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Abstract 

We investigate proving termination of term rewriting systems by interpretation of 
terms in a compositional way in a total well-founded order. This kind of termination is 
called total termination. On one hand it is more restrictive than simple termination, on 
the other it generalizes most of the usual techniques for proving termination. For total 
termination it turns out that below fO the only orders of interest are built from the natural 
numbers by lexicographic product and the multiset construction. By examples we show 
that both constructions are essential. For a wide class of term rewriting systems we prove 
that total termination is a modular property. Most of our techniques are based on ordinal 
arithmetic. 

1 Introduction 

One of the main problems in the theory of term rewriting systems (TRS) is the detection of 
termination: for a fixed system of rewrite rules, detect whether there exist infinite rewrite 
chains or not. In general this problem is undecidable ([7, 2]). However, there are several 
methods for deciding termination that are successful for many special cases. Roughly these 
methods can be divided into two main types: syntactical methods and semantical methods. 
In a syntactical method terms are ordered by a careful analysis of the term structure. A well­
known representative of this type is the recursive path order ([3]). All of these orderings are 
simplification orderings, i.e., a term is always greater than its proper subterms. An overview 
and comparison of simplification orderings is given in [14]. 

Here we focus on a semantical method: terms are interpreted compositionally in some 
well-founded ordered set. This is done in such a way that each rewrite chain will map to a 
descending chain, and hence will terminate. The general framework has been introduced in 
[15]. One problem is how to choose a suitable well-founded ordered set. The variation among 
well-founded ordered sets is so unwieldy that some restriction is reasonable. A natural way is 
the restriction to total orders: then the ordered sets correspond to ordinal numbers, having a 
very elegant structure that has been studied extensively in the past. This kind of termination 
of term rewriting systems is called total termination. 

Total termination turns out to be a slightly stronger restriction than simple termination. 
However, most of the general techniques of proving termination like polynomial interpretations 
([11,1]), elementary interpretations ([12]), recursive path order with status and Knuth-Bendix 
order with status, all fit in the notion of total termination. 

This paper is an investigation of total termination, in particular of which totally ordered 
sets are useful. One of the main conclusions is that apart from some minor exceptions only 
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ordinals of the shape wO: are of interest. The basic observation leading to this result is the 
following. The existence of a binary operation in a total well-founded order that is strictly 
monotonous in both coordinates implies that the order type is wO:. Stated without ordinals 
this means that the order is isomorphic to the finite multisets over another order. Below 
the ordinal fO this implies that all totally ordered sets of interest can be constructed from 
the natural numbers in finitely many steps using only lexicographic product and the multi set 
construction. We show that these constructions are essential by presenting examples of TRS's 
for which a termination proof can be given (by an interpretation) in wTl , for any fixed 17 ~ w, 
but not in a totally ordered set of a smaller order type. 

Another main topic of this paper is the modularity of total termination. Surprisingly the 
tree structure of mixed terms that is essential in other modularity questions ([13]) does not 
playa role here. The essential problem is how to lift an interpretation in an ordinal to an 
interpretation in a greater ordinal without affecting monotonicity and compatibility. We did 
not succeed in proving modularity of total termination in full generality. However, we found 
some interesting partial results. For example, if two systems are totally terminating and not 
both of them contain duplicating rules, then the direct sum is also totally terminating. 

2 Monotone algebras 

Let F be a set of operation symbols each having a fixed arity. We define a well-founded 
monotone F-algebra (A, » to be an F-algebra A for which the underlying set is provided 
with a well-founded order> and each algebra operation is strictly monotone in all of its 
coordinates, more precisely: for each operation symbol f E F and all at, ... , an, bl, ... , bn E A 
for which ai > bi for some i, and aj = bj for all j i- i, we have fA(at, ... , an) > fA(bt, ... , bn). 

Let (A, » be a well-founded monotone F-algebra. Let AX = {O' : X -+ A}. We define 
¢A : T(F, X) x AX -+ A inductively by 

¢A(X,O') 

¢A(J(tI, ... , tn), 0') 
= O'(x), 

fA(¢A(tt, 0'), ... , ¢A(tn, 0')) 

for x EX, 0' : X -+ A, f E F, tt, ... ,tn E T( F, X). This function induces a partial order> A 

on T(F, X) as follows: 

t > A t' {:::::} ("10' E A x : ¢ A ( t, 0') > ¢ A (t', 0' )). 

Intuitively t > A t' means that for each interpretation of the variables in A the interpreted 
value of t is greater than that of t' . 

We say that a non-empty well-founded monotone algebra (A, » normalizes a TRS if I > A r 
for every rule 1 -+ r of the TRS. This terminology is motivated by the following proposition. 

Theorem 2.1 A TRS is terminating if and only if it is normalized by a non-empty well­
founded monotone algebra. 

For the proof we refer to [15]. The way of proving termination of a TRS is now as follows: 
choose a well-founded poset A, define for each operation symbol a corresponding operation 
that is strictly monotone in all of its coordinates, and for which ¢A(I,O') >A ¢A(r,O') for all 
rewrite rules I -+ r and all 0' : X -+ A. Then according to the above proposition the TRS is 
terminating. A typical example is the system 

f(J(x, y), z) -+ f(x, f(y, z)). 
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Choose (A, » = (IN, » where IN is defined to be the set of strictly positive integers, and 
choose fA(X, y) = 2x + y. Clearly fA is strictly monotone in both coordinates, and 

fA(JA(X, V), z) = 4x + 2y + z > 2x + 2y + z = fA(X, fA(y, z» 

for all x, y, z E A. Hence f(J(x, V), z) > A f(x, fey, z», proving termination. 

Definition 2.2 A TRS is called totally terminating if it is normalized by a non-empty well­
founded monotone algebra in which the underlying order is total. 

Every totally terminating TRS allows a simplification order (as defined in [4] and many other 
texts); in fact this follows from lemma 3.1 presented below. The converse does not hold, for 
example, termination of the system 

f(a) -+ feb) 
g(b) -+ g(a) 

is easily proved by a simplification order, but the system is not totally terminating since the 
interpretations of a and b have to be incomparable. 

However, most of the existing methods of proving termination of TRS also prove total 
termination. By definition the methods of polynomial interpretations ([11, 1]) and elementary 
interpretations ([12]) are nothing else than our approach in which A is chosen to be the 
naturals and the operations have a particular shape. Hence a termination proof by these 
interpretations implies total termination. The same can be said for recursive path order and 
Knuth-Bendix order, both with status. Here we choose A to be the set of ground terms 
modulo some congruence. If there are no constants, one constant can be added to force the 
existence of ground terms. The congruence is generated by interchanging the arguments of 
the operations that have multi set status. The order on these congruence classes is defined by 
the RPO or KBO itself, where the precedence is extended to a total precedence. For both 
RPO and KBO it can be proved by induction on the size of the terms that any two terms, 
modulo this congruence, are comparable. As a consequence, the orders are total and prove 
total termination. For a finite TRS proved terminating by recursive path order with only 
multi set status, Hofbauer ([6]) proved that a proof of total termination can be given in the 
natural numbers with primitively recursive operations. 

A main topic of this paper is the investigation of useful total orders for total termination. 
The main tool is the arithmetic of ordinals, i.e., of total well-founded orders modulo order­
isomorphism. We say that a proof of total termination is in an ordinal O! if the underlying order 
of the monotone algebra has order type O!. Since in this algebra we allow all possible monotone 
functions this does not mean that the proof can be given in O! in the proof-theoretical sense. 
For example, the term rewriting system describing the Ackermann function can be proven 
terminating by a monotone algebra of which the underlying order corresponds to the natural 
numbers, so in our notion its termination proof is in w. 

We first summarize notions and results about well-ordered sets and ordinals needed. For 
many of the proofs we refer to [9]. 

3 Well-ordered sets 

A well-ordered set (A, > ) is a set with a partial (or strict) order > that is totally (linearly) 
ordered and well-founded, i. e. < is irrefiexive, transitive and linear (as usual we write x > y 
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meaning y < x ),and there are no infinite decreasing chains Xo > Xl > X2 > ... 
It can be shown that the last restriction is equivalent to every non-empty subset of A having 
a minimal element. 

