56. - As Gene has commented elsewhere [23], his work
on matroid optimization was inspired by the insights of Jack Edmonds. It
culminated in this landmark paper, which gave a polynomial-time algorithm
for finding an optimum intersection of two matroids. It is undoubtedly the
most important "mystical 2" in his work. Gene was not the only one who
found out that often 2 is easy while 3 seems undoable.

R.M. Karp. Reducibility among combinatorial problems. In: R.E.
Miller, J.W. Thatcher (editors). Complexity of Computer Computations.
Plenum Press, New York, NY (1972), 85-103. - An explanation was provided
by Dick Karp's famous paper on computational complexity, in which he es
tablished NP-completeness of 21 fundamental problems. Dick attributes
two reductions to Gene: from Vertex Cover to Directed Hamiltonian Cir
cuit and from Exact Cover to 3-Dimensional Matching. The latter result
gives another mystical 2: 2-dimensional (or bipartite) matching is easy but
3-dimensional matching is hard. Gene would invariably comment that this
is why a world with two sexes has been devised.

A quite different mystical 2 in his life was his habit of having second
thoughts about the topic of his talks. His preferred subject was what he
had been working on the night before. At the 1974 Versailles conference he
was asked to talk about the quadratic assignment problem. He suggested
complexity but was not allowed any second thoughts. He then gave, after
hours, an illicit talk about NP-completeness.

Eventually, Gene was not primarily interested in what makes a problem
hard but in what makes it well solvable, or approximable within a decent
bound. In other words, he was concerned with the mystical 2 rather than
the magical 3. At the same time, he knew the limitations of worst-case
guarantees on running time or solution quality. Probabilistic analysis may
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not have been his favorite approach, but he was fully convinced of the im
portance and computational power of superpolynomial techniques such as
branch-and-bound and local search.

4. Scheduling theory is something of a jungle
There is a bewildering variety of problem types in deterministic machine
scheduling theory. The investigation of their complexity status is not as
simple as "2 is easy, 3 is hard," and may surprise and confuse the analyst.
Let me give an example.

A single machine needs to process a finite set N of jobs. The machine is
available from time 0 onwards and can process at most one job at a time.
Each job j E N requires processing during an uninterrupted period of length
Pj; it is convenient to write P = "LjEN Pj' We wish to find a schedule of
minimum length. This is trivial: any schedule without machine idle time
has length P and is optimal. When we introduce a second machine, the
problem becomes NP-hard: a schedule of length P/2 exists if and only if
the set of processing times can be split into two subsets of equal sum. We
now allow job preemption; a job may be split but cannot be processed by
both machines at the same time. The problem becomes easy again: if there
is a job that is longer than the others together, it gets a machine on its
own and the other jobs go on the second machine; otherwise, we schedule
the jobs in arbitrary order on one machine, at time P/2 we interrupt the
job that the machine is working on, we start its remainder at time 0 on the
second machine, and continue with the jobs that are left. Returning to the
single-machine problem, we now introduce job release dates and stipulate
that a job cannot start before it is released. The problem remains easy: just
schedule the jobs in order of nondecreasing release dates. We then add job
deadlines, by which the jobs must be finished. A simple application of the
equal-split argument tells us that the problem has become NP-hard.

We discard release dates and deadlines but change the objective. We
wish to find a schedule that minimizes the sum of the job completion times,
not their maximum. This problem is solved by the SPT rule: put the jobs
in order of nondecreasing processing times. When we add a second machine,
the problem remains easy (SPT still works), but when we add release dates
instead, it becomes NP-hard (by a less obvious reduction). This is the
reverse of what we saw for the makespan objective.

Figure 2 depicts the situation in English and in what Gene called Sched
ulese, the language proposed by Graham et al. [10] as a revision of the
classification system devised by Conway, Maxwell and Miller in their book
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Figure 2. Reducibility among scheduling problems.
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Theory of Scheduling (1967).
The above example illustrates a game that Dick Karp, Ben Lageweg,

Gene and I played on an afternoon in September 1975 in the old Mathema
tisch Centrum in Amsterdam, amid its characteristic smell of overworked
copying machines and stale beer. (The Amstel brewery was next door.)
We soon realized that we needed the aid of a computer. Ben wrote a pro
gram that generated 4,536 problem types, involving a single machine, iden
tical, uniform and unrelated parallel machines, open shops, flow shops, job
shops, various sorts of job characteristics such as preemption, precedence
constraints, release dates and deadlines, and eight optimality criteria. With
the known results as input, the program classified each problem as solvable
in polynomial time, NP-hard, or open. The most useful part of the output
was given by the borderlines: the maximal easy problems, the minimal and
maximal open ones, and the minimal hard ones. Each new listing of open
problems contained targets that we had overlooked in the previous round.

