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Abstract

Within the framework of the Projective Unified Field Theory the distribu-
tion of a dark matter gas around a central body is calculated. As a result the
well-known formulas of the Newtonian gravitational interaction are altered.
This dark matter effect leads to an additional radial force (towards the center)
in the equation of motion of a test body, being used for the explanation of the
so-called “Pioneer effect”, measured in the solar system, but without a con-
vincing theoretical basis up to now. Further the relationship of the occurring
new force to the so-called “fifth force” is discussed.

Key words: dark matter around center, Pioneer effect, 5th force.

1 Idea of dark matter accretion around a center

Application of the author’s 5-dimensional Projective Unified Field Theory (PUFT),
being published in a series of papers (Schmutzer 1995a, 1995b, 1999, 2000a, 2001),
to a closed homogeneous isotropic cosmological model for the whole time scale
(big start to presence) led to following numerical results (Schmutzer 2000b, 2000c),
where the index p means present and y year:

a) tp = 18 · 109 y (age of the cosmos),

b) Hp = 77.6 km

sMpc
(Hubble factor),

c) µp = 3.3 · 10−27 g cm−3 (mass density).

(1)

Empirical astrophysical estimates of the visible mass density of the normal
(mostly baryonic) matter come to the maximum value ≈ 10−30 g cm−3. We in-
terpreted our result with respect to this difference in the mass densities as a hint
at the existence of a dominating dark matter part with a mass density more than
two orders of magnitude greater than that of the normal matter.

Our hypothetical model of the cosmos investigated, roughly corresponds to the
following picture of the present cosmos:
Our cosmos consists of a gas of dark matter particles (dm-particles) penetrating all
matter of the cosmos, particularly also the existing compact objects (stars, nuclei
of galaxies etc.) which look like buoys in the dark matter sea. Assuming a homo-
geneous gas of one sort of particles, by some hypothetical arguments we recently
were led to the following numerical values (Schmutzer 2000b):

a) mp = 2 · 10−36 g (rest mass of the dm-particle),

b) Tp = 1.78 K (kinetic temperature of the dm-gas).
(2)
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As a result of the attractive interaction of the dm-particles with the compact
object considered we expect a statistical distribution of the dm-particles within and
around the compact object being embedded in this dm-gas. Let us introduce the
notion “accretion cloud” (Umwolke) for this part of the dm-gas which by accretion
exceeds the cosmological average distribution of the dm-gas. For simplicity we
model the compact object by a homogeneous mass sphere. Further for simplicity
we apply the Boltzmann-Maxwell statistics describing spinless particles without
degeneracy.

Let us here mention that in a different context and on a different theoretical
basis H. Dehnen et al. (Dehnen 1995) used the Bose-Einstein statistics (preferred
by physical arguments) and the Fermi-Dirac statistics (dropped) in treating the
dark matter in galaxies in order to find a theoretical concept in understanding the
problem of the “flat rotation curves” of stars in galaxies. In interesting papers
detailled quantum-statistical calculations were performed. We think that for a
rough understanding of our approach it is legitimate to simplify the situation by
referring to the Boltzmann-Maxwell statistics.

2 Basic equations

In the following PUFT is specialized to the nonrelativistic and weak field case, but
we take into account the scalaric effects described by the scalaric field function σ.
Then the gravitational field equation is given by

∆Φ = 4πγNµ (3)

(Φ(r, t) local Newtonian gravitational field of the central body, µ mass density of
the central body, γN Newtonian gravitational constant as a true constant).

The scalaric field may consist of two parts according to

a) σ = σc + s with b) |s| ≪ |σc| , (4)

where σc(t) is the global scalaric cosmological field and s(r, t) the local scalaric field
of the central body. Then the scalaric field equation reads

∆σ = ∆s = −
4πγNµ

σcc2
. (5)

In the general case of a test body moving in the external fields Φ and s as well as in
eventually existing external electromagnetic fields E and B (neglecting in all fields
the back reaction) the equation of motion reads:

M

(
dv

d t
+ gradΦ +

c2

σc

grad s+ v
d lnσc

d t

)
= Q

(
E +

v ×B

c

)
(6)

(M inertial mass, Q electric charge, v velocity of the test body). Let us mention that
the last term on the left hand side of this equation of motion leads to “bremsheat
production”, particularly also in celestial bodies, investigated in detail in previous
papers (Schmutzer 2000c, Schmutzer 2001).