A simple but useful lemma is the following: 

Lemma 3.1 Let A = (A, » be well-ordered and let f : A -t A be any monotonel function. 
Then f(x) ~ X for every X E A. 

Proof Suppose there is x E A such that x > f( x). Monotonicity of f leads to an infinite 
decreasing sequence 

x > f(x) > f(f(x)) > f(f(f(x))) > ... 
contradicting well-foundedness. 0 

Two ordered sets are similar if they are order-isomorphic, i. e. there is a monotone bijection 
between them. Since monotonicity implies injectivity, we have: 

Lemma 3.2 Let A and B be totally ordered sets. Then f : A -t B is monotone and surjective 
~ f is an order-isomorphism between A and B. 

As an aside, we remark that from the two previous results follows the unicity of the 
isomorphism between two well-ordered sets. 

Another important notion is defined below: 

Definition 3.3 Given a totally ordered set A and X a proper subset of A, we say that X is 
an initial segment of A ifVx E X Vy E A (y < x => y EX). 

Lem rna 3.4 Each initial segment of a well-ordered set A is of the form W ( x) = {y I y < x}, 
for some x E A. 

Proof Given I an initial segment of A take x = min(A - /), whose existence is guaranteed 
by the well-foundedness of A. 
We see that I = W( x). First we show that i E I => i E W( x). Suppose x < i (equality 
is ruled out since x E (A - /). By definition of initial segment it follows that x E I, 
which is a contradiction. On the other hand, if i < x then i rt. (A - I), by definition of 
min. Therefore i E I. 0 

Theorem 3.5 If A and 8 are well-ordered sets then either: 

• A is similar to 8. 

• A is similar to an initial segment of B. 

• B is similar to an initial segment of A. 

Furthermore if A is order-isomorphic to an initial segment Bo of B via order-isomorphism 4> 
then both Bo and 4> are unique. 

The proof of this theorem can be found in [9]. 

1 By monotone we mean strictly increasing. 
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4 Tools from Ordinal Theory 

Let Ord denote the class of ordinal numbers. Roughly speaking, ordinals are types of well­
ordered sets, that is, an ordinal number is an equivalence class under similarity of well-ordered 
sets. For finite well-ordered sets their ordinals coincide with their cardinality and are denoted 
by natural numbers. We define a relation < in Ord by: 
a < (3 ¢::::} any set of type a is similar to an initial segment of a set of type (3. 
From theorem 3.5 it follows that < totally orders Ord. 

Treating ordinals as sets is quite convenient; therefore instead of taking ordinals to be 
equivalence classes we will identify them with canonical representatives of those classes. If 
we take a representative (A, » of an ordinal a, it can be seen that A is similar to the set 
{(3 I (3 < a}, that is a = {(3 I (3 < a} and this implies that (3 < a¢::::}(3 E a. So the sets 
well-ordered by the E-relation are in fact canonical representatives of ordinals.2 

We shall freely switch between equivalence classes and canonical representatives. 
We list below some basic properties of Ord. 

I. < well-orders the class Ord, that is: 

- < is a total ordering in Ord. 

- Every non-empty class B ~ Ord has a minimal element (with respect to <) in B. 

- For every a E Ord, {~E Ord I ~ < a} is a set. 

II. For every set of ordinals U there is an ordinal a such that a = sup( U) = V U. If 
U = {f(~) I p(~)} (for any predicate p) we sometimes use the notation V f(~). 

p(e) 

III. Lim =1 0. A is a limit ordinal if A is not the successor of any ordinal and is not O. 
Alternatively, 0 =1 >. is a limit ordinal iff ~ < >. ::} ~' < >., or still >. = V~. 

e<-x 

IV. W(a) = {~ I ~ < a} is well-ordered and has type a. 

The ordinal 0 is defined to be the minimal element of Ord; it is the type of the empty set. 
For every ordinal e, its successor e' is defined bye = min{a Ie < a}. We use the notation 
0' = 1, l' = 2, and so forth. We will sometimes denote the successor ordinal by e + 1. Clearly 
~ < e and there is no ordinal a such that ~ < a < e. 

An ordinal ~ is defined to be a limit ordinal if (3a <~) A (Va < ~ 311 < ~: a < 11). The 
first condition states that a limit ordinal is non-empty, and the second condition says that it 
has no maximal element. An ordinal ~ is a limit ordinal if and only if a < ~ ::} a' < ~, if and 
only if ~ = Va. The class of limit ordinals is denoted by Lim. The ordinal w is defined to 

a<e 
be the minimum of Lim; it is the type of the natural numbers. 

Every ordinal is either 0, a successor ordinal or a limit ordinal. These three kinds often 
appear in inductive proofs and definitions. 

Theorem 4.1 (Principle of Transfinite Induction) If A is a class well-ordered by > (see 
(I) above) and F is a propositional function such that Vx E A: (Vy < x: F(y))::} F(x). 
Then Vx E A: F(x). 

2These canonical representatives are also known as Von Neumann's ordinals. 
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Proof Define B = (x E A I -,F(x))3. Assume B is non-empty. Then according to the 
second point in I, B has a minimal element x and therefore, for y < x we have F(y). 
But then, by hypothesis, we also have F( x) contradicting the fact that x E B. 0 

We have the following useful lemma: 

Lemma 4.2 0::f U ~ Ord and sup(U) ~ Lim:::} sup(U) E U. 

Proof 
Take a = sup(U). 
If a = 0, then ~ ~ a :::} ~ = 0 and since U ::j:. 0, we have 0 E U. 
If a = ab, assume that a ~ U. Then, by definition of supremum and assumption, we 
have, for every ~ E U, ~ < a :::} ~ ~ ao. Again by definition of supremum, we conclude 
that a = sup( U) ~ ao < a, which is a contradiction. 0 

The operations of addition, multiplication and exponentiation are inductively defined in 
Ord as follows: 

a+,B a.,B af3 

,B=O a 0 1 

,B = ,Bb (a + ,Bo)' a.,Bo + a afJo.a 
,B E Lim V (a +~) V (a.~) V (ae) 

e<{3 e<{3 e<{3 

We will not go into details about these operations and we will limit ourselves to the 
presentation of some results that will be necessary later. 

We remark that: 

• + and. are both associative and non-commutative and. left-distributes over +. 
• + is (strictly) monotone in the right argument and weakly monotone in the left argu­

ment. Consequently there is a left-cancellation law: if a + ,B = a + / then ,B = /. 
llight-cancellation does not hold. For example 0 + w = 1 + wand 0 ::f 1. 

• for any C > 0, if a < ,B then C.a < c.,B and a.C ~ ,B.c. Again we have a left-cancellation 
law. 

• for a fixed base greater than 1, exponentiation is strictly monotone in the exponent; 
consequently there is a cancellation law for the base. 

• O.a = 0, for any a. Also a.,B = 0 ~ a = 0 or ,B = o. 

• for any a, ,B, /, (a.8)''I' = a.8·..,. 

• for any a, if ,B E Lim, then a + ,B E Lim. Additionally if a ::f 0 then a.,B, ,B.a E Lim. 

The following lemma gives a different characterization of limit ordinals. 

Lemma 4.3 A E Lim ~ A = w,B, ,B::j:. 0 

3The symbols () denote a class. 
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Proof ¢:= 

We proceed by transfinite induction on {3. 
If {3 = 1 then>. = w.1 = w E Lim. 
If {3 = {3o + 1 then>. = wf30 + w. Now by induction hypothesis w{3o E Lim and since w 
is also a limit ordinal and Lim is closed for addition, we get>. E Lim. 
If {3 E Lim, since w E Lim and Lim is closed for multiplication, the result follows. 

==> 
Suppose then that>. E Lim. By lemma 4.11 we can write>. = w{3 + a, with a < w. If 
o < a < w then >. has a direct predecessor and so cannot be a limit ordinal. Therefore 
a = 0 and>' = w{3. Since>. ::f: 0 we have {3 ::f: o. 0 

Remark. If we include 0 in Lim and remove the restriction {3 ::f: 0 above, the result is 
still valid. 

Some ordinals are closed under the operations of addition and/or multiplication; they are 
crucial in this paper. We first define those ordinals and then give a characterization of them. 