The computer-aided game started when we decided on a surprise for
Alexander Rinnooy Kan on the occasion of his thesis defense. A listing of all
scheduling problems with their complexity status seemed a good complement
to his thesis. The surprise to us was that Ben's program proved to be a much
more useful research tool than we had anticipated [15, 16]. This does not
imply that all of those 4,536 problems are for real. Many of them are quite
artificial and exist only because a computer has generated them.

The automatic classification system is presently maintained by Peter
Brucker and Sigrid Knust at the Universitat Osnabriick for an extended
class of deterministic machine scheduling problems; see
http://www.mathematik.uni-osnabrueck.de/research/OR/classt.

5. Precedence constraints and preemption
When we were generating random walks in scheduling space in 1975, Gene's
main interest was not in NP-hardness proofs but in polynomial-time algo
rithms. His principal concern was the algorithmic treatment of precedence
constraints and preemption. Figure 1(c) supports this observation: almost
40% of his scheduling work dealt with precedence constraints and over 40%
with preemption. Gene's last manuscript on scheduling [24] considers prece
dence constraints with communication delays; see Section 7. His last re
search discussion was about staircase algorithms for handling preemption
on parallel processors.

In Section 3 his Management Science paper of 1973 was cited. It gives a
solution to the following problem. A finite set N of jobs is to be processed
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on a single machine. Each job j E N has a processing time Pj and a
nondecreasing cost function h; if job j is completed at time t, a cost fj(t) is
incurred. Furthermore, a digraph G with vertex set N is given; if G contains
a path from job j to job k, then k cannot start before j has been completed.
We wish to find a schedule that satisfies the precedence constraints and
minimizes the maximum job completion cost.

We need some notation: LeN is the set of jobs without successors
in G, P = LjEN Pi is the schedule length, and /*(8) is the cost of an
optimal schedule for the job set SeN. The least cost last rule selects a job
I E L satisfying fl(P) = miniEL fj(P), puts job 1 in the last position of the
schedule, and repeats. Why does this work? We clearly have f*(N) ~ fl(P)
and f*(N) ~ f*(N \ {l}), and hence

f*(N) ~ max{fl(P), f*(N \ {l}n·
But the right-hand side of this inequality is precisely the cost of an optimal
schedule under the condition that I is scheduled last.

The original proof uses a job interchange argument. Gene's above more
elegant proof extends to the case that there are release dates and preemption
is allowed [3]. Without release dates, there is no use to preemption; with
release dates, the nonpreemptive case is NP-hard.

A problem that occupies a central position in Gene's work is the mini
mization of total weighted completion time on a single machine subject to
precedence constraints. Each job j E N now also has a weight Wj and,
if Cj denotes its completion time, we wish to find a schedule minimizing
LjEN WjCj. In the absence of precedence constraints, Smith's ratio rule
[35] uses a simple job interchange relation to show that the jobs must be
scheduled in order of nondecreasing values Pi/Wj. Various special types of
precedence constraints can still be solved in O(n log n) time, typically by
a decomposition approach that is based on a string interchange relation.
Horn [11] solved the case of tree-type constraints, Lawler [19] and Monma
and Sidney [32, 33] handled series-parallel constraints. Very recently, Goe
mans and Williamson [9] gave a new prooffor Gene's algorithm, using a lin
ear programming formulation of the precedence-constrained single-machine
problem due to Queyranne and Wang [34], which completely describes the
scheduling polyhedron in the case of series-parallel constraints. Gene's NP
hardness proof for general precedence constraints [19] was a breakthrough
at the time.

Series-parallel digraphs already occur in Gene's very first paper [29]. A
digraph is series-parallel if its transitive closure is transitive series-parallel,
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• is tsp

o is tsp & 0 is tsp ~ 0 -- 0 is tsp and 8 is tsp

(a) Composition of transitive series-parallel (tsp) digraph.