In the following we refer to a test body without electric charge, i.e. Q = 0.
Because of the same mathematical structure of both the equations (3) and (5), in
this approximation it is possible to introduce the combined field function

Ψ = Φ

(
1−

1

σ2
c

)
+ c2 lnσc +

1

σ2
c

Φc (7)

(Φc(t) cosmological value of the Newtonian potential). Hence we obtain the common
field equation

∆Ψ = 4πγN

(
1−

1

σ2
c

)
µ (8)
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and the equation of motion

dv

d t
+ gradΨ + v

d lnσc

d t
= 0. (9)

Let us now use following notation:

µ = µn + µdm (10)

(µn mass density of normal matter, µdm mass density of dark matter). Application
of this latter formula to the interior (i) and to the exterior (e) of the spherical
central body leads to the equations

a) µi = µni + µdmi and b) µe = µne + µdme . (11)

Next we split the mass densities into both the parts coming from the global cosmo-
logical matter (normal matter and md-matter) and from the local matter (central
body and accretion cloud):

a) µni = µng + µns, b) µdmi = µdmg + µ̂dmi (12)

and

a) µne = µng , b) µdme = µdmg + µ̂dme . (13)

Here the indices refer to:

g → global (cosmological contribution),
s → sphere (central body contribution).

The roof denotes the dm- contribution induced by the central body, i.e. surplus
dark matter to be treated statistically.

For our further calculations it is convenient to introduce the abbreviations

a) µ̃e = µG + µ̂dme with b) µG = µng + µdmg, i.e.

c) µi = µG + µns + µ̂dmi .
(14)

Let us remind that our cosmological model led us to following numerical values of
the scalaric cosmological world function:

a) σc(t ≈ 1000 y) ≈ 3.3 , b) σcp = 65.188 , i.e.

c) σ2

c ≫ 1 (for the time scale under consideration).
(15)

Then the field equation (8) for the interior and exterior reads:

a) ∆Ψi = 4πγNµi, b) ∆Ψe = 4πγN µ̃e. (16)

Further from (7) results

Ψ = Φ+ c2 lnσc . (17)

Next, analogously to the above formulas for the mass density of the dm-particles
we now write down the corresponding formulas for the particle number density ndm

being related to the mass density as follows (m mass of a dm-particle):

a) µdm = mndm , b) µdmg = mndmg , c) µ̂dm = mn̂dm . (18)

We find

ndm = ndmg + n̂dm . (19)

In (18) and (19) we omitted the idices i and e.
Since the time dependence of the cosmological quantities (e.g. of σc(t) ) is

extremly slow (adiabatic time dependence), compared with the time dependence
of the cosmogonic processes of the cosmic objects, we omit explicit writing of the
time t in such cosmological quantities. Particularly constants of spatial integration
implicitly involve this adiabatic time dependence.
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3 Statistical dm-particle distribution in the accre-

tion cloud

3.1 Distribution function

According to our accretion concept presented in Section 1 the statistical dm-particle
number density for the case of spherical symmetry reads (k Boltzmann constant):

n ≡ n̂dm = n̄

[
exp

(
−
mχ(r)

kT

)
− 1

]
, (20)

where n̄ denotes the dm-particle number density far away from the cental body:

a) n̄ = n(r = ∞) with b) χ∞ ≡ χe(r = ∞) = 0 . (21)

The potental function χ used is related to Ψ by

a) Ψ = χ+Ψc , where b) Ψc = Φc + c2 lnσc . (22)

Using (20) we can write the equations (16) as

a) ∆χi = 4πγN

[
µ0 +mn̄

{
exp(−mχi

kT
)− 1

}]
,

b) ∆χe = 4πγN

[
µG +mn̄

{
exp(−mχe

kT
)− 1

}]
,

(23)

where the quantity

µ0 = µG + µns = const (24)

(referring to a homogeneous sphere) means the mass density of the sphere.
Let us for the following use the approximation assumption

∣∣∣
mχ

kT

∣∣∣ ≪ 1 (25)

being well fulfilled in our further applications. Hence series expansion of (20) leads
to the linearity

n = −
n̄mχ

kT
(26)

between n and χ. This simplification means that we are able to perform the further
calculations analytically. Then the equations (23) commonly treated (omitting the
indices i and e) read