Definition 4.4 An ordinal a is additive principal if a ::f: 0 and (e, 7] < a * e + 7] < a). An 
ordinal a is multiplicative principal if a> 1 and (e, 7] < a * e.7] < a). 

Lemma 4.5 Let a E Ord. Then the following conditions are equivalent: 

• a is additive (multiplicative) principal. 

• a = wf1 (respectively a = ww'1 or a = 2), for some 7] ~ 0 

• V{3 < a: {3 + a = a (respectively (3.a = a). 

The next results are also standard results that we present without proof. 

Lemma 4.6 If a ::; {3 then there is a unique ordinal 6 such that {3 = a + 6. 

The ordinal 6 is usually written as {3 - a and we speak of subtraction of ordinals. 
It is not difficult to see that subtraction is weakly anti-monotone, i. e., if a < b ::; a then 

(a - b) ::; (a - a). As we see below, in certain conditions difference can be performed in an 
initial segment. 

Lemma 4.7 1fT::; a then (a + 6) - T = (a - T) + 6. 

Proof First we remark that the difference a - T is well-defined given that T ::; a. 
By definition of difference, we have (a + 6) - T = T} <==> T + T} = a + 6. Also 
a - T = T2 <==> T + T2 = a and therefore T + T2 + 6 = a + 6. 
So we have T+TI = T+T2+6 and by the left cancellation law we conclude that T} = T2+6 
as we wanted. 0 

Lemma 4.8 Let f : a -+ a be a monotone function. Then for any ordinals a, b such that 
a + b < a we have f( a + b) ~ f( a) + b. 

Proof Fix a E a. Define g( x) = f( a + x) - f( a), for any x E (a - a). Since f is monotone, 9 
is well-defined and is a function from a - a to a - f( a). Furthermore 9 is also monotone. 
From lemma 3.1 we conclude that f(a+x) - f(a) = g(x) ~ x, hence f(a+x) ~ f(a)+x. 
o 
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As we would expect, additive principal ordinals are closed under subtraction. 

Lemma 4.9 If a < wf/, for some ordinal fJ, then wf/ - a = wf/. 

Proof By definition of subtraction, wf/ - a = '"'( ¢:::> a + '"'( = wf/ => '"'( ~ wf/. Suppose that 
'"'( < wf/, then since wf/ is additive principal we would get a + '"'( < wf/. Therefore '"'( = wf/. 

o 

We conclude this section with some useful standard results. 

Lemma 4.10 Let f : 0 -+ 13 be monotone. Then 0 :$ 13· 

Proof Suppose that 13 < a. Then there is a unique 6 such that a = 13 + 6 and since 6 > 0, 
13 E 13 + 6. We remark that in particular f is also a monotone function from 13 + 6 to 13 + 6 
and therefore, by lemma 3.1, we have that x ~ f(x), for any x E (3 + 6. Consequently 
(3 ~ f((3) < (3 (since f((3) E (3), giving a contradiction. 0 

Lemma 4.11 

1. VA,6 E Ord 3!j3, 0 E Ord: A = 613 + a, 0 < 6 

2. Vj3 ~ 1 Va ~ 2 3!fJ: of/ ~ (3 < af/+!. 

3. If a < (3.'"'( then 3!(31. '"'(1 : (31 < (3 A '"'(1 < '"'( A a = (3.'"'(1 + (31. 

Proof For 1, define U = {~ I 6~ ~ A} and take (3 = sup(U) (possible since U is a set). 
We have: 
6.(3 = 6. V ~ ~ V 6.~ = V a ~ V a = A 

5e~~ 5e~~ a~~,3e:a=5e a~~ 

Now suppose 6.((3 + 1) ~ A. Then, by definition of U, we have 13 + 1 E U implying 
13 + 1 ~ 13, which is clearly a contradiction. So 6.(13 + 1) > A. Using lemma 4.6 and 
monotonicity of addition, we see that there is an ordinal a such that A = 613 + a and 
0<6. 

We now prove 2. Define U = {~ I ae ~ (3} and take fJ = sup( U) (possible since U is a 
set; notice also that U is non-empty since 0 E U). By lemma 4.2, fJ E U or fJ E Lim. In 
the first case wf/ ~ (3. If fJ E Lim then wf/ = V we, and since for each ~, we ~ (3, then 

e<f/ 
also wf/ :$ 13. 
Suppose now that of/+! :$ 13. Then by definition of U, fJ + 1 E U, and by definition of 
sup, we get fJ + 1 :S fJ, which is not possible. Therefore 13 < af/+! and since of/ ~ (3, we 
get the result. 

Finally for 3, fixing a and 13, we get by 1 that there are unique ordinals '"'(t. (31 such 
that a = 13.'"'(1 + 131 and 131 < 13· Suppose it would be '"'( :S '"'(1· Then 13·'"'( :S 13.'"'(1 :$ a, 
which is a contradiction. 0 

Theorem 4.12 (Cantor Normal Form) For every ordinal a i: 0 there are uniquely deter­
mined ordinals fJ1 ~ ... ~ fJk, with k ~ 1, such that a = Wf/l + ... + Wf/k. 
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Given an ordinal a we can determine its unique normal form a. This unique normal form 
is the expansion of a with base w, that is a = W"1.P1 + ... + w"" .Pk, with "II > "12 > ... > "Ik, 
o :::; Pi < w, for 1 :::; i:::; k and k ~ 1. Using this normal form we can define natural addition, 
denoted by Ea. Given ordinals x, y, x Ea y is performed by adding the expansions of both x 
and y as polynomials in w (well-defined since ordinal addition is commutative for ordinals 
smaller than w). Natural addition is commutative, associative and strictly increasing in each 
argument. Furthermore ordinals of the form w'Y, for "y ~ 0, are principal ordinals for addition, 
and therefore closed for natural addition. Similarly we can define natural multiplication (for 
details see [9]). 

5 Exponentiation Revisited 

In this section we give a constructive description of ordinal exponentiation. 

Definition 5.1 Let Exp(a,"I) = {0"17] -+ a 1 {y E "I 1 O"(y) f; Oo} is finite}, for a, 7] E Ord. 
In Exp(a, "I) we define the relation> by: 

0" > 0"' {::::::} 3x E "I: (O"(x) >0 O"'(x)) 1\ (Vy E "I: y >" x => O"(y) = O"'(Y)) 
for any 0",0"' E Exp(a,"I). 

Lemma 5.2 Let (Exp(a,"I),» be defined as above. Then> is a well-order on Exp(a,"I). 

Proof > is indeed a strict order in Exp(a, "I), since 

.VO"EExp(a,"I): 0"10" 

• > is transitive, for if 0",0-',0"" E Exp(a, 7]),0" > 0"' and 0"' > 0"", then 

- 3x E "I: (O"(x) >0 O"'(x)) 1\ (Vy E 7]: y >" x=> O"(y) = O"'(y)) 
- 3x' E "I: (0"'( x') >0 0""( x')) 1\ (Vy E "I: y >" x' => O"'(Y) = O""(Y)) 

Since "I is totally ordered, we know that either x ~" x' or x' >" x. If X ~" x' 
then O"'(x) ~o O""(x) and so O"(x) >0 O""(x). Also, if y >" x then y >" x' so 
O"(y) = O"'(y) = O""(y), thus we conclude that 0" > 0"". 
If x' >" x, then O"(x') = O"'(x') >0 O""(x') and for y E 7], Y >" x', O"(y) = O"'(Y) = 
O""(Y), so again 0" > 0"". 

It is also not difficult to see that > is total. 
Let then 0',0" E Exp(a,"I) and 0' f; 0". That means that there is x E "I such that O'(x) f; 
0"'( x). Take x = max{y E 7]1 O"(y) f; O"'(y)} (this set is finite by definition of Exp( cr, "I) 
and non-empty by hypothesis). Since a is totally ordered, we have O'(x) >0 O"(x) or 
O"'(x) >0 O"(x). In both cases, if y >" x, by definition of x, we have O'(y) = O"'(y). 
Therefore 0' > 0" or 0" > 0", as we wanted. 