(b) Decomposition of series-parallel digraph.

z
(c) Smallest non-series-parallel digraph.

Figure 3. Series-parallel precedence constraints.

which means that it can be recursively composed as follows (cf. Figure 3(a»:
the digraph with a single vertex and no arcs is transitive series-parallel,
and if the digraphs (Vt , At) and (V2 , A2 ) are transitive series-parallel with
vt nv2 = 0, then so are the series composition (VtUV2 , At UA 2U(Vt xV2»and
the parallel composition (Vt U V2 , At U A2 ). Series-parallel digraphs can be
recognized in linear time [37]; the smallest digraph that is not series-parallel
is the Z-digraph shown in Figure 3(c).

The structure of a series-parallel digraph is displayed by a decomposi
tion tree (cf. Figure 3(b)). Its leaves are the vertices, a P-node represents
parallel composition, and an S-node represents series composition with the
convention that left precedes right. The scheduling algorithms work their
way up the tree and construct an optimal schedule for a parent node out of
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the schedules for its children.
Let us now turn to preemption. Gene often cited an experimental law,

which states that a preemptive problem should not be harder that its non
preemptive counterpart. Indeed, in many cases, the former problem is easier
than the latter, and the distinction has the same flavor as that between lin
ear and integer programming. But experimental laws have experimental
exceptions. Here I know of 1.5 exceptions.

One exception occurs in job shop scheduling. IT no preemption is allowed,
there are two nice mystical 2's: the 2-job problem is easy [2], the 2-machine
problem with a fixed number of jobs is easy [4], and the 3-machine 3-job
problem is NP-hard [36]. IT preemption is allowed, the 2-machine 3-job
problem turns out to be NP-hard [5], a surprising and unsettling result that
oversteps the law.

Half an exception occurs in scheduling unrelated parallel machines. Here
each of n jobs is to be processed by one of m machines, and putting job
j on machine i takes time Pij. If we wish to minimize schedule length,
everything is as it should be. The nonpreemptive case is NP-hard, because
it is a generalized packing problem; the preemptive case can be solved by
an LP-based algorithm due to Lawler and Labetoulle [25]. If the objective
is the sum of the completion times, the nonpreemptive case is a bipartite
matching problem: allocating job j to the kth last position on machine i
gives a contribution of kPij to the objective [12, 6J. The preemptive total
completion time problem, however, is one ofthe more vexing open questions.

Gene made important contributions to preemptive scheduling: the LP
based algorithm cited above, the staircase algorithm for minimizing make
span on uniform parallel machines subject to release dates with Jacques
Labetoulle and others [14J, and the polymatroidal flow algorithm for the
same problem with release dates and deadlines with Chip Martel [28J.

6. The great mathematical Sputnik of 1979
The Sputnik paper, which appeared in The Sciences and The Mathemati
cal Intelligencerin 1980 [20], is Gene's most memorable foray into scientific
journalism. It deals with the advent of the ellipsoid method, but also with
the way in which professional journalists handle their material.

In January 1979, Rainer Burkard brought a Doklady paper to Oberwol
fach, which he had obtained through a Polish colleague. The author was
Leonid Khachiyan, the result was that the ellipsoid method solved linear pro
gramming problems in polynomial time, and the proofs were lacking. Gene
brought the paper to Amsterdam, made a rough translation with the help
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of Milan Vlach, a visitor from Prague, and sent it around. Within weeks,
the result had been verified, and the West knew about it before the Doklady
issue had made it to the libraries. Science published a well-researched article
about Khachiyan's achievement. A New York Times journalist managed to
grossly misinterpret the Science article and reported on the front page that
the TSP had been solved. All over the world, headlines appeared of the sort
"A Soviet Discovery Rocks World of Mathematics," "Soviet Mathematician
Is Obscure No More," "Discovery Rocks World of Math, Computers," and
"The Russian Genius Who Has Rocked the Computer World." It took some
time before the dust settled. At the end, the Times printed a half-baked
retraction.

The following is a quotation from the Sputnik paper.