∆χ+ κ2χ = 4πγN µ̂ , (27)

where µ̂ means µ0 for the interior or µG for the exterior, and κ2 is defined by

κ2 =
4πγNm2n̄

kT
. (28)

Let us here mention that the author’s dissertation had referred to the theory of
strong electrolytes, where according to the Debye-Milner theory the statistical treat-
ment of a (negative) ion cloud around a fixed (positive) ion (and vice versa) plays an
important role. This knowledge induced the author’s idea to treat the dark matter
gas analogously. But in the first moment he was surprised that, though between
positive and negative electric charges as well as between masses attractive forces
act, in his basic equation (27) the second term on the left hand side appeared with
a positive sign, in contrast to the theory of strong electrolytes. The consequence of
this fact is that in the Debye-Milner theory a Yukawa-like term with exponential
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decrease occurs, whereas in this theory an interesting phenomenon of periodicity is
met.

In solving the equation (27) we first go over to spherical polar coordinates:

d

d r

(
r2

dχ

d r

)
+ κ2r2χ = 4πγN µ̂r2 . (29)

3.2 Interior

In this case the substitution µ̂ → µ0 has to be applied. Then equation (29) reads

d

d r

(
r2

dχi

d r

)
+ κ2r2χi = 4πγNµr2 . (30)

The solution of this inhomogenious differential equation is

χi =
B1

r
cos(κr) +

B2

r
sin(κr) +B0 (31)

with

a) B0 =
µ0kT

m2n̄
=

3γNMc

κ2r3
0

, where b) Mc =
4πµ0r

3
0

3
(32)

is the mass of the central body with radius r0 (B1and B2 constants of integration).
Regularity at r = 0 leads to B1 = 0 , i.e.

χi =
B2

r
sin(κr) +B0 . (33)

Differentiaton gives

dχi

d r
=

B2

r2
{κr cos(κr) − sin(κr)} . (34)

3.3 Exterior

This case differs from the previous one by the substitution µ̂ → µG. Analogously
we receive the solution

χe =
A1

r
cos(κr) +

A2

r
sin(κr) +A0 (35)

with

A0 =
µGkT

m2n̄
(36)

(A1 and A2 constants of integration). For physical reasons this formally correct
result has to be changed, because it is not in accordance with the boundary condition
(21b): We know that the global source µG has already be taken into account by
solving the cosmological differential equations. Therefore in this local context we
have to drop the inhomogenious contribution by setting A0 = 0, i.e.

χe =
A1

r
cos(κr) +

A2

r
sin(κr) . (37)

Differentiation leads to

dχe

d r
=

(
A2κ−

A1

r

)
cos(κr)

r
−

(
A1κ+

A2

r

)
sin(κr)

r
. (38)

In performing these calculations we realized that following basic functions play an
important role:

a) U(z) = z sin z + cos z and b) V (z) = sin z − z cos z . (39)

Figures 1 and 2 show the plots of the functions U(z) and V (z).
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3.4 Continuity conditions and the final form of the poten-
tials and of the dm-particle number densities

At the surface of the spherical central body following continuity conditions have to
be fulfilled:

a) χi(r0) = χe(r0) , b)
dχi(r0)

d r
=

dχe(r0)

d r
. (40)

If these conditions are satisfied, then because of (20) the analogous conditions for
the dm-particle number densities result:

a) ni(r0) = ne(r0) , b)
dni(r0)

d r
=

dne(r0)

d r
, (41)

i.e. thus the continuity of the dm-particle number density is guaranteed, too. Look-
ing at (33) and (37) we recognize that we have to cope with the 3 constants of
integration B2 , A1 and A2. From both the conditions (40) we obtain the relations

a) A1 = −
B0

κ
V (κr0) , b) B2 −A2 = −

B0

κ
U(κr0) . (42)

For physical reasons it seems to be sensible to accept that the potential in the whole
space (interior and exterior) may be determined solely by the central mass. This
means setting A2 = 0. Then finally the decisive potentials (33) and (37) including
their derivatives (34) and (38) read:

a) χi = B0

{
1−

1

κr
U(κr0) sin(κr)

}
,

b)
dχi

d r
=

B0

κr2
U(κr0)V (κr) ;

(43)

a) χe = −
B0

κr
V (κr0) cos(κr) ,

b)
dχe

d r
=

B0

κr2
V (κr0)U(κr) .