Finally we see that> is well-founded following an approach similar to the approach 
presented in [5] for multisets. 
We extend "I with a (new) least element 1... Clearly "11. = "I U {.l} is still well-ordered 
(and corresponds to the same ordinal "I). 
Suppose that Exp( a, "I) is not well-founded. Then there exists an infinite descending 
chain of the form: 

0'0 > 0"1 > 0'2 > ..... . 
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For this chain we will build a tree with nodes labelled in TJ1. X a, in the following way: 
the root of the tree has no label and it has a child labelled (x, O'o(x », for each x E TJ 
such that O'o(x) :f. Oa (recall that those elements are in finite number). 
Since 0'0 > 0'1, then there is Xo E 1] such that 0'0 ( xo) > a 0'1 (xo) and for y >'1 Xo, 
O'o(Y) = O'l(Y)· Now for x <'1 Xo, we do the following: 

• if 0'0 ( x) > a 0'1 ( x) > a Oa, then the node labelled (x, 0'0 ( x » has a unique child 
labelled (x, 0'1 ( X ». 

• if 0'0 ( x) > Oa and 0'1 (x) = Oa, then the node labelled (x, 0'0 ( x» has a unique child 
labelled (1., 0'0 ( x». 

• if O'I(X) >a O'o(x), then add to the node labelled (xo,O'o(xo» the child labelled 
(X'O'I(X)). Additionally, if O'o(x) > 0 then the node (x,O'o(x)) has a unique child 
labelled (1., 0'0 ( x ». 

For xo, we have to consider two cases, namely: 

• if 0'1 ( xo) > Oa, then add to the children of (xo, 0'0 ( xo» the node labelled (xo, 0'1 ( xo». 

• if O'I(XO) = Oa and the node (xo,O'o(xo» has no children, then it will get a unique 
child labelled (1.,0'0(XO»4. 

We repeat the process for 0'1 > 0'2 and so on. 

We remark that 

• a node has finitely many children. 

• at the i-th iteration of the construction of the tree, the leaves not labelled (1., .), 
describe the function 0';. 

• every element 0'; in the initial sequence contributes with at least one node to the 
tree. 

By the last remark and since the sequence is infinite, then the tree is also infinite and, 
by Konig's Lemma, it has an infinite path. But that path (eliminating the root node) 
corresponds to an infinite descending chain in 1]1. X a (the lexicographic product with 
weight on TJ1.) contradicting its well-foundedness. 0 

Theorem 5.3 Let a,1] E Ord and (Exp(a,1]),» as defined in 5.1. Then (Exp(a,1]),» is 
order-isomorphic to ordinal exponentiation a'1. 

Proof We proceed by transfinite induction on TJj for TJ = 0 the assertion is trivial. 

If TJ = f3 + 1 then TJ = f3 U {f3}. But aJ3+1 = aJ3 .a and corresponds to the lexicographic 
product with weight on a. By induction hypothesis, (Exp( a, f3), > ) ~ a J3 • 
We define q; : a J3 .a ~ Exp( a, f3 + 1) by 

qi': Exp(a,f3 + 1) 

0', with O'(x) = { O'b~X) if x E f3 
if x = f3 

4 Actually we can always add this child, whether the set of children is empty or not. 
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In the definition above, we abuse the notation: C1b stands actually for ~,8(C1b), where ~,8 
is the unique order-isomorphism between a,8 and Exp( a, (3) postulated by the induction 
hypothesis. Note that W is well-defined since the set {y E f3 I C1b(Y) '" Do} is finite and 
therefore {y E f3 + 1 1 C1( y) '" Do} is also finite. 

We shall prove that W is an order-isomorphism. For any C1 E Exp( a, f3 + 1), define 
C1b = C11,8 (the restriction of C1 to (3) and a = C1(f3). Then it is trivial to see that 
(C1b,a) E a,8.a and W(C1b,a) = C1. So we conclude that W is surjective. 
We show now that W is monotone. Let then (C1b' a), (C1", a') E a,8.a such that (C1b' a) >1 
(C1", a') (>, is the lexicographic order with weight on the second coordinate). We have 
to see that C1 = W( C1b, a) > C1' = w( C1", a'). If (C1b' a) >1 (C1", a') then either a >0 a' or 
both a = a' and C1b > C1". 
If a >0 a' then C1(f3) >0 C1'(f3) and since in f3 + 1 there is no element greater than f3, 
C1 > C1' holds. 
In the second case, we have that 3x E f3: (C1b(X) >0 C1b(X» " (Vy E f3: y >,8 x => 
C1b(Y) = C1,,(y». 
Then for the same x E f3, C1(X) = C1b(X) >0 C1,,(X) = C1'(X) and also if y E f3 and y >,8 x 
then C1(y) = C1'(y). Since C1(f3) = a = a' = C1'(f3), we have C1 > C1'. 
Given that a,8.a and Exp( a, f3 + 1) are both totally ordered, we can apply lemma 3.2 
to conclude that W is an order-isomorphism, and therefore (Exp( a, f3 + 1), > ) ~ a,8.a = 
a,8+1. 

If 'TJ E Lim then 'TJ = V ~ and a'" = V ae = U ae. By induction hypothesis, for every 
e<,., e<,., e<,., 

~ < 'TJ, we have ae ~ (Exp( a, ~), ». Furthermore for ~ < , < 'TJ we have that Exp( a,~) 
is an initial segment of Exp( a,,), and the unique order-isomorphism between Exp( a,~) 
and the correspondent initial segment of Exp( a,,) is given by 

Ie: Exp( a,~) -- Exp(a,,) 

~ a, where a(x) = {C1(X) if x E ~ 
00 otherw~se 

We will see that Exp( a, 'TJ) is order-isomorphic to U ae. For that we define 
e<,., 

eP: U ae -- Exp(a, 'TJ) 
e<,., 

r ~ C1n with C1
T

(X) = {ePv(r)(x) if x E ~ 
00 otherw~se 

where v = minb < 'TJ IrE a"'Y} and ¢>v is the unique order-isomorphism between aV 

and Exp( a, v) (whose existence is guaranteed by induction hypothesis). 

It is easy to see that ¢> is well-defined. We check that ¢> is surjective. For C1 E Exp( a, 'TJ) 

we define ~ = minb < 'TJ 1 "Ix ~ ,: C1(X) = Do}. Defining C1le as the restriction 
of C1 to ~, it is trivial to verify that C1le E Exp( a, ~). Since Exp( a,~) and ae are 
order-isomorphic, there is an element r E ae such that ePe( r) = C1le. Considering the 
definition of eP, we check now that VT = f By definition of Vn it holds VT :5 ~. Suppose 
V T < ( then, since by induction hypothesis aVT is order-isomorphic to Exp( a, vT ) which 
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is an initial segment of Exp( 0;, {) (modulo order-isomorphism) and T E o;Vr, there 
must be an element <; E Exp( 0;, v.,.) such that fvr (<;) = O'le. But then, for all x ~ v.,., 
fvr(<;)(x) = Ocr => v.,. ~ {, giving a contradiction. Consequently v.,. = { and therefore 
<p( T) is given by: 

{ 
<Pvr(T)(X) = O'le(x) if x E { 

O'T( x) = Ocr otherwise 

That is, <PC T) = 0'. 

N ext we prove the monotonicity of <p. If T > I then either v.,. > v-y or v.,. = v-y. In the 
last case <PC T) > <p( I) is a consequence of the definition of <P and the monotonicity of 
<Pvr (= <Pv",/). In the case v.,. > v-y we apply theorem 3.5 to o;v",/, o;Vr and Exp( 0;, v.,.), to 
get <Pv",/ (,) ~ <PVr (,) < <PI+ (T) in Exp( 0;, v.,.) and where the last inequality is justified by 
monotonicity of <Pvr' Consequently <p( I) < <p( T). 
We now apply lemma 3.2 to conclude that <P is an order-isomorphism and therefore 
0;" = U o;e ~ Exp(o;, ",). 0 

e<" 
We would like to point out that the proof of well-foundedness of > in Exp( 0;, "') we give 

in 5.2 is redundant. Well-foundedness of> is a direct consequence of the above result. 
Note that the definition of Exp(w, "') coincides with that of the set M(",) of finite multisets 

over "', together with its multiset order as described in [5]. So the order type of M(",) is w". In 
the sequel we shall freely switch between M ( "') and w". For example, considering multisets in 
M(",) as functions from", to w multiset union is pointwise addition. This corresponds exactly 
to natural addition of ordinals below w". 