The Times story appears to have been based on certain unshak
able preconceptions of its writer, Malcolm W. Browne. Browne
telephoned George Dantzig of Stanford University, a great pi
oneering authority on linear programming, and tried to force
him into various admissions. Dantzig's version of the interview
bears repeating. "What about the Traveling Salesman Prob
lem?" asked Browne. "If there is a connection, I don't know
what it is," said Dantzig. ("The Russian discovery proposed an
approach for [solving] a class of problems related to the 'Traveling
Salesman Problem'," reported Browne.) "What about cryptog
raphy?" asked Browne. "If there is a connection, I don't know
what it is," said Dantzig. ("The theory of codes could eventually
be affected," reported Browne.) "Is the Russian method prac
tical?" asked Browne. "No," said Dantzig. ("Mathematicians
describe the discovery ... as a method by which computers can
find solutions to a class of very hard problems that has hitherto
been attacked on a hit-or-miss basis," reported Browne.)

7. Communication delays
In the past decade, much attention has been paid to multiprocessor schedul
ing subject to precedence constraints with communication delays. With each
arc (j, k) in the precedence digraph, a delay Cjk is associated; if jobs j and
k are allocated to different machines, then k can only start Cjk time units
after the completion of j.

The presence of positive communication delays implies that, among all
the direct successors of a job, at most one, its favored child, can start at
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its completion time; both jobs must then be allocated to the same machine.
All the other successors will incur a delay. Similarly, among the direct
predecessors of a job there is at most one favored parent. The need to choose
favored children and parents causes an additional combinatorial difficulty,
which implies that minimizing makespan is already NP-hard in case m ?: n,
Le., in the absence of machine capacity constraints.

Let us assume that we have m identical parallel machines, n unit-time
jobs, and unit-time communication delays. Without delays, the case of
tree-type constraints and the case of general precedence constraints and 2
machines are both solvable in linear time. With delays, the former problem
is NP-hard [31] and the latter problem is open (constituting an annoying
2 rather than a mystical 2). Gene's contribution [24, 38] is a linear-time
algorithm for tree-type constraints that computes a schedule whose length
exceeds the optimum by no more than m - 2 time units; hence, its solves
the 2-machine problem to optimality.

I will give an outline of Gene's approach. Let the precedence constraints
be given in the form of an outforest F. A schedule is said to have the favored
child property if every parent has exactly one child scheduled earlier than
the others. An interchange argument shows that there exists an optimal
schedule with the favored child property.

Given a choice of favored children, it is easy to find a minimum-length
schedule. First, replace each arc (j, i) E F by an arc (k, i) whenever j has
a favored child k ;/; l; call the new outforest F. Next, ignore the delays and
schedule F in linear time, e.g., by Hu's algorithm [13).

It is apparently hard to make an optimal choice of favored children. It is
easy, however, to make a choice of favored children that yields an outforest
F* of minimum depth, and thereby solves the problem in case m ?: n. For
each job j, the depth dj of the subtree of F* rooted at j is given by

dj = 1 when j is a leaf,
dj = max{l +max(j,k)EF dk , 2 +max 2(j,k)EFdk} when j is not a leaf,

where the max 2-term denotes the highest d-value among the children of j
after a child with highest d-value has been deleted. For any parent job in
F, any child with maximum d-value is chosen as its favored child.

This choice is not too bad when m is given as part of the problem in
stance. It requires a careful argument to show that it has the absolute
performance guarantee mentioned above, so that it is optimal for m = 2.
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8. Closing remarks
Life is more than scientific achievement. I find it difficult to imagine anyone
who enjoys life more than Gene did. He was a remarkable man, not only
because of his inquiring mind, but also because of his expository gift and
his personal commitment.

His expository talent was, to a large extent, related to his style of re
search. He usually preferred to do things his own way, by going back to
the original question, identifying what he saw as the essential difficulty, and
eventually achieving a deeper insight as a result. He would apply the same
principle when he had difficulties in understanding cumbersome presenta
tions of other people's work. By taking a fresh look at things, he often
arrived at a simpler proof of a more general result.

His commitment was in no way restricted to topics of research. He was
ready to approach any issue, scientific or not, in an intelligent and thought
provoking way. Throughout his years at Berkeley, he did everything imag
inable to make the university a more humane and more stimulating place to
study. He helped the individual student fight the bureaucracy, and reformed
what the university taught and to whom it taught. He showed a true and
pure interest in other people. It made him the most honest and inspiring
friend one could wish to have.
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