(44)

Let us mention that in the center of the central body the equations

a) χi(r = 0) = B0{1− U(κr0)} , b)
dχi(r = 0)

d r
= 0 (45)

are valid.
Furthermore, according to (26) we also present with the help of (43a) and (44a)

the final form of the distribution functions ni and ne:

a) ni = −
n̄mB0

kT

{
1−

1

κr
U(κr0) sin(κr)

}
,

b) ne =
n̄mB0

kTκr
V (κr0) cos(κr) .

(46)

3.5 Series expansions

For various applications it is convenient to know the first terms of the series expan-
sion of some functions presented above:

a) U(z) = 1 +
1

2
z2 −

1

8
z4 ,

b) V (z) =
1

3
z3(1−

1

10
z2) ;

(47)
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Figure 3: Dependence of the interior potential on radius R

a) χi = −
1

2
B0 (κr0)

2

[
1−

1

3

(
r

r0

)2

−
1

4
(κr0)

2

{
1 +

2

3
(
r

r0
)2 −

1

15

(
r

r0

)4
}]

,

b)
dχi

d r
=

1

3
B0κ

2r

[
1 +

1

2
(κr0)

2

{
1−

1

5
(
r

r0
)2
}]

;

(48)

a) χe = −
1

3r
B0κ

2r3
0

[
1−

1

2
(κr)2

{
1 +

1

5

(r0
r

)2
}]

,

b)
dχe

d r
=

1

3r2
B0κ

2r30

[
1 +

1

2
(κr)2

{
1−

1

5

(r0
r

)2
}]

;

(49)

χi(r = 0) = −
1

2
B0(κr0)

2

[
1−

1

4
(κr0)

2

]
. (50)

One should realize that the special case κ = 0 of (48a) and (49a) corresponds to
usual Newtonian physics with the results

a) χNi = −
1

2
B0 (κr0)

2

[
1−

1

3

(
r

r0

)2
]
= −

3γNMc

2r0

[
1−

1

3

(
r

r0

)2
]
,

b) χNe = −
1

3r
B0κ

2r3
0
= −

γNMc

r
.

(51)

Concluding this section, we point to the Figures 3 and 4 which show plots of the
radial dependence of the potential χ on r in different ranges (qualitative presentation
for B0 = 1). Analogously the Figures 5 and 6 exhibit the radial dependence of the
dm-particle number density n on r (again qualitative presentation for B0 = 1). For
these Figures the value κ = 0.04[(kpc)−1] was chosen which apparently seems to be
appropriate for the rotation curves of the Galaxy.

4 Pressure in the central body

For physical reasons the radial course of the pressure is interesting, too. Approach-
ing this aim, here instead starting from the equation of motion of a test body (6), we

8



20 40 60 80 100

R

-0.00015

-0.000125

-0.0001

-0.000075

-0.00005

-0.000025

ce

Figure 4: Dependence of the exterior potential on radius R
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have to start from our generalization of the Navier-Stokes equation of a continuum

µ

(
dv

d t
+ gradΦ +

c2

σc

grad s+ v
d lnσc

d t

)
= ρ

(
E +

v ×B

c

)
− gradp−

−η

(
∆v+

1

3
graddiv v

) (52)

(p pressure, ρ electric charge density, η viscosity). Specialization to the case v = 0
(hydrostatics), ρ = 0 (electro-neutrality), η = 0 (perfect fluid) and mass homogene-
ity leads to the equation

grad

(
Φ+

c2

σc

s+
p

µ0

)
= 0 (53)

or

a) grad

(
χ+

p

µ0

)
= 0 , i.e. b) p = −µ0χ+ p̄ (54)

(p̄ constant of integration). Using (43a) we find

p = µ0B0

{
1

κr
U(κr0) sin(κr)− 1

}
+ p̄ . (55)

The postulate of vanishing pressure at the surface of the sphere, p(r = r0) = 0,
leads to the result

p = µ0B0U(κr0)

[
sin(κr)