6 M ultisets and binary functions 

We shall prove that the existence of an operation of arity greater than one in some ordinal 
implies that the ordinal has the form w". As a consequence, for a TRS containing operation 
symbols of arity > 1 the only monotone algebras of interest are those whose underlying order 
is a multiset order. First we need two lemmas. 

Lemma 6.1 Let>. be an ordinal for which 30; < >. : >. - 0; ~ 0;. Then no function from 
>. X ••. X >. to >. exists which has more than one argument and is monotone in all arguments.5 

Proof Suppose such a function exists. Then by fixing all arguments but two we obtain a 
binary function f that is monotone in both arguments. Define <p : >. - >. by 
<pC x) = f( x, 0;) - 0;. We have to see that <p is well-defined. If we fix the first argument of 
I to 0,\, the minimum of >., we have, since 1(0,\, x) is strictly monotone and by lemma 
3.1, that f(O,\, 0;) ~ 0;. So I(x, 0;) ~ 0;, for any x, hence <p is well-defined and is actually 
a function from>. to >. - 0;. If x > y then 0; + <p(x) = I(x,o;) > I(y,o;) = 0; + <p(y). 
Due to the left cancellation law, we conclude that <p is (strictly) monotone. By lemma 
4.10 we conclude that >. ~ >. - 0;. Since 0; < >. we get 0; < >. - 0;, contradicting the 
hypothesis. 0 

Lemma 6.2 Let>.:j; O. Then>. = w-Y, for some I, if and only ifVo; < >. : >. - 0; > 0;. 

6 X denotes cartesian product. 
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Proof We will prove that Va:, f3 < oX : a: + f3 < oX if and only if Va: < oX : oX - a: > a:; then the 
result follows from lemma 4.5. 
For the only-if part, let a: < oX. We always have oX - a: ~ oX. If oX - a: < oX, by hypothesis 
we get a: + (A - a:) < A, giving a contradiction. Therefore A - a: = A, so A - a: > a:. 

For the if part, take a:, (3 < A. The hypothesis implies a: < A - a: and (3 < A - (3. If (3 ::; a: 
then a: + (3 ::; a: + a: < a: + (A - a:) = A. If a: < (3 then a: + (3 ::; (3 + (3 < (3 + (A - (3) = A. 
Since either a: < f3 or (3 ~ a:, we get the result. 0 

Theorem 6.3 Let A = (A, » be a well-ordered set such that A :f: 0. Then there is a function 
from A x ... x A to A with more than one argument, monotone in all arguments if and only 
if A is order-isomorphic to M(8) for some well-ordered set 8. 

Proof Assume that A ~ M(8), for some well-order 8. It is easy to see that multiset union 
is strictly increasing in both operands and that if we extend the union to k arguments, 
the strict monotonicity in each argument is still respected. By the isomorphism we get 
a similar function in A X ••• x A. 

Suppose now A :f: 0 is well-ordered and such that we can define a function f : An ~ A, 
with n ~ 2, strictly increasing in each coordinate. Let A be the type of A. Then by 
lemma 6.1 we know that, for any a: < oX, oX - a: > a:. So we can apply lemma 6.2 to 
conclude that oX = w'Y for some "y. But w'Y is precisely the type of M(8), for some 
well-ordered set 8 of type "y, and since two well-ordered sets have the same type iff they 
are order-isomorphic, we conclude our result. 0 

Stated in different words, the previous result says that if we have a TRS R containing at 
least a function symbol of arity n ~ 2 and totally terminating in an algebra A, then A has 
type w'Y, for some "y ~ o. 

7 Extension to higher ordinals and modularity 

In this section we look at modularity of total termination. If two TRS's are totally terminat­
ing, what can be said about their disjoint union? From [10] follows that the disjoint union 
is simply terminating, but is it also totally terminating? This is not clear if the proofs of 
total termination are given in distinct ordinals. That arises the question whether a total 
termination proof in some ordinal can be lifted to a similar proof in another ordinal. 

Definition 7.1 For a TRS R we define U(R) to be the class of ordinals in which a proof of 
total termination of R can be given. The minimum of U(R) is denoted by UR. 

By definition U(R) is non-empty for every totally terminating TRS R. For example, if R 
consists of one rule involving two different constants then U(R) is the class of all ordinals 
> 1. Note that the disjoint union Rl ffi R2 of two TRS's Rl and R2 is totally terminating if 
and only if U(RI ffi R2) = U(Rt} n U(R2) :f: 0. 

The next lemmas state some basic properties of U(R). 

Lemma 7.2 Let a: E U(R) and let f3 be an arbitrary non-zero ordinal. Let either all function 
symbols in R have arity ~ 1 or f3 = w'Y for some ordinal "y. Then f3.a: E U (R). 
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Proof Remember that {3.a is the lexicographic product with weight on a. Its elements 
will be denoted by pairs (b,a), with a E a and b E (3. Since a E U(R), we have 
an interpretation Ja of every function symbol J of R in a, strictly monotone in each 
argument, such that for every rule 1 - r in R and every substitution r : X - a, it holds 
<Pa(l,r) >01 <Pa(r,r). For every function symbol J we introduce an interpretation J(3 in 
{3: for constants c we choose c(3 = 0 and for unary J we choose J(3 to be the identity 
on {3. If there are symbols of arity > 1 we assumed (3 to be the finite multisets over" 
in this case we define J(3 to be the multiset union of all of its arguments. For every J 
define 

J(3.a«bl ,al), ... ,(bn,an» = (J(3(bl , ... ,bn),Ja(al, ... ,an». 

Monotonicity of J(3.a is in all arguments is easily verified. We still have to check that 
<P(3.a(l, r) >(3.01 <P(3.a(r, r) for every rule I - r in R and every r : X - {3.a. For this we 
need a lemma, which is easily proven by induction on terms. 

Lemma 7.3 Let t be any term, let r : X - (3.a, and let 7rj be the projection on the lh 
coordinate Jor j = 1,2. Then <p(3.a(t,r) = (<P(3(t,7rl 0 r), <Pa(t, 7r2 0 r». 

Since <Pa(l,q) >01 <Pa(r,q) for any q: X - a, we conclude 
<P(3.a( I, r) = (<p(3( 1, 7rl 0 r), <Pa(l, 7r2 0 r» >(3.01 (<p(3( r, 7rl 0 r), <Pol ( r, 7r2 0 r» = <P(3.a( r, r). 

This concludes the proof of lemma 7.2. We now prove lemma 7.3. 

Proof By induction on t. 

o 

If t = x E X then <P(3.a(x, r) = (7rl 0 rex), 7r2 0 r(x» = (<p(3(x, 7rl 0 r), <Pa(x, 7r2 0 r». 
If t = c the result is also trivial. 
If t = J(t}, ... , tn) then 

<P(3.a(J(t}, ... , tn), r) d2 J (3.a( <P(3.a(t}, r), ... , <P(3.a( tn, r» 
IH = J(3.a( (<p(3( tl, 7r1 0 r), <Pol ( t}, 7r2 0 r», ... , (<p(3( tn, 7r1 0 r), <Pa(tn, 7r2 0 r») 
de! = (J(3(<P(3(t}, 7rl 0 r), .. . <P(3(tn, 7rl 0 r», Ja(<Pa(tt. 7r2 0 r), .. . <Pa(tn, 7r2 0 r») 

d2 (<p(3(J( t}, ... , tn), 7rl 0 r), <Pa(J( tt. ... , tn), 7r2 0 r» 0 

Theorem 7.4 IJ a E U(R) then wa E U(R). 

Proof Again Ja will denote the interpretation of the function symbols J of R in a. In 
this proof we identify wa with the finite non-empty multisets over a instead of all finite 
multisets. In terms of ordinals this does not make any difference since wa - 1 = wa . 

Write [a] for the multi set containing only one element a and U for multi set union. We 
can index multiset union over finite multisets as follows: 

u ~(x) = ~(a)j u ~(x)=(U ~(x»U(U ~(x», 
xE[a] xEXuY xEX xEY 

for any function ~ : a - M(a). For constants c and function symbols J of arity n ~ 1, 
we define: 
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• f""a(Xb ... ,Xn) = U ... U [fa(Xb ... ,Xn)]. 
xlEXl xnEXn 

For functions symbols f with arity 1 we additionally define f([]) = []. It can be verified 
that fwa is strictly monotone in each argument for all function symbols f; for functions 
with arity > 1 the non-emptiness restriction is essential. 

We remark that for any function symbol f and substitution r : X -+ wa , we have 
<Pwa(J(t}, ... ,tn),r) = fwa(<pwa(tl, r ), ... , <Pwa(tn,r)) = U U [fa(Xl,""Xn)] 

Xl Ec/>",a (tl,T) xnEc/>",a 

Let I -+ r be an arbitrary rule and let r : X -+ wa . We still have to prove that 
<p""a(/,r) > <p""a(r,r). For any such r, we define a substitution Umax : X -+ a by 
O'max(x) = max(r(x)) (recall that for every x, r(x) :j: 0). We see by induction that 
for any term t, max(<pwa(t,r)) = <Pa(t,O'max). For t = x E X and t = c the result 
is a trivial consequence of the definitions of <PO" <Pwa and O'max. If t = f(t}, ... , tn), 
then <pwa(t,r) = f""a(<p""a(t},r), ... ,<Pwa(tn,r)) = U U [Ja(Xl, ... ,xn)]. 

Xl Ec/>",a (tl,r) xnEc/>",a 

Since fa is strictly monotone in each argument, the maximum of <Pwa(t, r) is obtained 
when all arguments of fa equal max( <p""a (ti, r)), for each 1 ~ i ~ n. But by induc­
tion hypothesis, max( <Pwa (ti, r» = <PO' (ti, 0' max), for each i, therefore max( <Pwa (t, r)) = 
fa( <Pa(tl, O'max), ... , <Pa(tn, O'max» = <Pa(t,O'max). 

For all a E <pwa(r, r), we have 

a ~ max(<p""a(r,r» = <Pa(r,O'max) < <Pa(l,O'max) = max(<pwa(/,r» 

Consequently we obtain <p""a (I, r) > <Pwa (r, r). We have proven that R is totally termi­
nating in wa , so wa E U(R). 0 

Now we are ready to prove modularity of total termination under certain conditions. 

Theorem 7.5 Let RI and R2 be totally terminating TRS's, at least one of them not contain­
ing duplicating rules. Then RI EB R2 is totally terminating. 

Proof Let a and (3 be ordinals in which the proofs of total termination of RI and R2 can 
respectively be given. Due to theorem 7.4 we may, and shall, assume that a = Wi and 
(3 = wTJ, for some 'Y, 1] ~ 1. Suppose that RI has no duplicating rules (the other case is 
symmetric). Identify (3 = wTJ with finite multisets over 1] and define interpretations in 
(3 for the functions symbols of Rl in the following way: 

• c{3 = [], for any constant c, where [] = O{3 represents the empty multiset. 
n 

• f{3(Xl, ... , xn) = UXi, where U represents multi set union. 
i=I 

For a term t let X t be the multiset of variables occurring in t. For any r : X -+ (3 we 
obtain <p{3(t,r) = U rex); here the multi set union over an empty index is defined to 

xEXt 
be []. Since there are no duplicating rules the multiset Xr is contained in Xl for all 
rewrites rules I -+ r. Consequently, 

<p{3(l,r) = U rex) ~ U rex) = <p{3(r,r). 
xEX, xEXr 
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Note that the inequality is not strict in general. 

Now in a.{3 (the lexicographic product with weight on {J) we define for any n-ary, n ~ 0, 
function symbol f of Rl: 

where fa comes from the total termination proof of Rl in a. Since fa and f(3 are strictly 
monotone in all coordinates, the same holds for fao(3. 

Let I -+ r be a rule in Rl and let r : X -+ a.{3. Applying lemma 7.3 and using 
<p(3(I, 11"2 0 r) ~ <p{3(r, 11"20 r) and <Pa(I, 1I"1 0 r) > <Pa(r, 1I"1 0 r) we conclude 

So we have a proof oftotal termination of Rl in a.{3, hence a.{3 E U(Rt). On the other 
hand, since a = Wi, we can apply lemma 7.2 to conclude that a.{3 E U(R2). Hence 
a.{3 E U(Rt) n U(R2), so Rl ED R2 is totally terminating. 0 

Note that if both Rl and R2 contain duplicating rules, there are particular cases in which we 
can prove the union is totally terminating.6 For example, let Rl and R2 be totally terminating 

","0 ",f3 0 

in a, {3, respectively, and assume there are ordinals 'Y, 6 such that 'Y +Wo- = 6 +w·- = A, 
for finite exponentiations on both right summands. Then it easily follows from lemma 7.2 and 
theorem 7.4 that wA E U (R 1 ED R2), so R 1 ED R2 is totally terminating. However, not all a, {3 
satisfy this property; for example a = 2 and {3 = w. The problem boils down to extending 
functions (of any arity) defined on a certain ordinal, to a given higher one, in such a way that 
the requirements of total termination are met, that is, in the new ordinal the functions are 
strictly monotone in all coordinates and for every rule the interpretation of the left hand side 
is greater than that of the right hand side. 

8 String rewriting systems 

In the previous sections we saw that when trying to prove total termination of TRS's con­
taining at least a function symbol of arity n ~ 2, only ordinals of the form w" were relevant. 
In this section, we discuss whether the same holds for string rewriting systems, i.e., rewriting 
systems containing only unary function symbols. First we need a lemma. 

Lemma 8.1 Let a =F 0 and f : a -+ a be strictly monotone. Then there is a unique ordinal 
TJ such that w" ~ a < w,,+1 and f (w") ~ w". 

Proof By lemma 4.11, we know that there is TJ E Ord such that w" ~ a < w,,+1. If a = w" 
we are done, otherwise we can write a = w" + 6, with 6 > o. 
We suppose f(w") I?: w'1 and will derive a contradiction. That means there is bE w" such 
that feb) ~ w". We now define a function 9 : (w" + 6) - b -+ 6 by g(x) = feb + x) - w". 
We see that 

• since feb + x) ~ feb) ~ w", 9 is well-defined. 

6The obvious case is when the proof of termination is given in the same ordinal for both TRS's. 
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• 9 is strictly monotone since for x' > x also b + x > b + x' and we get w'" + g( x') = 
feb + x') > feb + x) = w,., + g(x); by left cancellation we get g(x' ) > g(x). 

By lemma 4.10 we obtain (w'" + 8) - b ~ 8. Since b < w,." by lemmas 4.7 and 4.9, we get 
(w'" + 8) - b = (w'" - b) + 8 = w,., + 8. So we have w,., - b = w,., hence w,., + 8 = 8. Since 
8 ~ a < w,.,+1 = w"'.w, by lemma 4.11 there are uniquely determined ordinals f3, "I such 
that /3 < w, "I < w,., and 8 = w"'./3 + "I. However,8 = w,., + 8, so also 8 = w"'.(l + (3) + "I. 
From the uniqueness now follows /3 = 1 + /3, contradicting /3 < w. 0 

Remember that for a totally terminating TRS R the ordinal UR is defined to be the 
minimum ordinal in which the total termination proof can be given. 

Theorem 8.2 Let R be a totally terminating string rewriting system. Then UR = w,., for 
some T/ ~ 1. 

Proof From lemma 8.1 we obtain a unique ordinal T/ such that w,., ~ UR < w,.,+1 and 
f(w"') ~ w,., for all operation symbols f. By restricting f : UR ~ UR to w,., for all 
operation symbols f, we see that we also have a proof of total termination of R in w,." 

so W,., E U(R). Since UR is the minimum of U(R) and w,., ~ UR we obtain UR = w,.,. 0 

Note that this result is essentially weaker than theorem 6.3 for the case of arity > 1. The 
fact that UR = w,., does not imply that every ordinal in U(R) is of that shape. For example, 
every proof of total termination of a string rewriting system in w is easily extended to a 
similar proof in w + w, which is not of the required shape. 