κr
−

sin(κr0)

κr0

]
(56)

with

p(r = 0) = µ0B0U(κr0)

[
1−

sin(κr0)

κr0

]
. (57)

Specialization to the Newtonian case κ = 0 gives the result

pN =
γNMcµ0

2r0

[
1− (

r

r0
)2
]
. (58)

5 Radial drift of a test body (“Pioneer effect”)

Recent evaluation of radio metric data from Pioneer 10/11, Galileo and Ulysses
spacecraft indicates an anomalous, constant acceleration acting on the spacecraft,
being about 50 AU far from the Sun, with a magnitude ≈ 8.5 · 10−8cm/s

2
, directed

towards the Sun (Anderson et al. 1998). Apparantly the explanation of this new
effect seems to be related to a correction of Newtonian mechanics by additional
terms. But also general-relativistic explanation approaches are under discussion
(Rosales and Sánchez-Gómez 2000). In the following we try to find an explanation
of this radial drift effect by applying our theory.

The equation of motion of a test body (9) with the help of (22a) takes the form

dv

d t
+ gradχ+ v

d lnσc

d t
= 0 . (59)

From this equation we learn that for a spherically symmetric potential, as investi-
gated above, the appearing acceleration A of the body considered can be splitted
into the Newtonian part AN and the scalaric part AS according to

A =
dχ

d r
= AN +AS . (60)
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Figure 7: Dependence of the additional radial acceleration on radius R

Referring to the interior and exterior of the central body we identify

a) ANi =
γNMcr

r3
0

and b) ANe =
γNMc

r2
(61)

(internal and external Newtonian accelerations). With the help of (43b), 48b) and
(44b), (49b) the additional scalaric parts take the shape

a) ASi =
γNMcκ

2

(κr0)3

[
3U(κr0)V (κr)

(κr)2
− κr

]
≈

γNMcκ
2r

2r0

[
1−

1

5

(
r

ro

)2
]
,

b) ASe =
γNMc

r2

[
3V (κr0)U(κr)

(κr0)3
− 1

]
≈

γNMcκ
2

2

[
1−

1

4
(κr)2

]
.

(62)

Remembering that this series expansion is valid for (κr)2 ≪ 1, we apply this latter
formula to the empirical facts mentioned above:

γNMcκ
2

2

[
1−

1

4
(κr)2

]
= 8.5 · 10−8cm s−2 . (63)

Inserting the well-known values of the Newtonian gravitational constant γN =
6.68 ·10−8g−1 cm3s−2, the mean distance of the spacecraft considered from the Sun
r = 50 AU, and the mass of the Sun Mc = 1.989 · 1033 g, we arrive at the value of
κ for the Sun (1 AU = 1.496 · 1013 cm)

κ = 3.58 · 10−17 cm−1 = 5.36 · 10−4(AU)−1 . (64)

Though our theory predicts a rather constant value of the radial acceleration far
away from the Sun, nevertheless this acceleration value decreases at even greater
distance. Fig.7 shows the course of the curve in detail.

6 Dark matter induced new interaction and the
“5th force” interaction

Nearly twenty years ago intensive discussions on the validity of the equivalence
principle and on an eventually existing new interaction, acting also in macrophysics,
took place. Many proposals were published, where mainly the concrete approach of
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Fischbach et al. met considerable attention (Fischbach et a. 1986) who introduced
the notion “fifth force” with the Yukawa type potential energy between two particles
m1 and m2 :

V (r) = −
G∞m1m2

r

[
1 + α exp

(
−
r

λ

)]
(65)

(G∞ gravitational constant at large distance, α and λ free parameters).
According to our external potential (49) the potential energy between such two

masses considered reads (γN → G∞)

VS = −
3G∞m1m2

r(κr0)3
V (κr0) cos(κr) ≈ −

G∞m1m2

r

[
1−

1

2
(κr)2

{
1 +

1

5

(r0
r

)2
}]

. (66)

Since the functional structures of the potential energies (65) and (66) are dif-
ferent, the free parameters α , λ and κ, r0 don’t correspond uniquely. Roughly

speaking, only the identification
α

λ2
→ −κ2 is possible.

I would like to thank Prof. Dr.A. Gorbatsievich (University of Minsk) very much
for scientific discussions and technical help.
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