A natural operation on string rewriting systems is reversing: all left hand sides and right 
hand sides are reversed, considered as strings. For example, the reverse of f(J(g( x))) is 
g(J(J(x))). Clearly there is a bijective correspondence between reductions in the original 
system and reductions in the reversed system. As a consequence, a string rewriting system is 
terminating if and only if the reversed system is terminating. However, a similar observation 
does not hold for total termination. For example, the system 

f(J( x)) ~ f(g( x)), g(g( x)) ~ g(J( x)) 

is not totally terminating since f( a) and g( a) are incomparable for any a in any corresponding 
monotone algebra. On the other hand, the reversed system 

f(J(x)) ~ g(J(x)), g(g(x)) ~ f(g(x)) 

is totally terminating in the natural numbers; a possible interpretation is f( x) = 4x + 2, g( x) = 
4x + 1 for x even, and f( x) = 4x, g( x) = 4x + 3 for x odd. Further, if for a totally terminating 
system the reversed system is totally terminating too, the corresponding ordinal may change. 
An example is f(g(x)) ~ g(J(J(x))); in the next section we shall see that the minimal 
ordinal of this totally terminating system is w2 , while termination of the reversed system 
g(J(x)) ~ f(J(g(x))) is proven in the natural numbers by choosing f(x) = x + 1,g(x) = 3x. 

We conclude this section with some remarks about TRS's that also contain constants, and 
no function symbols of arity > 1. From theorems 6.3 and 8.2 we know that otherwise total 
termination implies that UR = w,., for some T/ ~ o. However, if there are constants then the 
proof of theorem 8.2 does not hold any more since the interpretation of the constants can be 
too great. The simplest example is the TRS R consisting of the rule a ~ b, where a and b 
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are constants. It is totally terminating and UR = 2. If we allow infinitely many constants and 
rewrite rules then for any ordinal a a TRS R can be given with UR = a. 
Example 1 The infinite TRS R consisting of the rules 

n -+ si(O) for each i < w 

where nand 0 are constants, satisfies UR = 2 with 0 interpreted as 0, nasI and s as the 
identity function. If we add the rule 

sex) -+ x 

we see that s can no longer be interpreted as the identity. Furthermore it has to hold x < s( x) 
for any x. Consequently n has to be interpreted as f3 2:: w. Also the last rule implies that 
a E Lim, so a 2:: w + w. In w + w we can indeed prove the system terminating with the 
interpretations 0 = 0, n = wand s( x) = x + 1. 0 

In general, given a, the minimal ordinal associated with a totally terminating string rewrit­
ing system, we know from the results described earlier that any function symbol of arity 1 
can be interpreted in W'11 if W'11 + ... + W'1k is the Cantor normal form of a. Consequently for 
any rewrite rule I -+ r involving only unary function symbols and constants that are assigned 
values smaller that W'11, and for any substitution r : X -+ W'11, we have <Pa(l, r), <Pa(r, r) E W'11 

and <Pa(l,r) >w'Il <Pa(r,r). And this means that such rules can be interpreted in W'11. The 
problem arises when we have constants that cannot be interpreted in W'11 as is the case in the 
second example above. We conjecture that if a TRS R not containing function symbols of 
arity > 1, is totally terminating and fullfills the conditions: 

1. At least one of the rules I -+ r in R contains a variable 

2. R contains finitely many rules 

then min U(R) = w'1, for some 'fJ 2:: o. 
From the first example above we see that the first condition is necessary, and the second 
example shows the necessity of the second condition. 

However even if UR is not of the form w'1, due to theorem 7.4 we need only consider those 
ordinals for proving termination. 

In the next section we investigate which ordinals actually occur as UR of such a finite TRS 
R. 

9 Minimal Ordinals 

As we have seen previously, when trying to establish total termination of a (finite or infinite) 
string rewriting system or a TRS containing symbols of arity > 0, we only need to consider 
algebras with type w n for some n > O. Is it the case that all ordinals of that form are 
important or can we restrict the class even further? Partially answering this question, we 
have the following theorem. 

Theorem 9.1 For any ordinal 1 < n ~ w there is a string rewriting system R such that 
UR = wn . 
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Proof For n = 1, the string rewriting system f( x) -+ x satisfies the requirements by 
interpreting f as x + 1 in w. 

For 1 < n < w, let Rn consist of the n - 1 rules 

for i = 1, ... , n - 1. We will show that URn = w" for any nj for n = 2 this was already 
shown in [15] (report version). 

For the TRS R defined by 

f(g(x» -+ g(f(f(x» 
f(h(x)) -+ h(g(x)) 

we shall prove that UR = WW. 

According to theorem 8.2 the only ordinals of interest are of the shape w". We need 
some lemmasj to simplify the treatment we will use the same symbol for a function 
symbol in a TRS and the corresponding interpretation function in an ordinal. 

Lemma 9.2 Given is a TRS R containing a rule of the form F(G(x)) -+ G(F(F(x))) 
and totally terminating in an ordinal a. Then Vk ~ 0 Va E a: G(a) ~ Fk(a) (where 
pO = Id). 

Proof By induction on kj if k = 0 the result follows from lemma 3.1. Assume 
G(a) < Fk(a) for some a E a. Then 

Fk+1(a) = F(Fk(a)) > 
F(G(a)) > 

G(F(F(a))) > 
Fk-l (F( F( a » ) 

contradiction. 0 

(since F is monotone) 
(by total termination) 
(by induction hypothesis) 
Fk+1(a), 

From the above lemma we conclude that URn ~ w2 , since the property does not hold in 
wand, from theorem 8.2, URn = w", for some ordinal n. 

Given a function F : wm -+ wm , we define 

O(F) = min{k I 0 ~ k ~ m A Va E wm 
: a + wk > F(a)} 

Intuitively, O( F) denotes the highest-order coordinate k which may be changed by 
function F. We remark that 0 ~ O(F) ~ mj O(F) = 0 ~ F is the identity function. 
We introduce some needed properties of 00. 

Lemma 9.3 Let F, G be monotone functions from wm to wm , for some m ~ 1. Then 
"Ix E wm : F(x) ~ G(x)::} O(F) ~ O(G). 

Proof Suppose j = O(F) < O(G) = k. Then 3a E wm such that F(a) < a + wi ~ 
a + W k - 1 ~ G( a), contradicting the hypothesis. 0 
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Lemma 9.4 Let F, G be monotone functions from wm to wm , for some m ~ 1. Then 

O(F 0 G) = ma.x(O(F), O(G». 

Proof Let k = ma.x(O(F),O(G». For any 0 ::; j < k, 3a E wm such that either 
F( a) ~ a + wi or G( a) ~ a + wi. In both cases, using monotonicity and lemma 
3.1, we conclude F(G(a» ~ a + wi, hence O(F 0 G) ~ k. 

Since O(G) ::; k, we have G(a) - a < wk , for any a. Since O(F) ::; k and by 
lemma 4.5, we have a + wk = a + (G(a) - a) + wk = G(a) +wk > F(G(a)). Hence 
O(F 0 G) ::; k. 0 

Lemma 9.5 Given is a TRS R containing a rule of the form F(G(x» -t G(F(F(x») 
and totally terminating in an ordinal wm for some m < w. Then O(G) > O(F). 

Proof By the assumption of total termination of R, both F and G are not the identity, 
so O(F),O(G) > o. Let O(F) = k, 1 ::; k ::; m. Then \;Ix E wm : x + wk > F(x) 
and 3a E wm : a + wk- 1 ::; F(a). Fix this a E wm . Next we prove by induction 
that Fi (a) ~ a + wk-1.j, for any 1 ::; j < w. For j = 1 it holds by hypothesis. 
Suppose the property holds for any i ::; j. Then 

Fi+1(a) = F(Fi(a)) > 
F( a + wk-1.j) > 
F(a) +wk-1.j > 

a + wk- 1 + Wk-1.j 

(by monotonicity of F and induction hypothesis) 
(by lemma 4.8) 
(by induction hypothesis) 
a + wk-1.(j + 1) 

But by lemma 9.2, G(a) ~ Fi(a) ~ a + wk-1.j, for any j < w. Applying this 
lemma we also conclude that G ~ F and therefore O(G) ~ O(F) (by lemma 9.3). 
If it would be O(F) = O(G), then a + wk > G(a) ~ Fi(a) ~ a + Wk-1.j, for any 
j < w. But then G(a) ~ V (a+wk-1.j) = a+wk- l .( V j) = a+wk-l.w = a+wk, 

i<'" 
which is a contradiction. 0 

i<'" 

Now going back to our original system Rn and applying the previous results to every 
rule, we get 

o ::; OUn) < ... < OUt) < m, 

so m ~ n, hence, URn ~ wn • In order to show that URn is indeed wn we stil have to give 
an interpretation in w n . Identify w with strictly positive integers and define in w n : 

f ( n-l + + 0 ) - n-l + + i-I ( . + 2Xi+1) + + 0 i w .Xn • • • W .XI - W .Xn • • • w . Xt • • • W .XI 

for i = 1, ... , n, where Xn+l is defined to be 1 and where the argument of fi is represented 
in its normal form as introduced just after theorem 4.12. With this interpretation, we 
can easily see that all the requirements of total termination are fulfilled. 

For the ordinal w'" we consider the TRS R 

f(g(x)) -t g(f(f(x))) 
f(h(x)) -t h(g(x)) 

We shall prove UR = W"'j first we show that we cannot prove total termination of R 
in wn , for any n < w. Suppose we can, then there are strictly monotone functions 
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f,g,h: wn -- wn satisfying f(g(x)) > g(f(f(x))) and f(h(x)) > h(g(x)) for all x E wn • 

Let 00 be defined as before. From lemmas 9.3, 9.4 and since left-hand sides are 
greater than right-hand sides, we have max(O(f),O(h)) = O(f 0 h) ~ O(h 0 g) = 
max(O(h),O(g)). Since (by lemma 9.5) O(f) < O(g), this implies O(h) ~ O(g). Let 
j = O(f) < O(g); then 3a E wn : a + wi ~ g(a) A a + wi > f(a). Using lemma 4.8, we 
derive h(g(a)) ~ h(a + wi) ~ h(a) + wi > f(h(a)), contradicting the requirements of 
total termination. 

To prove UR = wIN we still need to present an interpretation in wIN. Identify w with 
natural numbers, including 0, and denote an element X E Exp(w,w) by the sequence 
(Po,.·· ,Pk) where: 

• X ( i) = Pi, if 0 ~ i ~ k. 

• X(k)::f 0 and XCi) = 0 for i > k. 

We restrict to the part of wIN for which k ~ 1 in this notation. This means that we skip 
the first w elements of wIN; since wIN - w = wIN this does not affect the ordinal. We now 
define f,g, h: A -- A by: 

• f(po, ... ,P(k-l),Pk) = (Po + Pk,··· ,P(k-l) + Pk,Pk) 

• g(Po,··· ,P(k-l),Pk) = (Po, ... ,P(k-l), 2·Pk + 1) 

• h(po, ... ,P(k-l),Pk) = (Po, ... ,P(k-l),Pk, 0, 1) 

With some easy calculations, it can be shown that the functions are indeed strictly 
monotonic and that for both rules the left hand side is greater than the right hand side. 
D 

We end this section with an example based on the battle of Hercules and the Hydra (see 
[8]; another version of this game appears in [4]). For this system we conjecture UR = fO. As 
usual fO is defined to be the minimal f-ordinal, i.e., the minimal ordinal a satisfying a = wOl

• 

lt can also be defined as limn<IN "In where "10 = 1 and "In+! = w'Yn; finally it is the only ordinal 
satisfying a < A => a < wOl < A. 

The Hydra is a monster with many heads, represented as a finite tree, and the battle 
proceeds by stages. In stage k 

• Hercules chops off a head of the Hydra (a leaf node with associated edge) 

• the Hydra answers by growing on the 2nd ancestor of the chopped head, k copies of the 
subtree that contained the (now missing) head. In the case the head was hanging from 
the root, it is simply deleted and no copies are made. 

The problem is to prove termination of this battle. We generalize the result by removing the 
rule that in stage k exactly k copies are created; in our version the number of copies n may 
be chosen randomly at every stage. Also we adopt the strategy that only leftmost heads are 
chopped. 

We code the tree using a binary symbol c: a tree consisting of a root and descendants 
tl,' .. , tk is represented as C(tb C(t2" .. , C(tk-b tk) . .. )), that is c(D, S) represents a node 
whose descendants are coded in the subtree D and whose siblings are coded in subtree S. 
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Leaves are represented by the constant nil. The battle described above is now represented as 
the infinite TRS H: 

c( nil, x) -+ x 
c( c( nil, x), y) -+ copy( n, x, y) 

copy(s(k), x, y) -+ copy(k,x,c(x,y» 
copy(O,x,y) -+ y 

n -+ si(O) for each i ~ 0 

Termination of this system can be proven by lexicographic path order. The system is 
tota.lly terminating in fa with the following interpretation: 

o 
n 
nil 

sex) 
c(x, y) 
copy(k,x,y) 

o 
= w 

2 
x+l 
W X EB y 
wkEllxElll EB x EB y. 

Here elements of fa are identified with ordinals < foj the operation EB represents natural 
addition. Well-definedness of these functions follows from standard properties of fa. Since 
natural addition in associative, commutative and strictly monotone in both coordinates, it is 
not difficult to see that the functions above are strictly monotone in each coordinate. Further 
it is easy to check that a.ll left hand sides are strictly greater than the corresponding right 
hand sides. We show it here only for the second rule. So for any substitution r : X -+ fa, we 
have 
(Ao(l,r) = 4>t:o(c(c(nil,x),y),r) = ww

2
Ell1"(x) EB r(y) 

4>t:o(r,r) = 4>t:o(d(n,x,y),r) = wwEll1"(x)Elll EB rex) EB r(y) 
Since wEB 1 < w2 (because w2 is additive principal and w, 1 < w2), we get wEB rex) EB 1 < 
w2 EB r( x) => wWEll1"(x)Elll < ww2 Ell1"(x). But also, r( x) < fa => r( x) < w1"(x) < ww2Ell1"(x). 
Because ww2 Ell1"(x) is additive principal, we get wwEll1"(x)Elll EB r( x) < ww2 Ell1"(x) => wwEll1"(x)Elll EB 
rex) EB r(y) < ww

2
Ell1"(x) EB r(y). 

SO UH ~ fa. It can be proven (by double induction) that if I : a X a -+ a is strictly 
increasing in each argument then I(x, y) ~ x EB y, for any x, yEa. Using this fact and 
rules 2, 3 and 4, it can be seen that for any substitution r, the lhs of rule 2 (h) has to 
fulfil 4>uH(12, r) > rex) EB ... EB rex) EB y, where rex) can appear any finite number of times. 
Consequently 4>uH (l2 , r) ~ wf/l+1EBy, where r(x) has as Cantor normal form Wf/l PI + .. . +wf/Opo. 
With this last inequality it is not difficult to derive UH ~ wW. Consequently WW ~ UH :S fa 
and we conjecture that UH = fa. 

10 Conclusions 

Proving termination of term rewriting systems by interpretation is not easy. We focussed on 
interpretation in monotone algebras in which the underlying order is total. We have shown 
that the existence of a function symbol of arity > 1 implies that the underlying order has 
type wf/, i. e. is equivalent to finite multisets over some well-order. Furthermore, for any 
TRS the class of total orders in which it can be shown tota.lly terminating, is closed under 
multi set construction and lexicographic product. However, it is not clear how to extend a total 
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termination proof in a particular well-order to well-orders that can not be finitely obtained 
from the original one by these constructions. This problem is closely connected to modularity 
of total termination, on which we obtained some interesting partial results. 

We found examples of TRS's showing that proofs of total termination cannot always 
be given in well-orders of type smaller than WW. Most of our techniques are based upon 
ordinal arithmetic; we believe that ordinal arithmetic is a strong and useful tool for proving 
termination of TRS's. For example, in fO we gave an elegant termination proof of a TRS 
based on the battle of Hydra. We also believe that our framework is a main step towards 
generalizing and combining existing techniques like recursive path order and Knuth-Bendix 
order. 
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